Property Tax Pass-Through to Renters: A Quasi-Experimental Approach

Sarah Baker

Federal Reserve Bank of Philadelphia

October 17, 2025

Disclaimer

The views expressed here are my own, and do not represent the official views of the Federal Reserve Bank of Philadelphia or the Federal Reserve System.

Research Questions

Do renters bear the incidence of property taxation?

- ▶ Yes?: Proponents of property tax caps (Prop. 13) argue that savings should pass through to renters
- ▶ No?: Neoclassical economics tells us that similar units should be priced similarly, regardless of heterogeneous property tax costs

Research Questions

■ Do renters bear the incidence of property taxation?

- ▶ Yes?: Proponents of property tax caps (Prop. 13) argue that savings should pass through to renters
- ▶ No?: Neoclassical economics tells us that similar units should be priced similarly, regardless of heterogeneous property tax costs
- ▶ **Setting:** Does a landlord's property tax bill affect a new tenant's rent?

Research Questions

■ Do renters bear the incidence of property taxation?

- ▶ Yes?: Proponents of property tax caps (Prop. 13) argue that savings should pass through to renters
- ▶ No?: Neoclassical economics tells us that similar units should be priced similarly, regardless of heterogeneous property tax costs
- ▶ Setting: Does a landlord's property tax bill affect a new tenant's rent?

How do landlords price?

- ► Can landlords charge different rents for similar units?
- Are landlords pricing 'correctly'?

Outline

- Setting
- 2 Empirical Specifications
- 3 Theoretical Framework
- 4 Conclusion

Setting

- Prop. 13 in California: Property is taxed on its purchase value plus 2% per year
 - ▶ If sold, property is reassessed to new purchase value
 - $\blacktriangleright\ \to\ \mathsf{Large}$ increase in property taxes, potentially as good as random
 - ▶ Many other states have laws like Prop. 13 (FL, MI, OR, AZ, MA)
 - ▶ Good for long-time homeowners, good for renters?

Rebate to Renters Seen if Prop. 13 Is Passed

BY RONALD L. SOBLE

Most California apartment renters could receive a Christmas bonus amounting to a 50% rebate on their December rents if Proposition 13 is approved, officials of two big landlords associations said Wednesday.

They announced the signing of an agreement between the California Apartment Assn. (CAA), the state's biggest apartment group with more than 72,000 members, and the Apartment Assn. of Los Angeles County, Inc., whose chief executive is Howard Jarvis, the initiative's cosponsor. The county association represents about

8.000 apartment owners.

The agreement is strictly voluntary and it would be up to individual land-lord members of the associations as to whether renters would get the rebate or not.

"We will do our darndest to see that (apartment) owners act responsibly" on the agreement, Trevor Grimm, a member of the Los Angeles group's board, told a news conference at the Greater Press Club of Los Angeles.

Under questioning, Grimm, who Please Turn to Page 29, Col. 4

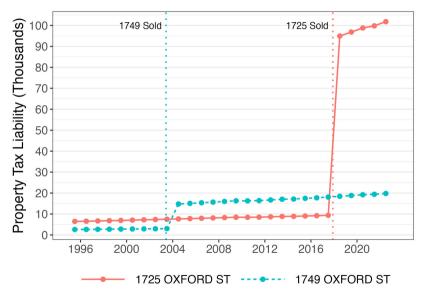
Setting

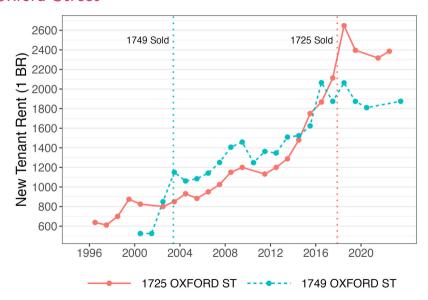
- Prop. 13 in California: Property is taxed on its purchase value plus 2% per year
 - ▶ If sold, property is reassessed to new purchase value
 - lackbox Large increase in property taxes, potentially as good as random
 - ▶ Many other states have laws like Prop. 13 (FL, MI, OR, AZ, MA)
 - ▶ Good for long-time homeowners, good for renters?
- Rent data from Berkeley, California
 - ▶ Rent data is not systematically collected: Rely on surveys, incomplete samples
 - ▶ Novel data set of unit-level leases from the Berkeley Rent Board, near-universal city coverage
 - Vacancy decontrol (1999): Landlords can set rent freely upon vacancy. No rent control for new tenants.
 - ▶ Use only new tenant (unrestricted) rents

Unique Quasi-Experimental Setting

Neighboring multi-unit buildings:

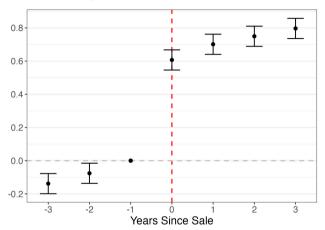
(a) 1725 Oxford Street


- Last sold in 2018 (for \$9.5m)
- Current tax burden: \$100,000

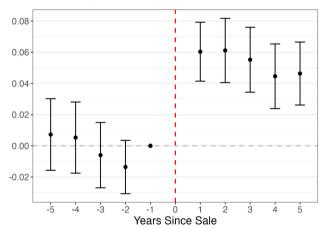

(b) 1749 Oxford Street

- Last sold in 2003 (for \$1.45m)
- Current tax burden: \$20,000

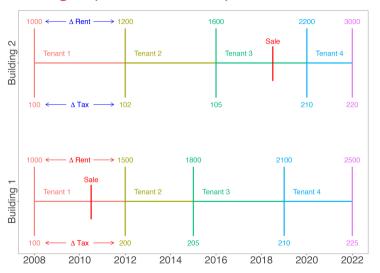
Property Taxes on Oxford Street

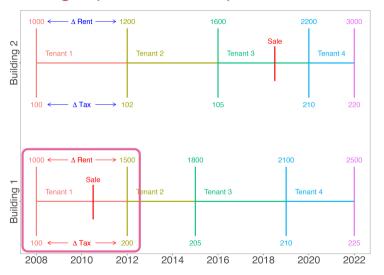

Rent on Oxford Street

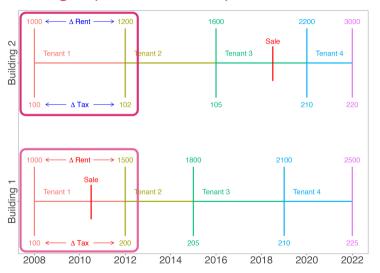
Outline

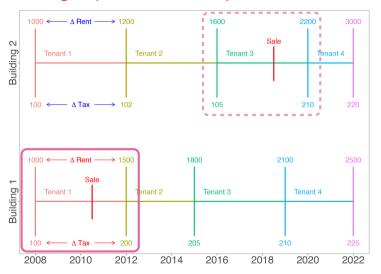

- Setting
- 2 Empirical Specifications
- 3 Theoretical Framework
- 4 Conclusion

Spec. 1: Event Study of Log Property Taxes




$$\ln[\textit{TaxableValue}_{it}] = \sum_{t \in [-5,5]} \gamma_j \cdot D_{i,t-j} + \epsilon_{it}$$


Spec. 1: Event Study of Log New Tenant Rent



$$ln[\textit{Rent}_{\textit{it}}] = \sum_{t \in [-5,5]} \gamma_j \cdot D_{\textit{i},t-j} + \lambda_{\textit{g},t} + \alpha_{\textit{i}} + \gamma_{\textit{m}_t} + \epsilon_{\textit{it}}$$

For unit i, with a new tenant in periods t - k and t, in Census tract g, with rent R and unit taxable value TV:

$$\begin{split} \Delta \ln[R_{i,g,t,t-k}] &= \beta_1 \Delta \ln[TV_{i,g,t,t-k}] \\ &+ \beta_2 \mathbb{1} \{Sale_{i,t-k,t}\} \\ &+ \beta_3 \mathbb{1} \{Sale_{i,t-k,t}\} \cdot \Delta \ln[TV_{i,g,t,t-k}] \\ &+ \lambda_{g,t,t-k} + \alpha_i + \gamma_{m_t,m_{t-k}} + \epsilon_{i,t,t-k} \end{split}$$

Where:

- $lacktriangleq \Delta \ln[R]$ controls for unobservables captured in pre-sale rent
- $\lambda_{g,t,t-k}$: Tract \times Year $_t \times$ Year $_{t-k}$ FE: Time-varying nbhd trends
- \blacksquare α_i : Unit FE: Unit-specific characteristics
- $\gamma_{m_t,m_{t-k}}$: Month_t \times Month_{t-k} FE: Seasonality in rent prices
- SEs clustered by building: Within-building error correlation

Pass-Through Estimation

Table: Effects of Sale-Triggered Property Tax Changes on Rent

	Dependent variable: $\Delta \ln[{\sf Rent}_{t_{ij}-k_{ij},t_{ij}}]$		
	(1)	(2)	(3)
$\Delta \ln[TV_{i,g,t_{ij},t_{ij}-k_{ij}}]$	0.050*** (0.005)	0.036*** (0.005)	-0.004 (0.009)
$Sale_{t_{ij}-k_{ij},t_{ij}}$		0.029*** (0.004)	0.017*** (0.005)
$Sale_{t_{ij}-k_{ij},t_{ij}} imes \Delta In[\mathit{TV}_{i,g,t_{ij},t_{ij}-k_{ij}}]$			0.048*** (0.010)
Implied Pass-Through Per \$1			\$0.53
Observations	97,017	97,017	97,017
Adjusted R ²	0.698	0.699	0.699
Note:	*p<0.1; **p<0.05; ***p<0.01		

Sarah Baker (Philly Fed)

Pass-Through Estimation

Table: Effects of Sale-Triggered Property Tax Changes on Rent

_	Dependent variable: $\Delta \ln[Rent_{t_{ij}-k_{ij},t_{ij}}]$		
	(1)	(2)	(3)
$\Delta \ln[TV_{i,g,t_{ij},t_{ij}-k_{ij}}]$	0.050*** (0.005)	0.036*** (0.005)	-0.004 (0.009)
$Sale_{t_{ij}-k_{ij},t_{ij}}$		0.029*** (0.004)	0.017*** (0.005)
$Sale_{t_{ij}-k_{ij},t_{ij}} imes \Delta In[\mathit{TV}_{i,m{g},t_{ij},t_{ij}-k_{ij}}]$			0.048*** (0.010)
Implied Pass-Through Per \$1			\$0.53
Observations	97,017	97,017	97,017
Adjusted R ²	0.698	0.699	0.699
Note:	*p<0.1; **p<0.05; ***p<0.01		

Sarah Baker (Philly Fed)

Robustness Check 1: Landlord Size

■ Do large landlords purchase buildings from 'mom-and-pop' landlords and raise rents?

Robustness Check 1: Landlord Size

- Do large landlords purchase buildings from 'mom-and-pop' landlords and raise rents?
- Link Berkeley properties by the owner's mailing address to determine landlord size, add change in landlord size after sale to pass-through specification

Robustness Check 1: Landlord Size

- Do large landlords purchase buildings from 'mom-and-pop' landlords and raise rents?
- Link Berkeley properties by the owner's mailing address to determine landlord size, add change in landlord size after sale to pass-through specification
- I find a pass-through rate of...
 - ▶ **\$0.53 per \$1** at baseline
 - ▶ \$0.51 per \$1 when accounting for landlord size Size Corporate

Robustness Check 2: Renovations

Does the new landlord renovate the building and (justifiably) raise rents? ("90s Kitchens")

Robustness Check 2: Renovations

- Use **city building permits**: Required for any construction, alterations, repairs; any work on gas/electrical/plumbing
 - ▶ Permits are common
 - Occur in 74% of buildings, 5% of buildings permitted per year
 - Twice as likely to occur just after a sale Permit Event Study
 - ► Strategy: NLP algorithm to score each permit Word Cloud

Robustness Check 2: Renovations

- Use **city building permits**: Required for any construction, alterations, repairs; any work on gas/electrical/plumbing
 - Permits are common
 - Occur in 74% of buildings, 5% of buildings permitted per year
 - Twice as likely to occur just after a sale Permit Event Study
 - ► Strategy: NLP algorithm to score each permit Word Cloud
- I find a pass-through rate of...
 - ▶ **\$0.53 per \$1** at baseline
 - ▶ \$0.49 per \$1 when accounting for permitted unit upgrades Renovations

Outline

- Setting
- 2 Empirical Specifications
- 3 Theoretical Framework
- 4 Conclusion

Goals:

- Explain positive relationship between rent and property taxes
- f Z Explain why below-market taxes o below-market rents

Goals:

- Explain positive relationship between rent and property taxes
- \blacksquare Explain why below-market taxes \rightarrow below-market rents

Mechanism:

1 Incumbent landlord is inattentive to the market-rate rent

Goals:

- Explain positive relationship between rent and property taxes
- \blacksquare Explain why below-market taxes \rightarrow below-market rents

- Incumbent landlord is inattentive to the market-rate rent
 - ▶ Potential reason: No informative tax cost shocks

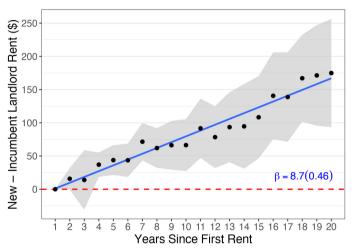
Goals:

- Explain positive relationship between rent and property taxes
- \blacksquare Explain why below-market taxes \rightarrow below-market rents

- Incumbent landlord is inattentive to the market-rate rent
 - ▶ Potential reason: No informative tax cost shocks
- Below-market rents create an opportunity for more 'sophisticated' or knowledgeable landlord

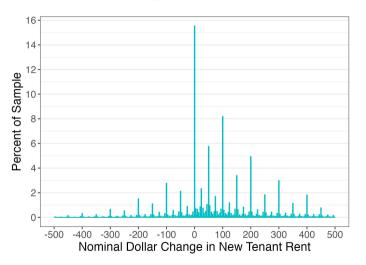
Goals:

- Explain positive relationship between rent and property taxes
- 2 Explain why below-market taxes \rightarrow below-market rents

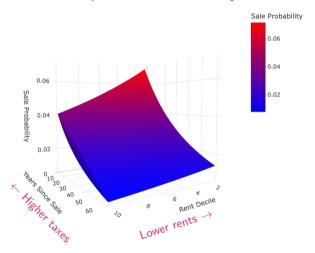

- Incumbent landlord is inattentive to the market-rate rent
 - ▶ Potential reason: No informative tax cost shocks
- Below-market rents create an opportunity for more 'sophisticated' or knowledgeable landlord
- Sophisticated landlord buys property from inattentive landlord, taxes ↑ and rent ↑

Goals:

- Explain positive relationship between rent and property taxes
- **2** Explain why below-market taxes \rightarrow below-market rents


- Incumbent landlord is inattentive to the market-rate rent
 - ▶ Potential reason: No informative tax cost shocks
- Below-market rents create an opportunity for more 'sophisticated' or knowledgeable landlord
- Sophisticated landlord buys property from inattentive landlord, taxes ↑ and rent ↑
- 4 Sophisticated landlord becomes inattentive over time
- Cycle repeats

Inattention: New Tenant Rent Gap by Landlord Duration


- ⇒ Incumbent landlords **drift** from new landlord rent by \$9 per year
- \implies 5-year landlord makes \$540 less than new landlord annually

Inattention: Heuristic Rent-Setting By Sale

Reproduced from Baker and Wroblewski (2024)

Lower-Rent, Higher-Tax Properties More Likely to Sell

- **Current** landlord: Sets low rents, pays high taxes \rightarrow Sold!
- New landlord: Increases rents ↑↑ w/o huge tax increase

- Incumbent landlord is inattentive to the market-rate rent
 - ▶ Drift from market rent by \$9 per year
 - ▶ Raise rents using heuristics (ex. \$100/yr), not market knowledge

- Incumbent landlord is inattentive to the market-rate rent
 - ▶ Drift from market rent by \$9 per year
 - ▶ Raise rents using heuristics (ex. \$100/yr), not market knowledge
- Below-market rents create an opportunity for more 'sophisticated' or knowledgeable landlord

- Incumbent landlord is inattentive to the market-rate rent
 - ▶ Drift from market rent by \$9 per year
 - ▶ Raise rents using heuristics (ex. \$100/yr), not market knowledge
- Below-market rents create an opportunity for more 'sophisticated' or knowledgeable landlord
- Sophisticated landlord buys property from inattentive landlord, taxes ↑ and rent ↑
 - ▶ Sale more likely when current landlord sets low rents, pays high taxes

- Incumbent landlord is inattentive to the market-rate rent
 - ▶ Drift from market rent by \$9 per year
 - ▶ Raise rents using heuristics (ex. \$100/yr), not market knowledge
- Below-market rents create an opportunity for more 'sophisticated' or knowledgeable landlord
- Sophisticated landlord buys property from inattentive landlord, taxes ↑ and rent ↑
 - ▶ Sale more likely when current landlord sets low rents, pays high taxes
- 4 Sophisticated landlord becomes inattentive over time
 - ▶ Potential reason: No informative tax cost shocks
- Cycle repeats

- Rent rebates to tenants with older, incumbent landlords
 - ▶ Prop. 13 proponents correct

- Rent rebates to tenants with older, incumbent landlords
 - ▶ Prop. 13 proponents correct
- Blunt policy instrument
 - ▶ Who gets the cheaper units? Who are we helping?

- Rent rebates to tenants with older, incumbent landlords
 - ▶ Prop. 13 proponents correct
- Blunt policy instrument
 - ▶ Who gets the cheaper units? Who are we helping?
- What happens if Prop. 13 is repealed and property taxes ↑?

- Rent rebates to tenants with older, incumbent landlords
 - ▶ Prop. 13 proponents correct
- Blunt policy instrument
 - ▶ Who gets the cheaper units? Who are we helping?
- What happens if Prop. 13 is repealed and property taxes ↑?
 - ► Channel 1 (shown): Incumbent landlords want to sell → Bought by high-sophistication landlords → Rent increases

- Rent rebates to tenants with older, incumbent landlords
 - ▶ Prop. 13 proponents correct
- Blunt policy instrument
 - ▶ Who gets the cheaper units? Who are we helping?
- What happens if Prop. 13 is repealed and property taxes ↑?
 - ▶ Channel 1 (shown): Incumbent landlords want to sell \rightarrow Bought by high-sophistication landlords \rightarrow Rent increases
 - ▶ Channel 2 (likely): Incumbent landlords forced to be attentive
 - → Rent increases

- Rent rebates to tenants with older, incumbent landlords
 - ▶ Prop. 13 proponents correct
- Blunt policy instrument
 - ▶ Who gets the cheaper units? Who are we helping?
- What happens if Prop. 13 is repealed and property taxes ↑?
 - Channel 1 (shown): Incumbent landlords want to sell → Bought by high-sophistication landlords → Rent increases
 - ▶ Channel 2 (likely): Incumbent landlords forced to be attentive
 - → Rent increases
 - ▶ Increased tax revenue could provide targeted rental assistance

Outline

- Setting
- 2 Empirical Specifications
- 3 Theoretical Framework
- 4 Conclusion

Conclusion

- Do renters bear the incidence of property taxation?
 - ➤ Yes, pass-through of \$0.50-\$0.89 per \$1
 - ▶ Robust to landlord size, renovations

Conclusion

■ Do renters bear the incidence of property taxation?

- ▶ Yes, pass-through of \$0.50-\$0.89 per \$1
- ▶ Robust to landlord size, renovations

How do landlords price?

- ► They pass on heterogeneous cost shocks
- ▶ Incumbent landlords price below market, 'incorrectly'

Conclusion

Do renters bear the incidence of property taxation?

- ▶ Yes, pass-through of \$0.50-\$0.89 per \$1
- ▶ Robust to landlord size, renovations

How do landlords price?

- ► They pass on heterogeneous cost shocks
- Incumbent landlords price below market, 'incorrectly'

Contribution:

- Unique quasi-experimental setting
- ▶ Novel, near-universal, unit-level rent data
- Evidence of tax incidence on renters
- Evidence of non-standard landlord pricing behavior

Thank you!

Email: sarah.baker@phil.frb.org

Website: www.sarah-baker.com

References I

- Andersen, S., Badarinza, C., Liu, L., Marx, J., and Ramadorai, T. (2022). Reference dependence in the housing market. American Economic Review, 112(10):3398–3440.
- Avenancio-León, C. F. and Howard, T. (2022). Assessment caps and the racial assessment gap. National Tax Journal, 75(1):169-200.
- Badarinza, C., Ramadorai, T., Siljander, J., and Tripathy, J. (2024). Behavioral lock-in: aggregate implications of reference dependence in the housing market. Baker, S. and Wroblewski, C. (2024). Five facts about (rental) prices.
- Benmelech, E., Guren, A., and Melzer, B. T. (2023). Making the house a home: The stimulative effect of home purchases on consumption and investment. The Review of Financial Studies, 36(1):122–154.
- Bracke, P. and Tenreyro, S. (2021). History dependence in the housing market. American Economic Journal: Macroeconomics, 13(2):420-443.
- Carroll, R. J. and Yinger, J. (1994). Is the property tax a benefit tax? the case of rental housing. National Tax Journal, 47(2):295-316.
- DellaVigna, S. and Gentzkow, M. (2019). Uniform pricing in us retail chains. The Quarterly Journal of Economics, 134(4):2011-2084.
- Dube, A., Manning, A., and Naidu, S. (2018). Monopsony and employer mis-optimization explain why wages bunch at round numbers. Technical report, National Bureau of Economic Research.
- England, R. W. (2016). Tax incidence and rental housing: a survey and critique of research. National Tax Journal, 69(2):435-460.
- Gallin, J. and Verbrugge, R. J. (2019). A theory of sticky rents: Search and bargaining with incomplete information. Journal of Economic Theory, 183:478-519.
- Genesove, D. (2003). The nominal rigidity of apartment rents. Review of Economics and Statistics, 85(4):844-853.
- Genesove, D. and Mayer, C. (2001). Loss aversion and seller behavior: Evidence from the housing market. The quarterly journal of economics, 116(4):1233–1260.
- Giacoletti, M. and Parsons, C. A. (2022). Peak-bust rental spreads. Journal of Financial Economics, 143(1):504-526.
- Guren, A. M. (2018). House price momentum and strategic complementarity. Journal of Political Economy, 126(3):1172-1218.
- Hirota, S., Suzuki-Löffelholz, K., and Udagawa, D. (2020). Does owners' purchase price affect rent offered? experimental evidence. <u>Journal of Behavioral and Experimental Finance</u>, 25:100260.
- Hughes, S. K. (2022). How mortgage financing costs affect rental housing: Pass-through pricing. Mimeograph, University of Pennsylvania.
- Matějka, F. (2016). Rationally inattentive seller: Sales and discrete pricing. The Review of Economic Studies, 83(3):1125-1155.
- Oates, W. E. and Fischel, W. A. (2016). Are local property taxes regressive, progressive, or what? <u>National Tax Journal</u>, 69(2):415–434. Reis, R. (2006). Inattentive producers. The Review of Economic Studies, 73(3):793–821.
- Stevens, L. (2020). Coarse pricing policies. The Review of Economic Studies, 87(1):420-453.
- Watson, C. L. and Ziv, O. (2024). A test for pricing power in urban housing markets.

Appendix

Contribution to the Literature

Property tax incidence

- ► Inconclusive GE estimates of \$0-\$1.40 per \$1: Oates and Fischel (2016), England (2016), Carroll and Yinger (1994)
- ▶ Distributional effects: Avenancio-León and Howard (2022)
- ► Contribution: PE estimate of high pass-through

2 Behavioral pricing: Firms

► Stevens (2020), Dube et al. (2018), Reis (2006), Matějka (2016), DellaVigna and Gentzkow (2019)

Behavioral pricing: Housing

- ▶ Sale price: Genesove and Mayer (2001), Bracke and Tenreyro (2021), Andersen et al. (2022), Badarinza et al. (2024), Guren (2018)
- ▶ Rent stickiness: Genesove (2003), Gallin and Verbrugge (2019), Baker and Wroblewski (2024)
- ▶ Rental pricing: Giacoletti and Parsons (2022), Hirota et al. (2020), Hughes (2022), Watson and Ziv (2024)
- ► Contribution: Behavioral framework to rental housing, novel setting and data, within-property variation

Landlord Size: Direct Test Back

Table: Effects of Sale-Triggered Property Tax Changes on Rent by Landlord Status

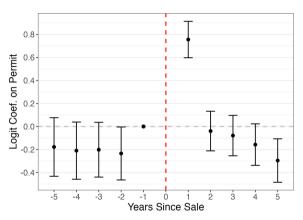
_	Dependent variable:		
	Δ Log Rent		
	(1)	(2)	
$\Delta \ln[TV_{t_{ij}-k_{ij},t_{ij}}]$	-0.004 (0.009)	-0.004 (0.009)	
Sale	0.017*** (0.005)	0.018*** (0.005)	
$Sale \times \Delta ln[\mathit{TV}_{t_{ij}-k_{ij},t_{ij}}]$	0.048*** (0.010)	0.046*** (0.010)	
$Sale_{t_{ij}-k_{ij},t_{ij}} x \Delta \ Units \ Owned$		0.0001*** (0.00002)	
Implied Pass-Through Per \$1 Observations Adjusted R ²	\$0.53 97,017 0.699	\$0.51 97,017 0.699	
Note:	*p<0.1; **p<0	0.05; ***p<0.01	

Landlord Corporate Status (Back)

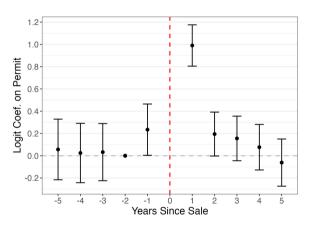
	Dependent variable:			
	$\Delta \ln[Rent_{t_{ij}-k_{ij},t_{ij}}]$			
	(1)	(2)	(3)	(4)
$\Delta \ln[TV_{t_{ij}-k_{ij},t_{ij}}]$	-0.004 (0.009)	-0.003 (0.010)	-0.005 (0.010)	-0.004 (0.010)
$Sale_{t_{ij}-k_{ij},t_{ij}}$	0.017*** (0.005)	0.010* (0.005)	0.013** (0.005)	0.020*** (0.006)
$Sale_{t_{ij}-k_{ij},t_{ij}} imes \Delta In[\mathcal{T}\mathcal{V}_{t_{ij}-k_{ij},t_{ij}}]$	0.048*** (0.010)	0.046*** (0.011)	0.048*** (0.011)	0.048*** (0.012)
Corporate		-0.003 (0.004)	` /	, ,
Business Owner			-0.004 (0.004)	
$Sale_{t_{ij}-k_{ij},t_{ij}} \times \ Corporate$		0.028*** (0.008)	(0.001)	
$Sale_{t_{ij}-k_{ij},t_{ij}} imes Business \; Owner$			0.022** (0.009)	
$Sale_{t_{ij}-k_{ij},t_{ij}} imes \Delta$ County Buildings				0.0003** (0.0001)
Implied Pass-Through Per \$1	\$0.53	\$0.50	\$0.53	\$0.53
Observations	97,017	97,017	96,744	79,464
Adjusted R ²	0.699	0.699	0.699	0.650

^{*}p<0.1; **p<0.05; ***p<0.01

Improvements: "90s Kitchens" in 2024 Back



(a) 1725 Oxford St, 2024


(b) 1749 Oxford St, 2024

Renovations: Permits More Likely Post-Sale (Back)

- Probability increases from $4.7\% \rightarrow 9.5\%$ after sale, consistent with Benmelech et al. (2023) Event Study, t=-2
- Permits are common, occur in 74% of buildings Sale/Permit Freq.

Renovations: Permits More Likely Around Sale Back

■ Probability increases from $3.6\% \rightarrow 4.5\% \rightarrow 9.1\% \rightarrow 4.3\%$, consistent with Benmelech et al. (2023)

Renovations: What's in the Permits?

Renovations: Results Back

Back

Table: Effects of Sale-Triggered Property Tax Changes on Rent

	$\frac{\textit{Dependent variable:}}{\Delta \ln[\textit{Rent}_{t_{ij}-k_{ij},t_{ij}}]}$	
	(1)	(2)
$\Delta \ln[TV_{i,g,t_{ij},t_{ij}-k_{ij}}]$	-0.004	-0.004
	(0.009)	(0.009)
$Sale_{t_{ij}-k_{ij},t_{ij}}$	0.017***	0.016***
	(0.005)	(0.005)
$Sale_{t_{ij}-k_{ij},t_{ij}} imes \Delta In[T V_{i,g,t_{ij},t_{ij}-k_{ij}}]$	0.048***	0.044***
	0.048*** (0.010)	(0.009)
Number of Permits		-0.003***
		(0.001)
NLP Permit Score		0.273***
NEI Termit Score		(0.020)
Implied Pass-Through Per \$1	\$0.53	\$0.49
Observations	97,017	97,017
Adjusted R ²	0.699	0.702
Note:	*p<0.1; **p<0.05; ***p<0.01	

Heuristic Rent-Setting Back

