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WHERE DOES TECHNOLOGICAL progress come from and what determines 
its rate of advance? In answering these questions, it is useful to decom- 
pose technological progress into the invention of new techniques and 
products and the improvement of existing ones. 

Roughly speaking, the economist sees invention as the result of 
research and development, and improvement as the result of experi- 
ence-learning by doing. Because productivity growth on any single 
process is likely to be bounded, invention is the origin of long-run 
productivity growth. But the "level" effects of improvement on 
productivity have, in some activities, been found to be huge-on the 
order of several hundreds of percentage points. Thus understanding 
how the process of improvement works will help us better account 
for growth. This paper concerns itself with a simple model of one of 
the forces involved in improvement, namely, the improvement in 
productive efficiency that occurs as a joint product with output, or 
learning by doing. 
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The Learning Curve 

Formal study of the learning curve began in 1899 when two psy- 
chologists, Bryan and Harter, published their celebrated study on adult 
skill learning. The activity they studied was the sending and receiving 
of Morse code, and they found that after ten months' experience, the 
operators were four or five times as productive as in their first month. 
Since then, economists, industrial engineers, and psychologists have 
found many other instances of productivity growth associated with the 
accumulation of experience. The gains vary from a few percentage 
points in some activities carried out by individuals to tenfold increases 
in group activities such as the assembly of airframes. I 

Of course, much of what may look like learning by doing is in fact 
the result of costly investments. These investments are concentrated at 
the outset when a new process or product is introduced-training the 
work force in the initial stages of production, allocating extra engineers 
at the early stages, getting the newly installed equipment up and run- 
ning-and they have a lasting effect on productivity. Nevertheless, the 
sheer volume of examples from the real world, added to the even greater 
number of experimental studies, leaves a strong impression that learn- 
ing by doing matters a lot. 

Our Approach 

When a new production method is set up in a plant, and when unit 
costs decline with experience, where is the increased efficiency "em- 
bodied"? Is it the firm's management that makes better operating and 
purchasing decisions, or the firm's labor force that gets better, or the 
firm's capital stock that is being debugged? Because new products and 
processes differ widely in their capital intensity, their complexity, and 
so on, the answer will depend on the case at hand. Nevertheless, these 
different sources of productivity improvement all have one thing in 
common: As experience accumulates, someone-the manager, the 
worker, the engineer, the head of purchasing-makes better decisions. 
Thus on an abstract level, productivity growth can be seen as the result 

1. Bryan and Harter (1899), Middleton (1945), Baloff (1966), and Argotte and 
Epple (1990). 
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of a better decision that solves some optimizing problem. This is the 
approach that we shall take. 

In our model, "skill" is knowledge. Each period, someone-say, 
the worker-must make a decision. With each repetition of the activity, 
the worker grows more informed and the decision gets better and better. 
Hence the model generates a learning curve-a positive relation be- 
tween experience and productivity. With its emphasis on optimal learn- 
ing and optimal decisions, our model differs from the main body of the 
existing literature on this relationship. In light of this, the reader may 
well ask the following two questions: Is this a plausible way to model 
productivity growth on a new activity, and does information theory add 
anything, or can a simpler, noninformational approach do the job as 
well? 

Plausibility 

Can a formal representation of knowledge plausibly describe skill? 
The answer depends on the type of skill in question. The Bryan-Harter 
study suggests a productivity breakdown into three basic skills: 

* Language skills-needed to learn the Morse code, 
* Perceptual skills-needed to identify patterns of dots and dashes, 

and 
* Motor skills-needed to manipulate the sending key.2 

Because there is an ideal way to send and receive telegraph signals that 
allows us to define a best decision, the development of each of these 
three skills was essential for narrowing the gap between actual decisions 
and the best decision. We assume that actual decisions are optimal in 
that they reflect information received to date. But optimal decisions do 
not coincide with the best decision, simply because the worker has not 
yet learned what that best decision is. Even as a matter of descriptive 
realism, then, the worker could be viewed as having initial beliefs about 
the meaning of the code and of the dot-dash patterns, and that he learns 
their correct meaning in a Bayesian fashion, by updating his initial 

2. Ackerman (1988) argues, in an article well known to psychologists, that perfor- 
mance on a task is driven initially by "general intelligence," then by "perceptual 
speed," and eventually by "psychomotor ability," a decomposition similar to the three 
basic skills outlined here. 
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beliefs in light of the evidence, and so improves his performance. This 
seems an appropriate way to model the types of language and perceptual 
skills described above. The development of motor skills, however, is 
another matter; although the above argument may apply in the telegraph 
example, elsewhere we must use an "as if" argument. A laborer gets 
better with experience partly because working makes him fitter and 
stronger, not necessarily because he is using logic or processing infor- 
mation. When this is the case, we hope that the growth in productivity 
will behave as if the worker's actions kept improving because of mount- 
ing evidence about what kind of action was best. 

What Information Theory Adds 

Why use information theory explicitly to get a learning curve? Why 
not proceed by simply assuming a deterministic learning curve with a 
functional form that is flexible enough to fit a variety of situations? This 
approach has proved useful in both economics and psychology,3 and a 
popular functional form is dq(t)ldt = b[c - q(t)], q(O) given, where 
q(t) is a measure of an agent's efficiency or productivity on a technology 
that he has used for t periods, and where b and c are constants. This 
simple functional form captures two essential properties of learning: its 
total scope, as measured, say, by the "progress ratio" c/q(0)-the 
maximal, eventual efficiency, divided by the initial efficiency, and its 
speed, as measured by b. Why, then, explore a more complicated 
structure? 

We can think of two advantages of our decision-theoretic approach. 
First, the above equation specifies the first moments only-mean pro- 
ductivity grows as a function of experience. But in fact, learning has 
something to do with variability of productivity, even among equally 
experienced decisionmakers. For one reason or another, some agents 
learn faster than others, and when the learning curve is steep, differ- 
ences among agents are potentially larger. Workers, plants, and firms 
will have different productivities because some have learned a produc- 
tion method faster than others. What is the precise relation between the 
scope of learning and the variance of efficiency in a cohort of decision- 
makers who are initially identical? Our model supplies a precise answer 

3. Parente (1994) and Eyring, Johnson, and Francis (1993) are examples in econom- 
ics and psychology where this functional form is fruitfully explored. 
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to this question. It also has something to say about the skewness in the 
distribution of efficiencies. In other words, the learning curve, the 
variance of efficiency, and the skewness of efficiency are all related to 
a few common parameters. 

The second advantage of the decision-theoretic approach is that the 
parameters governing the scope and speed of learning also determine 
the switching cost, expressed in the loss of know-how when a familiar 
method of production is abandoned in favor of a new, untried one. 
Because the parameters b, c, and q(O) are not the outcome of an under- 
lying informational structure, the deterministic equation displayed 
above does not suggest an appropriate value for the switching cost, 
which therefore must be specified exogenously, as a free parameter.4 
And yet we know that the amount of human capital lost to switching 
should depend on how much was accumulated. Again, our model gives 
a precise answer to this question. 

Learning and the Complexity of a Decision Problem 

In fitting the model to actual learning curves, we encountered the 
problem that productivity growth in a couple of cases seemed too slow 
compared with how fast the decisionmaker receives new information. 
A farmer may take several years to learn a new agricultural method, 
but this is to be expected because he receives information slowly-in 
effect, the farmer gets just one piece of information each time the crop 
is grown, and this happens at most two or three times a year. But on 
other jobs information comes in at a much higher rate-for instance 
(and this is a case we analyze) a surgeon that does several operations a 
week. As we shall see, a surgeon's skills in performing an operation 
keep improving even after he has performed hundreds of them! A simple 
decision problem with a single unknown parameter and serially uncor- 
related signals does not adequately describe the learning on such an 
activity, because the model would predict that learning should occur 
too quickly. 

How then does one construct a model showing slow productivity 
growth in an environment where learning is optimal and behavior is 
rational? In view of the usual statistical findings that autocorrelation in 

4. Parente (1994) and Klenow (1993) formulate their models in this way. Jovanovic 
and Nyarko (1994) analyze optimal switching in the model at hand. 
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the noise reduces the signal-to-noise ratio in data, our first stab at a 
solution was to allow the signal on the unknown parameter to be auto- 
correlated. To our surprise, we found that learning the parameter in 
question slowed, but not the rate of productivity growth because auto- 
correlation can make certain types of forecasting easier. Thus some 
other way was needed to slow down productivity growth. 

A natural way to obtain slower learning in this class of models is to 
increase the number of unknown parameters that the decisionmaker 
must know to make a good decision. Our way of enlarging the number 
of parameters also increases the number of decisions that must be taken 
for the activity to be carried out. Although we do not favor this inter- 
pretation, we could associate each decision with the exercise of a dif- 
ferent kind of underlying ability, as in our discussion of the three basic 
skills above, in which case some activities require the exercise of a 
greater range of abilities. We think of a problem with a larger number 
of decisions as "more complex." In short, then, productivity growth 
is slower when the activity is complex. Indeed, we show that marginal 
returns to information can be rising in such an activity and that its 
learning curve can then have a convex segment. 

Our Results 

Our modeling produced three main findings. First, when we compare 
the estimation results for the twelve different learning processes on 
which we have data, the following pattern emerges: processes on which 
learning is important, as measured by cumulative productivity growth, 
tend to have longer half-lives of learning, tend to be more complex, 
and tend to give rise to more inequality in cohorts of learners. Similarly, 
complex processes have bigger cumulative productivity growth, take 
longer to learn, and produce more inequality. 

Second, and surprisingly, if decisionmakers see somewhat indepen- 
dent signals about the parameter that they seek to learn, the efficiencies 
among these agents can vary greatly. Plant managers in the same in- 
dustry might all be trying to solve the same problem, for example. Thus 
the model can explain some of the productive efficiency differences 
among firms or plants-efficiency as measured, say, by total factor 
productivity (TFP) and documented by Baily and Gersbach in this 
volume. 
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Third, if an activity is complex enough, the distribution of efficien- 
cies among decisionmakers is predicted by the model to become skewed 
to the right. This result is important for the "frontier production func- 
tion" literature, which assumes that the effects of mistakes are to skew 
the distribution of efficiencies to the left. Even though the underlying 
shocks in the model are normal, technical inefficiency resulting from 
mistakes can very well have a right skew, as apparently it does in some 
industries. 

Previous Theoretical Work 

Most work on learning by doing has not used information theory 
explicitly. Arrow analyzed the case in which the "doing" by one firm 
bestows "learning" on all the firms in the economy, so that the resulting 
benefits are purely external. In contrast, Rosen treated the case in which 
the benefits of learning by doing are completely internalized. Since then 
tomes have been written on the subject. Information-theoretic models 
are few, however. Our model posits that experience allows the deci- 
sionmaker gradually to learn the parameters governing the production 
function on his activity. As he learns, his performance improves. Ve- 
nezia has modeled productivity growth in exactly this way-although 
he did not estimate a model and he used least-squares learning instead 
of the Bayesian method used here.5 Despite differences in detail, Ve- 
nezia's message is the same as ours-statistical decision theory is useful 
in analyzing the productivity-experience relation. 

The Theoretical Framework 

We describe the theoretical model in three stages. First we set out 
the general notions; second, we describe the simplest case of learning 
just one task on which just a single decision needs to be set; finally, we 
extend the model to an N-task activity. 

5. Arrow (1962), Rosen (1972), and Venezia (1985). See also Wilson (1975) and 
Zellner (1971, ch. I 1). 
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General Notions 

Let Q be the output of some activity, and let the inputs of capital, 
labor, and materials be K, L, and M. Write the production function as 

(1) Q = F(q, K, L, M). 

The activity may be the production of finished output, or the production 
of some component; equation 1 can apply to the activity of various 
entities: the firm, the plant, the team, the manager, the worker. The 
parameter q measures how efficiently the activity is carried out. 

How q enters F(.) depends on the nature of the learning. Bahk and 
Gort recently tried to find out whether learning at the plant level was 
mainly organizational or embodied in the inputs.6 In this notation, their 
attempt amounted to asking how q enters the production function of the 
plant. For instance, if organizational learning was mainly by manage- 
ment, one might write Q = qF(K, L, M). And if learning was mainly 
embodied in labor, one might write Q = F(K, qL, M). Similar adjust- 
ments would be made if learning led to an increased efficiency (that is, 
debugging) of machinery, or if experience led to the finding and pur- 
chase of a better quality of material inputs. 

We do not take a stand on exactly where q enters or in how many 
places. We model learning in a way that abstracts from the details of 
the decision problem at hand. All that we require is a "best" way of 
solving the problem that is not exactly known at the outset. We assume 
that efficiency, q, depends on how closely a decision, z, matches an 
ideal level, or target, y: 

(2) q = G(y - z). 

Efficiency is largest when z = y. We may think of (y - z) as a mistake 
that reduces q below its maximal level of G(O). There is no direct cost 
to learning or to adjusting z, only lost output. So z is something other 
than the quantities K, L, and M. Examples of decisions that z might 
stand for are the speed of the production line in a factory, the organi- 
zation of the workspace, the types of machines and raw materials pur- 
chased, and the type of labor hired and its assignment to the tasks. 

Assume that the function G(.) is known to the decisionmaker. The 
only unknown is y. Under these assumptions, for learning to be gradual, 

6. Bahk and Gort (1993, especially table 4). 
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we must assume that y is random and that the decisionmaker must 
choose z before seeing y. If y were a constant, and if the form of the 
function were relatively simple-for example, quadratic-the decision- 
maker could infer y fairly quickly, and after that, all learning and 
growth in efficiency would end. So, instead of learning the exact value 
of y, the decisionmaker would be learning about the distribution of y. 
In our model we assume that the distribution of y is known, except for 
its mean, which we denote by 0. 

The decisionmaker learns something about 0 each time that he re- 
peats the activity. As information accumulates, his decisions improve. 
This learning process produces an upward-sloping learning curve. The 
curve will always be upward-sloping regardless of how many decisions 
need to be set, simply because more information is better than less. 

Why cannot the agent simply be "told" what 0 is, so that he can 
calculate the optimal z and solve the problem without actually having 
to gain experience in production? Indeed, some features of technologies 
can be explained in manuals and do not have to be learned through trial 
and error. Other features of the optimal decision are specific to the 
situation at hand, to the nature of the factors of production, the raw 
materials, the workspace, the specifications of the output, and so on. 
These, the decisionmaker will have to infer for himself. 

A One-Task Activity 

Suppose an activity requires that only one task be carried out and 
that just one decision z be taken.7 Suppose that 

(3) q =A[1 - (y - Z)2] 

The maximal level of q, attainable under ideal conditions, is A. Each 
production run i leads to a new value of y: 

(4) Yi = 0 + Wi, 

where i = 0, 1, 2, . . ., and where the wi are independent, normally 
distributed random variables with mean zero and variance u%. 

Noise, w, is essential if learning and productivity growth are to be 
gradual. The disturbances w; represent transitory factors that affect the 

7. Wilson (1975) and Venezia (1985) discuss learning of such a production function, 
and Holt and others (1960) were among the first to use a quadratic profit function. 
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nature of the optimal decision. They are transitory in that they are 
serially uncorrelated. For example, 0 may represent the optimal way, 
on average, to perform a surgical operation (indeed, this is the first 
empirical learning curve that we analyze), but the exact nature of what 
is done depends on some characteristics of the patient, and these char- 
acteristics vary from patient to patient. Or 0 may represent the optimal 
speed of the production line on an average day. But from day to day, 
the exact specifications of the output may be slightly different, various 
members of the work force may be out sick, the raw material inputs 
may differ in a peculiar way from their average quality, some essential 
piece of equipment may break down, and so on. This all suggests that 
transitory effects on the optimal z are present. How transitory they are 
depends, formally, on the degree of independence of w over production 
runs. Later, we show that, quite surprisingly, the degree of autocorre- 
lation of the ws makes almost no difference to the model. Until then, 
we shall maintain the assumption that the ws are serially independent. 

For production run i, the decisionmaker must choose his decision z, 
before seeing yi. Let T denote the cumulative number of production 
runs, i = 0, 1, 2, . . ., T- 1. Let EJ(.) denote the decisionmaker's 
expectation of some variable conditional on information that he has 
seen during the first T production runs. Assuming that he is risk-neutral, 
the decisionmaker will seek to maximize ET(qT) when choosing his 
decision ZT for the Tth production run. The optimal decision is 

(5) Z E(y) = ET(0). 

The second equality in equation 5 follows because ET(wT) = 0. This 
decision is dynamically optimal as well, because the amount of infor- 
mation that the decisionmaker gets does not depend on the value of z 
that he chooses. Equations 3, 4, and 5 imply the following reduced 
form: 

(6) qT = A{l - [0 - ET(0) + WJ2 }- 

Now let XT = ET[0 - ET(0)]2 denote the posterior variance over 0, given 
information from the first r production runs. If the prior distribution 
over 0 is normal with variance o', then applying Bayes' rule, 

2 2 

)t, + 0 
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Then the expected efficiency on production run T is 

(8) ET (q,) = A( X- - 2). 

This is the "learning curve" when the activity in question has just one 
task. 

An N-Task Activity 

In several of our empirical examples, we encounter rather slow pro- 
ductivity growth. This slow growth cannot be explained by introducing 
autocorrelation in w, but it can be obtained by increasing the number 
of tasks. 

The activity of an organization usually requires that many decisions 
be made, usually by many individuals. This is as true on an assembly 
line in an automobile plant, as it is in a firm with a multilayer manage- 
ment structure. Even the activity of an individual worker can be decom- 
posed into more basic "tasks," and, indeed, industrial engineers often 
divide an activity into stages and time their duration.8 

Suppose that to complete an activity, N tasks must be performed. 
The activity might involve a single worker or many. For instance, N 
may represent the number of stages in an assembly line, with each 
worker specializing in a single task. In a sense, N measures how com- 
plex the activity is. 

How should the efficiency of an activity depend on its component 
tasks? In particular, how essential should each task be to the activity as 
a whole? In reliability analysis, an activity is said to have a "series" 
structure if it works only when each of its components works. The 
production function for such an activity is of the Leontief type: Q = 
min(X, . . . , XN), and in it, the Xs are complements. The polar opposite 
of this is a "parallel" activity that works if any one of its components 
works. The production function for this activity is Q = max(X,, . .. 

XN), and in it, the Xs are substitutes. The multiplicative (and hence 
Cobb-Douglas) functional form we assume below is closer to the Leon- 
tief function: each task is essential, but it has more substitution possi- 
bilities .9 

Assume that on the ith production run, task j (j = 1, 2, . . ., N) 

8. Maynard (1971, sec. 3.2) discusses "time and motion" studies. 
9. Barlow and Proschan (1975) describe reliability analysis. 
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involves, as before, a decision Zij and a target yi1, so that the expression 
for q on the ith production run, is: 

N 

(9) qi = A rL [1 - (ys1 -zj )2] 

This is a model in which mistakes are compounded. This type of 
formulation has been used to study multilayered management organi- 
zations and the assignment of heterogeneous workers to organizations. '0 
Aside from being easy to analyze, the multiplicative form produces an 
easy-to-interpret learning curve, and it also generates a right skewness 
in the distribution of efficiencies, as we explain in the next section. As 
in the one-task case, assume that 

(10) Yi j = oj + Wi j, 

wherej = 1,2, . . ., N. 
Although the activity may involve many people, for now we continue 

to assume that there is just one decisionmaker who sets all the zs. The 
number of tasks, N, is exogenous. Of course, the decisionmaker may 
have chosen N as a solution to a larger problem not described here, but 
in this case, the following analysis still holds, conditional on the value 
of N chosen at some prior stage. Assume that for each value of j, the 
agent has a prior distribution over Oj that is normal, with variance go, 
and that the Oj are mutually independent in the decisionmaker's prior 
distribution. Assume also that each wi, is normally distributed, with 
mean zero and variance U2 , and that it is independent of the other ws. 

Together, equations 9 and 10 imply that all tasks are equally impor- 
tant and that the scope and speed of learning are both equal among 
tasks. " This special case involves simple formulas. Now consider the 
decisionmaker's problem at the start of production run . The problem 
is to choose the decision vector ZT (ZT ,I ZT, 2 . * , ZT N). Assume that 
the feasible values of ZT lie in the region in which the expected value 
of the contribution of each task is positive. In that case, ET(qT) is strictly 
concave in the vector of decisions z, and the optimal decision is: 

10. Beckmann (1977), Rosen (1982), and Kremer (1993). 
1 1. The assumption that the wi is have the same distribution for each j (so that yj 

is equally informative for all j) is an approximation. Industrial engineers have noted 
that, during the course of an activity, some tasks are done more often than others and 
are therefore learned faster; see Maynard (1971, pp. 7-104). 
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( 1 1 ) ZT, j E (yT j) = ET (0j), 

where j = 1, 2,.. ., N. 
During each production run i, the decisionmaker observes the vector 

(Yi,, I ... I. Yi, N). When the finished automobile rolls off the line, each 
of its components-including steering, brakes, tires, suspension, and 
engine-is checked separately. There is, in other words, no "signal 
confusion," and the quality of each operation, each task, can be ascer- 
tained ex-post. 

Because the Oj are independent in the decisionmaker's prior beliefs, 
and because the wi1 are independent overj, learning is independent over 
coordinates j, in the sense that if k # j, observing yi, k iS of no use for 
learning Oj. Having seen the vector yi 1, . . , Yi N for i = 0, 1, 
T- 1, the decisionmaker's posterior variance over each Oj will be XT 

where XT is given in equation 7. Expected efficiency on the Tth produc- 
tion run will then be 

(12) ET (q) = A(1 T- x - o2)N. 

This reduced-form relation is the basic outcome of the analysis, and we 
refer to it as the learning curve. Sometimes we transform it by dividing 
it by its maximal value, A(1 - U,)N, thus obtaining a curve that is 
bounded above by unity. Also, we later express this curve as a function 
of time rather than cumulative production runs. 

Some Properties of the Learning Curve 

Before fitting the model to different empirical curves, we discuss a 
few of the general properties of the model. 

Concavity, Convexity, and "Plateauing" of the Learning Curve 

In this model, we can easily have the phenomenon of a convex 
learning curve for a part of its range. That is, the model can generate 
increasing marginal returns to information. Bryan and Harter found a 
plateau in the learning curve for receiving telegraphic messages: pro- 
ductivity grew until the sixteenth week, held steady for several weeks 
and then resumed its growth in the twenty-fourth week, after which 
sustained growth was observed (productivity doubled during the sub- 
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sequent sixteen weeks). Such a phenomenon turns out to be consistent 
with this model. 

The following result implies that the larger N is, the more likely a 
portion of the learning curve will be convex early on: 

PROPOSITION 1. Assume that 1 - X- 2 > 0. Then, d2ET (qj)/dT2 
2 

0 if and only if XT ? 2(1 - U2,)/(1 + N). 

Note that when N = 1, it is impossible to meet the condition of the 
proposition without having a nonpositive expected productivity of each 
task: 1 -XT - _ C 0. Hence the learning curve must be concave 
when N = 1. Because XT is monotonically decreasing in T, with xo = 

UW, we have 

COROLLARY. The learning curve E,(q,) is S-shaped (that is, it has an 
initial convex portion followed by a concave portion) if o '- 2(1 - 
u )/(l + N). Otherwise it is strictly concave. 

The convex portion occurs initially or not at all. Given the multipli- 
cative functional form of the production function and the symmetry 
with which the tasks enter the production function, a plateau-like phe- 
nomenon (in which learning slows down for a while and then picks up 
again) is impossible. If both givens are dropped, then getting a plateau 
is easy. For instance, suppose that the activity still involves N tasks but 
that the first task affects q additively as follows: 

N 

(13) q = A, [1 (y, Z)2] + A2 LII [1j- (yj-z)2] 
j = 2 

so that if the beliefs and signals are identically and independently dis- 
tributed as in the case of equation 12, 

( 14) E,(q,) = A, (1 - X- (ol) + A2(1 2T 

= qsitnple + qco1flplex 

The first term on the right-hand side, suggestively defined as qsi"lIPle is 
concave in T. By the corollary to proposition 1, the second term on the 
right-hand side, defined as qd0l1?Plex because it potentially has many com- 
ponent tasks, is, for N sufficiently large, S-shaped. As figure 1 shows, 
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if A2 is sufficiently larger than A, the sum of a simple (N = 1) and 
unimportant (small A,) task and a complex (large N), important (large 
A2) task produces a plateau-like effect on the learning curve. 

Figure 1 portrays the function in equation 14 for the case where the 
prior beliefs over 0, . . ., 0O are identical and mutually independent, 
with variance U2 = 0.6; where the w, . . ., WN are identically and 
independently distributed with W7, = 0.3; and where N = 50, A, = 1, 
and A2 = 108. The large A2 is offset by the large N, and as experience 
T accumulates, the expected value of q tends to about 18. As figure 1 
clearly shows, a plateau emerges roughly between the first and third 
trial. 

We need to use equation 14 when fitting the model to data on surgical 
procedures. For all other cases of learning that we consider, the simpler 
form in equation 12 is adequate. 

Variance in the Distribution of Efficiencies 

How much heterogeneity can be explained as an outcome of varia- 
tions in the rate of learning? In a group of decisionmakers, innately all 
the same, all with the same level of experience in some activity, some 
will be expected to have seen more favorable signals-perhaps through 
luck in trial and error. When the ws are, at least to some extent, inde- 
pendent over agents, such chance variations in the realizations of the 
signals occur, and they, of course, have a greater impact on heteroge- 
neity when the activity being learned offers greater scope for produc- 
tivity gains. This is why the shape of the learning curve implies some- 
thing about higher order moments in the distribution of efficiencies. We 
shall now make this precise. 

Suppose a group of decisionmakers begins a new activity at the same 
time. They are all solving the same problem over and over, but they do 
not share information. What is the variance and skewness of efficiencies 
among the members of the group, and how do variance and skewness 
depend on the level of experience? This variance is bigger for complex 
processes, and it is a nonmonotonic function of experience, first rising, 
and then falling as experience accumulates. 

Suppose that each decisionmaker has the same prior beliefs about 0 
and sees a signal in each period as given in equation 4. Suppose, 
however, that the signals that agents see are mutually independent. This 
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Figure 1. A Plateau Occurring When E(q) = qsimPle + qeomPlex 

E,(q,) 

5 

4 

3/ 

Iq complex 

qsimple + qcmP / / 

2/ 

qsimple 

0 L 
0 2 4 6 8 10 12 

T (Number of experiments) 

Source: Authors' calculations. 



Boyan Jovanovic and Yaw Nyarko 263 

independence of the signals induces differences in q,s over agents, and 
it does so for two reasons. First, because the signal y affects qT directly, 
even if all agents chose the same z, their (y - z)s and their efficiencies 
will be different. And second, as agents see different signals, their 
beliefs about 0 will temporarily diverge, and they will optimally choose 
different actions z. 

We describe the variance of qT by its relative variability, as captured 
by its squared coefficient of variation, which, of course, equals the 
variance of q, divided by the square of its mean. We now derive the 
coefficient of variation for q in the N-task case. (The squared coefficient 
of variation of a random variable is its variance divided by the square 
of its mean, which also is roughly equal to the variance of the logarithm 
of the variable in question). Note that in this case, q is a product of N 
independent random variables. For two independent random variables 
( and t2 with squared coefficients of variation v, and v2 respectively, 
simple algebra shows that the random variable t1t2 has a squared coef- 
ficient of variation v1 + v2 + v,v2. Induction then produces the result 
that the squared coefficient of variation of q in the N-task case, call it 
v(N), is related to the squared coefficient of variation of a single task, 
call it v, as follows: 

(15) v(N) (1 + v) - 1. 

This equation expresses an important feature of complexity: 

PROPOSITION 2. Relative inequality, as measured by v(N), grows ex- 
ponentially in the level of complexity, N. 

Any amount of relative inequality can therefore be obtained from this 
model, by assuming a production process of sufficient complexity. Of 
course, the resulting learning curves should also match observed 
curves-by proposition 1 and its corollary, a large value of N would 
produce an initially convex portion of the learning curve, but that is 
seldom seen in practice. So, how much inequality can we realistically 
explain? To answer this question we need to express v(N), and therefore 
v, in terms of the model's parameters. The first step in this process is 
to express the variance of efficiency conditional on T. Because w is 
normally distributed, w2 is a Chi-squared variate, and its variance is 
2w4 . The variable y - z = w + (0 - z) is also normally distributed 
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in the population. When T = 0, everyone chooses the same value of z 
because everyone has the same priors about 0. When 7 = oo, everyone 
again chooses the same z, because everyone has learned what 0 is. 
Hence, when 7 is either zero or infinity, the variance of q (conditional 
on 0) in the group is 2A2U4 . For intermediate values of 7, the variance 
is larger, because heterogeneous beliefs over what 0 is cause z to differ 
among members of the group. The variance of q, for arbitrary 7 is: 

F 21 
Var(qT) = 2A 24, [1 + + 

(CF' + TU2)2 

As a function of 7, this expression starts out at 2A2U14 when 7 = 0, 
then it rises to a unique maximum, and after that it returns to its original 
value. It is maximized when 7 = U2 /5. At this point, Var(qj) = 

2A2o4,[1 + o-2 /4 U2] 

As T rises, the average efficiency in the cohort rises from A(1 - 

- U,2) to A(1 - U2 ). At 7 = U2 /U2, average efficiency is A(1 - 
2U,2). Hence we obtain the following expressions for v at various levels 
of experience: 

(16) v = 2(f4(1 ? (o~/4of6,) when 7 = 2,(, 2(T4 
/ _ 2(T, when T = oo. 

(1 - U)2 when7 2 

Using this result, we can predict the behavior of inequality in the 
general case by substituting for v into equation 15. 

In short then, among a group of decisionmakers who are identical to 
begin with, inequality should first rise and then decline with experience, 
and the rise and the decline (as well as the average extent of inequality) 
should be more pronounced in complex activities. 

Our estimates suggest that the value of 7 at which variability peaks 
is low, and so, for most of the history of a panel of decisionmakers, 
one should see a decline in heterogeneity. The initial rise in heteroge- 
neity should be brief. Indeed, this is what one finds in table 4 of Bahk 
and Gort's paper. And Griliches and Regev find that efficiencies are 
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less heterogeneous among older firms.'2 Tables A-2 and A-3 in this 
paper also offer evidence in favor of a rise followed by a decline in the 
variance, although the coefficient of variation-the empirical counter- 
part of \iv(N)-is essentially declining, in both cases. 

As an explanation of cross-sectional variations in efficiency, this sort 
of learning heterogeneity can be quantitatively quite important. For 
instance, it seems that learning heterogeneity can account for a big 
chunk of the variance of TFP among plants engaged in similar produc- 
tion. To us, this finding is surprising, because the thought experiment 
of the model in this subsection allows decisionmakers to differ very 
little-they all are assumed to be doing the same thing, to have started 
doing it at the same time, and to have the same inherent ability. When 
two plants in the same industry and equal in age are compared empiri- 
cally, it is unlikely that they would be using the same identical methods, 
be producing the exact same thing, have started operating their tech- 
nologies at exactly the same time, or have an equally able management 
and work force. And yet even if the two plants were alike in all these 
respects, this section says that they may differ a lot in their efficiencies 
simply because of the inherent randomness in the learning. 

How much "heterogeneity" is out there to be explained? Consider 
the standard deviation of the logarithm of TFP-roughly equal to the 
coefficient of variation of this variable. A typical estimate is around 
0.30, obtained by Griliches and Regev.'3 How much can our model 
explain on the assumption that TFP differences among firms of a given 
type are caused by differences in how each of those firms is using a 
given technology? Estimates of the implied heterogeneity among mem- 
bers of a cohort are reported in the last two columns of table 1. The 
\v(N)max column reports the square root of the estimate of v(N) when 
we use for v the expression in the middle line of equation 16 (the largest 
possible heterogeneity), and the \/P(N)min column reports the square 
root of the estimate of v(N) when we use for v the third line of equation 

12. For the eight-year Bahk-Gort (1993) sample, the adjusted R2 first rises and then 
falls. A more appropriate measure of heterogeneity in production functions is the mean 
squared error of the regression, which is what the Griliches-Regev study measured. We 
thank Haim Regev for making available results not reported in Griliches and Regev 
(1995). 

13. Griliches and Regev (1995, table 5) report several estimates, all in the same 
ballpark. The Baily and Gersbach paper in this volume concentrates on the issue of 
heterogeneous efficiency. 
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16 (the least possible heterogeneity), which would occur even if every- 
one knew 0 perfectly, simply because of the unpredictability of w and 
its assumed independence over agents. The explanation that we would 
attribute to learning, then, really should be the difference 
Xv(N)max - (N)min. A glance at table 1 reveals that in several cases, 
the point estimates of \/v(N)max and even N/v(N)min in fact badly over- 
predict heterogeneity. That occurs primarily because these predicted 
values are extremely sensitive to the values that are assigned to u2% and 
N, and that these are, in a few cases, overestimated. But we shall return 
to this issue later. 

Finally, luck of the draw in learning really matters only when there 
is something to be learned, and, from this viewpoint, our model leaves 
out an essential ingredient. How often is technology upgraded, and how 
often, as a result, is an element of uncertainty injected into an agent's 
beliefs? How frequently is a manager of a plant faced with a new 
technology, and how frequently is a worker assigned to a new activity? 
In this sense, we have here only a chapter of the story-the chapter 
that describes what happens after a new technology has been set up, 
after a worker has been given a new job description. Still, this is an 
essential chapter in the story of technological change. 

Skewness in the Distribution of Efficiencies 

An increase in N skews the distribution of efficiencies to the right. 
That is, a large value of N endows the distribution of efficiencies with 
a long right tail. To simplify the argument, suppose that each agent in 
the group has learned 0 perfectly and consequently sets z = 0. Then 
an agent's efficiency equals 

N 

(17) q = 1 (1 - wj2). 
j= I 

The wjs are normally distributed and independent over j and over 
agents. When N = 1, q is skewed to the left because w is normally 
distributed with mean zero, so that w2 is skewed to the right. But as N 
gets large, the distribution of q acquires a right skew. If q were positive, 
one could prove this claim by taking the logarithm of both sides of 
equation 17 and using the central limit theorem. But because of a 
probability (albeit small) that q is negative, we can first square both 
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sides of equation 17 and then apply the central limit theorem argument 
to conclude that the square of q is log-normal. Finally, because the 
probability that q is negative is small, we can conclude that q itself is 
approximately log-normal. 

For N = 1, we can calculate the distribution of q analytically because 
w2is distributed Chi-squared with one degree of freedom. For N > 1, 
however, the exact distribution is not known, and the density is gen- 
erated by simulating the vector (w, . . ., wN). For each simulation run, 
N normal variates with mean zero and variance U2, = 0.05 were drawn 
to compute one value of q. This was repeated 20,000 times. The em- 
pirical density is reported in figure 2 for three separate values on N. 
The figure does not show it, but the probability that q is negative was 
quite negligible: 0.0004 when N = 50, 0.0001 when N = 15, and 
essentially zero for N = 1. 

Clearly, as N grows, the distribution of q gets skewed to the right. 
This is important for the "frontier production function" literature, 
where the effects of mistakes are customarily assumed to skew the 
distribution of efficiencies to the left. One can think of the difference 
between the vector of ys and the vector of zs as a "mistake," and 
interpret it exactly as Caves and Barton interpret their "technical inef- 
ficiency" variable u. 14 We then see quite clearly that, even though the 
underlying shocks (the ws) are normal, technical inefficiency resulting 
from such mistakes can very well have a right skew, as Caves and 
Barton indeed found for distributions of firms' efficiencies in some of 
the industries they studied. 

The Progress Ratio 

Define the progress ratio to be the multiplicative gain to productivity 
that unlimited experience offers. It is the ratio of eventual to initial 
expected productivity: 

limT -- +0ET(qj )2 )N 

Progress ratio = mE2() (1 - 2)N E0(q0) (1 0 - t 

14. Caves and Barton (1990, p. 13). Indeed they find that efficiency, as they cal- 
culate it, exhibits a right skew for a number of industries. 



268 Brookings Papers: Microeconomics 1995 

Figure 2. The Limiting (r = ) Distribution of Efficiencies for Three Different 
Values of N 
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The parameter A drops out from the expression for the progress ratio- 
A affects only the transition path from initial to terminal productivity. 
The main influences on the ratio are U2 and N. If U2 = 0, there is 
nothing to learn, and the progress ratio = 1. And if N is large, mistakes 
are compounded, and the agent must understand all the components of 
the problem well to be efficient. Although U2, also affects the ratio, it 
enters in both the numerator and the denominator, and since both it and 

u2 are likely to be small, the progress ratio will be relatively insensitive 
to c2r. 

Note that cr2 and N reinforce each other in this formula in the sense 
that the cross partial is positive. These parameters are substitutes in 
determining the progress ratio. But N has an additional effect on the 
shape of the learning curve-an increase in N convexifies the function 
ET(qT). When N = 1, ET(qT) is necessarily increasing and concave in T. 

But by proposition 1, as N gets large, ET(qT) acquires an initially convex 
region. 

Fitting Empirical Learning Curves as a Function of the 
Number of Trials 

Because expected efficiency, ET(qT) depends on T-the cumulative 
number of times that the activity was undertaken-the most appropriate 
data for testing the model are those that relate productivity to the cu- 
mulative number of trials. When such data are available, one does not 
have to infer the number of trials from observing elapsed time or cu- 
mulative output. This section reports on how we fitted the model to two 
such data sets. 

Learning Curves in Coronary Angioplasty 

The first learning curve we fit is to "success rates" (defined precisely 
in the appendix) on an operation that treats diseased blood vessels 
(narrowing of the arteries). The procedure is called "percutaneous 
transluminal coronary angioplasty," or PTCA, and is performed by a 
doctor. The data cover about 3,100 operations performed at 105 clinical 
centers by doctors to whom the technique was, at the outset, new. 
Between September 1977 and September 1981, data were collected and 
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appendix, and the key series, the "success rate" of the operations, is 
shown and explained in table A- 1. The total efficiency gains are modest 
for seemingly so complex a task. One should keep in mind, however, 
that the measure of "output" really is a measure of its quality only, 
and not its quantity. Conceivably, experienced surgeons could do the 
operation faster, but speed is not captured in the success measure we 
have. 

The first two columns of table A-I show fifteen pairs of points (T, 

q'). The q$ are average success rates on an operation over a large number 
of observations (roughly 200 operations for each v in column 1). Data 
are based, then, on averaging a dichotomous variable that takes on the 
value 0 if the operation is a failure, and 1 if it is a success. Of course, 
this dichotomous variable can be thought of as taking on a value of 1 
if q, as given by our model, is "high," and zero otherwise. Moreover, 
we shall assume that the mean of the dichotomous variable is propor- 
tional to the mean of q. 

We fitted two different learning models to this curve. First, we fitted 
the simple multiplicative function given in equation 9, or rather its 
expectation ET(qT) given in equation 12, to the points q', by choosing 
values of the three parameters (To2, u,2 and N to minimize the sum of 
squared residuals: 

>[E~(q) - q 12. E[T ( T) qT] 

The fifteen points T over which the summation was taken were set at 
the midpoints of the ranges in column 1 of table A-1. 

The search was conducted over values of U2 and U,2 between zero 
and 1, and for N between 1 and 500. The data and the fitted ET(qT) curve 
are plotted in figure 3. The minimizing values of the parameters were 
c 2 = 0.35, U2 = 0.27, and N = 1, and the R2 was 0.31. Evidently, 
the model does not fit well. Learning takes place too fast and ends too 
soon. Learning would have been slower if N were larger, but in the 
multiplicative model, a large N produces a rate of efficiency that is too 
low early on (see the dashed curve in figure 1 for a portrayal of what a 
large value of N produces in the multiplicative case), and so the value 
N = 1 produces the best fit, albeit a poor one. 

The efficiency function in equation 13, or rather its expected value 
in equation 14, fits much better: the curve portrayed in figure 4 has an 
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Figure 3. The Angioplasty Data and the Line of Best Fit Based on Equation 12 
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R2 of 0.96. Even inexperienced doctors could manage a 50 percent 
success rate, and a way to get this in the model is to have productivity 
be the sum of a simple, easy-to-learn activity, "activity 1," that has N 
= 1, along with a second, complicated one (N = 50) that takes a long 
time to learn. The simple activity puts a "floor" on performance, while 
the second leads to slow, steady improvement. The other parameter 
values were A, = 0.76, A2 = 7,600,000, uy = 0.6, and (o2 = 0. 3. 

Productivity and Experience in Flight Control Experiments 

The second set of data on which we actually know T is from exper- 
iments on airplane flight control. We treat each experiment as a separate 
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Figure 4. The Angioplasty Data and the Line of Best Fit Based on Equation 14 
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trial. Aside from having the data on a subject's cumulative number of 
trials (which we interpret as T), we also know that the computerized 
simulation of the landing of a plane could be broken down into three 
tasks: (a) accepting planes into the airspace, (b) moving planes in a 
three-level hold pattern, and (c) landing planes on the appropriate run- 
ways. Although there were three tasks, the successful simulated landing 
of a plane actually required at least seven decisions. (We therefore 
expect that N should be at least 7.) Each "trial" lasted five minutes, 
and more than one plane could be landed during this time. The exper- 
imental subjects were 115 undergraduates, and each subject completed 
eighteen trials. The results of the experiments are summarized in table 
A-2 of the appendix. Figure 5 presents a plot of the means, along with 
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Figure 5. Flight Control Experiment: Data and the Fitted Curve (Equation 12) 

Normalized number of planes landed 

0.8 t / | 

0.6 / 

0 

0.4~0 

0.8 

04r 1~~/ 

0.6 

0 5 10 15 20 
T (Number of experiments) 

Source: Authors' calculations. 



274 Brookings Papers: Microeconomics 1995 

the line of best fit (again, in the least squares sense). The data were 
normalized by dividing each of the means by its maximal (trial 17) 
value of 53.13. To these data we fitted the model as expressed in 
equation 12. (The more elaborate model expressed in equation 14 was 
not needed to fit these data. Indeed, equation 12 rather than equation 
14 was fitted to all of the rest of the learning curves in this paper). 
Because the data are normalized, we did the same thing to the expres- 
sion in equation 12-we divided the expression by its maximal value, 
A(1 - U2)N, and then fit the resulting curve to the normalized data. 
When equation 12 is normalized, the parameter A drops out, and we 
are left with estimates of the three other parameters in equation 12: 

0.21, U2 = 0.21, and N = 6. Although the fit is good (R2 
0.93), a couple of problems remain. First, N is a bit too low, although 
because it is not so far off its lower bound of 7, this does not seem too 
serious a shortcoming. Second, the model overpredicts the speed of 
learning during the first four or five trials and underpredicts it later on. 
Indeed, this problem arises with a couple of the other learning curves 
that we fit below. The figure shows that if we could uniformly "raise" 
the curve, we would get a better fit, but such a uniformly higher curve 
is apparently not on the menu of possibilities offered by this three- 
parameter family of curves. 

Learning and the Passage of Time 

So far, we have measured experience only by T. Typically, however, 
we know only when the activity was begun and possibly about the 
cumulative output produced by it. The model's implications are easier 
stated in terms of time elapsed. This section discusses these implica- 
tions. 

In the model, productivity rises as the number of production runs, 
T, increases. The passage of time raises productivity only if it is accom- 
panied by an increase in T. Let A be the length of time that it takes to 
complete a task. Suppose that T is the number of periods of accumulated 
experience. Generally, the number, T, of production runs during this 
time interval is 

(18) T = 13T/A, 
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where 1B is a new parameter that is supposed to reflect the structure of 
production and communication among the people engaged in the activ- 
ity in question. Because each task is performed once during a produc- 
tion run, T is also the number of signals received about each Oi. 

Three Examples of Patterns of Specialization and 
Information Flows 

To clarify what ,B is supposed to capture, consider three very differ- 
ent situations, in which a assumes different values. 

* Example 1: One worker doing the entire activity alone. Suppose 
that the activity is performed by a single worker who does all N tasks 
in sequence. It then takes him AN periods to complete the activity, and 
if this is the only activity that this person is engaged in, T = TIAN. In 
this example, then, 13- 1 IN. 

* Example 2: N workers each doing a different task simultaneously. 
Because it takes only A periods to complete all N tasks, the activity is 
completed once each A periods, and each worker performs his task once 
every A periods. 15 In this case B = 1. 

* Example 3: A worker doing the entire activity, in the company of 
m - I coworkers. Nine out of the ten samples of workers that we 
analyze below fit this case: q refers to the output of individual workers, 
but people worked alongside one another and presumably shared infor- 
mation. Ignore integer problems and assume that if my coworker has 
seen K signals, and if he somehow conveys this experience to me, then 
this information is equivalent to my having seen ,uK signals in addition 
to any I may have seen myself. In either event, the activity takes AN 
periods to complete, as in the first example, but because there are m - 

I other workers, each worker now gets 1 + pu(m -1) signals per task, 
at a frequency of once every AN periods. Then ,B = [1 + ,u(m - 1)]/ 
N, so that informational spillovers speed up the learning. 

Because the firm can and does decide on how to organize its produc- 
tion activities, it will optimally choose how complex each activity will 
be (how many tasks N will make up each of the activities done under 
its roof) and the degree of specialization of its work force (whether a 

15. To ensure that each component of the decision vector z is set optimally, the firm 
would have to pay wages per efficiency unit of each task's services supplied. 
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worker ends up doing several tasks or just one of them). Hence the firm 
will choose N and , as a solution to some larger problem. These deci- 
sions will, however, be made before the learning processes discussed 
here begin, and so it is safe to treat them as predetermined, as we do 
here. 16 

Deriving the Learning Curve as a Function of Time 

Substituting for T from equation 18 into equation 7 yields an expres- 
sion for the posterior variance as a function of time, rather than as a 
function of T. Denote this posterior variance as 

(19) x(T) = (1/U2 + 7rT)', 

where uT measures the speed of learning: 

(20) 7r 

This is the rate at which the passage of time converts into increments 
of knowledge. Therefore A, U2, and I-Il affect learning in exactly the 
same way: a smaller U2 implies that each signal on 0 is more accurate, 
while a smaller A or a bigger ,3 means that there are more signals per 
unit of time. Of course, w has a direct effect on efficiency, in addition 
to its role of "garbling" the signal. 

The derivation of x(T) is based on the assumption that the rate of 
experimentation, that is, the number of production runs each period, is 
constant over time. When this assumption fails to fit the facts, learning 
may be better discussed in terms of the relationship between productiv- 
ity and cumulative output. Although this relation is analytically more 
complicated in the context of our model, such a relation nevertheless 
exists and is discussed later in the paper. Our empirical work, however, 
focuses on the model's implications for the relation between productiv- 
ity and the passage of time. 

Let q(T) denote expected efficiency after T periods of experience. 
Then as a function of time, the learning curve is 

(21) q(T) = A[1 - x(T) - 2]1. 

16. We have analyzed a model in which the degree of information sharing is deter- 
mined within the system in Jovanovic and Nyarko (Forthcoming). 
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Now define the normalized learning curve: 

(22) q*(T) = 
qT q(T) = 1 - x(T) 

limT5q(T) A(1 - 2)N l 1 -UJ 

Note that A drops out of q*(T), which makes it easier to compare 
different learning curves. The comparative statics on q*(T) are intuitive 
and are summarized in the following proposition: 

PROPOSITION 3: q*(T) is decreasing in or,, or', and N and increasing 
in TT. 

Care is required in interpreting the result with respect to N, because 
N may also affect 3, and hence rr as well. Our interpretation is: an 
increase in N that leaves 3 unchanged will raise q*(T). 

Evidence on Learning and the Passage of Time 

In this section we apply the model to ten different time series of 
productivity on activities that were new to workers or to groups of 
workers doing them. The first nine pertain to activities done by workers 
individually, while the tenth describes the productivity of a plant, so 
here the decisionmaker should be considered the plant manager. The 
point of the exercise is not to offer new evidence on the size of the 
gains to learning by doing, but to highlight the flexibility of the model 
in fitting a diverse set of learning curves and to illustrate the implica- 
tions of the model. 

The Data 

The ten learning curves are presented in the form of productivity 
plotted against time, not the number of "experiments," as we did for 
the angioplasty and flight control learning curves. The first curve is for 
insurance sales personnel; to the extent that these agents worked alone, 
this curve fits the situation described in example 1. The second learning 
curve came from a situation that probably included elements of both 
examples 2 and 3: the data pertain to the total output of steel at a plant 
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level; no individual worker could have been responsible for all the N 
tasks, but the workers probably shared information. 

The next eight learning curves describe how individual workers' 
productivity in a manufacturing plant behaves as a function of their 
experience on a job that is new to them. Each of these eight learning 
curves seems to be the product of a situation that fits example 3-a 
worker would perform an entire activity unassisted, probably sharing 
some information with coworkers. One should keep the above discus- 
sion in mind when interpreting the estimates of the parameters for the 
individual learning curves. The data (described more fully in the ap- 
pendix) were: 

* Learning at the individual level by insurance sales personnel. In- 
surance sales by 319 employees of an insurance company were 
recorded for a period of three years and are reported, by quarter, 
in table A-3. The data were chronologically ordered (monthly) for 
each individual and then pooled into three-month averages. 

* Learning at the individual level by munitions manufacturing work- 
ers. Table A-4 records the average outputs of four groups of work- 
ers in a munitions factory. The activity was new to these workers. 
The weekly output of each worker was recorded for nine weeks. 

* Learning at the individual level by Western Electric workers. Four 
of the learning curves are reported in table A-5, and they record 
the output produced by newly hired workers in three Western 
Electric plants in 1977, 1979, and 1980. Each worker's output 
was recorded for each of the first six or seven months of his or her 
employment. 

* Learning at the plant level in steel manufacture. Table A-6 records 
the month-by-month productivity of workers on a newly installed 
steel-finishing activity during the first two years of its operation. 

Fitting q*(T) to the Data 

Figures 6, 7, and 8 present the plots of these data, and the lines of 
best fit. The fitted equation is for q*(T), given in equation 22. The 
estimation procedure was the same in each case and was similar to the 
procedure for fitting the model to the data on the flight control experi- 
ment. The only difference is that, because we do not have a measure 
of t (the number of production runs), we must instead rely on the 
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Figure 6. Actual and Fitted Productivity in Insurance and in the Steel Plant, 
by Experience, T, in Months 

A. Insurance sales 
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Figure 7. Productivity of Munitions Workers, by Experience, T, in Months 
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Figure 8. Productivity of Western Electric Workers, by Experience, T, in Months 

A. Plant A, 1977 B. Plant A, 1979 
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arguments for viewing learning as a function of time and use calendar 
time as a measure of experience. (We also could have used cumulative 
output instead of time, but this would have been messy). Using T leads 
us to the version of equation 12 as expressed in equation 21 and its 
normalized version, q*(T), in equation 22. The transformation from T 

to T also introduces a fourth parameter, 'r. 
We normalized each empirical learning curve by dividing it by its 

highest value, which in most cases also was the terminal value. Denote 
this empirical learning curve by q+(T), which, like q*(T), is therefore 
bounded above by unity. We then fitted the curve q*(T) to it, by choos- 
ing o2, cr2,, N, and ir to minimize the sum of squared residuals: 

Min{l[q*(7) -q+(7)]2 
T 

The parameters were constrained so that q*(O) = q+(O). That is, the 
fitted learning curves were constrained to produce the same progress 
ratio as the data. 

Figure 6 describes the two most complex learning processes: insur- 
ance sales; and the productivity of the steel plant. Of the ten learning 
curves we analyze, these two had the highest progress ratios (111 in 
insurance sales, 2.9 in the steel plant), took much longer to learn, and 
consequently had the highest estimates of N (97 and 43, respectively). 
Even though the insurance curve is an average of learning among 319 
employees, it bounces around a lot, perhaps partly because of season- 
ality; the learning curve for the steel plant fits much better. As the 
surgeons' example showed (see figures 3 and 4), a large estimate of N 
(50 for the surgeons) reflects not so much the size of the progress ratio 
(which for the surgeons is only 1.29), but rather the generally slow 
pace of learning-the half life of learning is one year in insurance and 
eight months in the steel plant. Moreover, there is an important differ- 
ence in the types of learning in the two cases. The rising productivity 
of insurance agents was probably attributable largely to the rise in each 
agent's expertise. On the other hand, we do not know how much of the 
rise in the steel plant's productivity was caused by a rise in labor skills, 
and how much was attributable to other factors. If in equation 1, F is 
indeed Cobb-Douglas in K, L, and M, then their multiplication tends 
to slow down the learning at the plant level for the same reason as an 
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increase in N does. So a large estimate of N for the steel plant does not 
necessarily mean that its workers were doing complicated things. 

In comparison to insurance and steel, learning in the munitions fac- 
tories and the Western Electric plants looks trivial (see figures 7 and 
8). In contrast to the steel plant where we looked at the productivity 
per worker of the entire plant, here we actually have measures of in- 
dividual output. The progress ratios are modest, and the learning takes 
only a few weeks (see table 1). These are simple, easy-to-learn jobs. 
Nevertheless, N = 17 for Western Electric's plant B, and N = 19 for 
one of the groups of munitions workers. Indeed, the eight fitted learning 
curves drawn in figures 7 and 8 do not differ that much among them- 
selves, and yet in some cases the values of the parameters are quite 
different. This result suggests that not all four parameters can be pre- 
cisely estimated from the q+ (T) series alone, at least not when the series 
contains only a handful of observations. Western Electric's industrial 
engineers had judged the jobs done in plant C to be the most complex 
of the Western Electric jobs in our sample; our estimation procedure 
designates plant B as having had the most complex jobs. 

Interpreting the Estimates 

Figures 6, 7, and 8 show that, while the fit is generally good, the 
model as expressed by q*(.) tends to overpredict (somewhat) the speed 
of learning initially and underpredict it later on. That is, the fitted line 
is sometimes too concave compared to the observations-the marginal 
returns to information diminish too fast. We showed in Proposition 1 
that this feature of the model disappears as N gets large; the learning 
curve can acquire an initial convex range, and for a while the marginal 
returns to information can rise. But as N gets large, q*(O) tends toward 
zero, which limits the ability of equation 12 to fit learning patterns such 
as those that figures 3 and 4 show for the surgeons. At any rate, only 
with surgeons was this difficulty important enough to induce us to 
estimate the more complicated version of the model as expressed in 
equation 14. 

We can gain further perspective if we look at all the parameter 
estimates together. These are gathered in table 1, which also reports 
some other statistics based on those estimates. The learning curves are 
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arranged in order of increasing complexity, N. In the one case where a 
pair of learning curves has the same estimate of N, the curve with the 
larger U2 was assumed to be the more complex of the two. The "prog- 
ress ratio" column reports the ratio of the maximal value of q+ to its 
initial level, and this ratio is simply equal to l1/q+(O). The "half life" 
column represents the length of time that it takes for 50 percent of the 
total progress to be made. Letting 1 denote the half-life, TO solves the 
equation q*(TO) = [1 + q*(O)]/2. The column labeled xvf(N)max reports 
the point estimate of the maximal coefficient of variation of q in a 
cohort of individuals, and the column labeled /;l(N)min reports the 
estimate of the minimal coefficient of variation of q. 

In table 2, we correlate the numbers reported in table 1 as we go 
across learning curves. The idea was to see which general features of 
learning were captured by which particular parameters. The surgeons' 
and the flight controllers' parameters were excluded from this exercise 
because we could not calculate wi and TO for them. 

The following pattern emerges: processes on which learning is im- 
portant, as measured by the progress ratio, tend to have longer half- 
lives of learning (bigger TO), tend to be more complex (bigger N), and 
tend to give rise to more inequality in cohorts of learners (bigger 

7v(N)pmax). A similar statement is true of complex processes, as mea- 
sured by N: they have bigger progress ratios, take longer to learn, and, 
as we expected based on Proposition 2, produce more inequality. 

Clearly, some of the numbers in the last two columns of table 1 are 
much too large. The last three learning curves have unacceptable second 
moment properties. It seems that these huge overestimates occur be- 
cause the parameter U2 has been overestimated and because the vs are 
extremely sensitive to this parameter. Because the combination of es- 
timated (N, o2,,) pairs leads to such high dispersion, we looked at the 
possibility that the high variance estimates resulted from very large 
deviations of zjs from the yjs, which would then show up in a negative 
value for 1 - (yj - zj)2. Table 3 reports the probability that, evaluated 
at the estimated parameters, all N tasks had a positive contribution (that 
is, that 1 - (yj - zj)2 >0 for all j). This probability depends on , 

and it is reported for T = 0, T = P (the half-life of learning), and T 
= oc, in the first three columns of table 3. Immediately we see that for 
the last three activities there is almost no chance that all the tasks will 
be positive at any value of T. On the other hand, the last three columns 
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Table 3. Probability of Positive Output on All Tasks and on a Given Task 

All tasks A given task 

Learning cure 7 = O T =To T = 00 T = O T = 7 T = 00 

Plant A, 1977 0.8553 0.8569 0.8907 0.8553 0.8569 0.8907 
Plant A, 1979 0.9995 0.9999 1.0 0.9998 0.9999 1.0 
Fuses 0.9776 0.9997 1.0 0.9925 0.9999 1.0 
Cartridge 1 0.9258 0.9354 0.9872 0.9847 0.9867 0.9974 
Flight control 0.4555 . . . 0.8376 0.8771 . . . 0.9709 
Cartridge 2 0.9332 0.9407 0.9821 0.9902 0.9913 0.9974 
Plant C 0.9999 0.9999 1.0 0.9999 1.0 1.0 
Plant B 0.9737 0.9807 0.9973 0.9984 0.9989 0.9998 
Cartridge 3 0.7886 0.8012 0.8997 0.9876 0.9884 0.9944 
Steel plant 2.9527e6 2.9712e6 3.2846e6 0.7437 0.7438 0.7455 
Surgeon 3.2103e8 ... 0.0297 0.7081 ... 0.9321 
Insurance 6.1075e-8 1.2007e-7 2.6145e-7 0.8427 0.8485 0.8553 

Source: Authors' calculations. 

show that any given task is still likely to yield a positive contribution 
even for the last three activities. Still, the point is that, when two 
separate tasks on an activity that yield large negative outputs are mul- 
tiplied together, we can get a large positive value for output. Similarly, 
a large negative value for a task multiplied by a positive number for 
the other task(s) produces a large negative realization for q. We are 
getting such unrealistically large variances because F2w and N are large 
for the last three activities in table 2. 

In response to this state of affairs, we naturally asked if the model 
could perform well not just in fitting the first moment of q-that is, the 
learning curve q*(T)-but also its higher moments as well. For two out 
of the twelve learning curves-flight control and insurance sales-we 
also have the standard deviation of output by experience, which is 
displayed in tables A-2 and A-3. At the maximal level of experience 
(when the learning can be presumed to be mostly completed), the coef- 
ficients of variation of output were 0.23 among the flight controllers 
and 1.3 among the insurance agents. Some of this variance is surely 
attributable to differential abilities rather than to transitory variations 
in shocks that make up w. But because this is an exploratory exercise, 
we simply ignored the possibility that ability differs and equated these 
coefficients of variation to what our model would predict, which is the 
third line of equation 16; in other words, we equated the square root of 
2or4/(l- _ 2)2 to 0.23 for the flight controllers and to 1.3 for the 
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insurance agents, and we then repeated the estimation procedure using 
this as a constraint. 

The results are shown in figure 9. Clearly, the model has no trouble 
meeting this constraint, even for the insurance agents, who had the 
largest unconstrained predicted variance. The parameter estimates 
change dramatically, however. Especially dramatic is the change in N 
for the flight controllers-from 6 to 77-and Cr drops by an order of 
magnitude in both cases. And yet the learning curves and the R2s hardly 
change at all. R2 falls from 0.93 101 to 0.92590 for the flight controllers 
and from 0.56325 to 0.56321 for the insurance agents. Finally, as table 
4 shows, the probability that any one task is negative is now negligible, 
and even the probability that all tasks are positive is respectably high. 

Had second moment information been available for the other learning 
curves analyzed here, there is little doubt that the model could have 
accommodated the extra constraints with no trouble, especially because 
the predicted variances were quite reasonable for most of these learning 
curves. This outcome can be viewed as both a strength and a weakness 
of the model. On the positive side, this result says that a particular- 
shaped learning curve is consistent with varying amounts of heteroge- 
neity in the distribution of efficiencies. But it also has a shortcoming, 
in that the learning curve alone will not confidently tell us all the 
parameters; we cannot securely tie down the parameters without having 
at least some information about the higher order moments in the distri- 
bution of efficiencies. 

In addition to our work with this model, Foster and Rosensweig have 
fitted the model to the productivity of new high-yielding seed variety 
methods in Indian agriculture. In their version of this model, N = 1. 
Their estimates of U( = 0.38 and U2 = 0.11 are comparable to some 
of our estimates. 17 

Extensions of the Model and its Robustness 

This section extends the model and elaborates on some of its prop- 
erties. Each of the three subsections outlines the implications of some 

17. Foster and Rosensweig (1994) measure time in years, whereas we measure it in 
months, and so their estimate of U,,2 = 0.091 had to be multiplied by twelve to make it 
comparable to ours. We thank Foster and Rosensweig for transforming their results into 
the form reported here. Other related work is discussed by Zellner (1971, ch. 11). 
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Figure 9. Revised Estimates for Flight Control and Insurance, Constrained by the 
Limiting Variance of Efficiencies 
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Table 4. Variance-Constrained Estimates of the Probability that Tasks Contribute a 
Positive Amount 

Probability 

All tasks are positive A given task is positive 

Learning curve T = O T = ?? T = O T = ?? 

Flight control 0.9996 1.0 0.9999 1.0 
Insurance sales 0.6026 0.9766 0.9927 0.9996 

Source: Authors' calculations. 

alternatives that we might have pursued, but chose not to, either because 
they were more complicated or because their implications were about 
the same as those of the model that we use. 

Learning and Cumulative Output 

Instead of working with q*(T), which gives normalized productivity 
as a function of experience, we could derive a relation between pro- 
ductivity and cumulative output. Because it was more complicated and 
less intuitive, we did not use this approach, but it is worth outlining, 
especially because so much past empirical work has estimated relations 
between productivity and cumulative output. 

Productivity rises with each production run, and so does cumulative 
output. Therefore the reduced form relation between productivity and 
cumulative output is positive. We do, however, have to be clear that 
we are referring to the cumulative output of the "informational unit." 
This may differ from the cumulative output of the plant, but that pos- 
sibility is ignored here. 

Let RT denote cumulative output of the plant over the first T produc- 
tion runs, so that 

T= 

RT= > Qi. 
i=O 

Let R0(T) = EO(R,) be the cumulative output (over production runs 0 
through i--1) that an outside observer would expect to see based on prior 
information alone, and let Q0(T) =Eo(QT) be that outside observer's 
expectation about the output that will be produced at stage T. The 
following argument assumes that Q = qF(K, L, M). A difficulty arises 
if K, L, and M fluctuate over time and are not measured. In this case, 
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we could assume that they are constant, say at K*, L*, and M*. So let 
A* -AF(K*, L*, M*). Because Ej(Qj) is a deterministic function that 
can be perfectly forecast at the outset, we have E0(Qi) = Ei(Qi) for 
anyi = 0, 1,2,. . .,and 

Q?(T) = A * (1 - XT 
- 

V)N, 

and 

R (T) = A* Xi (1 - xi - 2 
v)N 

Treating T as a continuous variable, we have 

(23) dQ? &Q0/&T -dXT/&T X 
(23) 

-R?/d 1 -XT - 2 C,(1 -XT- C) 

The relation between QO and RO is not isoelastic, and, because QO is 
bounded, it can be approximated by an isoelastic form, QO = 

Const.(R0)8, only in the early stages. 
We have chosen in the paper to work with q*(T) rather than the 

relation implicit in equation 23 for two reasons. First, q*(T) is available 
in closed form, and, second, it does not require us to assume the inputs 
K, L, and M are constant. 

Autocorrelated w 

Our initial attempt to slow down the rate of productivity growth 
focused on introducing autocorrelation in the signals y. Surprisingly, 
this approach did not work-the implications of the model change 
hardly at all. We assumed that wi+1 = pwi + ui+l, where the ui are 
mutually independent and distributed normally with mean zero and 
variance o2 . A simple application of Bayes' rule reveals that, following 
T production runs and having observed (yo, y1, .., y ), the deci- 
sionmaker's posterior variance over 0 would be 

XT(P) = (lP2)u +oU + - 

22 2 2'I 0-o0u 0u 

To check the plausibility of this formula, note that when p = 0, o-u = 
,2 and therefore XT(P) = XT. On the other hand, as p -- 1, the signals 

become uninformative because -2V ((JU2[1 - p2]) -?> oc,and XT(P) 

u2; the posterior variance is the same as the prior variance because no 



292 Brookings Papers: Microeconomics 1995 

learning can take place. In any case, a higher p means that the deci- 
sionmaker takes longer to learn 0. 

Despite this, the decisionmaker's productivity rises faster when p is 
higher. Instead of equation 5, the optimal decision becomes 

ZT(P) = ET(YT I p) (1 - p) ET(0) + p YT - y 

from which it follows that 

yT(p) = A(1 - {(1 - p) [0 - ET(O)] + UT} ) 

so that 

ET (q, I p) = A [1 - (1 - p)2 XT(P) - U2] 

This expression is almost identical to the one in equation 8, which, of 
course assumes that p is zero. We conclude that the implications remain 
roughly intact when autocorrelation of the signals is introduced. More 
to the point, one cannot use autocorrelation of signals to get slower 
productivity growth-learning about 0 is slower, but because past ws 
can now be used to predict future ws, the distance between y and z does 
not get larger, and so productivity growth is not any slower! This is 
why we did not take this route when trying to explain the slow pace of 
learning in heart surgery, and why we do not introduce p as a parameter 
to be estimated. 

A related alternative would be to introduce a signal on 0 other than 
y and then to vary the degree of correlation of that signal. This alter- 
native amounts to introducing measurement error that does not enter 
the production function and would break the relation between the degree 
of autocorrelation and the ease with which disturbances to the produc- 
tion function could be forecast on the basis of past disturbances. The 
reason why this alternative does not work is that we cannot use such a 
signal instead of y. Even if we assumed that y was not observed, the 
decisionmaker certainly observes q, and from q and z, he can recover 
the absolute value of y. So all that this alternative does is add a second 
signal while removing a little bit of information from the first signal 
(that is, y), and so, aside from making matters analytically intractable, 
it would likely speed up learning, not slow it down. 

Other Loss Functions 

The implications for the learning curve do not change much if, in- 
stead of being symmetric and quadratic, q were given by A(1 - aly - 
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zl) if y ' z, and A(1 - bly - zt) if y ' z, where y is still specified as 
in equation 4. The optimal value of z is now no longer given by equation 
5, but instead equals ZT = ET(O) + (XT + 2%)1/2 4~N[a/(a + b)], where 
4 is the standard normal cumulative distribution function with density 
(p.1 IExpected efficiency as a function of experience is now 

(24) E,(q,) = A[1 - C(XT + (o-2)], where c = .p{1-I[a/(a + b)]}. 

This expression is almost identical to that in equation 8, the only dif- 
ference being that the constant c is not in general equal to 1. When the 
loss is linear but symmetric-that is, a = b-even the optimal decision 
rule becomes the same as in the quadratic case: because the standard 
normal distribution is centered at zero, 4-1(1/2) = 0, and so, when the 
loss function is symmetric, a = b, and zT = ET(O). 

The presence of the constant c creates a slight difference between 
the learning curve in equation 8 and the learning curve in equation 24. 
Even this difference can be eliminated, however, if, in the quadratic 
case, in which losses rise one-for-one with (y - Z)2, we are free to 
choose the units of y and z arbitrarily. (This step is justifiable if y and 
z are not observed by the analyst). The presence of c is irrelevant 
because we could get a learning curve like equation 24 even in the 
quadratic case by defining efficiency to equal q = A[1 - c(y -Z)2]. 

But 

(25) q = A[l - c(y-Z)2] = A[1I - (yVC 
- 

ZC)2] 

= A[1 - (y' - Z)2], 

where y' = yV<, and z' = zV<. The seemingly more general functional 
form on the left hand side of equation 25 is therefore equivalent to the 
one in equation 3, if we can rescale the units in which z and y are 
measured. When z is observed, as in Holt and others, who also use a 
quadratic loss function as one component of the production function, 
then one cannot choose units arbitrarily; one should instead assign a 
penalty parameter such as c.19 (But when neither y nor z is observed, 
we have an identification problem in that we are unable to tell whether 
big effects on productivity of learning by doing are caused by costly 

18. The rest of this subsection is based on Christoffersen and Diebold (1994, sec. 
3b). Manski (1988, ch. 4) discusses other loss functions and gives further references. 

19. Holt and others (1960). 
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mistakes, that is, a large value of c, or whether the effects stem from 
the resolution of high initial ignorance about y). 

We conclude, then, that neither the assumption of symmetry nor that 
of quadratic losses from mistakes is of overriding importance to the 
implied shape of the learning curve. Put differently, the quadratic model 
is more flexible than it may at first appear. 

Conclusions 

In this paper we have accomplished the following four things. First, 
we have proposed a model of learning that, despite its simplicity, can 
describe a variety of activities. Second, we found that processes on 
which learning is important, as measured by the progress ratio, tend to 
take longer to learn, tend to be more complex, and tend to give rise to 
more inequality in cohorts of learners. A similar claim holds for com- 
plex processes: they have bigger progress ratios, take longer to learn, 
and generate more inequality. Third, we found that luck in learning can 
produce a surprising degree of inequality in efficiencies. And finally, 
in contrast to the assumptions of the frontier production function liter- 
ature, we found that, if an activity is complex enough, the distribution 
of efficiencies among the decisionmakers engaged in that activity be- 
comes skewed to the right, as it seems to be in some industries. 

Appendix: A Description of the Data 

This appendix describes and presents all the data that we used in this 
paper. All the data were obtained from the indicated published sources. 

Coronary Angioplasty 

The PTCA data are quite useful for our purposes.20 First, efficiency 
is reliably measured. The operation aims to clear and expand a blood 
vessel that has, because of sedimentation or clotting, become too nar- 
row. The operation is called a failure if, during the patient's subsequent 

20. The data are from Kelsey and others (1984). See also the companion piece by 
Meier and Gruentzig (1984). 
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Table A-1. The Learning Curve in Coronary Angioplasty 
Surgeon's Number 
experience Success of patients 
level . rate q' in sample 

1-2 0.56 200 
3-5 0.50 247 
6-8 0.54 203 
9-12 0.58 225 
13-18 0.57 225 

19-25 0.54 208 
26-34 0.63 217 
35-44 0.58 209 
45-56 0.66 210 
57-73 0.65 205 

74-91 0.71 203 
92-112 0.65 208 
113-135 0.72 203 
136-178 0.78 201 
179-250 0.72 138 

Source: Kelsey and others (1984). 

hospitalization, a heart-bypass graft becomes necessary, or if certain 
other complications (including death!) occur. Otherwise, the operation 
is called a success. One component of efficiency that is missing, how- 
ever, is the rate at which the operations were performed. In that sense, 
success measures the quality of a surgeon's output, but not its quantity. 

Second, we know exactly how many prior operations each doctor 
performed-T. Because more doctors performed the operation a few 
times than performed it many times, sample size decreased with expe- 
rience. The data were therefore pooled over successively greater and 
greater experience ranges, so that each point would represent roughly 
the same number of operations, and thus, in a sense, carry equal weight. 
Column 2 of table A-I shows the fraction of successful operations by 
experience. 

Could the rise in productivity be the result of pure selection-sur- 
geons that reveal themselves to be adept at doing the operation could 
be getting assigned to more cases-and hence could this rise in the 
success rate simply reflect a relation between doctor's quality and the 
cumulative number of operations performed? But according to Kelsey 
and others, cases did not appear to be assigned to doctors in any sys- 
tematic pattern. Similarly, some of the rise in success could have been 
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Table A-2. Flight Controllers: Means, Standard Deviations, and Coefficient of 
Variation 

Coefficient of 
Trial Mean Standard deviation variation 

1 11.09 6.84 0.62 
2 19.78 9.99 0.51 
3 27.45 9.85 0.36 
4 31.92 11.21 0.35 
5 36.17 11.00 0.30 
6 38.49 11.92 0.31 

7 42.65 10.71 0.25 
8 44.49 11.71 0.26 
9 43.90 10.75 0.24 

10 46.62 11.93 0.26 
11 46.82 10.93 0.23 
12 48.58 11.98 0.25 

13 50.40 11.12 0.22 
14 52.53 10.94 0.21 
15 51.70 10.67 0.21 
16 53.09 10.92 0.21 
17 53.13 10.53 0.20 
18 53.11 12.04 0.23 

Source: Eyring, Johnson, and Francis (1993, table 1). 

caused by technological advances that accompanied the rise in sur- 
geons' experience levels, such as improvements in the equipment used 
during the operation (the development of a smaller catheter in 1981, 
for example, allowed doctors to reach more vessels, and the introduc- 
tion of higher-resolution TVs made it easier to track the position of the 
catheter). Still, the surgeon's experience was the most important cor- 
relate of the rate of success, and for our mainly illustrative purposes, 
we shall treat experience as the only cause of the productivity growth 
that table A- I portrays. 

The Flight Control Experiments 

The results are summarized in table A-2.21 The second column in the 
table shows the mean number of planes "landed" during each trial. 
Note that the behavior of the between-subject standard deviation is 
nonmonotone: as predicted by the model and discussed earlier, the 

21. The data are presented and discussed in Eyring, Johnson, and Francis (1993). 



Boyan Jovanovic and Yaw Nyarko 297 

Table A-3. Insurance Sales Personnel: Means, Standard Deviations, and Coefficient 
of Variation 

Coefficient of 
Quarter Mean Standard deviation variation 

1 1,688 9,888 5.9 
2 16,870 58,786 3.5 
3 32,152 65,529 2.0 
4 100,531 95,125 0.9 

5 135,830 96,073 0.7 
6 187,461 133,218 0.7 
7 115,080 112,797 1.0 
8 142,477 116,716 0.8 

9 88,047 94,022 1.1 
10 163,879 166,169 1.0 
11 81,820 109,291 1.3 
12 141,488 184,477 1.3 

Source: Hofmann, Jacobs, and Baratta (1993, table 1). 

standard deviation in the cohort first rises and then falls (before inexpl- 
icably rising again at trial 18). 

Insurance Sales 

Table A-3 presents the data which were chronologically ordered 
(monthly) for each individual and then pooled into three-month aver- 
ages, so that they are reported quarterly.22 Although most of the people 
in the sample were hired about the same time (the latter half of 1984), 
their experience levels are not exactly synchronous. Nevertheless the 
data seem to exhibit some seasonality-even-numbered quarters tend 
to have higher sales than odd-numbered quarters. 

Again we see a nonmonotonicity, as predicted by the model. The 
standard deviations rise steadily until the sixth quarter of experience, 
after which they decline substantially, and then bounce around in the 
last four quarters. 

Munitions Manufacture 

Table A-4 records the average outputs of several groups of workers 
engaged in fuses and cartridges operations in a British munitions factory 

22. These data are from Hofmann, Jacobs, and Baratta (1993). 
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Table A-4. Weekly Output of Newly Hired Munitions Workers 

Relative hourly output 

Turning Casings, Casings, Casings, 
Week fuse bodies second draw second cutoff reaming 

1 67 70 7 1 48 
2 91 81 79 64 
3 96 9 1 87 67 
4 96 96 89 79 
5 96 97 94 78 

6 100 99 99 89 
7 99 99 100 89 
8 101 100 98 99 
9 100 102 102 101 
Number of workers 16 12 14 16 

Source: Vernon (1921, p. 35). 

during World War 1.23 Outputs are given relative to their average during 
the last four weeks (or two weeks in the reaming activity). We know 
little about the nature of these activities except for the last one-an 
activity that Vernon describes as involving considerable quickness and 
dexterity. 

Learning in Three Western Electric Plants 

Table A-5 presents four learning curves of newly hired workers in 
three Western Electric plants in 1977, 1979, and 1980.24 Each worker's 

Table A-5. Median Percentage Change in Productivity of Newly Hired Workers in 
Three Western Electric Plants 

Job tenure, Plant A, 1977 Plant A, 1979 Plant B Plant C 
in months (585 workers) (308 workers) (182 workers) (178 workers) 

1-2 10.8 18.5 42.5 35.4 
2-3 2.0 2.0 13.0 8.3 
3-4 0.8 0.8 6.4 3.2 
4-5 0.4 0.4 3.0 1.9 
5-6 0.0 0.4 1.0 0.3 
6-7 - 0.1 
Progress ratio 1.14 1.23 1.82 1.55 

Source: Weiss (1994, table 5.2). 

23. These data are from Vernon (1921). 
24. These data are from Weiss (1994). 
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Table A-6. Plant Productivity on a New Steel Finishing Activity, by Month 

Month Productivity Month Productivity Month Productivity 

1 0.34 9 0.76 17 0.72 
2 0.38 10 0.75 18 0.74 
3 0.44 1 1 0.73 19 0.63 
4 0.54 12 0.76 20 0.64 
5 0.55 13 0.66 21 0.96 
6 0.57 14 0.79 22 0.93 
7 0.61 15 0.75 23 1.00 
8 0.65 16 0.71 

Source: Baloff (1970). 

output was recorded for each of the first six or seven months of em- 
ployment. The numbers are corrected for sample attrition-each entry 
represents the median growth rate of productivity among workers that 
were employed during both of the consecutive months in question. 
Without this correction, the growth of productivity would have been 
overstated, because sample attrition tended to be heaviest among the 
least productive workers. None of the plants was equipped with an 
assembly line technology. The jobs were not homogeneous in any of 
the plants, but they were mainly routine microscopic assembly in plant 
A, mainly the assembly of telephone handsets in plant B, and mainly 
the assembly of computer switches in plant C. Industrial engineers at 
the three plants made estimates of how long a new worker would take 
to learn to perform at the level of an experienced worker. This expected 
learning time was twelve weeks at plant A, seven weeks at plant B, 
and fifteen weeks at plant C. 

Steel Manufacture Using a New Finishing Process 

These data record the month-by-month productivity of workers on a 
newly installed steel-finishing activity over the first two years of its 
operation. They are presented in table A-6, after being normalized by 
dividing by the highest productivity level in the last and most productive 
month.25 

25. These data are from Baloff (1970). 



Comments and 
Discussion 

Comment by Griliches: This paper does two things. First, it develops 
a Bayesian learning model (actually, several models), and, second, it 
fits such models to a variety of data on different learning experiments 
and experiences. The motivation for this exercise is that "learning by 
doing" is a major source of total factor productivity growth, and hence 
the suggested model may help account for the observed dispersion in 
both total factor productivity (TFP) levels and growth rates. In my 
comment, I largely question the latter connection. ' 

But before turning to that, I want to say a few words about learning 
models. The model used here is essentially a signal extraction model. 
We do not know what the right level of productivity is, and we use 
search effort, subject to stochastic error, to find it. But much of learning 
is not of that kind. In training we know what we want to achieve, but 
it requires teaching, practice, and talent. If there is uncertainty in this 
process, it is about our own ability to accomplish it. 

It is not clear how much micromodels of learning really imply about 
observed macrobehavior. It is clear that there are diminishing returns 
(eventually) to any one particular learning activity; this is shown by the 
graphs in the paper. But in life, as one topic is learned, we shift to 
another. If one can shift to new tasks, if new technologies arrive to be 
learned, there need not be this kind of diminishing returns. 

It would be interesting to connect the model in this paper to the 

1. The original version of this paper presented at the December 1994 microeconom- 
ics meeting had a substantive section connecting the learning curve results to data on 
TFP dispersion from Baily, Hulten, and Campbell (1992). 
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literature on "on-the-job training." That too is about learning, but 
although wages go up with experience and training, they do not "con- 
cave" very fast. Why not? 

The larger question is whether such learning differences are a rele- 
vant component of the observed differences in TFP within and across 
industries. Because learning occurs largely at the individual level and 
because firms are aggregates of large numbers of individuals who come 
and go, much of the individual learning story averages out and does 
not show up in firm or industry data. Individual variability in learning 
will not be a major source of variance in TFP unless there is synchro- 
nization in the appearance of new technology and in rates of investment 
that implement it. But that does not happen very often, and when it 
does, it happens only in some parts of a plant and at different times in 
different plants. Because of such averaging, these effects are largely 
invisible. 

Where does the observed dispersion in TFP come from? The standard 
TFP accounting assumes a common production function and is not 
explicit about the source of the remaining errors. Empirical studies 
indicate that there are individual firm "fixed effects, which are at least 
quasi-permanent. They do not die out very fast. If learning were a major 
source of such dispersion, there should be much more convergence than 
we observe. In fact, we observe hardly any convergence even within 
relatively well-defined industries. 

Most likely these "errors" are not errors made by the firms in max- 
imizing or choosing the wrong technology but are our own "errors." 
We, as observers, do not understand what is going on, and we do not 
have the tools to measure some of the relevant differences. The quality 
of workers my differ, the measures of capital may be wrong, capacity 
utilization may differ, production functions might differ, R&D-pro- 
duced differences may not be accounted for, market-power positions 
might differ, and so on. This is then a very large haystack where the 
learning story may be only a very small needle. The needle is there, 
but it is not the major part of the story, and it will not be easy to find. 

General Discussion: Most of the participants attempted to relate the 
paper's analytical framework and results to other research, including 
their own work. Henry Farber noted that he had been involved in study- 
ing another type of learning process-specifically, one in which the 
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market must learn about a worker's productivity in order to determine 
his wages. From this research, he has found that a normal learning 
model with fixed targets does not fit genuine wage data very well. That, 
he suggested, is because such processes do not actually involve fixed 
targets, but rather ones that move over time. 

John Pencavel recalled a research project performed by one of his 
students twenty years earlier. The student had gathered several years 
worth of weekly data on output and earnings for individual workers at 
her father's apparel factory in Hawaii, where employees were paid on 
a piece-rate basis and a large proportion of the fashion designs produced 
were changed every few months. According to Pencavel, the variance 
of output across workers was high, but for a given worker a concave 
function seemed to describe well the relationships between output and 
time spent on the particular design. Using additional data on the location 
of workers within the factory, he and his student ultimately determined 
that managers tended to place older, more experienced workers next to 
newer ones so the former could teach the latter. Because some of the 
plant's designs changed frequently while others remained the same, 
Pencavel and his student were also able to address some interesting 
selection issues. They concluded that the most adaptable workers were 
those who were assigned to work on the new designs, while others who 
were not good learners continued to produce the old, unchanging ones. 

Pencavel also pointed out that industrial relations literature suggests 
that the output of an individual worker is greatly affected by the social 
character of his plant. Workers are known to form informal "cartels" 
that attempt to sanction those who work too hard. He said that fitting 
the paper's data to individually based learning curves might be difficult 
without taking into account this factor. 

Following up on Pencavel's point, Kathryn Shaw argued that the 
authors preferred individual learning curve data because they are easier 
to visualize, even though they do not conform very well to the theoret- 
ical model. From her work with the steel industry, she suggested that 
the learning process involves a series of learning curves, where new 
plateaus are continually reached. She said that when a new steel-making 
production line is opened, the firm initially attempts to simply get it up 
and running with a single work shift and one product. Subsequently, it 
tries to move to multiple shifts and, then, to multiple products. Finally, 
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the firm fine-tunes its workers to make them operate the production line 
as efficiently as possible. 

Shaw also suggested that the authors gather a richer data set involv- 
ing information on more than one production line at a startup facility. 
With such data, she said, it would be possible to estimate learning 
curves while controlling for the state of the business cycle (which 
affects the volume of production) and the experience of the workers 
(since they can be completely new or have been transferred from other 
plants). 
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