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Executive summary 
Medicare Advantage (MA) has attracted a steadily rising share of Medicare beneficiaries in recent 
years, a trend that is projected to continue in the years to come (Ochieng et al. 2025; CBO 2024; 
Trustees 2025). At present, beneficiaries who choose MA are “favorably selected,” meaning that 
they cost less to cover than those who choose traditional Medicare (TM), even after adjusting for 
the beneficiary characteristics accounted for in the MA risk adjustment system (e.g., Curto et al. 
2019; MedPAC 2025). Because payments to MA plans are based on the average spending of TM 
enrollees, favorable selection increases the effective generosity of those payments—by an 
estimated 11% in 2025, according to the Medicare Payment Advisory Commission (MedPAC 
2025). Observers have raised concerns that selection may intensify if MA penetration continues 
to rise, perhaps necessitating fundamental changes to how MA plans are paid (e.g., McWilliams 
2022; Jacobson and Blumenthal 2022; MedPAC 2023; Lieberman et al. 2023). 

This paper examines the effect of MA penetration on selection, with three main findings: 

 It is unclear a priori whether higher MA penetration will strengthen or weaken favorable 
selection. Favorable selection arises because beneficiaries with a higher propensity to 
choose TM over MA tend to cost more to cover. A corollary of this fact is that the 
“marginal” beneficiaries who shift from TM to MA when MA penetration rises tend to cost 
more than those already in MA but less than those who remain in TM. Thus, rising MA 
penetration tends to raise the average cost of both MA and TM enrollees. The net effect 
on the difference in average cost between these two groups—or, equivalently, on the 
degree of favorable selection into MA—depends on which average rises faster.  

The model presented in this paper shows that this net effect depends on the curvature of 
the relationship between beneficiary costs and their propensity to enroll in MA, as depicted 
graphically in Figure ES-1. If this relationship is convex (e.g., because there is a small 
group of very-high-cost beneficiaries who almost always choose TM), then favorable 
selection tends to increase as MA penetration rises, as depicted in Panel B of the figure. 
By contrast, if this relationship is concave (e.g., because there is a small group of very-
low-cost beneficiaries who almost always choose MA), then favorable selection tends to 
decline as MA penetration rises, as depicted in Panel C. If this relationship is linear, then 
favorable selection does not vary with MA penetration, as depicted in Panel A. 
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 Simple comparisons of selection patterns in counties with higher and lower MA 
penetration rates suggest that MA penetration has little effect on favorable selection, 
but these comparisons have limitations. One strategy for measuring the degree of 
favorable selection into MA is to compare the claims spending and risk scores of TM 
“stayers” (enrollees who remain in TM from one year to the next) to those of TM-to-MA 
“switchers” (enrollees who switch from TM in one year to MA in the next year). This 
method of measuring selection has been used extensively in prior work (e.g., Brown et al. 
2014; Newhouse et al. 2015; Jacobson et al. 2019; Lieberman et al. 2023; MedPAC 2025). 

Some recent work has shown that stayer-switcher differences are similar in counties with 
higher and lower MA penetration rates (Lieberman et al. 2023; MedPAC 2025), a finding 
we replicate in our data. For two reasons, however, these cross-sectional comparisons are 
an imperfect guide to how changes in MA penetration affect favorable selection. 

First, counties with higher MA penetration rates may differ in other ways that mask any 
effect of MA penetration on stayer-switcher differences. Indeed, we present some 
evidence that changes in MA penetration are associated with declines in stayer-switcher 
differences, which is consistent with concerns that persistent differences across counties 
confound the cross-sectional relationship between penetration and stayer-switcher 
differences. Second, TM-to-MA switchers may not be perfectly representative of MA 
enrollees overall, so the effect of MA penetration on stayer-switcher differences may not 
coincide with the effect of ultimate interest: the effect on the difference between the 
average TM enrollee and the average MA enrollee. Notably, it is plausible that TM-to-MA 
switchers more closely resemble the enrollee on the margin between TM and MA than the 
average MA enrollee; as illustrated in Figure ES-1, the gap between the marginal enrollee 
and the average TM enrollee may shrink when MA penetration rises even as the gap 
between the average MA enrollee and the average TM enrollee grows or remains steady. 

 Our analysis addresses the limitations of prior analyses but reaches a similar conclusion: 
rising MA penetration is unlikely to have much effect on favorable selection into MA. We 
estimate a structural model of the relationship between MA penetration and selection 
using county-year panel data on stayer-switcher differences and MA penetration. The 
model structure allows us to explicitly account for the possibility that TM-to-MA switchers 
may not be representative of MA enrollees overall. Using data for multiple years also 
allows us to control for persistent differences across counties that may confound the 
cross-sectional relationship between MA penetration and stayer-switcher differences.  

Our results imply that further increases in MA penetration would have little net effect on 
favorable selection, as illustrated in Figure ES-2. Concretely, we estimate that a decline in 
TM’s market share of 50% from its 2022 level would result in between a negligible increase 
and a 0.6% decrease in the risk-adjusted cost of the average TM enrollee relative to the 
average MA enrollee, depending on our assumptions. Our estimates are precise enough 
to rule out increases larger than 0.9% or declines larger than 1.3% with 95% confidence. 
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Our findings suggest that further increases in MA penetration would have only small effects on 
the degree of favorable selection into MA. This has at least two implications. First, it suggests 
that changes in selection (and their corresponding effects on the generosity of MA payments) are 
unlikely to meaningfully amplify or dampen underlying trends in MA penetration. In particular, it 
suggests that TM is currently at little risk of entering a selection-fueled “death spiral” in which 
increases in MA penetration exacerbate favorable selection, boost payments to MA plans, and 
thereby allow plans to lure still more beneficiaries away from TM.  

Second—and related—it appears unlikely that rising MA penetration will change selection patterns 
in ways that substantially reduce the accuracy of MA payments. This joins earlier findings that 
rising MA penetration is unlikely, at least in the medium-run, to reduce TM enrollment to a level 
where the estimates of local TM costs used to set MA payment benchmarks become statistically 
unreliable (Crow et al. 2025). A corollary is that while the MA payment system’s current accuracy 
problems (e.g., MedPAC 2025) may offer a compelling rationale for MA payment reform, concerns 
that rising MA penetration will exacerbate these accuracy problems likely do not.  



5 
 

Introduction 
Medicare Advantage (MA) has attracted a steadily rising share of Medicare beneficiaries in recent 
years, a trend that is projected to continue in the years to come (Ochieng et al. 2025; CBO 2024; 
Trustees 2025). At present, beneficiaries who choose MA are “favorably selected,” meaning that 
they cost less to cover than those who choose traditional Medicare (TM), even after adjusting for 
the beneficiary characteristics accounted for in the MA risk adjustment system (e.g., Curto et al. 
2019; MedPAC 2025). Because payments to MA plans are based on the average spending of TM 
enrollees, favorable selection increases the effective generosity of those payments—by an 
estimated 11% in 2025, according to the Medicare Payment Advisory Commission (MedPAC 
2025). Observers have raised concerns that selection may intensify if MA penetration continues 
to rise, perhaps necessitating fundamental changes to how MA plans are paid (e.g., McWilliams 
2022; Jacobson and Blumenthal 2022; MedPAC 2023; Lieberman et al. 2023).2 

This paper aims to estimate how rising MA penetration will affect patterns of selection into MA. 
To start, we present a simple model of the relationship between MA penetration and selection. 
The model shows that whether selection becomes more or less favorable as MA penetration rises 
depends on the precise shape of the relationship between MA penetration and the cost of the 
enrollees on the margin between MA and TM, making this a fundamentally empirical question. 

To explore this question, we examine how selection and MA penetration vary both across 
counties and over time. We measure selection at the county-year level by comparing the claims 
spending and risk scores of TM “stayers” (enrollees who remain in TM from one year to the next) 
to those of TM-to-MA “switchers” (enrollees who switch from TM in one year to MA in the next 
year). This method of measuring selection has been used extensively in prior work (e.g., Brown et 
al. 2014; Newhouse et al. 2015; Jacobson et al. 2019; Lieberman et al. 2023), and it underlies 
MedPAC’s national estimates of favorable selection into MA (MedPAC 2025). 

We first use these data to replicate prior findings that stayer-switcher differences are similar in 
counties with higher and lower MA penetration rates (Lieberman et al. 2023; MedPAC 2025). For 
two reasons, however, these cross-sectional comparisons are an imperfect guide to how changes 
in MA penetration affect favorable selection. First, counties with higher MA penetration may differ 
in other ways that mask any effect of penetration on stayer-switcher differences. Second, TM-to-
MA switchers may not be perfectly representative of MA enrollees overall, so the effect of MA 
penetration on stayer-switcher differences may not coincide with the effect of ultimate interest: 
the effect on the difference between the average TM enrollee and the average MA enrollee. 

To address these problems, we estimate a structural model of the relationship between MA 
penetration and selection using county-year panel data on stayer-switcher differences and MA 
penetration. Using data for multiple years also allows us to control for persistent differences 
across counties that may confound the cross-sectional relationship between MA penetration and 
stayer-switcher differences. The model structure allows us to explicitly account for the possibility 

 
2 This concern is distinct from the concern that falling TM enrollment will reduce the number of TM 
enrollees whose experience can be used to construct the estimates of local TM spending used to set MA 
benchmarks, thereby increasing sampling and non-sampling error in those estimates. Crow et al. (2025) 
conclude that these sample size concerns will remain modest, at least in the medium-run. 
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that TM-to-MA switchers may not be representative of MA enrollees overall and thereby estimate 
how MA penetration affects the difference between the average TM and MA enrollees. 

The paper proceeds as follows. We first present our theoretical model of how MA penetration 
affects favorable selection, after which we describe our data and measures. We then revisit the 
cross-sectional relationship between MA penetration and stayer-switcher differences before 
examining the relationship between changes in MA penetration and changes in stayer-switcher 
differences. We then present and estimate our structural model. A final section discusses the 
implications of our findings for the future of the MA program and MA payment reform efforts. 

Model 
We begin by laying out a simple model of selection into MA that builds on models of selection 
used in prior work (Einav et al. 2010; Einav and Finkelstein 2011; Glazer and McGuire 2017). We 
use the model to illustrate how changes in MA penetration affect the nature of selection into MA 
and to provide a conceptual framework to guide the empirical analysis that follows. 

Model setup 
Consider a population of Medicare beneficiaries that is normalized to size one and indexed by 𝑞 ∈

[0,1], with beneficiaries arrayed so that higher values of 𝑞 correspond to a higher propensity to 
select TM over MA. Concretely, beneficiary 𝑞 is the beneficiary on the margin between MA and 
TM when the share of enrollees choosing MA, which we denote 𝑄, equals 𝑞. 

Beneficiary 𝑞 incurs claims 𝑐(𝑞) when enrolled in TM. Because 𝑐(𝑞) reflects costs when (perhaps 
counterfactually) enrolled in TM, it is a pure measure of claims risk; in particular, it excludes any 
effects of MA plans’ utilization management activities. Given evidence of favorable selection into 
MA, we assume that 𝑐 is strictly increasing in 𝑞; that is, beneficiaries with a higher propensity to 
choose TM (or, equivalently, a lower propensity to choose MA) have higher costs. 

The average cost of MA and TM enrollees when MA penetration is 𝑄 are given, respectively, by 

  𝑐MA(𝑄) =
1

𝑄
න 𝑐(𝑞)𝑑𝑞

ொ

଴

   and   𝑐TM(𝑄) =
1

1 − 𝑄
න 𝑐(𝑞)𝑑𝑞

ଵ

ொ

. (1) 

It is easy to see that since 𝑐 is strictly increasing, 𝑐TM(𝑄) > 𝑐MA(𝑄) for all 𝑄; that is, there is 
favorable selection into MA at all levels of MA penetration. We note that this statement pertains 
to “gross” selection before considering risk adjustment. We incorporate risk adjustment below. 

MA penetration and favorable selection 
We now consider how the degree of favorable selection into MA, which can be measured by the 
difference 𝑐TM(𝑄) − 𝑐MA(𝑄), changes when MA penetration changes. It is clear that the average 
cost of both MA and TM enrollees must rise as MA penetration rises; this is because the enrollee 
on the margin between MA and TM has higher costs than the average MA enrollee but lower costs 
than the average TM enrollee. Thus, shifting the marginal enrollee from TM to MA raises the 
average cost of both groups. It follows that the net effect of rising MA penetration on the degree 
of favorable selection into MA depends on which of these two averages increases more quickly. 

This depends, in turn, on the shape of the relationship between MA penetration and the cost of 
the marginal enrollee. Figure 1 lays out three scenarios, and Appendix A provides the full 
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mathematical details. If the cost of the marginal enrollee rises linearly with MA penetration, as 
depicted in Panel A, then the average cost of MA and TM enrollees will rise exactly in parallel as 
MA penetration rises, and the degree of favorable selection is constant.  

If the cost of the marginal enrollee is a convex function of MA penetration, as depicted in Panel 
B, then the average cost of TM enrollees rises faster than the average cost of MA enrollees as MA 
penetration rises, and favorable selection increases. One way this type of convexity could arise is 
if there are a small number of very costly enrollees with a high propensity to enroll in TM and little 
variation in costs across the rest of the propensity distribution. 

By contrast, if the cost of the marginal enrollee is a concave function of MA penetration, as 
depicted in Panel C, then the average cost of TM enrollees rises more slowly than the average 
cost of MA enrollees as MA penetration rises, and favorable selection falls. One way this type of 
concavity could arise is if there are a small number of very-low-cost enrollees with a high 
propensity to enroll in MA and little variation in costs across the rest of the propensity distribution. 

Risk adjustment and payment accuracy 
The benchmarks used to determine payments to MA plans are supposed to reflect the cost that 
MA enrollees would incur if enrolled in TM, that is, 𝑐MA(𝑄). Because this counterfactual average 
cost is not observed, the Centers for Medicare and Medicaid Services (CMS) instead computes 
the actual average claims spending of TM enrollees, 𝑐TM(𝑄), and “risk adjusts” this amount using 
estimates of the average claims risk of TM and MA enrollees. Thus, the accuracy of benchmarks 
and, in turn, payments to MA plans depends not on the gross difference in claims risk between 
MA and TM enrollees but instead on how much of that difference remains after risk adjustment.   

To formalize the role of risk adjustment, we let 𝑟(𝑞) denote the risk score of beneficiary 𝑞 if 
enrolled in TM. Focusing on the risk scores enrollees would receive if enrolled in TM allows us to 
abstract from the distinct payment accuracy issues created by MA plans’ highly successful 
diagnosis coding efforts (e.g., Geruso and Layton 2020; MedPAC 2025) and focus on selection. 
We let 𝑟TM(𝑄) and 𝑟MA(𝑄) denote the average risk scores for beneficiaries enrolled in each market 
segment when the MA penetration rate is 𝑄, defined analogously to 𝑐TM(𝑄) and 𝑐MA(𝑄). 
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Payments to MA plans are adjusted by multiplying TM average spending by the factor 𝑟MA(𝑄) ∕

𝑟TM(𝑄). The accuracy of this approach depends on how this factor compares to the ideal factor 
𝑐MA(𝑄) ∕ 𝑐TM(𝑄). One convenient way of expressing the net payment error is thus:  

ln ቆ
𝑐MA(𝑄) ∕ 𝑐TM(𝑄)

𝑟MA(𝑄) ∕ 𝑟TM(𝑄)
ቇ = ൣln 𝑐TM(𝑄) − ln 𝑐MA(𝑄)൧ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ

gross favorable selection

−  ൣln 𝑟TM(𝑄) − ln 𝑟MA(𝑄)൧ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
favorable selection captured in risk scores

. (2) 

This approximately equals the percentage payment error attributable to the risk adjustment 
system’s failure to fully offset differences in claims risk due to selection. As the right-hand-side 
of equation (2) shows, it can be viewed as the difference between two terms. The first term 
reflects the proportional gross difference in claims risk, while the second term reflects the portion 
of that difference that is offset by the risk adjustment system. As above, each of these terms may 
grow or shrink as MA penetration rises, depending on how the claims risk and risk scores of the 
marginal enrollee vary with MA penetration.3 It is therefore theoretically ambiguous whether the 
net payment error gets larger or smaller as MA penetration rises.   

Data and measures 
The prior section shows that it is theoretically ambiguous whether increases in MA penetration 
will increase or decrease selection, so we now examine this question empirically. This section 
describes our data and how we use those data to construct the key measures used in our analysis. 

Data 
We rely on Medicare claims and enrollment data, as well as long-term care Minimum Data Set 
files, for 2007-2022, accessed via the Virtual Research Data Center. The claims data allow us to 
observe the claims spending and diagnoses of TM enrollees. The enrollment data permit us to 
observe beneficiaries’ enrollment status in each month, including whether they have Part A 
coverage, Part B coverage, or both, and whether they receive that coverage through MA or TM. 
The enrollment data also report each beneficiary’s county of residence at each point in time. 
Finally, the Minimum Data Set files allow us to identify periods in which an individual is resident 
in a long-term care facility, which is needed to construct CMS-HCC risk scores. 

Measuring selection 
Measuring selection into MA is challenging because enrollee outcomes differ between MA and 
TM for reasons other than differences in enrollee characteristics. Notably, utilization is higher in 
TM than in MA for comparable enrollees, likely due to differences in plan design and utilization 
management practices between MA plans and TM (Curto et al. 2019; Teigland et al. 2023). 
Additionally, risk scores are higher in MA than in TM for comparable enrollees, reflecting MA 
plans’ incentives to capture as many diagnoses as possible to increase their payments (Geruso 
and Layton 2020; Kronick and Chua 2021; MedPAC 2024). Thus, naïve comparisons of spending 
and risk scores between MA and TM enrollees are likely to overstate favorable selection into MA. 

To overcome this obstacle, we measure selection by comparing the prior-year spending and risk 
scores of enrollees who newly switched from TM to MA (“TM-to-MA switchers” or “switchers”) 

 
3 In general, the degree of convexity required for favorable selection to increase as MA penetration rises 
will be slightly larger when measuring selection in proportional terms, as in equation (1). 



9 
 

and those who remained in TM (“TM stayers” or “stayers”). Because this method compares 
spending and risk scores while beneficiaries are enrolled in TM, it avoids biases from differences 
in utilization or diagnosis coding intensity between MA and TM. As noted above, this type of 
switcher-stayer comparison underlies MedPAC’s national estimates of favorable selection into 
MA (MedPAC 2025), and it has been widely used in prior research on selection into MA (e.g., 
Brown et al. 2014; Newhouse et al. 2015; Jacobson et al. 2019; Lieberman et al. 2023).  

Our implementation of the “switcher-stayer” methodology largely follows that described in 
MedPAC (2024). To create selection measures for year 𝑡, we begin by identifying beneficiaries 
who were enrolled in TM with both Part A and Part B coverage for all of years 𝑡 − 1 and 𝑡 − 2; 
requiring enrollment in year 𝑡 − 2 ensures that we observe the diagnosis information needed to 
compute enrollee risk scores for year 𝑡 − 1. We exclude beneficiaries who have claims during 
these years for which Medicare was the secondary payer, as well as beneficiaries enrolled in 
Medicare due to end-stage renal disease at any point during this period.  

We next categorize enrollees as switchers if they enroll in MA at any time in year 𝑡 and as stayers 
otherwise. We then calculate spending and risk scores in year 𝑡 − 1 for each beneficiary and 
calculate mean spending and risk scores for each county of residence 𝑖, year 𝑡, and status 𝑗 ∈

{TM stayer, TM-to-MA switcher}. We include all Part A and Part B spending except hospice 
spending since CMS pays for hospice care directly for MA enrollees. We calculate risk scores 
using the software and diagnosis filtering logic that CMS published for that year. 

In what follows, we let 𝑐௜௧
௝  and 𝑟௜௧

௝ denote the resulting measures of mean claims spending and risk 

scores, respectively, and we let 𝑛௜௧
௝

= 𝑐௜௧
௝

∕ 𝑟௜௧
௝ denote the corresponding measure of risk-adjusted 

spending. Differences between TM stayers and TM-to-MA switchers are a strong indicator of 

selection. Concretely, if 𝑐௜௧
TM stayer exceeds 𝑐௜௧

TM-to-MA switcher, that is indicative of favorable gross 

selection into MA, while if 𝑛௜௧
TM stayer exceeds 𝑛௜௧

TM-to-MA switcher, that is indicative of favorable 
selection into MA after accounting for risk adjustment. We emphasize that TM-to-MA switchers 
may not be representative of MA enrollees overall, so while stayer-switcher differences are a good 
guide to the direction of selection, they are an imperfect guide to the magnitude of the differences 
between the average TM enrollee and the average MA enrollee. We discuss the implications of 
this fact for our current research effort in much greater detail below. 

Unlike MedPAC, we are interested in the county-year estimates themselves, not in aggregating 
them to obtain national estimates of favorable selection. Nevertheless, when we seek to match 
MedPAC’s national estimates, we can nearly do so, as shown in Figure B-1 in Appendix B.4 

Other analytic details 
The other main input into our analyses is county-year estimates of MA penetration, which we 
denote by 𝑄௜௧ for county 𝑖 and year 𝑡. The denominator for this ratio consists of the total number 
of enrollment months in which the beneficiary had both Part A and B coverage and did not have 
end-stage renal disease in the relevant county and year, while the numerator is the subset of those 
months in which the beneficiary was enrolled in MA. Where we weight analyses by Medicare 
enrollment, we use the denominator of this ratio. All analyses use the sample of 1,730 counties 

 
4 The small differences between our estimates and MedPAC’s likely at least partly reflect rounding. 
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with at least 3,500 enrollee-months in the switcher-stayer universe in each year, which ensures 
that each county-level estimate meets disclosure requirements in all years.5 

How do stayer-switcher differences vary in the cross-section? 
We begin by examining how stayer-switcher differences vary across counties with different levels 
of MA penetration at a given point in time. As we discuss below, interpreting this cross-sectional 
relationship as reflecting the causal effect of MA penetration on favorable selection into MA 
requires strong—and likely implausible—assumptions. But we view these analyses as a useful 
starting point, particularly as a point of comparison to prior work. 

Methods 
For these analyses, we regress stayer-switcher (log) differences on MA penetration: 

ln൫𝑧௜௧
TM stayer

൯ − ln൫𝑧௜௧
TM-to-MA switcher൯ = 𝛼 + 𝛽𝑄௜௧ + 𝜖௜௧ , (3) 

where 𝑧௜௧
௝  is the enrollee characteristic of interest (claims, risk scores, or risk-adjusted claims 

spending). We estimate this equation by ordinary least squares, weight each county observation 
by total Part A and B enrollment, and calculate heteroskedasticity robust standard errors. We 
estimate the regression separately for each year 2008-2022. 

To provide a less parametric depiction of the relationship between stayer-switcher differences 
and MA penetration, we also categorize counties into ventiles based on MA penetration, defining 
each ventile so that it accounts for an equal share of Medicare enrollment. We then calculate the 
weighted mean of the relevant outcome variable and MA penetration within each ventile. 

Results 
Figure 2 depicts the results for the 2022 plan year. Panel A shows that the difference between the 
claims spending of TM stayers and TM-to-MA switchers is larger in counties with higher MA 

 
5 Counties that meet this criterion account for approximately 94% of beneficiaries in all years. 
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penetration. Specifically, a 10 percentage point increase in county MA penetration correlates with 
a 1.57 log point increase in the stayer-switcher difference in claims spending. However, Panel B 
shows that counties with higher MA penetration also have larger stayer-switcher differences in 
risk scores. Consequently, as depicted in Panel C, stayer-switcher differences in risk-adjusted 
spending vary little with MA penetration. To be precise, a 10 percentage point increase in MA 
penetration correlates with a (statistically insignificant) 0.25 log point increase in the difference 
in risk-adjusted spending between TM stayers and TM-to-MA switchers.  

To illustrate how this pattern has evolved over time, Figure 3 plots the slope coefficients from 
estimating equation (3) separately for each year 2008-2022. The results show that the 
relationship between stayer-switcher differences and MA penetration has been relatively steady 
over this period. Counties with higher MA penetration have consistently had larger stayer-switcher 
differences in claims spending, but also commensurately larger differences in risk scores, so 
stayer-switcher differences in risk-adjusted spending have varied little with MA penetration. This 
accords with prior research that has found little relationship between MA penetration and stayer-
switcher differences in risk-adjusted spending (Lieberman et al. 2023; MedPAC 2025).  

Limitations of cross-sectional stayer-switcher comparisons 
For at least two reasons, the cross-sectional relationships estimated above may not reveal the 
causal effect of MA penetration on the degree of favorable selection into MA. First, there is the 
usual concern about confounding: counties with higher MA penetration may differ from counties 
with lower penetration in other ways that affect the relative risk of MA and TM enrollees. One 
especially plausible concern is that insurers may compete harder for enrollees (e.g., by offering 
better benefits or investing more in marketing) in counties where favorable selection is more 
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intense, thereby raising MA penetration in these counties.6 This would bias the slope coefficients 
estimated above upward relative to the underlying causal effect of interest. 

Second, stayer-switcher differences do not precisely align with the measure of favorable selection 
of ultimate interest: the difference in risk between the average TM enrollee and the average MA 
enrollee. This is because enrollees newly switching to MA may systematically differ from the 
average MA enrollee.7 In the language of the model presented earlier in the paper, it is plausible 
that MA switchers may more closely resemble the marginal MA enrollee than the average MA 
enrollee.8 As depicted in Figure 1, increases in MA penetration raise the cost of the marginal MA 
enrollee by more than the cost of the average MA enrollee. This suggests that, when MA 
penetration rises, stayer-switcher cost differences may increase by less (or decrease by more) 
than cost differences between the average MA and TM enrollees. This would bias the slope 
coefficients estimated above downward relative to the underlying causal effect of interest. 

How do stayer-switcher differences change within counties over time? 
To assess the first of the two concerns identified above, we now examine how within-county 
changes in stayer-switcher differences correlate with changes in MA penetration. These analyses 
may be viewed as difference-in-differences analyses with a continuous treatment variable. As in 
other contexts, the virtue of this approach is that focusing on within-county changes can help 
address confounding from time-invariant differences in county characteristics. 

Methods 
For these analyses, we run a set of “long-difference” regressions: 

Δ௧బ

௧భ ൣln൫𝑧௜௧
TM stayer

൯ − ln൫𝑧௜௧
TM-to-MA switcher൯൧ = 𝛼 + 𝛽Δ௧బ

௧భ 𝑄௜௧ + 𝜖௜, (4) 

where Δ௧బ

௧భ  denotes the within-county change in the relevant variable from year 𝑡଴ to year 𝑡ଵ and 𝑧௜௧
௝  

once again denotes the enrollee characteristic of interest (claims, risk scores, or risk-adjusted 
claims spending). We estimate this equation by ordinary least squares, weight each county 
observation by total Part A and B enrollment in year 𝑡ଵ, and calculate heteroskedasticity robust 
standard errors. In our main analyses, we focus on changes from 2008 through 2022 (that is, we 
take 𝑡଴ = 2008 and 𝑡ଵ = 2022), which is the full period for which we have data. We do so because 
we are most interested in long-run changes and because this maximizes the precision of our 
estimates; however, we consider alternative time periods in sensitivity analyses. 

The coefficient of interest from this regression is 𝛽, which we seek to interpret as the average 
causal effect of a marginal change in MA penetration on stayer-switcher differences. Following 

 
6 A caveat is that some recent evidence has suggested that, at the margin, increases in the generosity of 
MA payments do not currently increase MA enrollment (Schwartz et al. 2023; Murray et al. 2024). If this is 
true, it would suggest that greater favorable selection is unlikely to boost enrollment at the margin. 
7 The point that TM-to-MA switchers may not be representative of MA enrollees overall is well understood. 
Indeed, MedPAC (2024) invests substantial effort in accounting for this fact when constructing its national 
estimates of favorable selection. To our knowledge, however, the implications of this fact for the 
relationship between MA penetration and stayer-switcher differences have not been noted previously. 
8 By contrast, TM stayers are likely fairly representative of TM enrollees overall since new beneficiaries and 
beneficiaries who were enrolled in MA in the prior year are a small fraction of TM enrollment (Xu et al. 2023). 
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Callaway, Goodman-Bacon, and Sant’Anna (2024), interpreting 𝛽 in this way requires making a 
few key assumptions.9 The first is that the expected change in the outcome for a given change in 
MA penetration takes the linear functional form laid out in equation (4). The second is a version 
of the usual parallel trends assumption: namely, the expected change in the outcome that a 
county would have experienced if MA penetration had remained the same equals the expected 
change in the outcome for counties that actually experienced no change in MA penetration. The 
third is that the average causal effect of MA penetration on the outcome of interest is the same 
across counties experiencing different-sized changes in MA penetration. 

Consistent with discussion in Callaway, Goodman-Bacon, and Sant’Anna, we need only the first 
two assumptions to give some causal interpretation to 𝛽. In particular, under these two 
assumptions, the amount 𝛽Δ௧బ

௧భ 𝑄௜௧ is the average effect of a change in MA penetration of Δ௧బ

௧భ 𝑄௜௧ 
for counties experiencing an increase of that size. However, the third assumption is required to 
interpret 𝛽 as the causal effect of a marginal change in MA penetration. Without the third 
assumption, 𝛽 may reflect both the effect of a marginal change in MA penetration and differences 
in the effect of a given change across counties with different changes in MA penetration. 

We note that the case for these assumptions is far from ironclad. Notably, changes in MA 
penetration could be correlated with other changes in county characteristics that affect stayer-
switcher differences, which could lead to a violation of the parallel trends assumption. That may 
be of particular concern since we are relying on changes in MA penetration that arose 
endogenously rather than due to a policy change. Indeed, to the extent that county characteristics 
evolve over time, the same mechanisms that have the potential to confound the cross-sectional 
relationship could confound these longitudinal relationships as well.  

While this approach has limitations, it may nevertheless be the best available. Some past work 
has used instrumental variables strategies to study the effects of changes in MA penetration on 
various outcomes of interest (e.g., Baicker et al. 2013; Cabral et al. 2018), with MA payment rates 
typically serving as the instrument. However, recent work suggests that marginal changes in MA 
payment rates currently have relatively small effects on MA penetration (Schwartz et al. 2023; 
Murray et al. 2024), which suggests that this strategy is not currently viable. Absent a viable 
instrumental variables strategy, we believe a difference-in-differences strategy is worth pursuing. 

As with our cross-sectional analyses, we supplement our regression analyses with analyses that 
provide a less parametric depiction of the relationship between changes in MA penetration and 
changes in stayer-switcher differences. Specifically, we categorize counties into ventiles based 
on their change in MA penetration over the period of interest, defining each ventile so that it 
accounts for an equal share of Medicare enrollment. We then calculate the weighted mean of the 
change in the relevant outcome variable and the change in MA penetration for each ventile. 

 
9 Callaway, Goodman-Bacon, and Sant’Anna consider a setting where all units are “untreated” in the base 
period, which is not the case here. But this framework can be translated into their framework by simply 
defining each unit’s treatment dose relative to its treatment dose in the base period. See also de 
Chaisemartin et al. (2022) and de Chaisemartin, D'Haultfœuille, and Vazquez-Bare (2024). 
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Results 
Figure 4 reports the results. Panel A shows that counties experiencing larger increases in MA 
penetration experience larger declines in stayer-switcher claims spending differences, while 
Panel B shows that changes in stayer-switcher risk score differences are essentially unrelated to 
changes in MA penetration. Consistent with this, changes in MA penetration are associated with 
declines in stayer-switcher differences in risk-adjusted spending, as shown in Panel C. Concretely, 
a 10 percentage point increase in the MA penetration rate translates into a 1.52 log point decrease 
in the stayer-switcher difference in risk-adjusted spending. The difference between this 
longitudinal estimate and the near-zero cross-sectional estimate obtained above lends some 
credence to the view that the cross-sectional relationship is confounded to some degree. Notably, 
the implied bias is positive, which is consistent with the hypothesis laid out above that MA plans 
compete harder for enrollees in counties with a greater propensity toward favorable selection. 

Table 1 presents the full set of regression coefficients for the base version of equation (4) when 
the outcome is risk-adjusted spending, as well as estimates for two alternative specifications. 
Specifically, column (2) adds a control for the MA penetration rate in the base period, which 
amounts to modifying the parallel trends assumption to hold only conditional on this baseline 
penetration rate; the results are virtually unchanged. Column (3) additionally allows the effect of 
changes in MA penetration to vary based on the baseline penetration rate. Here, the point 
estimates suggest that an increase in MA penetration reduces stayer-switcher differences by 
more in areas that start with higher MA penetration, but this interaction is imprecisely estimated, 
and the overall average marginal effect of a change in MA penetration is little changed, as shown 
in Panel B. On balance, we conclude that there is little clear evidence that equation (4) is mis-
specified, although we have little power to distinguish equation (4) from plausible alternatives. 
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Figure 5 examines how our results would differ if we estimated equation (4) using data for shorter 
time intervals rather than using data for the full 2008-2022 period, focusing on the versions where 
the outcome variable is risk-adjusted spending. The figure displays the estimated slope 

Table 1: Alternative Longitudinal Regression Specifications 
 (1) (2) (3) 

A. Regression coefficients 
   

Change in MA penetration -0.152 -0.154 -0.049 
 (0.048) (0.058) (0.101) 

Base period MA penetration 
 

-0.003 0.105 
  (0.049) (0.102) 

Change in MA penetration x base period MA penetration 
  

-0.519 
   (0.408) 

Intercept 0.072 0.074 0.049 
 (0.015) (0.024) (0.032) 

B. Average marginal effects 
   

Change in MA penetration -0.152 -0.154 -0.172 
 (0.048) (0.058) (0.059) 

N 1730 1730 1730 
R2 0.011 0.011 0.014 

Note: Column (1) reports the results from estimating equation (4) according to the methods described in the text where 
the outcome variable reflects risk-adjusted spending. Column (2) reports the results from estimating a model 
augmented with a control for base period MA penetration, and column (3) additionally includes an interaction between 
the change in MA penetration and base period MA penetration. Average marginal effects are weighted by county Part 
A and B enrollment. Standard errors are in parentheses. 
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coefficient (and the associated 95% confidence interval) corresponding to each possible time 
interval, categorized by the length of the interval and the final year of the interval.  

Estimates using short time intervals (e.g., 1-4 years) are quite imprecise and largely 
uninformative. Estimates using longer time intervals vary from the full-period estimate to some 
degree, as would be expected, but they provide little evidence that the relationship between 
changes in MA penetration and changes in stayer-switcher differences has fundamentally 
changed over time in ways that would cast doubt on the relevance of the full-period estimate.  

Structural analysis 
The preceding analysis helps address the concern that the cross-sectional relationship between 
MA penetration and stayer-switcher differences is confounded, but it does not address the 
concern that TM-to-MA switchers are unrepresentative of MA enrollees overall. As discussed 
above, this latter concern may make the effect of MA penetration on stayer-switcher differences 
an imperfect guide to the effect of ultimate interest: the effect of MA penetration on the difference 
between the average TM enrollee and the average MA enrollee. 

We proceed by considering a range of assumptions about the nature of TM-to-MA switchers, and, 
thus, what observed stayer-switcher differences represent. Under each such assumption, we can 
use our county-year data on MA penetration and stayer-switcher differences to estimate a version 
of the selection model that was presented at the beginning of this paper. We can then use the 
estimated models to simulate how favorable selection would change under various 
counterfactuals for MA penetration, allowing us to assess the range of relationships between MA 
penetration and favorable selection that are potentially compatible with the data. 

The assumptions that we consider fall between two poles. The first is that switchers are 
representative of enrollees on the margin between TM and MA, in which case stayer-switcher 
differences correspond to the difference between the average TM enrollee and this marginal 
enrollee. The second is that switchers are representative of MA enrollees overall, in which case 
stayer-switcher differences correspond to the difference between the average TM enrollee and 
the average MA enrollee. We also consider a range of intermediate assumptions. 

Empirical model 
Our empirical model is a version of the theoretical model presented at the beginning of the paper. 
Concretely, we assume that when county 𝑖 and year 𝑡 has MA penetration rate 𝑄, the enrollee on 
the margin between TM and MA has expected claims cost when enrolled in TM of 

𝑐௜௧(𝑄) = 𝛼௜௧
௖ ൫1 + 𝛽௜௧

௖ 𝑄ఊ೎
൯, 

and expected risk score when enrolled in TM 

𝑟௜௧(𝑄) = 𝛼௜௧
௥ ൫1 + 𝛽௜௧

௥ 𝑄ఊೝ
൯. 

As above, letting 𝑐௜௧(𝑄) reflect a beneficiary’s cost when enrolled in TM makes 𝑐௜௧(𝑄) a pure 
measure of claims risk, while letting 𝑟௜௧(𝑄) reflect risk scores when enrolled in TM allows us to 
abstract from plans’ diagnosis coding efforts and focus narrowly on selection. 
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For each characteristic 𝑧 ∈ {𝑐, 𝑟}, the 𝛼௜௧
௭  parameters control the overall level of claims costs and 

risk scores, while the 𝛽௜௧
௭  parameters control how much the characteristics of the marginal 

enrollee vary with MA penetration and, thus, the overall intensity of selection in county 𝑖 and year 
𝑡. The 𝛾௭ parameters control the curvature of the relationship between MA penetration and the 
characteristics of the marginal enrollee. Per our theoretical analysis, the 𝛾௭ parameters thus 
determine whether selection tends to become more or less intense as MA penetration rises. 

Given this structure, the expected mean characteristics of MA and TM enrollees can be obtained 
via formulas analogous to those in equation (1). For each characteristic 𝑧 ∈ {𝑐, 𝑟}, we obtain: 

𝑧௜௧
்ெ(𝑄) = 𝛼௜௧

௭ ቈ1 +
𝛽௜௧

௭

𝛾௭ + 1

1 − 𝑄ఊ೥ାଵ

1 − 𝑄
቉       and      𝑧௜௧

ெ஺(𝑄) = 𝛼௜௧
௭ ቈ1 +

𝛽௜௧
௭

𝛾௭ + 1
𝑄ఊ೥

቉. 

We next specify how the claims spending and risk scores observed for TM stayers and MA 
switchers correspond to these underlying structural objects. Our empirical model does not 
capture the underlying beneficiary-level dynamics in coverage choices, so this aspect of our 
modeling approach is necessarily somewhat more ad hoc. 

Because TM stayers account for the overwhelming majority of all TM enrollees in any given year 
(Xu et al. 2023), TM stayers are likely to be approximately representative of TM enrollees as a 
whole. Consistent with this, we assume that the amounts observed for TM stayers equal the 
structural mean value for TM enrollees plus a white noise error term:    

ln 𝑧௜௧
TM stayer

= ln 𝑧௜௧
்ெ(𝑄௜௧) + 𝜖௜௧

௭, TM stayer 
, 

where 𝑄௜௧ is the observed MA penetration rate in county 𝑖 and year 𝑡, and 𝜖௜௧
௭, TM stayer  is the error 

term. Here, the error term 𝜖௜௧
௭, TM stayer is understood to capture factors outside the model, including 

the fact that the real-world population of TM stayers is finite, which may cause the observed mean 
values for TM stayers to deviate from their underlying expected values. 

Specifying the corresponding relationship for TM-to-MA switchers is more complex because, as 
discussed above, it is unclear how the population of switchers corresponds to the population of 
MA enrollees as a whole. We therefore model the observed means for MA switchers as follows: 

ln 𝑧௜௧
MA switcher = 𝜃ln 𝑧௜௧(𝑄௜௧) + (1 − 𝜃)ln 𝑧௜௧

ெ஺(𝑄௜௧) + 𝜖௜௧
௭, MA switcher. 

Choosing 𝜃 = 1 corresponds to the case where switchers are assumed to be representative of 
enrollees on the margin between MA and TM, while choosing 𝜃 = 0 corresponds to the case 
where switchers are representative of MA enrollees overall. Intermediate values of 𝜃 correspond 
to scenarios where switchers fall somewhere in between these two extremes. As above, the error 
term is interpreted as capturing factors that have not been explicitly modeled. 

Combining the above implies that stayer-switcher log differences are then given by 

ln 𝑧௜௧
TM stayer

− ln 𝑧௜௧
MA switcher = ln 𝑧௜௧

்ெ(𝑄௜௧) −  𝜃ln 𝑧௜௧(𝑄௜௧) − (1 − 𝜃)ln 𝑧௜௧
ெ஺(𝑄௜௧) + 𝜖௜௧

௭,Diff, (5) 

where 𝜖௜௧
௭, Diff ≡ 𝜖௜௧

௭, TM stayer
− 𝜖௜௧

௭, TM switcher. We assume that the composite error 𝜖௜௧
௭, Diff is normally 

distributed with mean zero and with variance 𝜎଴,௭
ଶ + 𝐸௜௧

ିଵ𝜎ா,௭
ଶ , where 𝐸௜௧  is TM enrollment in county 
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𝑖 and year 𝑡. Allowing this variance to vary with TM enrollment is consistent with the view that 
part of what the error term captures is noise created by the fact that the TM population is finite. 

Identifying the model requires placing some structure on the 𝛽௜௧
௭  parameters. One appealing 

approach would be to assume a “two-way fixed effects” structure 𝛽௜௧
௭ = 𝜆௜

௭ + 𝜇௧
௭. This structure 

would allow for unrestricted time-invariant differences across counties and, as such, would 
address the confounding concerns that arose in our cross-sectional analyses and thereby 
motivated our difference-in-differences analyses. Indeed, our difference-in-differences analyses 
rely on very closely related identifying assumptions. However, because this approach gives rise 
to as many county effects (𝜆௜

௭) as there are counties, it suffers from an incidental parameters 
problem that has no easy solution in the context of this non-linear model (e.g., Lancaster 2000). 

We instead adopt a correlated random effects structure. Specifically, we assume that 

𝛽௜௧
௭ = 𝜇௧

௭ + 𝜆௭𝑄ത௜ + 𝜈௜
௭, (6) 

where 𝑄ത௜ is the mean MA penetration rate for county 𝑖 over time and 𝜈௜
௭ is a random effect 

distributed as 𝑁(0, 𝜏௭
ଶ). Importantly, this structure still allows for persistent differences across 

counties that may be related to a county’s level of MA penetration. As such, this structure at least 
partially addresses the confounding concerns with our cross-sectional analyses. Indeed, in the 
context of a linear panel data model, this structure would be identical to the two-way fixed effects 
approach (Mundlak 1978). Wooldridge (2019) provides a recent treatment of the use of correlated 
random effects to model unit-level heterogeneity in the context of a non-linear model. 

Estimation 
For a specified value of 𝜃, equations (5) and (6) constitute a fully specified parametric model for 
stayer-switcher log differences. Thus, we estimate this model by maximum likelihood, once for 
each outcome 𝑧 ∈ {𝑐, 𝑟} and each value 𝜃 ∈ {0,0.25,0.5,0.75,1.0}. We use the nlme R package, 
which implements the estimation algorithms described in Lindstrom and Bates (1990) and 
Pinheiro and Bates (1996). To facilitate convergence, we first fit a restricted version of each model 
with a fixed value of 𝛾௭ and then use the resulting estimates as starting values when estimating 
the full model. Consistent with our focus on “long differences” in the preceding section, we 
estimate the models using a sample that contains observations for 2008 and 2022.  

Before presenting the results, we briefly discuss what features of the data identify the key 
parameters. The time effects 𝜇௧

௭ that enter 𝛽௜௧
௭  are identified by the overall magnitude of stayer-

switcher differences in the two data years, while the coefficient 𝜆௭ on the mean level of MA 
penetration is identified by how stayer-switcher differences differ across counties with different 
levels of mean penetration; the variance of the random effect 𝑣௜

௭ is then identified by the degree 
of persistence across counties beyond that explained by the included variables.  

The features of the data that identify the 𝛾௭ parameters depend on the value of 𝜃. To illustrate 
this, Figure 6 depicts how the (expected) stayer-switcher log difference in claims spending varies 
with MA penetration for two values of 𝜃 and with 𝛽௜௧

௖  fixed at 0.4. Panel A depicts the case with 
𝜃 = 0, which corresponds to assuming that TM-MA-switchers are representative of MA enrollees 
overall. In this case, this relationship is upward sloping for high values of 𝛾௖ , downward sloping 
for low values, and roughly flat for intermediate values. Thus, in this scenario, the parameter 𝛾௖ is 
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identified by the slope of the relationship between greater MA penetration and the stayer-switcher 
difference (conditional on the other variables in the model).  

Panel B, on the other hand, depicts the case with 𝜃 = 1, which corresponds to assuming that TM-
MA-switchers are representative of MA enrollees on the margin between MA and TM. In this case, 
the relationship is always downward sloping for high enough values of MA penetration (since the 
average cost of a TM enrollee and the cost of the marginal enrollee coincide when MA penetration 
equals one), but the curvature of this relationship depends on 𝛾௖: it is convex for low values of 𝛾௖ , 
concave at higher values, and roughly linear at intermediate values. Thus, in this scenario, the 
parameter 𝛾௖ is identified by the curvature of the relationship between greater MA penetration 
and stayer-switcher differences (again, conditional on the other variables in the model).  

Results 
Table 2 reports the resulting parameter estimates for the two polar assumptions about the nature 
of TM-to-MA switchers (that is, for 𝜃 ∈ {0,1}). There are two immediate takeaways. The first is 
that there are large, persistent differences across counties in their propensity to experience 
selection into MA. These differences are correlated with counties’ observed levels of MA 
penetration (as shown by the fact that the 𝜆௭ coefficients are generally sizeable and statistically 
significant), but much of this variation is idiosyncratic (as shown by the fact that the random 
effect standard deviations 𝜏௭ are also sizeable). The existence of persistent cross-county 
differences strengthens the rationale for the panel data approaches we use in this paper. 

The second is that different assumptions about the nature of TM-to-MA switchers lead to 
meaningfully different estimates. In particular, when switchers are assumed to be representative 
of MA enrollees overall, the estimated curvature parameters 𝛾௭ are less than 1.0 for both claims 
costs and risk scores, implying that the relationship between MA penetration and each of these 
features of the marginal enrollee is (mildly) concave. On the other hand, when switchers are 
assumed to be representative of the marginal MA enrollees, the estimated curvature parameters 
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are greater than 1.0 for both claims costs and risk scores, implying that the relationship between 
MA penetration and these features of the marginal enrollee is moderately convex. 

We now use the fitted models to estimate how a marginal increase in MA penetration would affect 
selection. The selection measures of interest are the log differences Δ௜௧

௭ (𝑄) ≡  ln 𝑧௜௧
TM(𝑄) −

ln 𝑧௜௧
MA(𝑄) for each 𝑧 ∈ {𝑐, 𝑟, 𝑛}, where 𝑧 = 𝑛 denotes the risk-adjusted cost 𝑛௜௧

௝ (𝑄) ≡ 𝑐௜௧
௝

(𝑄) ∕ 𝑟௜௧
௝
(𝑄) 

for 𝑗 ∈ {TM,MA}. We examine the derivatives Δ௜௧
௭ ′(𝑄௜௧), which provide the marginal effect of an 

increase in MA penetration. We estimate these derivatives for each county 𝑖 and for 𝑡 = 2022 

Table 2: Estimates of Structural Model 
 (1) (2) (3) (4) 

Switcher assumption 
𝜃 = 0 

(switchers are average 
MA enrollees) 

𝜃 = 1 
(switchers are marginal 

enrollees) 

Outcome variable Claims  
cost 

Risk 
scores 

Claims  
costs 

Risk 
scores 

Parameters entering 𝜷𝑰𝒕
𝒛  

    

Year effect for 2008 (𝜇ଶ଴଴଼
௭ ) 0.306 0.090 0.271 0.079 

 (0.035) (0.012) (0.050) (0.017) 

Year effect for 2022 (𝜇ଶ଴ଶଶ
௭ ) 0.265 -0.037 0.334 -0.072 

 (0.025) (0.011) (0.037) (0.016) 

Effect of mean MA penetration (𝜆௭) 0.170 0.197 0.612 0.358 
 (0.104) (0.039) (0.156) (0.057) 

Random effect std. dev. (𝜏௭) 0.168 0.052 0.277 0.095 
 (0.013) (0.007) (0.016) (0.007) 

Curvature parameter (𝜸𝒛) 0.926 0.788 1.409 1.138 
 (0.160) (0.160) (0.126) (0.138) 

Residual error parameters 
    

Residual error intercept (𝜎଴,௭) 0.078 0.048 0.084 0.047 
 (0.005) (0.003) (0.005) (0.002) 

Residual error slope (𝜎ா,௭) 46.013 18.655 43.646 17.755 
 (1.091) (0.596) (1.129) (0.602) 
N 3,460 3,460 3,460 3,460 

Note: The table reports the results from estimating the model specified in equations (5) and (6) by maximum likelihood 
under two distinct assumptions about the characteristics of TM-to-MA switchers and for two different outcome 
variables: claims spending and risk scores. Standard errors are in parentheses. See text for additional details. 
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using the estimated parameters.10 We then average the estimated derivatives across counties, 
weighting each county by the number of beneficiaries with Part A and Part B in 2022.  

To calculate standard errors for these estimated marginal effects, we draw 1,000 replicate 
parameter vectors from a normal distribution with mean equal to our point estimates and 
covariance equal to the corresponding estimated covariance matrix of our estimator. We then 
recompute the average marginal effect for each replicate parameter vector and compute the 
standard deviation of the replicate average marginal effects.11 

Panel A of Figure 7 reports the resulting estimates. Across all assumptions about the nature of 
TM-to-MA switchers (that is, across all values of 𝜃), the estimated effects on selection are small. 
Applying the marginal effect for the 𝜃 = 0 scenario implies that a 10 percentage point increase in 
MA penetration would, on average, reduce the TM-MA difference in risk-adjusted cost by 0.3 log 
points, while the 𝜃 = 1 scenario implies an increase of 0.1 log points. 

Our results also show that, consistent with the motivation for our structural modeling exercise, 
the effect of MA penetration on average TM-MA differences can differ markedly from the effect 
on observed stayer-switcher differences. In particular, Panel B of Figure 7 repeats the preceding 
exercise, except that the object of interest is now the observed stayer-switcher log difference 
Δ෩௜௧

௭ (𝑄) ≡  ln 𝑧௜௧
TM(𝑄) −  𝜃ln 𝑧௜௧(𝑄) − (1 − 𝜃)ln 𝑧௜௧

ெ஺(𝑄), not the average TM-MA log difference 
Δ௜௧

௭ (𝑄). For 𝜃 = 1, where TM-to-MA switchers are assumed to reflect the enrollee on the margin 
between MA and TM, we find that a 10 percentage point increase in MA penetration results in a 
2.1 log point reduction in stayer-switcher differences in risk-adjusted spending (broadly similar to 
the difference-in-differences estimates presented in the last section), even though the same 
parameters imply little effect on the difference between the average TM and MA enrollees. 

We now examine how larger changes in MA penetration would affect selection, focusing on 
effects on differences in risk-adjusted costs. To accommodate cross-county variation in baseline 
MA penetration, we consider scenarios where TM’s market share falls by a uniform percentage in 
all counties. Formally, we estimate Δ௜௧

௡ (𝑄௜௧ + 𝜌[1 − 𝑄௜௧]) − Δ௜௧
௡ (𝑄௜௧) for each county 𝑖, for 𝑡 = 2022, 

and for various 𝜌 ∈ [0,1]. As above, we then average these estimates across all counties, 
weighting each county’s estimate by the number of beneficiaries with Part A and Part B in 2022. 
We obtain standard errors using the same simulation procedure described above. 

 
10 The functions 𝑧௜௧

TM(𝑄) and ln 𝑧௜௧
MA(𝑄) each depend on the realization of the random effect 𝜈௜

௭. Because we 
do not observe the random effects, we draw a synthetic random effect for each county based on the 
estimated random effect distribution. Because the number of counties is large, this should give virtually the 
same results as using the actual random effects when averaging across counties as we do here (at least if 
the model is correctly specified). Consistent with this, the estimated average marginal effects are 
insensitive to the specific random effect draws (or to setting all of the random effects to zero). 
11 Our method for obtaining standard errors has two limitations. First, the nlme package does not estimate 
the covariance between the estimators of the random effect standard deviation (𝜏௭) and the other main 
parameters ({𝜇௧

௭}, 𝜆௭ , and 𝛾௭). Thus, when drawing replicate parameter vectors, we assume that these 
covariances are zero. Since the distribution of the random effects has very little effect on the average 
estimated derivatives, this assumption is likely innocuous. Second, because we estimate the models for 
claims spending and risk scores separately, we lack a joint covariance matrix that captures the correlations 
between the estimators for the two models; we thus assume that they are zero. The results reported in 
Figures 2 and 4 suggest that accounting for these correlations would likely reduce our standard errors.  
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Figure 8 reports the results for the full range of changes in TM market share we consider, while 
Figure 9 reports selected point estimates and confidence intervals.12 Across all scenarios, the 
predicted effects on selection are modest. In the scenario with 𝜃 = 1, selection changes little as 
TM’s market share shrinks. In the other scenarios, favorable selection declines as TM market 
share shrinks, but only modestly so. For example, in the scenario with the largest effect (𝜃 = 0.25), 
a 50% decline in TM market share produces a 0.6 log point decline in the TM-MA difference in 
risk-adjusted cost. These estimates are relatively precise; for all values of 𝜃, our 95% confidence 
intervals for the effect of a 50% decline in TM market share exclude increases in the TM-MA 
difference in risk-adjusted costs larger than 0.9 log points and declines larger than 1.3 log points. 

 
12 The estimates shown in Figure ES-2 are identical to those shown in Figure 8 except that they have been 
transformed to percentage form; that is, if 𝑥 denotes the estimate in Figure 8, then Figure ES-2 shows 
exp(𝑥) − 1. Strictly speaking, transforming the average change in the TM-MA log difference (what is shown 
in Figure 8) in this way does not produce the average change in the TM-MA ratio (what is shown in Figure 
ES-2), but they will be virtually identical for the small differences observed here. The upper and lower bound 
scenarios in Figure ES-2 correspond to 𝜃 = 1 and 𝜃 = 0.25, respectively. The 𝜃 = 0.25 scenario results in 
the most negative estimates, except when considering very small changes in market share. 
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Discussion 
It is theoretically ambiguous how changes in MA penetration affect the degree of favorable 
selection into MA because rising MA penetration is likely to increase the average cost of both MA 
and TM enrollees, leaving the net effect uncertain. In this paper, we aim to resolve this uncertainty 
by estimating a structural model of the relationship between MA penetration and selection using 
data on stayer-switcher differences and MA penetration by county and year and considering a 
range of assumptions about the characteristics of TM-to-MA switchers. We use the model to 
simulate how increases in MA penetration would affect the degree of favorable selection into MA, 
finding that even large changes in MA penetration are likely to have small net effects on selection. 
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Our approach avoids some of the limitations of prior work that has examined the cross-sectional 
relationship between MA penetration and stayer-switcher differences (Lieberman et al. 2023; 
MedPAC 2025). Notably, we are able to explicitly account for the fact that TM-to-MA switchers 
may not be perfectly representative of MA enrollees overall. Additionally, because we use data for 
multiple years, we can control for persistent differences across counties that may confound the 
cross-sectional relationship between MA penetration and stayer-switcher differences.  

Our approach does, however, have some limitations of its own. First, our estimates could still be 
confounded if changes in MA penetration are correlated with changes in county characteristics 
that affect favorable selection. Second, our structural model introduces strong functional form 
assumptions. If those assumptions are incorrect, it could distort our estimates and findings. 

Nevertheless, our view is that the best interpretation of the available evidence is that further 
increases in MA penetration would have small effects on the degree of favorable selection into 
MA. If this view is correct, then it has a couple of notable implications. First, it suggests that 
changes in selection (and their corresponding effects on the generosity of MA plan payments) 
are unlikely to meaningfully amplify or dampen underlying trends in MA penetration.13 In 
particular, it suggests that TM is currently at little risk of entering a selection-fueled “death spiral” 
in which increases in MA penetration exacerbate favorable selection, boost payments to MA 
plans, and thereby allow plans to lure still more beneficiaries away from TM. 

Second—and related—it appears unlikely that rising MA penetration will change selection patterns 
in ways that substantially reduce the accuracy of MA payments. This echoes earlier findings that 
rising MA penetration is unlikely, at least in the medium-run, to reduce TM enrollment to a level 
where the estimates of local TM costs used to set MA payment benchmarks become statistically 
unreliable (Crow et al. 2025). Thus, while the MA payment system’s current accuracy problems 
(e.g., MedPAC 2025) may justify substantial reforms—such as improvements to the program’s 
risk adjustment system (e.g., McWilliams 2025a; 2025b; MedPAC 2025) or more fundamental 
reforms like the adoption of a ”competitive bidding” regime that fully breaks the link between MA 
payment benchmarks and TM costs (e.g., MedPAC 2023; Ginsburg and Lieberman 2024)—
concerns that rising MA penetration will exacerbate these accuracy problems likely do not.  

 
13 The evidence noted earlier that marginal increases in MA payment rates currently appear to have little 
effect on MA enrollment provides an additional reason to believe that these types of feedback effects are 
likely to be small, as they imply that even if rising MA penetration did change selection patterns and, in turn, 
plan payments, that would be unlikely to spur large follow-on changes in MA enrollment. 
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Appendix A: Additional model details 
This appendix establishes the relationship between the concavity of 𝑐(𝑞) and the effect of MA 
penetration on favorable selection. To that end, let Δ(𝑄) = 𝑐TM(𝑄) − 𝑐MA(𝑄) denote the amount 
of favorable selection. At any point 𝑄 where 𝑐 is continuous, Δ is differentiable and 

Δᇱ(𝑄) =
1

1 − 𝑄
[𝑐TM(𝑄) − 𝑐(𝑄)] −

1

𝑄
ൣ𝑐(𝑄) − 𝑐MA(𝑄)൧. (𝐵1) 

Suppose that there exists a linear function 𝑔(𝑞) with 𝑔(𝑄) = 𝑐(𝑄) and 𝑔(𝑞) ≤ 𝑐(𝑞) for all 𝑞 ∈ [0,1]. 
Letting 𝑚 denote the slope of that function, it must be the case that 

𝑐TM(𝑄) ≥ 𝑐(𝑄) + 𝑚
1 − 𝑄

2
   and    𝑐MA(𝑄) ≥ 𝑐(𝑄) − 𝑚

𝑄

2
. (𝐵2) 

Combining equations (B1) and (B2) yields Δᇱ(𝑄) ≥ 0. If 𝑔(𝑞) < 𝑐(𝑞) on a set of positive measure, 
then the inequalities in equation (B2) are strict and, correspondingly Δᇱ(𝑄) > 0.  

Similarly, if there exists a linear function 𝑔(𝑞) with 𝑔(𝑄) = 𝑐(𝑄) and 𝑔(𝑞) ≥ 𝑐(𝑞) for all 𝑞 ∈ [0,1], 
then Δᇱ(𝑄) ≤ 0. If 𝑐(𝑞) < 𝑔(𝑞) on a set of positive measure, then this inequality is strict. 

An immediate corollary is that Δ is (strictly) increasing if the function 𝑐 is (strictly) convex, (strictly) 
decreasing if the function 𝑐 is (strictly) concave, and constant if 𝑐 is linear. 

  



29 
 

Appendix B: Supplemental figure 

 


