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Abstract

Macroeconomic models typically treat Al as just another form of capital, and
predict a slowly evolving world, while computer science scaling laws applied to the
whole economy predict explosive growth and the potential for a singularity-like event.
Both views gloss over the asymmetric reality that intelligence capital or Al scales at
computer-science speeds, whereas physical capital and labor do not. What’s missing is
a unified, parameter-driven framework that can nest assumptions from both economics
and computer science to generate meaningful predictions of AI’s wage and output im-
pacts. Here we use a constant elasticity of substitution (CES) production function
framework that separates physical and intelligence sectors. Whereas physical capabil-
ities let us affect the world, intelligence capabilities let us do this well: the two are
complementary. Given complementarity between the two sectors, the marginal returns
to intelligence saturate, no matter how fast Al scales. Because the price of Al capital is
falling much faster than that of physical capital, intelligence tasks are automated first,
pushing human labor toward the physical sector. The impact of automation on wages
is theoretically ambiguous and can be non-monotonic in the degree of automation. A
necessary condition for automation to decrease wages is that the share of employment
in the intelligence sector decreases; this condition is not sufficient because automation
can raise output enough to offset negative reallocation effects. In our baseline simu-
lation, wages increase and then decrease with automation. Our interactive tool shows
how parameter changes shift that trajectory. Wage decreases are steeper at high levels
of automation when the outputs of the physical and intelligence sectors are more sub-
stitutable. After full automation, more Al and more physical capital increase wages, a
classic prediction from standard production functions in capital and labor. Yet, when
intelligence and physical are complementary, the marginal wage impact of Al capital
saturates as Al grows large. More broadly, the model offers a structured way to map
contrasting intuitions from economics and computer science into a shared parameter
space, enabling clearer policy discussions, and guiding empirical work to identify which
growth and wage trajectories are plausible.

1 Introduction

The power of new Al technologies became apparent to the public when OpenAl released
ChatGPT in November of 2022, and the advent of capable large language models ushered
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a new era of uncertainty (and therefore debate) about the future of work. This debate is
dominated by two groups with rather different ways of thinking, Al experts and economists.
This paper is co-written by one author from each field and aims at providing a high-level
consensus by moving the debate from disagreement about outcomes to disagreements about
parameters.

On the one hand, many tech experts boldly predict that most human labor can be
replaced by Al, ushering an astounding new era of economic growth — sometimes dubbed
“singularity” (Kurzweil, 2005). This stance is probably culturally driven by the fact that
many indicators in Al are exponential with very short doubling times (Denning et al., 2016),
often of the order of months (Appenzeller, 2024). If computers can become twice as fast
every two years and tokens for large language models can become half the price within a few
months, why shouldn’t the economy undergo similar trajectories?

On the other hand, many economists cautiously foresee a more vanilla future: Al is a
general purpose technology embodied in a new form of capital, with positive but ultimately
limited effects on growth, and with some negative but ultimately transitory effects on workers
whose work is substitutable with AI capital. Economists arrived at this stance observing a
slow but steady growth since the dawn of the Industrial Revolution, partially driven by an
accumulation of general purpose technologies such as electricity (Gordon, 2016), and more
generally an innovation economy (Aghion et al., 2015).

Which view is closer to the truth is highly consequential for workers’ welfare and for
policy. If the full labor replacement view is closer to the truth, sweeping new policies may be
needed to ensure that displaced workers can continue to receive an income. If the new but
limited general purpose technology view is correct, there is less concern about the future of
work, while policies to smooth the adaptation to the new technology may still be in order.
We tackle the overarching question: When does automating intelligence tasks help workers,
and when does it harm them? And what are the relevant timescales?

Here we aim to use economic theory to bridge the two views and illustrate plausible
scenarios. Following the takes of the Al folks, we allow Al to replace humans in many tasks:
specifically, we assume Al may fully replace humans in intelligence tasks, i.e. those that can
be done in a disembodied way, or virtually. These disembodied intelligence tasks plausibly
represent a large share of all tasks, since 60% of workers could telework at the height of the
COVID-19 pandemic (Barrero et al., 2021). We also acknowledge that there are domains
where the production of artificial intelligence capital may grow at rates typical in computer
science but unheard of in economics.

Following the takes of the economics folks, we argue that the marginal returns to in-
telligence saturate because intelligence is complementary with physical inputs. This idea
parallels standard economic reasoning about capital-labor complementarity, and it helps ex-
plain why rapid improvements in AI may have bounded growth and wage effects. Evidence
to date regarding the returns to intelligence is consistent with this view. For instance, some
research shows that higher 1Q individuals are not proportionately more successful (Terman
and Oden, 1947), and, in fact, cognitive ability slightly declines with earnings among the
very highest earners (Keuschnigg et al., 2023). Scientific research shows decreasing returns:
more researchers and publications yield smaller contributions to science (Jones, 2009; Park
et al., 2023) and to economic growth (Bloom et al., 2020). This evidence pertains to the
effect of human capital, but the effects of adding more intelligence-producing capital also
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Figure 1: Production framework with endogenous labor allocation. Total labor (L) is allo-
cated between physical production and intelligence production sectors, with shares Lp and
Ly respectively. Both sectors combine labor with capital to produce intermediate inputs
physical P and intelligence I, which then combine to generate overall production Y.

suggest decreasing returns. The Information and Communication Technologies (ICT) revo-
lution brought dramatic cost declines yet only moderate contributions to economic growth
(Venturini, 2009; Spiezia, 2012; Eden and Gaggl, 2018). Finally, recent advances in Al
(Large Language Models) have so far yielded small productivity increases across the econ-
omy (Humlum and Vestergaard, 2025; Bick et al., 2025). We develop these ideas and review
the evidence more thoroughly in Section 2, where we formally distinguish physical from
intelligence production and introduce the concept of intelligence saturation.

The key focus of our paper is on intelligence saturation due to physical-intelligence com-
plementarity. The idea is that you build things through physical means, and intelligence can
at best make you maximally efficient at that. Both physical and intelligence components are
needed in production. To illustrate, take education: it has both a physical and an intelligence
component. Quality education has a physical component (co-located interaction, classroom
management, hands-on activities) that many learners benefit from, even when materials
are excellent. Consequently, COVID-19 lockdowns negatively impacted student academic
performance (Cortés-Albornoz et al., 2023), and districts with virtual learning fared signifi-
cantly worse (Jack et al., 2023). Therefore, we need teachers and classrooms — the physical
component. Of course, education also has an intelligence component: the teaching materials.
AT could improve teaching materials, but it is likely that such improvements would saturate
as the teacher ultimately needs to deliver the materials effectively, and the classroom setup
needs to be conducive to learning. Similarly, the production of cars needs machines and
controllers, the production of health requires physical components and intelligence compo-
nents, and the production of food requires a cook and a recipe. Smarter controllers can
raise throughput and reduce scrap, but mechanical limits, safety, and line balance bound the
gains. Clinical productivity can improve with better triage, documentation, and decision
support, but is ultimately bounded by physical throughput and safety. And as far as we
know there are no recipes that dramatically improve the enjoyment we get out of food. We
see intelligence saturation as unfolding across the many tasks in the economy.

To capture these insights, our theoretical approach uses an aggregate production function
(how the output of the economy depends on inputs like labor) that takes a Constant Elasticity
of Substitution (CES) form over the outputs of the physical and intelligence sectors. The



two sectors are assumed to be complementary in our baseline scenario. Each sector uses its
own type of capital, i.e. Physical and Intelligence capital, augmented by human labor that
is assumed to flow freely between the two sectors. The resulting model (see Figure 1), a
nested CES type model, allows us to then quantify how changing AI inputs, both in terms
of which tasks can be automated and how much Al capital accumulates over time, affects
production and wages.

We make the standard assumption about capital-labor substitution. In intelligence tasks,
AT and labor are good substitutes, like in the task model of Acemoglu and Restrepo (2018);
Acemoglu et al. (2024) also used by Jones and Liu (2024); Korinek and Suh (2024). The
difference is that we only assume good substitution for intelligence tasks, not for all tasks.
We assume that substitution is considerably harder in the physical domain. The scaling of
capabilities of robots with their limited bodies is simply much slower (Korus, 2019) than
the scaling of pure intelligence (Samborska, 2025; Lu, 2025). This asymmetric treatment of
capital-labor substitution in intelligence vs physical tasks mirrors the long-run differences in
learning curves in the two areas.

We find that increasing automation of intelligence tasks increases the share of workers
in the physical sector when physical and intelligence outputs are less substitutable than are
intelligence tasks among themselves (a sufficient condition formalized in Lemma A.1; roughly
p < pr/0r). Stronger decreasing returns in the intelligence sector (smaller §;) make this sec-
toral shift even more likely. The effect of automation on wages is theoretically ambiguous and
depends on two forces: (i) how much automation raises intelligence output and, ultimately,
overall output (the scale effect), and (ii) how much the employment share in the physical
sector rises (the reallocation effect). When the first force dominates, wages increase; when
the second dominates, they decrease (see equations (18) and (21)). Based on examining the
intelligence sector alone, a sufficient condition for wages to fall is that the (weighted) de-
crease in the share of employment in the intelligence sector exceeds the automation-induced
growth of the intelligence sector output (Eq. (26)). In our model and given our assumptions,
if automation does not increase the physical employment share (or decrease the share of
employment in the intelligence sector), wages cannot fall. This offers a useful empirical test
as a minimal condition for additional automation to potentially decrease wages.

We parameterize our model using calibration for parameters that can be readily estimated
in the economics literature; other parameter values are intended to be illustrative. For the
substitutability between physical and intelligence, we use the same elasticity of substitution
as between labor and capital in the manufacturing sector (Oberfield and Raval, 2021), which
means that intelligence and physical outputs are complements and the impact of additional
intelligence on output and wages saturates when all other factors of production are held
fixed. Under our baseline parameters, we find that automation in the intelligence sector first
increases and then decreases wages: at first, productivity gains in intelligence more than
offset the wage pressure from workers crowding into fewer tasks, but eventually the negative
effects dominate as most workers get iced out of intelligence tasks. This result presents a
cautionary tale: initial wage increases could turn into wage declines as automation progresses.

We then analyze the dependency of the model on parameter changes focusing on effects of
automation on wage and production, and on parameters that can be empirically estimated.
To help readers intuit the interacting components of our model we make available an inter-
active tool, with the code available on github, that makes it easy to analyze the effect of the
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various parameters. Stronger decreasing returns in intelligence dampen positive wage effects
of automation. Lower substitutability between intelligence tasks within the intelligence sec-
tor leads to a more pronounced hump-shaped pattern in wages as automation progresses.
The interactions between the physical and intelligence sectors are critical for the impact of
automation on wages and output because workers crowd in the physical sector as automation
progresses. Higher substitutability between the physical and intelligence sectors makes the
wage effects of high automation more negative (at high levels of automation) but the output
effects more positive. Intuitively, it is bad for wages if physical goods and in person services
can easily be substituted with fully disembodied or virtual intelligence products. But from
the output perspective, the conclusions are opposite: for the economy to maximally benefit
from automation and Al, we need more substitution between the outputs of the physical and
intelligence sectors. While intelligence tasks are still being automated, this situation would
allow the economy to be dominated by the intelligence sector where Al can contribute the
most to productivity.

Finally, we simulate scenarios in which the stock of AI capital keeps expanding while
automation unfolds, and expands further beyond full automation of all intelligence tasks.
If AT capital doubles every six months — a pace reminiscent of recent GPU-cost curves —
wages no longer trace the hump-shaped path of our baseline: they rise monotonically during
the automation phase and ultimately saturate sometime after Al has replaced all workers
in the intelligence sector. When Al growth is slower, doubling every 24 months, and when
physical and intelligence products are substitutes rather than complements, wages increase
and then decrease with automation, just as in our baseline scenario with fixed Al capital.
In this substitutable intelligence-physical case, wages can grow without bound after full
automation, as further Al accumulation increases output, despite fixed physical production.
The simulations thus spotlight a core property of the CES structure: with complementary
physical and intelligence sectors, the marginal product of Al and its wage impact quickly
saturate, whereas with substitutable sectors, ongoing Al growth can sustain wage gains long
after full automation of intelligence tasks.

Our analysis helps frame disagreements between economists and Al experts about the
impact of Al on the economy in general, and on the labor market in particular. To have a
“doom” view about the impact of automation on wages as we approach full automation, you
need to think that the outputs from the physical and intelligence sectors are substitutable.
The picture is somewhat different in the very long run, past full automation of intelligence
production: if you are bullish about the impact of Al on output and wages in the long run,
you need to think that intelligence and physical sectors are highly substitutable or that tech-
nological progress progressively turns physical tasks into virtual intelligence ones, effectively
raising substitutability over time. If, instead, intelligence saturates because the two sectors
remain complements, automation still raises wages at first but the gains eventually saturate
as additional Al capital yields diminishing returns. Broadly speaking, economists can ratio-
nalize their view of a mild Al impact by assuming that intelligence and physical sectors are
complementary, while Al experts can justify their transformative, singularity-like expecta-
tions by treating the two as substitutes, that is, by assuming physical tasks can readily be
replaced by intelligence tasks.

From a policy perspective, our model suggests that reducing potential negative effects of
automation on wages could be accomplished by slowing down automation while stimulating



investing in physical capital. Slowing down automation obviously reduces potential wage
losses but is costly in terms of foregone growth (but less costly the more intelligence satura-
tion there is), and it could be seen as gaining time to make necessary investments in physical
capital. Physical capital investments are helpful because they increase the marginal produc-
tivity of labor in the physical sector, and therefore prop up wages as workers transition into
the physical sector. An additional policy lever would be the taxing of virtual substitutes
to in-person services or physical goods, at least while automation is ongoing. Such a policy
would prevent increasing substitutability between physical and intelligence sectors, which
would increase the extent to which workers in the physical sector benefit from increasing
automation.

We make three contributions to the literature. First, we offer a conceptual classification
of tasks that distinguishes embodiment from cognition. This classification is related to
but different from that of classifying tasks into routine vs non-routine and cognitive vs
manual tasks (Autor et al., 2003). Specifically, we divide production into physical and
intelligence sectors. All manual jobs from Autor et al. (2003) are physical in our classification,
but some cognitive jobs are also physical if they require in-person execution or yield a
uniquely differentiated in-person output. For instance, surgery, live courtroom advocacy, or
in-classroom teaching are cognitively intensive yet physical in our sense. This reclassification
isolates automation constraints due to embodiment from those due purely to cognition,
enabling us to model asymmetric substitution elasticities between physical and intelligence
sectors and making it possible to capture “intelligence saturation” when the two sectors are
complements.

Second, we introduce the concept of “intelligence saturation” and embed it into standard
economics modeling. We add to the macro growth and production function literature (Ray
et al., 2022) by considering the role of intelligence as a specific capital input into production
rather than an overall technology factor. Our nested CES structure captures the diminish-
ing marginal productivity of intelligence that arises from its complementarity with physical
inputs. We use the structure of prior automation models (Acemoglu and Restrepo, 2018;
Acemoglu et al., 2024; Jones and Liu, 2024; Korinek and Suh, 2024) for the production of
the intelligence sector. However, those models apply a uniform substitution structure to the
whole economy: labor and capital are perfect substitutes within each task, while all tasks
are gross complements, with substitution across tasks governed by a single parameter. By
introducing the physical sector in a nested CES specification, we relax this uniformity con-
straint, allowing substitution patterns to differ within the physical and intelligence sectors
and between them. This flexibility is essential for capturing “intelligence saturation” and
for showing how complementarity between the intelligence and physical sectors can bound
the growth and wage effects of rapid Al progress. This economic substitution mechanism
explains why rapid gains in Al capability — well documented in computer science — need not
translate into unbounded economic growth. In doing so, the model clarifies a central source
of disagreement between Al experts who focus on Al’s fast learning curves and economists
who are attentive to diminishing returns from complementary constraints.

Third, our model presents a unifying, parameterized framework for automation’s wage
effects, with a corresponding interactive tool. By embedding asymmetric automation into a
macro framework, we can show parameter ranges under which wages rise or fall, in terms
of e.g. substitution elasticities and factor shares. This allows varying perspectives from
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economists and Al experts to be expressed as different points in the same parameter space,
turning disagreements about outcomes into disagreements about measurable parameters.

In section 2, we discuss the background behind the assumption of intelligence saturation.
In section 3, we discuss the modeling setup, and the theoretical impacts of automation and
AT on wages (in section 3.4). We provide model simulations in section 4. Our discussion is
in section 5. Finally, section 6 concludes.

2  Why intelligence saturation

2.1 Physical vs. intelligence sectors and scaling

The division of the economy into labor and capital inputs has served the economics discipline
well for decades, why do we need to also divide it into physical and intelligence sectors? First,
we introduce the distinction between physical effectors and intelligence based on insights
from neuroscience and robotics. Then, we make the argument that physical and intelligence
production at this point of time in history scale in fundamentally different ways, and that,
therefore, this distinction is necessary to drive meaningful predictions about Al.

We see fundamental differences between physical and intelligence sectors based on models
of control in robotics (Roy et al., 2021), psychology, and neuroscience (Segado et al., 2025).
Within these areas, we talk about effectors. An effector can be thought of as something
physical that has an effect on the world. An arm is an effector. As is the shovel of an
excavator. Effectors have the capability to change the physical world. More and bigger
effectors have the capability of changing the world more rapidly. And for every effector and
task, we use intelligence to make these changes be as positive for us as possible (Wolpert
et al., 2003), and that is what AI is about. More intelligence allows the effectors to be
less wasteful. Consistent with this distinction, recent papers using actual Large Language
Models (LLM) data from Anthropic’s Claude (Handa et al., 2025) and Microsoft’s Copilot
(Tomlinson et al., 2025) show that these tools tend to be both less used and less applicable in
physical occupations like transportation and material moving, food preparation and serving,
or healthcare support.

Taking this distinction between physical and intelligence to a production function frame-
work in economics, both effectors and intelligence can be supplied by either capital or labor.
It is important to consider how these different sectors scale because it will determine which
ones can be used most efficiently to accomplish a certain task or produce a final good.

Computer science has long scaled in a way that is entirely different from the scaling of the
rest of the economy. Moore’s law states that the number of transistors on a microprocessor
doubles every 2 years. And while the traditional Moore’s law has ended, the tendency of
computers to become roughly twice as fast every other year is continuing (Leiserson et al.,
2020). This scaling has been going on for more than 70 years. Microprocessors are now
rapidly getting better through other channels, e.g. multicores (Smith, 2023). Computation
thus becomes cheaper, roughly by a factor of two every two years (see Figure 3 in Nordhaus,
2007). This rapid scaling prompted computer science experts to focus on how scaling affects
algorithms and systems.

Recent cost/performance scaling in Al has often been steeper than in general-purpose



computing. At the moment, for a given task that Al can solve, e.g. text generation, the
price decreases rapidly. The price currently halves roughly every 6 months (DeepLearning.Al,
2024). These decreases come from multiple sources. First, compute becomes cheaper by a
factor of two roughly every two years (see Figure 3 in Nordhaus, 2007). Second, compute
becomes cheaper in terms of energy, with energy efficiency improving roughly two orders
of magnitude per decade (Koomey et al., 2011). Third, improving Al algorithms makes
running Al cheaper (Hernandez and Brown, 2020). There are no indications that this trend
is changing (Guo et al., 2025). Clearly the price of Al is decreasing exponentially at a rate
much faster than most inputs in the economy. The fact that Al is getting cheaper so fast
makes it more and more economically advantageous to use Al for all tasks where it can be
used.

We can also talk about the scaling of labor and capital. Labor in the US is increased
through population growth (currently less than 1% per year, see Congressional Budget Office,
2025) and the supply of higher quality labor (but increases in years of schooling have been
slowing (Autor et al., 2020)). Capital input increased 3.4% per year between 1987 and 2024,
and 2.9% in 2024 (Bureau of Labor Statistics Total Factor Productivity data). Relatively to
the breakneck speed of Al developments, the other economic inputs are essentially stationary.

A special case of the scaling of capital is the scaling of robotics; progress at this endeavor
could make human physical labor far more substitutable. However, the price of robots,
like that of most goods, tends to rather decrease as a power law than exponential. For
example, the average price of industrial robots decreased from more than $100k to about
$20k from 1995 to 2025 (in 2015 dollars) and the decrease is slowing down considerably
(ARK Investment Management LLC, 2021). Generally, when it comes to physical goods like
household appliances, prices tend to transition from an early phase of rapid price decline
towards a slower longer run price decline (Greenwood et al., 2005).

Thus, AI scales much faster than labor, capital or even robots. This has two main
implications for modeling. First, the incentives for replacing humans by different types of
inputs are starkly different: because AI becomes cheaper much faster, it becomes much more
advantageous to replace labor by AI when possible. This leads us to focus our modeling on
Al-labor substitution. Second, in comparison to Al, other inputs are stationary, so it makes
sense to focus on what happens when Al is abundant and/or scales up quickly.

2.2 From complementarity to intelligence saturation

The distinction between effectors and intelligence naturally leads to the idea that intelligence
saturates, in the sense that adding infinitely more intelligence does not lead to infinitely bet-
ter results for given effectors - the losses from inefficiencies go away with enough intelligence.
With perfect intelligence, effectors are used at their physical and institutional limits; be-
yond that, additional intelligence yields no more returns. In other terms, effectors act as a
bottleneck. In this Al focused framework, intelligence saturation is natural.

Traditionally, economists discuss the production function in terms of capital and labor
inputs. In a simplified way, you could think of capital as effectors and labor as intelligence.
This view acknowledges that the production of goods usually has a component that requires
capital, say trucks, or desks, and a component that requires labor, say driving those trucks
or solving computer science problems on those desks. Capital is usually abbreviated as



K while labor is abbreviated as L. Popular conceptualizations of their interactions then
give rise to production functions for goods or tasks: the amount of goods produced in a
task 7 is a function of the amounts of capital K; and labor L; allocated to it. The micro
or local production function for tasks is then Y; = f(K;, L;). Economists usually assume
that capital and labor are not perfectly substitutable, e.g. through a CES function (like

1/p
[a Kl + (1—a)L? } ) L. The intuition behind this function is that adding more capital

or more labor both increase output, but the two are not perfectly substitutable, so that
the marginal productivity of either decreases when the other is held fixed; the elasticity of
substitution is regulated by p.

It is commonly assumed that capital and labor are complements, which is supported by
firm-level empirical evidence (Oberfield and Raval, 2021). Saying that capital and labor are
complements in a CES production function means that p < 0, and this leads to saturation
of production (convergence to a finite limit) when capital goes to infinity as the labor input
remains fixed. Thus, the idea of saturation is already baked in to commonly used production
functions in economics, and is a direct consequence of capital-labor complementarity.

The key insight here is that intelligence saturation naturally follows from commonly used
production functions. If we model production as a CES function of physical and intelligence
sector outputs, and assume the two are complements, intelligence saturation occurs.

2.3 Intelligence saturation: empirical evidence

Decreasing returns to individual intelligence. While cognitive ability predicts achieve-
ment and earnings, the correlation is far from perfect. In fact, cognitive ability slightly de-
clines with earnings for the top 3 percentiles of the wage distribution (Figures 3B and 3C
in Keuschnigg et al., 2023). Children with IQ above 140 selected for The Genetic Studies
of Genius, later known as the Terman Study of the Gifted, achieved a reasonable amount
of success but were not all widely successful, leading Terman to remark that “intellect and
achievement are far from perfectly correlated” (Terman and Oden, 1947, 352). In fact, the
study tested but rejected two future Nobel prize winners because their 1Qs were too low
(Warne et al., 2020).

Decreasing returns to scientific research. The literature suggests that the returns to
scientific research are decreasing. Bloom et al. (2020) show that the number of researchers
is rising but research productivity is falling, i.e. we observe decreasing returns of research
for economic growth. They examine specific fields like computers, chips, agriculture and
medicine and find decreasing returns in each. Overall, across all fields, research productivity
declines 8-10% per year. The low-hanging fruit has likely been harvested, so research and
patents are getting less disruptive over time (Park et al., 2023), with progress especially
difficult in fields where knowledge is already deep (Jones, 2009). It is notable though that
patents in computers and electronics show increasing innovativeness since the 1980s (Kelly
et al., 2021), which contributes to the expansion of Al capabilities. In other words, we
see decreasing returns to intelligence when it comes to converting intelligence into physical

'We use p-notation for CES everywhere with o = 1/(1 — p) A negative p means gross complements, a
positive p € (0,1) means gross substitutes.



innovation, while intelligence capital used for intelligence innovation may show more positive
signs.

Positive but time-limited impact of ICT on economic growth Information and
Communication Technology (ICT) was the major technological transformation prior to the
rise of Al and deep learning. This wave of technological innovation has arguably increased
intelligence production in the economy by increasing the availability of information and the
ability to process such information through both hardware (e.g. computers) and software.
While this technological wave did increase economic growth, its contribution was no more
than 1 percentage point of annual economic growth at the height of its impact in the 1990s
and the 2000s, and this finding holds both for the US (Eden and Gaggl, 2018) and OECD
countries more broadly (Colecchia and Schreyer, 2002; Spiezia, 2012). Interestingly, Spiezia
(2012) shows that the growth contribution of ICT was driven by computing equipment, i.e.
physical capital. The limited growth impact of adding ICT demonstrates that prior increases
in intelligence production had growth effects that were nothing to sneeze at, but also nowhere
near the scaling implied by e.g. Moore’s law. This finding is compatible with intelligence
saturation: adding ICT contributes to intelligence production and ultimately to growth, but
it does not have effects that are commensurate with the kinds of scaling we see in computer
science.

Further, Bloom et al. (2020) show that medical research productivity has been declining
at least since the 1980s. Since the ICT contribution to growth peaked in the 1990-2000, this
shows that adding more ICT was not able to stem the decrease in research productivity. Since
the 1990s more ICT (machine intelligence) was used for research as well as more researchers
(human intelligence), and yet the impacts of more researchers on economic growth declined.
This means the decreasing returns to intelligence are even steeper once we account for the
fact that we threw not just more humans but also more machine intelligence at our problems.
This again is consistent with intelligence saturation.

Limited productivity effects of recent AI advances Finally, we have some early ev-
idence about the impact of generative Al, and so far the impact has been fairly modest,
especially in studies that cover all economic sectors rather than focusing on particular in-
dustries or occupations. While generative Al led to large productivity increases of 15-56% in
some cases(Noy and Zhang, 2023; Peng et al., 2023; Dell’Acqua et al., 2023; Cui et al., 2025;
Brynjolfsson et al., 2025)?, studies that examine impacts across all industries tend to find
more limited effects. Humlum and Vestergaard (2025) use administrative data from Den-
mark and show that the adoption of generative Al chatbots at the firm level had zero effect
on employment. Workers who used Al chatbots saw some some small time savings of about
3%. Using a nationally representative US data of working age adults interviewed in August
and November 2024, Bick et al. (2025) document self-reported time savings from generative
AT use of 5.4% for people who use genAl, translating to 1.4% for the whole population. This
shows that merely adding more intelligence in the form of chatbots has small effects on labor
productivity, consistent with intelligence saturation.

2Productivity is measured as time saved in Peng et al. (2023); Noy and Zhang (2023); Dell’Acqua et al.
(2023), as tasks completed in Cui et al. (2025), and as hourly productivity in Brynjolfsson et al. (2025).
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In a report based on public disclosures of Al initiatives at the firm level and interviews
with businesses (Challapally et al., 2025), only 5% of firms successfully implemented custom
enterprise Al tools, while 40% implemented general purpose LLM tools. Given the results
from Humlum and Vestergaard (2025); Bick et al. (2025), we know that general LLMs provide
limited productivity gains: custom enterprise Al tools could be more powerful, but they
appear difficult to implement successfully, which may again indicate intelligence saturation.

2.4 Modeling implications

The empirical evidence is consistent with intelligence saturation: there are decreasing returns
to intelligence, and adding more intelligence has positive but limited growth effects. Further,
physical occupations are less impacted by the newest wave of generative Al. This suggests
that it is meaningful to distinguish physical and intelligence sectors, and that economic
models should build in mechanisms that allow for intelligence saturation in order to better
predict the impact of Al on the economy in general, and on labor in particular.

3 Model

Assume a good Y (or bundle thereof) for final consumption is produced using two inputs:
P for the physical input produced by the physical sector and I for the intelligence input
produced by the intelligence sector. Each sector uses capital and labor to produce.

We use 0 for direct (holding allocation fized) effects, e.g. 8%1) (sometimes the [ is
g

implicit), and d for total derivatives along the equilibrium path g*(«;).

3.1 DMarginal productivity of intelligence, AI, and labor in the
general case

The marginal productivity of artificial intelligence K7 is (envelope theorem):

dy oY ol (1)
dK; 01 0K
This equation implies that there are two ways to model a decreasing marginal productivity of
Al either reduce the output gains of adding more intelligence (%—1;) or reduce the effectiveness
of AT in producing more intelligence (aa—é[). We will explore both of these avenues.

As long as we haven’t automated all intelligence tasks, labor is used in both the physical
and intelligence sectors, so the marginal productivity of labor is:
ay oY dP 0Y dl
= &)
dL. OPdL  0OI dL
Labor in the physical sector is Lp and in the intelligence sector L, with L = Lp+ L;. When
labor is allocated optimally between the sectors, we have the following equality between the

marginal productivity of labor in each of the sectors, which also determines the competitive
wage:

_ oYy op 9y aI 3)
Y 9PoL, 0l 0L,
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Therefore, to understand the impact of automation on the wage, we need to determine
how automation affects the marginal productivity of labor in the two sectors.

Once full automation of intelligence tasks is achieved, labor is used only in the physical
sector, so the marginal productivity of labor now is:

dy oY dpP (4)
dL ~ OPdL
After full automation is achieved, increasing the amount of Al in the economy unambigu-

ously benefits workers, because more Al increases the physical sector productivity (where
labor is employed), that is:

0 [dY oY dI dP .
aK,(dL)_aPa[ dK; dL ~ (5)
The cross-partial % is positive for a CES with exponent p < 1, which is our maintained
assumption. Here it is worth noting that the marginal productivity of labor increases with Al
only as long as the cross-partial % is positive, and intelligence increases with Al (dd—lgl > 0).
If we have intelligence saturation so that either of these terms approaches zero, then wages
stop increasing with Al.

3.2 Production function for the intelligence and physical sectors

(CES)

We assume a separate production function for the physical and intelligence sectors, each
produced with labor and capital. We model each sectors as CES-like, with a parameter
regulating the substitution properties, and joined by an overall CES aggregator at the macro
level. This lets us vary substitution elasticities and scale parameters independently for
physical and intelligence sectors as well as overall aggregation.

Table 1 summarizes the parameters used in this model, together with their domain as-
sumptions, and Figure 1 above describes the model graphically. Assumptions on parameter
domains are generally standard.
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Parameter Notation Description Domain /
Assumption

Physical Sector P

Physical capital Kp Physical capital input to physical P Kp >0

Physical labor Lp Labor input to P Lp>0

Labor share in I6; Share of total labor assigned to P: 0<pg<1

physical tasks Lp =L

Physical capital ap CES weight on Kp vs. Lp in P 0<ap<l1

CES share
Physical CES pp
exponent

Intelligence Sector 1

CES exponent in P

pp <1, pp #0

Al capital Kr Al-capital input to I Kr>0
Intelligence Ly Labor input to I: Ly = (1 — )L L >0
Labor

Automation Qg Fraction of I-tasks performed by AI/ 0<ar<1
fraction / Al weight on Kj vs Ly in I

CES share

Intelligence CES  pr CES exponent in [ pr <1, pr#0
exponent

Intelligence 01 Allows I to scale sub-linearly with 0<0;<1
returns to scale inputs

Overall production Y

Aggregate labor L Total labor used in production L>0
Macro CES share 7 CES weight on P vs. [ in Y 0<r<1
Macro CES P CES exponent in Y p<1l, p#0
exponent

Table 1: Production parameters.

Physical Sector (P) To incorporate the potential for substitution between physical capi-
tal Kp and physical labor Lp in the physical sector we use a standard CES function. Only a
fraction B € [0, 1] of the total labor in the economy is allocated to P). We denote Lp = 5 L
(and correspondingly L; = (1 — )L for the intelligence sector).

P = (apk? + (1—aprr)’” 6
ar K+ (1—ap 1) 0

Intelligence Sector (/) For the intelligence sector, we use a CES-like equation of the
following form:

(7)

where K is Al capital, L; = (1 — 8)L is the labor allocated to the intelligence sector,
and p; > 0 indicates high substitutability between intelligence tasks. We allow for ; < 1,
capturing potential decreasing returns to scale in the production of the intelligence sector.

J = [Oql*pIKIpI + (1_a1>1P1L101]91/pI
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This allows for the second intelligence saturation channel in equation (1), i.e. reducing the
effectiveness of Al in producing more intelligence.

We can think of AI capital K; as effective compute: hardware FLOPS multiplied by
utilization and an algorithmic-efficiency factor. This reduced-form stock bundles hardware,
software, data, and training gains. This is consistent with benchmarks from the Al literature,
where log model performance correlates strongly with log compute (FLOPS) both for infer-
ence and training and log data scale (Kaplan et al., 2020). In this sense, intelligence capital
K7 reflects a set of factors (hardware FLOPS x utilization x algorithmic-efficiency factor).
It thus also includes software innovations that improve efficiency, for example, algorithmic
improvements that reduce the FLOPS required to achieve a certain performance level (Her-
nandez and Brown, 2020). Under this definition, Al scaling trends translate directly into
rapid growth in K7, distinguishing it from the much slower growth rates of physical capital
or labor.

Equation (7) is micro-founded in Korinek and Suh (2024) based on a CES in intelligence
tasks (e.g. write text, make tables, etc.), and is also consistent with the assumptions in
Jones and Liu (2024), with the difference that we use this production function only for
the intelligence sector, and not for the whole economy. Specifically, assume the following
production function for the intelligence tasks:

I [ / (i) dD (i)

i

_0'1—1

= 8
) Pr o ) ( )

:|91/P1

where ®(i) reflects the cumulative mass (or fraction) of tasks with a complexity level less
than or equal to i, and oy is the elasticity of substitution between tasks. #; is a returns to
scale parameter. In Korinek and Suh (2024), there are constant returns to scale (; = 1),
but we allow for decreasing returns to scale if §; < 1.

Decreasing returns to scale in the production of intelligence from Al capital are captured
by 67, and it allows us to model the empirical regularities observed in Al scaling; it allows
us to capture any power law in the components. Crucially, it separates aggregation from
scaling, which are coupled in the standard CES. Many recent studies (e.g. Kaplan et al.,
2020; Hoffmann et al., 2022) document power-law relationships between model performance
and compute, e.g. doubling compute leads to sublinear performance improvements. Our
modeling of the intelligence sector reflects this behavior through 6; < 1, which yields power-
law diminishing returns to K; in the aggregate. This parameter thus serves as a bridge
between economic modeling and Al empirical scaling trends.

Let ®(i) = a; € [0,1] represent the fraction of intelligence tasks that is automated. Let
i* denote the task-complexity cutoff with ®(:*) = ;. As shown in Korinek and Suh (2024),
the above assumptions lead to a CES function in the capital and labor inputs that takes the
form in equation (7) above.

Equation (7) is only a correct derivation from the micro foundations if Al is sufficiently
abundant so that the wage — aka the marginal productivity of labor — is greater than the
marginal productivity of Al 0Y/OK; . As long as this holds, labor is only used in the not-
yet-automated tasks. The condition is after normalizing the unit prices/productivities so
that Al and labor efficiencies are one within tasks:

K
L[ 1—061

(9)
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We assume that this condition holds: Al is abundant.

Aggregate CES production function with physical and intelligence sectors The
final output is obtained by aggregating the two intermediate composite inputs — physical
and intelligence — via a CES aggregator:

1
Y=F(PI) = [7P° + (1—7)10] L o0<r<l, (10)

where 7 is a distribution parameter that measures the importance of the physical sector and
determines the share of income that goes to the physical sector.

Given the assumptions on the production of the physical and the intelligence sectors, the
final output is given by a weighted CES:

1
Y = [T (apK + (1 — ap)Li)""" + (1 —7) (a] "K' + (1~ aI)I*mL?)G”’/’”} "

where Lp = fL and L; = (1 — 8)L. In this production function, we normalized all produc-
tivity shifters® to 1.

This construction introduces modeling flexibility relative to the basic task setup of Ace-
moglu and Restrepo (2018) (also used in Jones and Liu (2024); Korinek and Suh (2024)),
where the elasticity of substitution between tasks is closely linked to the substitution between
labor and capital. Here, we have a macro elasticity of substitution between the outputs of the
physical and intelligence sectors that can differ from the substitution patterns for labor and
capital inputs within the physical sector and within the intelligence sector. This allows us to
meaningfully talk about how physical and intelligence production sectors behave differently
and ultimately affect workers differently.

3.3 Scaling behavior

Since the amount of Al capital K7 is increasing exponentially and very rapidly, it is important
to understand how this scales up the intelligence sector output I, and ultimately overall
output Y.

First, while the aggregate production function has constant returns to scale in P and I,
we allow for diminishing returns to scale ; < 1 in the intelligence sector /. This means that
the scaling up of Al has more strongly diminishing returns at the aggregate level than in a
case where the production function has constant returns to scale at all levels.

Second, the CES production function in P and I has the well-known property that
output Y saturates when intelligence and physical outputs are complements (p < 0), and
only one of the two outputs is increased. When [ goes to infinity while P is held fixed, the

3The more general form of the production function using shifters Ay, Ap and A;isY = Ay [T (ApP)l=r+

(1—7)(AI)=7] 7 Throughout, we normalize Ay = Ap = Ay = 1 (i.e., measure P and I in efficiency
units) so the arguments of the CES are dimensionless; all simulations will hold these shifters fixed. Equiva-
lently, define P= ApP and I= A, or scale by a base year so that P= P/Py and I= 1/Iy; then set Ay
to pin the units of Y.
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marginal productivity of I tends to zero, and output Y plateaus. This means that no matter
how quickly AI capital K increases, the complementarity between physical and intelligence
sectors means that output is bounded, and P becomes the bottleneck.

The complementarity between physical and intelligence sectors is a way to use a stan-
dard macro setting to represent insights from neuroscience and psychology that using more
intelligence with fixed effectors cannot yield unbounded output growth.

3.4 Labor allocation and wages as automation progresses

We seek to answer two questions. As «aj, the share of automated tasks, increases:

1. How does labor shift from intelligence to physical production?

2. What is the evolution of the wage, operationalized as the marginal productivity of
labor?

Later we distinguish automation (replacing labor with AI) from simply adding more Al
capital (capital deepening). We will see that they expand output through different channels,
and with different wage consequences.

3.4.1 'Wages and labor allocation

We can derive explicitly the marginal productivity of labor in each sector, which is equal
to the wage in a competitive equilibrium. At the optimal, output maximizing, allocation of
labor between the two sectors, the marginal value productivity of labor must be equalized?:

TYWPN;TP; =(1- T)Ylﬂlplaa—L]I (12)

where Lp = L and Ly = (1 — 5)L.

Sectoral marginal wages and [S-monotonicity. It is useful to name the two marginal
wage schedules that Eq. (12) equates. Define

oP
wp(B) = 7Y 0PI S =T Y I (L= ap) PP (ALY, (13)
P
wiB,a) = (1 - 7)y it 2L (14)
T oL,
Writing out the derivative of I with respect to Ly,
ol )
aT — 0] (1 — 041) 1—pr ]1—01/91 ((1 . ﬁ)L) or 1'
I

Under pp < 1 and p; < 1, wp(p) is strictly decreasing in 5, while w;(f5,ar) is strictly
increasing in 8 (proof deferred to Appendix A).

41f wages are below the marginal productivity of labor (markdown), which is a realistic assumption (Azar
and Marinescu, 2024), then the important question is whether the markdown differs between physical and
intelligence tasks. If the wage markdown is markedly different, it would affect firms’ decisions to allocate
workers to physical vs. intelligence sectors. Such markdowns would also obviously lower the actual wage
received by workers.
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Proposition 3.1 (Existence and uniqueness of 5*). Suppose pp,pr < 1 and an interior
allocation is feasible (5 € (0,1)). Then wp(B) is strictly decreasing in B and wi(B, ary) is
strictly increasing in [3; hence there exists a unique 5*(ay) € (0,1) such that wp(5*) =
w(B*, ar).

Lemma 3.2 (Implicit-function comparative statics for 5*). Let (8, ar) = wp(8)—w (5, ar).
Under pp < 1 and p; < 1 we have OgF = Ogwp — Ogw; < 0, so the unique interior solution
B*(ay) satisfies

dﬁ* _aaF(B,Oé[) (%Iw](ﬂ,af)

doy — 0sF(B,ar)  Opwp(fB) — Opwi(B, )

In particular,

o) — — S0, 5. 00), 03

where the partial derivative On,wy is taken holding  (hence Ly) fized.

To define the equilibrium wage, we have to find £*, which is the share of labor in the
physical sector that equates the marginal productivity of labor in physical and intelligence
sectors. The ratio of the two FOCs for physical and intelligence is:

(B*)rrt (I—7)0;(1—ap)'™" I,Pr—pp [ppr/on

(1—p=)ei—1t 7(1—ap) pPe-er

(16)

Here, note that I and P themselves depend on *, and there is no closed-form solution for 5*.
Existence and uniqueness of §* follow from Proposition 3.1. By Lemma 3.2, 5*(ay) varies
smoothly with «; wherever the interior solution holds, so we compute 5*(a;) numerically.

Also, note that, once full automation is achieved (S* = 1), the intelligence sector produc-
tion function can be written as [ = K?’ , so the p; parameter drops out. This means that
the substitutability between intelligence tasks does not influence the level of output Y after
full automation, nor the marginal productivity of labor after full automation.

The wage can be recovered for the optimal allocation by plugging 5* into the marginal
product of labor in the physical task’:

w=7Y'"* (1—ap) PPrr (3" L)Pr". (17)

Automation generally moves labor toward the physical sector, i.e. 5* increases with a;
when p < pr/60; (sufficient condition), i.e. when intelligence and physical sector outputs are
less substitutable that intelligence tasks among themselves, a reasonable assumption that we
will maintain moving forward. Intuitively, higher o directly lowers the marginal product of
L; in the intelligence sector through (1 — a;)'=7; to re-equalize wages across sectors, labor
shifts from I to P, so B* rises (see Appendix A for a more formal argument). As automation
moves labor into the physical sector, the marginal productivity of labor in the physical sector
decreases, which has a negative impact on wages. But this negative effect on wages can be
overshadowed by a strong enough increase in the output of the intelligence sector. We now
discuss the impact of automation on wages.

5 At the optimal allocation, one can also plug it in to the intelligence task, obtaining the same wage as
long as 0 < 5* < 1.
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3.4.2 Wage Dynamics as Automation Progresses

We study how the competitive wage responds to an incremental rise in the automated share
ay, holding Kp and K7 fixed. To simplify notation and consistent with what we will assume
in the simulations, we normalize total labor to L = 1, so that Lp = * and L; = 1 — §*.
To derive the wage effect of automation, we take the log of the equilibrium wage expression
(17) and differentiate with respect to ay :

dlnw olnY Oln P dlIn B*
—(1— - [— - 18
o, (1—0p) dar |, + (p—pp) dar |, (1—pp) o (18)
(A)>0, Scale from T (B) P effect (direct) (€)<0, Reallocation to P

Equation (18) is useful to (i) estimate the sign of the wage effect of automation and (ii)
obtain an intuition for the wage effect of automation in terms of observable quantities.

The first term (A) in (18) is the positive scale effect: automation increases the output
of the intelligence sector I (under the abundant Al condition) and thus the output Y.
Specifically:

omY|  (1-7)I° dlnl (19)
(9041 B_Tpp—i-(l—T)[p 8041 8
ngr(ovl)

To note, stronger decreasing returns to scale, i.e. a smaller §;, blunt this positive effect (A)
holding £* fixed, as:

olnl  0;(1—pr) o K7' —(1—ap)P(1—p5)"
dar ~ pr e PEP 4 (1—ag)n(l— )

(20)

The second term (B) in (18) is the effect of automation on sector P output. Automation
increases §*, which increases P by moving labor toward it 0In P/da; > 0 (see Lemma A.1 for
conditions), so (B) > 0 when p > pp, and (B) < 0 when p < pp. This means that the output
increase in the physical sector can be good or bad for wages depending on whether physical
and intelligence are more substitutable than labor and physical capital in the physical block.

The third term (C) in (18) is the effect of the reallocation of labor from I toward P. More
labor available in P should intuitively lower wages. Indeed, (C) is negative because pp < 1
by assumption, and 9f8*/da; > 0, i.e. the share of labor in P increases with automation
(see Lemma A.1 for conditions).

Overall, the sign of the wage effect of automation is clearly ambiguous, and depends on
whether the positive effects of more efficient physical labor outweigh the negative effects
of labor migrating out of I in equation (18). The role of parameters like §; on the wage
trajectory as intelligence automation progresses cannot be evaluated analytically because 5*
is defined implicitly, and both 0Y/da; and 01ln P/0a; depend on S*.

Equation (18) is a handy decomposition because the substitution parameters p and pp can
be estimated. The derivatives can also be estimated, and they have intuitive interpretations:
(A) is proportional to the effect of automation on overall output Y, (B) is proportional to
the effect of automation on physical output (P), and (C') is proportional to the effect of
automation on the share of labor employed in the physical sector £*. This conceptualization
suggests future ways of calibrating this class of models against empirical data.
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Simpler decomposition of wage effects of automation when p = pp There are
cases where the (B) term in equation (18) vanishes. If we assume that the substitutability
between physical and intelligence p is the same as the substitutability between capital and
labor in physical production pp. This assumption is a reasonable simplification if labor is
more similar to the intelligence input, and capital is more similar to the physical input. In
this case, the wage effect of automation can be written as:

dlnw:(l_p)(alnY _d1n5*> 1)

dOé] 805] B dOé[

We thus learn that if p = pp, the wage effect of automation is positive as long as the percent
increase in output induced by automation 0InY/da; exceeds the percent increase in the
share of workers in the physical sector d1ln 8*/0a;. Further, for a given observed effect of
automation on Y and (*, the effect on wages is amplified (larger in magnitude, positive
or negative) when p is smaller®, i.e. when the physical and intelligence sectors are more
complementary.

We can also derive a sufficient condition for automation to increase wages that is based

1—7)I°
on the intelligence sector alone. Let s; = (1—7) be the (observable) revenue share
TPr+ (1 —71)Ir
of the intelligence sector (the equivalent share sp can be defined for the physical sector).
Since automation reallocates labor toward P, we have Bal%lp > 0, hence
OlnY 61nP+ Olnl Oln I (22)
=35 s s .
aOz[ P 0041 ! 8&[ = 8041

Therefore, we obtain a testable sufficient condition for wages to rise with automation:

Olnl *—10In(1l—p*

(90(] /8* 8041

which uses only the I sector output response to automation and the semi-elasticity of the
I sector employment share. This condition means that, up to some weights, the semi-
elasticity of intelligence output must exceed the semi-elasticity of the employment share in
the intelligence sector. More loosely stated, a sufficient condition for automation to increase
wages is that the greater intelligence output can compensate for the employment losses in
the intelligence sector. This condition is conservative because it neglects that automation
also increases output in P, which increases wages.

Symmetrically, we can derive a sufficient condition on the I sector that ensures the wage
effects of automation are negative. Using the share decomposition equation (22) above, we
can find an upper bound for aalzp , which then gives an upper bound for 85%. Automation

affects P only through the reallocation of labor. Using the chain rule,

Oln P OlnP OlnLp OlnP Olnp* < 0ln g*

8&[ B 8lan 8&1 N alan 8041 - 8041

6Remember that p affects 1nY/da; and d1nY/9B* so this statement is indeed not about the full effect
of p.
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Oln P

FmLp 1 the labor share in P, so it is below 1, explaining the above inequality. Using this

together with equation (22), we obtain an upper bound for ‘952[’/:
OlnY Oln P 81n]< Oln 5* Olnl

=s S;——<sp—+35s
6@1 P (9(1/] ! 8&[ =°r 8&[ ! (90(] ’

Since wages fall whenever 0InY/da; < 0lnf*/0a; (see equation (21)), using the upper

bound for %lgly we just derived, a sufficient condition for wages to fall is:
dlIn g* Jln [ dlIn g*
24
P qu +SI an 8 dOé[ ( )
Oln I dIn 5*
= nl) A Givide by s; > 0), (25)
8041 38 dCK]

where sp, s; € [0, 1] are the revenue shares and sp + sy = 1. This expression says that wages
fall if the semi-elasticity of the intelligence output with respect to automation is smaller than
the semi-elasticity of the physical employment share with respect to automation.

As before, we can equivalently express the sufficient condition (25) using the employment
share in the intelligence sector 1 — 5*:

Olnl
an

<1=F
s P
That is, wages decrease when the percentage increase in the intelligence output induced
by automation is smaller than the odds-weighted percentage reduction in the employment
share in the intelligence sector. Loosely stated, if job loss in the intelligence sector is signif-
icant relative to intelligence output growth, wages are more likely to decrease with further
automation.

Empirically then, if we have data on the current share of employment in the physical
sector, the current share of the intelligence sector in income, and estimates of the recent effect
of automation on the output of the intelligence sector and the recent effect of automation
on the share of employment in the intelligence sector, we can make predictions about what
will likely happen to wages with further automation. Wages will increase if condition (23)
is satisfied, and decrease if condition (26) is satisfied.

dIn(1 — 8%)
qu

. (26)

3.5 Wage effect of increasing Al after full automation of intelli-
gence tasks

We are interested in the wage effects of adding more Al in the economy after all intelligence
tasks have been automated. It is important to realize that automation (increasing ay) is
fundamentally different from adding more Al (increasing K7;) in the economy. Automation
by definition replaces workers in some tasks that are newly allocated to Al («a; increases).
Adding more Al does not have a direct effect on worker allocation (K7 increases but a; stays
fixed)”. Both automation and increasing Al tend to increase production when Al is abun-
dant, albeit through different channels. Automation is a technological transformation that

"Prior to full automation, increasing Al can reallocate workers across sectors by changing the marginal
productivity of I.
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increases production by improving input allocation in the intelligence sector, as it deploys
the abundant Al across more tasks. Increasing Al increases production simply by increasing
capital intensity in the Al sector: it is well understood that, in CES production functions,
capital deepening increases output.

After full automation, we have ay = 1, and f = 1, so Lp = L, i.e. all labor is in the
physical sector. This makes equations simpler because there is no need to re-optimize [, the
allocation of labor between physical and intelligence. Specifically, the output is then given
by:

1/p
Y = |:7—Pp_|_(1_7-) K?Ip] ’ P = (aPK]/;P_{_(l_OéP)L%P)l/pP‘ (27)
And the competitive wage is then:
w=r7(l—ap) Y prer Lot (28)

We can show the effect of adding more Al capital K; on wages is:

0 _ _

TU (1 —ap)(1—7)(1— p) O Prer Loy 1= o] (29)
0K,

This effect is positive: adding more Al increases wages.

Now what happens when we keep adding more Al capital (K; — o0)? If p < 0 (physical
and intelligence are complements), as we assumed, then Y — (7P?)/? (finite), meaning that
the marginal returns to Al in terms of increasing overall output Y go to zero, so additional
investments in Al eventually yield zero returns. As for the impact on Al on wages as Al
goes to infinity, we have:

ow

o ~ O KT = 07, C=r(l-ap)(L=7)(1=p) 0 PP LT (7))
I

1-2p

(30)

Hence, with full automation, the marginal effect of additional Al capital on wages vanishes
when p < 0, i.e. when physical and intelligence are complements. In other terms, wages
saturate as we add more Al. We can also see that more strongly decreasing returns to scale
(smaller 67) blunt the impact of Al capital accumulation on wages after full automation, an
additional channel for intelligence saturation.

We now turn to simulations.

4 Simulations

We run two types of wage simulation: (i) an automation scenario where we hold capital
stocks in the physical sector Kp and Al capital K; constant, and (ii) an Al explosion scenario
where Al doubles at fast rates and continues to do so after all intelligence tasks have been
automated. The first type of automation simulation is most relevant to understand what
happens in the short run in the event of rapid automation, so that capital does not adjust
much. In the longer run, we can expect more adjustments, and in particular increases in
physical capital (which we will also simulate below). The second type of simulation is highly
relevant to the scaling debate and understanding under what conditions the rapid scaling of
Al translates to the broader economy and to wages, as often believed by Al experts.
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4.1 Parameter values

Using estimates from the existing literature, we calibrate a subset of parameters (see Table
2).

The calibration of the distribution parameters ap and 7 in CES production functions is
well-known to be challenging (Klump et al., 2012; Cantore and Levine, 2012; Temple, 2012).
Thus, we pick some illustrative parameter values and sensitivity will be tested through sweeps
changing parameters (readers can also change parameters and visualize outcomes using our
interactive tool).

First, we set parameters for the physical sector. We set the level of physical capital Kp
so that Kp/Lp is equal to the capital-labor ratio in the whole economy®, which we set to
4.6 (as in Korinek and Suh (2024), but this ratio is itself calibrated within their model).
The share of physical workers is defined as the share of workers who need to use their feet
or legs (29.6%) in the 2023 Occupational Requirements Survey. Defining physical work in
other ways would result in similar estimates: 34.0% of workers do not use keyboarding in
the 2023 Occupational Requirements Survey, and 30% is the share of earnings in manual
occupations in 2023 in the Occupational Employment and Wage Statistics (see Appendix
B). The share of employment in manual occupations is higher at 44%. The capital-labor
substitution parameter pp is calibrated so that the elasticity of substitution op = 1/(1— pp)
is 0.6, corresponding to the middle of the range for US manufacturing (Oberfield and Raval,
2021).

Second, we set parameters for the intelligence sector. The parameter p; determining the
elasticity of substitution between AI capital and labor in the intelligence sector is set at
baseline to reflect a high degree of substitutability, consistent with the idea that intelligence
tasks are somewhat fungible with each other. Thus, for the baseline, we picked an estimate
of the elasticity of substitution for similar goods: specifically, we used the smaller estimates
for the elasticity of substitution among different physical goods in (Broda and Weinstein,
2006, Table IV, SITC-3, 1990-2001, median), which gives a baseline elasticity of substitution
of 2.2. For the baseline returns to scale in intelligence 0;, we use the 0.94 returns to scale in
professional services from Figure 3 in (McAdam et al., 2024), as professional services is an
industry dominated by intelligence tasks.

Third, we set parameters for the overall production function Y that combines P and
I. There is no direct measurement of p, the substitution parameter between physical and
intelligence sectors, so we set it to match the historical substitution between capital and labor
in manufacturing, with the idea that capital is more like a physical input and labor more
like an intelligence input. Practically, we set p = pp so that the elasticity of substitution is
at the middle of the range of the elasticity of substitution between capital and labor in US
manufacturing, i.e. 0.6 (Oberfield and Raval, 2021).

Having set parameters at these baseline values, we vary the share of automated tasks a;
from zero to one, simulating the process of progressively automating the intelligence tasks of
the economy. For every setting, we find the share of labor allocated to the physical sector §*
that equalizes the marginal productivity of labor in the physical and the intelligence sectors®.

8This assumes that the capital/labor ratio in the physical sector is the same as the capital /labor ratio in
the economy.
9We calculate this for each a; up to ay = 0.9; the abundant AI condition (9) is no longer satisfied when
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Before moving on to the results of the simulations, it is worth noting that some intelligence
tasks have already been automated as of 2025, so we should not necessarily think of «a; as
starting at zero in 2025. As an approximation for the starting point, one may think about the
percentage point decline in the share of routine cognitive tasks as a share of all cognitive tasks.
Cognitive jobs do not perfectly overlap with intelligence jobs, because some “cognitive” jobs
need to be done in person and are therefore “physical” in our classification. Nonetheless,
this is a useful starting point. In 1976-1989, the share of routine jobs among all cognitive
jobs was 49% (Cortes et al., 2020, Table 1), while this share was about 35% in 2018 (Cortes
et al., 2020, Fig. 1), which represents a decline of 14 percentage points. Assuming for the
sake of argument that the whole decline in routine jobs is due to ICT, this means that 14%
of all jobs have been automated by ICT, implying that a; might be around 14% in 2018,
and somewhat higher today (2025).

4.2 The evolution of wages as automation progresses

In the simulations, we vary parameters as outlined in Table 3. For the lower bound of the
substitution parameter for intelligence tasks p;, we used the elasticity of substitution across
occupations in Goos et al. (2014), which represents substitution between a broader range of
tasks including both physical and intelligence tasks.

Overall, the simulations illustrate that wages increase and then decrease with automation
under many parameter values. When automation a; increases, the share of labor allocated
to the physical sector [ increases, and output Y increases, as expected given assumptions
and the abundant AI condition in eq. (9). Both total output and optimal allocation of
workers to physical tasks increase with increasing automation (Fig. 2).

These dynamics raise the question of how wages are affected by increasing automation.
Figure 3 plots the trajectory of wages as the automation of intelligence tasks progresses, as
a function of parameters. The orange line in each panel represents the trajectory of wages
for the baseline set of parameters (note that the scale of the plot varies across panels). In
the baseline case, wages increase and then decrease with automation, a trajectory that is
frequently anticipated by many AI scientists. For example, this CIO report predicts short-
term wage growth, while other works, such as comments by OpenAl CEO Sam Altman,
suggest that the era of human work may be coming to an end. Across parameter settings,
we can find situations where wages largely decline or increase. The exact trajectories of wages
during the transition to intelligence automation will be heavily affected by the underlying
substitution parameters, which can be measured in the data.

The substitutability between different intelligence tasks, p; should be one key ingredient.
Without easy substitution, human intelligence activity in the non-automatable tasks keeps
them employed and wages high. Variations in this parameter have a dramatic impact (Fig. 3
A). As pr decreases, so that intelligence tasks become less substitutable, we see a stark hump-
shaped pattern emerge: wages increase with low levels of automation, and then decrease,
and the inflection point happens later than in the baseline.! The wage at full automation

ay approaches 1, but it is still satisfied when a; = 0.9 for K; >= 9. Then, at full automation for a; = 1,
we set § =1 and calculate the output and wage based on these parameters.

10The lowest p; we examine in our sweep is negative, but the wage trajectory looks very similar for
PI = 0.1.
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Table 2: Calibration mapping: equations, targets, and baseline values

ParameterDescription  Identification / Data / targets used Baseline
equation(s)
L Aggregate Normalization - 1.0
labor supply
Lp Labor in Share of workers in sp=0.30 0.30
physical sec- physical occupations
tor at base-
line
Kp Physical capi- Match target Kp/Lp Kp/Lp = 4.6; Lp = 1.38
tal stock ratio 030 = Kp=1.38
pp Substitution Choose op = 0.6; pp = op = 0.6 (US manu- —0.67
in P(Kp,Lp) 1—1/op facturing mid-range,
Oberfield and Raval,
2021)
ap Capital Exogenous Set to illustrate a 0.70
weight in P(-) hump-shaped wage tra-
jectory
pr Substitution Choose o7; pr =1 — or = 2.2 (Broda and 0.55
in I(Ky, Ly) 1/o; Weinstein, 2006)
0; Returns to External estimate 0.94 in professional ser- 0.94
scale in intel- vices (McAdam et al.,
ligence 2024)
Ky ATl input level Exogenous Set to ensure “abun- 9.0
dant AI” condition (9)
p Substitution Choose 0 = 0.6; p = o = 0.6 (US manufac-  —0.67
between P 1-1/o turing, Oberfield and
and [ in Y(-) Raval, 2021)
T Weight on P Exogenous Set to illustrate a 0.20
in Y(-) hump-shaped wage tra-
jectory

Notes: See text for more details.
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Table 3: Sweep values for varying parameters and justification of bounds

Parameter Sweep values

(baseline in middle)

Justification of bounds

pr (intelligence {-0.1, 0.55, 0.7} Lower bound: elasticity o; = 0.9

substitution) across occupations (Goos et al., 2014)
= p; =1— 55 ~ —0.1. Upper bound:
high substitutability with o; = 3.3

p (top-nest {-1.0, -0.67, -0.1} Lower bound: elasticity ¢ = 0.5

substitution) = p=1—5z = —1.0 (strong

complementarity). Upper bound:
elasticity o = 0.9

= p=1— 55~ —0.1 (higher
substitutability).

ap (weight of K in
P)

{0.50, 0.70, 0.80}

Bounds reflect alternative values for
the distribution parameter of capital
within the physical sector.

T (weight of P in
output)

{0.10, 0.20, 0.35}

Bounds reflect alternative values for
the distribution parameter of the
physical sector within overall output
Y.

6; (returns to scale in  {0.6, 0.94, 1.0}

intelligence)

Lower bound allows strong decreasing
returns; upper bound is
constant-returns benchmark.
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Figure 2: Output and the share of labor allocated to physical tasks increase with automation.
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is not sensitive to p;, because, as noted above, p; drops out from the production function
once automation is complete.

We have plausibly already automated some of the intelligence tasks, and average wages
increased. Therefore, there is a risk of a strong decline in the future if intelligence tasks are
relatively complementary. Essentially, more complementarity in intelligence tasks (lower p;)
makes the rise steeper but the downfall in wages worse as full automation approaches.

We may also expect p, the top-level substitution parameter between physical and intel-
ligence, to be a main driver of wage effects. Similarly to the p; substitution parameter, this
parameter markedly changes the trajectory of wages as automation increases (Fig. 3B). As
physical and intelligence sectors become less substitutable (smaller p), wages are less likely
to decline with the automation process. There are dramatic differences in the wage level
at full automation: wages are higher than without automation for p = —1, but they are
a lot lower with p = —0.1. Therefore, a high level of substitution between physical and
intelligence sectors drives a large loss for wages at full automation.

The non-monotonic effects of p on the wage as automation progresses are a helpful re-
minder that parameters play a complex role in determining wages. Equation (21) shows
that, neglecting the impact of p on the Y and § channels, a larger p scales down the overall
wage response via the factor (1 — p): it dampens both positive and negative effects. In the
full simulation, however, p also changes how Y and §* move with «;. With our baseline
parameters, greater substitutability between intelligence and physical (higher p) amplifies
rather than dampens the effect of automation on wages: it tends to amplify early wage gains
when automation is limited, and to deepen late-stage losses when automation is extensive.

How does this square with the general condition (18) that determines how automation
affects wages when p # pp? In the baseline case for the simulation, we set p = pp, so (21)
applies. In the general case (equation (18)), p < pp leads to more negative wage effects
through the P channel. Figure 3B varies p while keeping pp constant: therefore, the lower
value of p is such that p < pp. And indeed, at low levels of automation, a lower p leads
to more negative effects of automation on wages (compare the orange and the blue line);
however, once automation advances further, wages show a more positive wage trajectory
with a lower p. The upshot is that treating the Y, P, and * responses as negligible can be
misleading about how p and pp shape wage impacts.

Next, we examine the impact of the distribution parameter or weight on physical capital
within the physical sector (Fig. 3C), as well as the distribution parameter or weight on
physical in the upper level CES for overall output (Fig. 3D). A higher weight on physical
capital ap leads to a more negative wage trajectory. As automation progresses, more workers
move to the physical sector (5* increases), and the decreasing marginal productivity of labor
in the physical sector is steeper as ap increases (see the (1 — ap) term in the wage equation
(7).

We then examine the impact of 7, the distribution parameter or weight on the physical
sector in the upper level CES between physical and intelligence sectors. This parameter
strongly influences the impact of automation on wages (Fig. 3D). A larger weight on the
physical sector 7 delays any decline in wages. For 7 = (.35, wages monotonically increase
with automation, while for 7 = 0.1 or 7 = 0.20, we see a large decrease in wages as we
approach full automation. The wage outcome is highly sensitive to the weight of the physical
sector.
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Figure 3: Wage effect of automation: impact of parameters
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Finally, we may also believe that decreasing returns to scale in the intelligence production
function may have an effect. Equation (20) shows that the scale term 6; increases the positive
effects of automation on wages, holding S* constant. The simulation allows us to examine
the full effect. We find that returns to scale do play a role that is qualitatively consistent
with the fixed g* prediction: 6; shifts wages up and down by an almost fixed constant,
especially at high levels of automation (Fig. 4, left panel). As decreasing returns to scale
become more pronounced (lower ), wages are more likely to decline already in the early
stages of automation.

6, sweep (others at baseline)

Wage vs a; for varying 6, Y vs o, for varying 6,
0.9 1 4.5 1
4.0 4
0.8 4
. 351
074 — g=0.6 E
v 4
> 6,=0.94 ‘g‘ 3.0
gCl.f)f_gl=]_‘c| 525_
g 2
0.5 - 204
N ‘\ 15
1.0 4
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Automation share ay Automation share o

Figure 4: Wage and output effects of automation with varying returns to scale in intelligence

We learned about the effects of these parameters on wages as automation progresses.
Wages increase and then decrease with automation in the baseline case. Decreasing returns
to intelligence blunt wage increases from automation because the intelligence sector gets a
smaller boost from automation. Substitutability between intelligence tasks has a substantial
impact on the wage trajectory but does not impact the wage level at full automation. The
decrease in wages at high levels of automation is greater and wage levels at full automation
are lower when there is high substitutability between the physical and the intelligence sectors
(high p), a high weight on physical capital in the physical sector (high ap), and a low weight
for the physical sector in overall output (low 7).

While the weights ap and 7 do not have a straightforward empirical counterpart, returns
to scale in intelligence 67, and substitution parameters p and p; can be empirically mea-
sured and we can learn about the likely path of wages based on new and updated empirical
estimates of these parameters.

We invite readers to experiment with setting high p and ap, and low 7 to see effects for
themselves in our interactive tool.

Total output will matter on top of the wages. As such, we analyze in our model how
automation affects total output (Fig. 5, and Fig. 4, right panel). As we should expect
given the abundant Al assumption, automation always increases output, and considerably
so. Higher substitutability p between intelligence and physical sectors magnifies the positive
effect of automation on output (Panel B) but has a negative effect on wages at high levels of
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Figure 5: Output effect of automation: impact of parameters
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automation (compare panels B in Figure 5 vs. Figure 3). In other terms, there is a trade-off
between wages and output as we increase the substitutability p between the physical and
intelligence sectors in the upper level CES. For wages at high levels of automation, it’s best to
protect the physical sector where workers end up working more and more often as automation
progresses: this means more complementarity between the physical and intelligence sectors.
This suggests a potential social conflict over the role of the physical sector in the economy
when wage and output increases benefit different actors.
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Figure 6: Wage effect of automation with high physical capital: impact of parameters

Given the crucial role of the physical sector, increasing capital in the physical sector
can benefit wages because it reduces the negative productivity effects of labor crowding into
the physical sector as automation progresses. This is illustrated in Figure 6, which uses
the parameters from Table 2, except that physical capital K is doubled to 2.76 instead of
1.38. With a higher level of physical capital, wages increase more with automation: the
maximum wage is higher and the initial increase is steeper than in Figure 3. If physical
capital were endogenously determined, investments would likely increase because returns to
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capital increase when there are more workers in the physical sector. Overall, increasing the
amount of physical capital can act as a booster for wages.

Readers can explore the evolution of wages using different parameters in our interactive
tool, and results are exportable to csv files.

4.3 The evolution of wages as Al increases during and after full
automation of intelligence tasks

We now turn to the longer-run effect of Al capital on wages, after all intelligence tasks have
been automated. Readers can run this type of simulation in the “Analysis & Charts” section
of our interactive tool.

For this simulation, we assume a fixed 5 years for the full automation of intelligence tasks,
during which o goes from 0 to 1. We further assume that Al capital K; grows exponentially.
All other parameters are as in the baseline, unless otherwise specified. We assume that full
automation of intelligence tasks occurs within 5 years. In a first scenario of fast Al growth,
AT doubles every 6 months. In this case, wages rise quickly and then saturate (Figure 7).
The saturation is driven by the complementarity between physical and intelligence tasks,
as our baseline has p < 0: you cannot add infinitely more Al and get unbounded output
growth when the physical input is held fixed by fixed labor and fixed physical capital. In
a second scenario with slower Al growth, AI doubles every 24 months. In this case, wages
increase more slowly, but do not decline, a difference from the baseline analysis with fixed
AT: the absence of a wage decline is explained by the fact that Al increases over time, which
has positive effects on wages that offset the negative wage effects observed under fixed Al.
Finally, in a third scenario, we continue assuming slower Al growth, but also make physical
and intelligence sectors much more substitutable, with p = 0.25 (corresponding to a 1.33
elasticity of substitution). In this case, we observe a wage decrease before full automation of
intelligence tasks, after which wages slowly grow again. Importantly, in this scenario with
p > 0, there is no intelligence saturation, so in the long run adding more Al always keeps
increasing wages.

To sum up, as Al increases exponentially, wages saturate when physical and intelligence
sectors are gross complements, but can grow without bounds when they are substitutes.
However, greater substitutability of intelligence and physical sectors makes it more likely that
wages decline as we approach full automation of intelligence tasks. Thus, there is a short-
run vs. long-run trade-off in terms of the wage effects of substitutability between physical
and intelligence: in the short run, greater substitutability can hurt wages as automation
progresses, but in the long run it allows for unbounded wage growth, assuming Al also
continues to expand.

5 Discussion

Our model articulates how intelligence saturation may fundamentally limit the extent to
which AT can transform the economy. The key insight is that intelligence and physical sectors
are likely complements at the macro level. Al may be helpful at producing intelligence at an
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Figure 7: Wage effect of automation with exponentially increasing Al capital

accelerating speed but its effect on the actual economy is limited by the complementarity of
physical and intellectual inputs in overall production.

5.1 Intelligence Saturation and the Non-Singularity

The concept of intelligence saturation fundamentally challenges the singularity narrative
popularized by some Al researchers. The singularity view implicitly assumes unbounded
returns to intelligence - that increasing intelligence inputs will lead to exponentially growing
productivity with an exponent typical of the artificial intelligence sector. Our model shows
why this assumption fails: the physical world imposes constraints that cannot be overcome
by intelligence alone.

For any given set of physical inputs, there exists a saturation point beyond which addi-
tional intelligence yields negligible returns. You cannot build a car with pure intelligence;
you need steel, rubber, energy, and someone to fix the mess when something goes wrong.
Simulations show that strongly decreasing returns to intelligence lead to limited effects of
automation on wages and output, even as labor optimally reallocates to the physical sector
in response to automation. When physical and intelligence inputs are complementary, no
amount of intelligence can remove the need for physical inputs or make them infinitely pro-
ductive. The extremely rapid exponential growth of intelligence technology thus does not
fundamentally alter the overall dynamics of growth.

33



5.2 Labor Market Implications Through Transition and Beyond

A key insight from our analysis is that labor allocation responds endogenously to automa-
tion. As o increases (more intelligence tasks become automated), labor shifts toward phys-
ical production according to optimal allocation. This reallocation itself depresses wages by
increasing the labor supply in physical production relative to demand, but at the same time
abundant Al in the intelligence sector makes physical workers more effective and thus boosts
wages, so total wage effects depend on the balance of these two factors.

Our model predicts a hump-shaped pattern for wages for most parametrizations, in-
cluding our baseline parameters. Under some parameters, wages can decrease more with
automation, in particular if there is high substitutability between the physical and the in-
telligence sector.

This wage trajectory differs from the extreme techno-optimist view where wages go to
zero while productivity potentially goes to infinity. It also differs from the extreme pes-
simist view (which predicts permanently depressed wages). Instead, our model suggests
a non-monotonic trajectory, with potentially sharp decreases in wages in later stages of
automation, in particular when intelligence tasks are assumed to be more complementary.
Therefore, it is important to remain cautious: even as automation first increase wages, it can
eventually lead to strong wage declines (see also Korinek and Suh, 2024). The substitution
between intelligence tasks is critical and therefore should be studied more empirically, es-
pecially as this parameter may change with automation. Indeed, as automation progresses,
it seems likely that the substitutability between still non-automated tasks and automated
tasks decreases, in particular if there is a tail of intelligence tasks where labor has particularly
strong advantages.

Given that automation can have a non-monotonic impact on wages, it is important to
know where we are in the path to automation and what wage effects are already visible.
Labor demand indeed seems to decrease for jobs exposed to Al (Hampole et al., 2025), but
overall labor demand increases, leading to muted overall effects. These offsetting effects are
consistent with the mechanisms in our model. Their estimates imply that the employment
share of overall less exposed occupations like the physical “Food preparation and serving”
declines because firms that do not use Al grow less. Through the lens of our model, this
pattern means that 3, the share of workers in the physical sector, changes little or even
declines. From equation (21), wages can fall only if § rises with automation (necessary
condition); thus, when f is stable or decreasing, automation should increase wages.

The role of the physical sector is critical because as automation progresses, an increasing
share of labor optimally reallocates to the physical sector. There is a trade-off between wages
and output as a higher share of the economy in the physical sector and a low substitutability
between the physical and the intelligence sectors leads to more favorable automation effects
for wages but less favorable automation effects for output. The most interesting parameter
is perhaps p the substitution parameter between the physical and the intelligence sectors: if
the goal is to sustain high wages while automation progresses, this parameter should stay
low, but if the goal is to increase output the parameter should be increased. Concretely,
this means that maximizing output may mean promoting virtual substitutes to physical
goods and in person activities, which would then contribute to lowering wages during the
automation phase.
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The substitution parameter p also fundamentally shapes intelligence saturation when
other factors are held fixed: when p < 0, there is intelligence saturation, and the lower p, the
lower the long-run maximum wage and the quicker this maximum wage is achieved. When
p > 0, i.e. when physical and intelligence sectors are gross substitutes, there is no intelligence
saturation and wages can continue to grow forever as Al increases, but the wage trajectory
during automation is typically less favorable.

5.3 Al, innovation and wages

Al leads to innovation that can itself spur job and wage growth in line with past introductions
of general purpose technologies. This process of innovation is captured implicitly in two ways
in our macro model.

First, our model can capture the creation of new labor-intensive intelligence tasks, a
reinstatement effect (Acemoglu and Restrepo, 2019). Specifically, the creation of new tasks
could manifest through a lower automation parameter «; in the intelligence sector, because
the share of labor in intelligence tasks 1 — a; increases when new labor-intensive tasks are
added (Acemoglu and Restrepo, 2019). Thus, negative wage effects of increasing automation
ay could be countered by the creation of new labor-intensive intelligence tasks.

Second, the progress of Al can be represented through innovation embodied in capital, by
adding more artificial intelligence capital K. This increases the wages of intelligence workers
for the same reason that adding more capital in a CES production function increases wages,
i.e. because labor benefits from having more capital to work with. Adding more Al also
increases the wages of physical workers because it increases intelligence production, which is
beneficial for the physical sector to which physical workers contribute.

It is the process of automation by itself, i.e. the replacement of workers with Al, that
can lead to negative wage effects if other positive effects are not strong enough to counteract
it. While we do not explicitly model innovation, innovation effects are implicitly captured in
the evolution of a; and K7, and can be interpreted as the aggregate outcome of innovation.

5.4 Factors Moderating the Impact of AI

Several additional factors may moderate Al’s economic impact beyond what our model
captures. First, there may be intelligence tasks that remain persistently difficult to automate
- tasks that require forms of intelligence where Al’s capabilities plateau. Our modeling can
accommodate this by capping a; below 1, reflecting a frontier of non-automatable intelligence
work.

Second, the rate of Al adoption depends on more than just technical capability - it
requires investments, training, complementary innovations, and overcoming institutional
inertia. These friction factors explain why technological transitions typically occur more
gradually than pure technical capabilities would suggest.

Finally, a lack of competition among Al providers may limit Al development and deploy-
ment, or lead to strategic choices that diverge from socially optimal development paths.
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5.5 Model Limitations and Future Research

First, our models do not explicitly account for the role of human preferences and values in
shaping the economic impact of Al. Even with intelligence saturation, societal choices about
Al governance, distributive justice, and work organization will significantly influence realized
outcomes.

Second, our models do not explicitly incorporate reallocation costs for labor, while in
practice these costs tend to be substantial. As a result, even if automation ultimately
increases average wages, there can be significant wage declines in the short to medium run
as laid off workers must find new jobs (Jacobson et al., 1993; Couch and Placzek, 2010) and
adapt their skills to these new jobs.

Third, because our model assumes labor is homogeneous, it cannot discuss disparate
impacts of Al for different groups of workers. Just like prior waves of technological change
(Autor and Dorn, 2013; Kogan et al., 2023), the newest Al technology may lead to wage
increases for some workers and wage decreases for others depending on their sectors of
activity and whether technology complements or substitutes for their work. It is worth
noting that disparate impacts of automation across workers can be magnified in the presence
of reallocation costs, which, as mentioned before, we do not explicitly model.

Fourth, our model assumes that in the physical sector, labor cannot be profitably replaced
by capital. This reflects the much slower decline in robot costs relative to Al costs. One
could imagine, however, a scenario where robots can replace humans at scale in physical
production. The key question for the future of work is whether there will remain tasks
where replacing labor with capital is not economically advantageous, whether due to high
costs or regulation. Call these tasks the “human domain,” with the remainder forming
the “machine domain.” In such a case, we could simply relabel the physical sector as the
human domain and the intelligence sector as the machine domain, preserving our model’s
structure and applicability. If all labor could be replaced by capital, wages would fall to
zero, but this extreme scenario appears unlikely given the high cost of complex robotics and
the potential for regulation to raise costs. While the specific boundary between physical and
intelligence inputs may shift, a framework that divides the economy into automatable and
non-automatable tasks is likely to remain relevant for the foreseeable future.

Future research could address these limitations by incorporating heterogeneous task
structures with varying substitution elasticities, exploring dynamic adjustment processes
in greater detail, and incorporating endogenous technological change in physical production
capabilities. Additionally, enriching the models with evidence from recent Al deployments
could improve their empirical grounding.

5.6 Policy Implications

Our analysis suggests several policy implications. First, policies that slow automation could
help smooth the transition by reducing negative wage effects. The literature has explored the
rationale for such policies when worker adjustment is costly (Guerreiro et al., 2022; Lehr and
Restrepo, 2022; Costinot and Werning, 2023; Beraja and Zorzi, 2025). Our model suggests
an additional rationale: allowing for more time to increase capital investment in physical
sectors, which could help smooth the transition by reducing negative wage effects. This does
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not mean halting AI development, but rather pacing its deployment to allow for investments
in physical capital. A tax on the deployment of AI that replaces workers in intelligence
tasks might be helpful to maintain high wages, but it is not clear how one could effectively
target this technology. As our model outlines, replacing workers tends to reduce wages, but
increasing the amount of Al used tends to increase wages; this makes the targeting of any Al
tax extra tricky, even if Al could be clearly distinguished from other technologies. A subsidy
for investment in capital used in the physical sector is likely easier to target: this could
include for example physical investments in construction, and in the hospitality industry.

Second, redistributive policies may be useful during the transition period when wages
are depressed by automation. The specifics of these policies depend on political and design
considerations beyond our model’s scope, but the model clearly indicates a period of adjust-
ment where many workers face significant economic pressure. One possible model is wage
insurance (Hyman et al., 2024), which would provide income support to workers displaced
by Al that find jobs at lower wages.

6 Conclusion

We have presented a framework for analyzing the economic impact of Al that reconciles in-
sights from both economics and computer science. Our model demonstrates how intelligence
saturation - the idea that marginal returns to intelligence tend to zero when physical inputs
are held constant - fundamentally constrains AI’s long-term economic impact.

The key insight of our analysis is the distinction between intelligence and physical sectors,
coupled with the observation that labor is more substitutable with Al in intelligence tasks
than with capital in physical tasks. These two features drive the dynamics of our model
and lead to our main conclusions: (1) wages may have a non-monotonic path as automation
progresses (2) after full automation of intelligence tasks, wages can grow again but are limited
by intelligence saturation as long as intelligence and physical sectors are complements, and (3)
the ultimate constraint on economic growth shifts from intelligence to physical production.

We use a CES macro model built on a CES physical sector (capital-labor), and a CES-like
intelligence sector that aggregates many tasks. Our theoretical analysis shows that increasing
automation moves workers from the intelligence sector to the physical sector under mild
conditions (see Lemma A.1). The sign of the effect of automation on wages is theoretically
ambiguous and mainly depends on whether the positive scale effect of automation (increased
intelligence output leading to increased overall output) outweighs the negative effect from
workers getting iced out of the intelligence sector and having to find work in the physical
sector (see Eq. (18)). If we focus on the intelligence sector alone, then a sufficient condition
for automation to lower wages is that the (weighted) share of employment in the intelligence
sector decreases more than the intelligence output grows (see Eq. (26)) and (21)). Based on
our model, a necessary condition for wages to decrease is that the share of employment in
the intelligence sector decreases. This is a useful indicator to watch to understand whether
further automation might decrease wages.

We then simulate the model to understand the effect of automation and of Al increases on
wages. Holding AT fixed, and under our baseline parameters, rising automation of intelligence
tasks increases and then decreases wages, as the labor reallocation drags eventually outweigh
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the positive impacts on the production of intelligence. This represents a cautionary tale that
early days wage gains should not be taken for granted. Varying parameters away from
the baseline, we learn three main lessons. First, starker decreasing returns to intelligence
dampen the early positive wage effects of automation. Second, less substitutability between
intelligence tasks can lead to wages strongly increasing and then steeply decreasing with au-
tomation. Third, because automation pushes labor toward the physical sector, the elasticity
of substitution between sectors is pivotal: greater substitutability depresses wages yet boosts
output as automation progresses further at high levels of automation. The effects of automa-
tion depend on key parameters in a subtle way, making predictions parameter-dependent.
We then allow Al to grow. This elasticity of substitution between sectors governs whether
wages and output saturate as Al capital increases past full automation of intelligence tasks:
when physical and intelligence sectors are gross complements (p < 0), there is intelligence
saturation.

Overall, these findings contradict the singularity narrative that posits unbounded returns
to intelligence. Even powerful Al faces physical and institutional bottlenecks that bound
returns when P is fixed. A car cannot be built by intelligence alone; a building cannot be
constructed with pure computation; a meal cannot be cooked with algorithms alone.

Our analysis suggests that Al represents a powerful general-purpose technology that will
significantly reshape the economy, but not one that fundamentally alters the laws of eco-
nomics or physics. The economy after Al will still be constrained by scarcity, still require
physical production, and still operate according to principles of marginal returns and sub-
stitution that economists have long understood.

This perspective provides a middle ground between the extremes that have dominated
much public discourse about AI. Neither the techno-utopian vision of post-scarcity abun-
dance nor the dystopian fear of permanent labor displacement accurately captures what
our model predicts. Instead, we foresee a significant but ultimately bounded transformation,
with a potentially challenging transition period followed by a new equilibrium where physical
production becomes the limiting factor.

Our modeling framework also allows for a clearer understanding of what it would take
for the singularity narrative to become reality, and what parameter assumptions can fun-
damentally differentiate the insights of economists vs. Al experts. Economists’ common
predictions of a mild effect of AI can be rationalized by complementarity between physical
and intelligence sectors, leading to intelligence saturation even as Al continues to scale up.
By contrast, Al experts’ predictions of an economic upheaval can be rationalized by sub-
stitutability between physical and intelligence sectors: if technological progress allows us to
substitute more easily intelligence production for physical production, then there is no limit
to how much Al can increase output and wages (as long as the physical sector is not fully
automated).

Policy can focus on managing the automation of intelligence, while ensuring that the
benefits of Al are broadly shared. By recognizing the fundamental constraints on Al’s
economic impact, we can develop more realistic expectations and more effective strategies
for harnessing AI’s potential while mitigating its disruptive effects. Policy therefore faces the
dual challenge of (i) pacing automation and (ii) accelerating labor-augmenting investment
in the physical sector so that wages are less likely to decline with automation.

The future path of the economy depends not only on technological possibilities but also
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on societal choices. We retain substantial agency in shaping how these technologies are
developed and deployed, and Al itself can help us develop scenarios and possible policy
responses.

In summary, our paper contributes to the understanding of AI’s economic impact by pro-
viding a framework that combines insights from economics and computer science, emphasizes
the fundamental distinction between physical and intelligence sectors, and demonstrates how
intelligence saturation constrains Al’s transformative potential. This framework helps re-
solve apparent contradictions between optimistic and pessimistic Al narratives and provides
guidance for policy responses that can smooth the transition to an Al-abundant economy.
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A Conditions for automation to increase the share of
labor in the physical sector

Lemma A.1 (Automation raises £* under mild conditions). Fiz (K, K;) and an interior
allocation p* € (0,1) that solves wp(B) = wi (B, ay). Assume each block is CES with pp < 1
and pr < 1 (concave) and 0; > 0. Then
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Proof. Let G(B,ar) = Inwp(B) —Inw;(B, ar); at an interior solution G' = 0. Explicit forms.
Using Lp = L and Ly = (1 — 5)L,

wP(@) — 7y l-r pr-1 ;TP —ryl-r (1 _ ap) prrp (/BL)DP—17
P
wi(fran) = (1 =m) Y010 g_LII’ 5% =0, (1—ay) 7 110 (1= B)L) "

B-monotonicity. With pp < 1 and p; < 1, the marginal product of labor in each block
is decreasing in its own labor input. As [ rises, Lp = (L increases and L; = (1 — §)L
decreases; hence dzwp < 0 and dgw; > 0. Therefore Gy = dsInwp —dsInw; < 0. IFT sign.
By the Implicit Function Theorem,
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since Gz < 0. This is the denominator sign used in Proposition 3.1.
For (31), note w; = Y'=?I°=1 (31 /OL;) and I /OL; = 0;(1 — a)t=Pr I'=P1/0r [P g0
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Differentiating w.r.t. a; at fixed § (hence fixed Lj) yields (31). The first term is the di-
rect effect emphasized in the intuition: higher a; lowers (1 — a;)!=*7, reducing the I-block
marginal product of labor. The second is the indirect effect via the induced change in I;
it is dominated when p < p;/0;, or under the stated bound when p > p;/0;. Under either
condition, d,, Inw; < 0, hence df*/day > 0. ]

B Share of earnings in manual occupations in 2023

This appendix estimates the share of total U.S. wage earnings attributable to manual occu-
pations in 2023.

Manual occupations are defined as major occupational categories involving physical labor
or skilled trades. The classification follows Cortes et al. (2020), which borrows from Autor
et al. (2003).

The categorization is applied using the Occupational Employment and Wage Statistics
dataset (U.S. Bureau of Labor Statistics, 2023). Table 5 shows the raw data on employment
and average earnings by occupation, and the calculated employment shares and earnings
shares of each occupation.
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Table 4: Occupation categories and classifications

2010 Census 2010 SOC

Occupation Title Code(s) Code(s) Classification
Management, professional,  0010-3540 11-0000-29-0000 o Houtine Cog-
. nitive
and related occupations
Service occupations 3600-4650 31-0000-39-0000 O Routine
Manual
Sales and office occupations 47005940 41-0000-43-0000 Routine Cognitive
Farming, fishing, and 6000-6130 45-0000 Routine Manual®
forestry occupations
Construction and extrac- 6200-6940 47-0000 Routine Manual
tion occupations
Installation, maintenance,  7000-7630 49-0000 Routine Manual
and repair occupations
Production, transportation, 7700-9750 51-0000-53-0000 Routine Manual
and material moving occupa-
tions

2 Data from these workers was excluded from the analysis in Cortes et al. (2020).
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Table 5: Employment and earnings by occupation in the 2023 Occupational Employment
and Wage Statistics

2010 SOC Code(s)  Employment Averagee Share of total Share of total
earnings employment earnings
11-0000 10495770 137750 .0691176 1454173
13-0000 10087830 90580 0664312 .0919052
15-0000 5177400 113140 .0340946 .0589166
17-0000 2539660 99090 0167244 0253114
19-0000 1389430 87870 .0091498 0122797
21-0000 2418130 58980 0159241 .0143448
23-0000 1240630 133820 .0081699 .0166983
25-0000 8744560 66400 0575854 .0584004
27-0000 2106490 75520 0138718 .0160004
29-0000 9284210 102060 0611391 .0953039
31-0000 7063530 38220 .0465153 0271533
33-0000 3504330 57710 023077 0203407
35-0000 13247870 34490 0872409 .0459567
37-0000 4429070 38320 0291667 .0170706
39-0000 3040630 38430 0200234 0117529
41-0000 13380660 53280 0881154 0717054
43-0000 18533450 47940 1220479 .0893644
45-0000 432200 39970 0028462 0017375
47-0000 6225630 61500 .0409975 .0385096
49-0000 5989460 58500 .0394423 0352414
51-0000 8770170 47620 057754 .0420056
53-0000 13752760 46690 0905657 .0645838

Data from the Occupational Employment and Wage Statistics dataset (U.S. Bureau of Labor Statis-
tics, 2023). To obtain the share of total earnings, we first multiply the employment number by
the average wage in the occupation, obtaining the wage bill in the occupation. The sum of the
occupational wage bill over all occupations is total earnings. And the share of each occupation in
total earnings is the wage bill divided by total earnings.
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