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Abstract

Climate change is already increasing temperatures and raising the frequency

of natural disasters in the United States. In this paper, we examine several

major vectors through which climate change affects US households, including cost

increases associated with home insurance claims and increased cooling, as well

as sources of increased mortality. Although we consider only a subset of climate

costs over recent decades, we find an aggregate annual cost averaging between

$220 and $570 per household; in 10 percent of counties, costs exceed $880 per

household. Costs vary significantly by geography, with the largest costs occurring

in some western regions of the United States, the Gulf Coast, and Florida. Climate

costs also typically disproportionately burden lower-income households. Our work

suggests the importance of research that looks beyond rising temperatures to

extreme weather events; so far, natural disasters account for the bulk of the burden

of climate change in the United States.
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1 Introduction

Climate change is already having a large impact on the weather in the United States. As reported

in the Fifth National Climate Assessment, temperatures in the continental United States have

increased by 2.5°F since 1970, exceeding the global rise in temperatures of 1.7°F over the same period

(Marvel et al., 2023). Temperature changes and precipitation changes have been heterogeneous

across the country, with wetter weather generally east of the Rocky Mountains, and the sharpest

rise in summer temperatures in the coastal regions and the mountain west. There has also been a

dramatic rise in (inflation-adjusted) billion-dollar climate and weather disasters, with costs reaching

about $1,500 per capita in 2023 and 2024 (Smith, 2025). These disasters have been associated with

more than 2,500 deaths in the last five years alone.1

While households experience climate change in a multitude of ways, we only examine some

mechanisms in this paper; others are described qualitatively elsewhere (U.S. Department of the

Treasury, 2023; Hsiang et al., 2023).2 Informed by the literature, we examine areas where household

costs are likely to be large and where data allowed detailed analysis, focusing chiefly on two types of

impacts: effects on the household budget – for example, through energy bills and home insurance

– and effects on mortality arising from exposure to extreme weather and airborne particulates.

Although we neglect many possible types of impacts, even in our narrow accounting, we find sizable

costs to US households from recent climate change patterns, ranging from $220 to $570 each year.3

The breadth of this range is primarily explained by different assumptions regarding how to attribute

weather-related costs to climate change.4

Notably, our findings indicate that most of the US household costs from climate change (both

economic and noneconomic) are due to extreme weather events, rather than heat. To some extent,

this is unsurprising, since adaptation through air conditioning may limit the consequences of higher
1Federal Reserve surveys indicate that households are perceiving these disaster risks. In the most recent survey of

households in 2024, 21 percent of households indicate that they were financially affected by natural disasters; while
most were modestly affected, 8 percent of households were either moderately or substantially affected (Board of
Governors of the Federal Reserve System, 2025).

2These two overviews discuss the nature of many mechanisms through which climate change affects households;
they also discuss the possibility of disparate impacts and describe the results of prior studies that have attempted to
measure particular channels. We discuss the literature in the relevant sections below.

3We enumerate some of the most important omissions in Section 5.2.
4See Section 2.4 for more detail on these assumptions. For storms, our more-conservative estimate assumes that

only 6 percent of costs are due to climate change, whereas our less-conservative estimate assumes that about one-third
is climate-driven. For wildfire-related costs, our more (less) conservative estimates assume half (80 percent) of costs
are climate-driven. Changes in temperature are entirely attributed to climate change.
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temperatures in the United States, whereas the costs associated with unpredictable weather are

more difficult to avoid. In this respect, our analysis provides important lessons about areas for future

research. While existing research has focused on areas that allow compelling identification strategies,

areas where identification is more difficult remain fertile ground for future work, and climate change

research should continue to focus on impacts that extend beyond temperature to extreme weather

events. Also, even when aggregate costs are small, they imply important caution for the future,

since the forecast effects of climate change in the coming decades are much larger than what have

been experienced so far.

Further, the effects of climate change affect Americans in a highly heterogeneous fashion.5

Some regions of the country are more susceptible to climate risk, and some people – such as the

elderly, those with less health care access, or those with preexisting health conditions – are far more

susceptible to the health risks associated with climate change. Further, the impact of climate-change

related costs on household budgets is likely to be more burdensome for low-income families; climate

change may drive up the cost of necessities like energy, housing, and food that are a larger share of

their total incomes.6

This paper proceeds as follows. In Section 2, we document patterns in exposure to heat, climate-

related weather events, and wildfire smoke and discuss evidence on which changes are attributable

to climate change. Subsequent sections analyze the economic (Section 3) and mortality (Section 4)

vulnerabilities to these changes. We measure increases in insurance premiums in Section 3.1, changes

in the quantity of household energy people consume in Section 3.2 and 3.3, and changes in the prices

for energy in Section 3.4. The remainder of the section describes possible impacts on additional

categories, including government costs and food expenses. In Section 4, we document important

income-based variation in the rising mortality risks associated with extreme heat and increased

exposure to particulate matter from wildfires. Section 5 pulls the estimates together, discussing both

the costs of climate inaction and the costs of climate policy action, and Section 6 concludes.
5Effects outside the United States are also highly heterogeneous, but on average, people in poorer countries are

more exposed to the negative consequences from climate change (Office of the High Representative for the Least
Developed Countries, Landlocked Developing Countries and Small Island Developing States, 2024).

6U.S. Department of the Treasury (2023) notes that there are large overlaps between geographically exposed regions
of the country and those areas with high levels of financially vulnerable people, suggesting the potential for widely
disparate harms.
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2 Heat, wildfire smoke and extreme-weather exposure

We begin by describing geographic patterns in exposure to heat, extreme weather, and wildfire

smoke as well as changes in these variables over the last 30 years. We also discuss evidence on the

extent to which changes may be due to climate change.7

2.1 Heat

We summarize heat exposure with annual cooling degree days, which measure the number of

days and the extent to which temperatures are above 65°F. Specifically, annual cooling degree days

(CDDs) are defined as:

CDD =
365X

i=1

max(Tavg,i � Tbase, 0),

where Tavg,i is the average temperature in the country on day i, and Tbase is the baseline temperature

of 65°F.

For comparison, we will also occasionally report annual heating degree days (HDD), defined as:

HDD =
365X

i=1

max(Tbase � Tavg,i, 0),

We describe the current weather patterns as well as changes in average weather patterns

experienced by U.S. households between the 1981 to 1990 baseline period and the most recent period

of 2020 to 2024.8 Figure 1 shows the variation in the number of recent CDDs throughout the country,

ranging from zero in the mountainous and far northern counties to above 3000 in parts of Texas,

Florida, and Arizona. Figure 2 shows the changes in CDDs over the past three decades. Nearly all

counties have gotten warmer, and some by several hundred cooling degree days, equivalent to one

full degree warmer on most days.

Figure 3 shows the variation in average annual HDD, which is essentially the inverse of the CDD

map, although the maximum is more than two times higher than for CDDs. Changes in HDDs in

Figure 4 are primarily negative, reflecting the warming trends.
7Data are described in Appendix A and are summarized at the county level.
8In general, we use the most recent five years to summarize current exposures and a representative early period to

measure changes against.
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Figure 1: Average annual Cooling Degree Days (2020–2024)

Figure 2: Difference in average annual Cooling Degree Days (2020–2024 vs. 1981–1990)

The first two columns of Table 1 report correlation coefficients between socioeconomic and

demographic characteristics of the counties and the current CDDs, as well as the changes in CDDs.
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Figure 3: Average annual Heating Degree Days (2020–2024)

Figure 4: Difference in average annual Heating Degree Days (2020–2024 vs. 1981–1990)

The variables with the highest correlation (after the South indicator) are the share of the population

with at least a high-school diploma (negative), percent white (negative), poverty rate (positive),
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and unemployment (positive), suggesting that counties where people have higher socioeconomic

status are generally cooler and experienced less warming. We include the South indicator, defined to

include states in the southeastern portion of the country, as a point of reference. It suggests, for

example, that the high-school dummy explains more than two-thirds as much variation as geography.

Table 1: Correlations Between Socioeconomic and Demographic Characteristics and Climate Out-
comes

CDD �CDD Crop+Prop Dmg PC �Crop+Prop Dmg PC Smoke PM2.5 �Smoke PM2.5

2020-2024 20-24 vs 81-90 2004-2023 04-23 vs 60-79 2020-2024 20-24 vs 06-10

CDD 1.00⇤

�CDD 0.77⇤ 1.00⇤

Crop & Prop Dmg PC 0.22⇤ 0.21⇤ 1.00⇤

�Crop & Prop Dmg PC 0.16⇤ 0.11⇤ 0.88⇤ 1.00⇤

Smoke PM2.5 �0.08⇤ �0.10⇤ 0.09⇤ 0.04⇤ 1.00⇤

�Smoke PM2.5 �0.04⇤ �0.02 0.12⇤ 0.04⇤ 0.97⇤ 1.00⇤

log(Median income) 0.02 0.01 �0.21⇤ 0.01 �0.15⇤ �0.20⇤

MSA dummy 0.08⇤ 0.05⇤ �0.10⇤ �0.00 �0.07⇤ �0.10⇤

South dummy 0.59⇤ 0.36⇤ 0.08⇤ 0.07⇤ �0.25⇤ �0.21⇤

Population (5% wins) 0.04⇤ 0.06⇤ �0.11⇤ 0.03 �0.12⇤ �0.15⇤

% Male �0.00 0.10⇤ 0.05⇤ �0.02 0.04⇤ 0.05⇤

% White �0.39⇤ �0.22⇤ �0.03 �0.04⇤ 0.01 0.00
Poverty rate 0.33⇤ 0.19⇤ 0.05⇤ 0.03 �0.00 0.02
Unemployment rate 0.22⇤ 0.15⇤ �0.01 0.02 �0.05⇤ �0.06⇤

% High-school grad �0.49⇤ �0.41⇤ �0.05⇤ 0.00 0.09⇤ 0.06⇤

Gini index 0.24⇤ 0.14⇤ 0.03 0.04⇤ �0.02 �0.01
Democratic vote share �0.09⇤ �0.11⇤ �0.13⇤ �0.05⇤ �0.08⇤ �0.12⇤

Notes: * p < 0.05. Further details on the data may be found in Appendix A.2

Complicating the narrative on low socioeconomic status and heat, income is very slightly positively

correlated with both CDDs and changes in CDDs, and, in separate regressions that included state

fixed effects, MSA fixed effects, or both together, there is a positive relationship. The Gini coefficient

is positively correlated with both CDDs and changes in CDDs, suggesting that both the poor and

the rich live where it is warmer. Since the demographic variables are measured at the county level,

however, these results need to be interpreted with caution as they may not portray experiences of

individuals within the counties. For example, more granular analysis has pointed to an urban heat

island effect, and Hsu et al. (2021) show that non-Hispanic whites are exposed to lower temperatures

within cities.
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2.2 Extreme events

Extreme events are more difficult to summarize than weather patterns, as by their very nature,

they occur infrequently. To summarize across different types of weather events and over time, we

use damage estimates. Specifically, we rely on data from Arizona State University that capture

county-level damages from 13 types of climate-related hazards. The data are from the Storm Data

and Unusual Weather Phenomena reports produced by the National Centers for Environmental

Information, based on National Weather Service reporting collected from a variety of sources.

Figure 5 plots damages over time both as totals and per capita, where damages are represented

in 2023 dollars and per capita adjustments are based on contemporaneous county-level populations.

The figure highlights the high degree of year-to-year variation. For example, the years with the

highest total damages (2005, reflecting Hurricane Katrina, and 1992, reflecting Hurricane Andrew)

are about 4 times higher than the average, and there are several years with damages half or less

than the average. Comparing panels (a) and (c) shows that crop damages were about 30 percent as

large as property damages at the beginning of the sample period, but have fallen relatively and were

closer to 10 percent in the latest period. Crop damages occur in counties with fewer people, so on a

per capita basis, when measuring population at the local county level, they appear relatively larger.

In results presented below, we will also describe crop losses spread across the US population, since

damages may be passed through to crop prices, which are borne by all food consumers. The red

dashed lines in Figure 5 represent averages over the first twenty years of the data series and the last

twenty years. We use longer time periods to summarize these data given the large annual variation.

Table B4 breaks out the damages by type of natural disaster. In both total and per capita

damages, flooding and hurricanes have accounted for the most total property plus crop damages,

accounting for more than half of all disaster-related damages. Droughts are the largest threat to

crops.

Figure 6 shows areas that have experienced large changes in damages from extreme weather-

related events over time. Counties along the coast (particularly the Gulf Coast), in rural California,

and in some of the tornado-prone areas in the middle of the country, have seen particularly large

increases. Given the high level of noise in natural disasters, maps should be interpreted with
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(a) Average property damage (b) Average property damage per capita

(c) Average crop damage (d) Average crop damage per capita

(e) Average property and crop damage (f) Average property and crop damage per capita

Figure 5: Average county-level direct damage from climate-related hazards by year

8



caution.9 The middle two columns of Table 1 report correlation coefficients between socioeconomic

and demographic variables and current crop plus property damages and changes in crop plus property

damages. Income is negatively correlated with damages, perhaps reflecting the concentration of

damages in rural areas (the MSA dummy, Democratic vote share, and population are also negatively

correlated). None of the other socioeconomic or demographic variables show a correlation coefficient

above 0.10 in absolute value, suggesting that natural disasters are affecting a broad swath of the US

population.

Figure 6: Difference in Crop and Property Hazard Loss per Capita (2004-2023 vs. 1960–1979)

2.3 Wildfire smoke

We describe wildfires and the resulting smoke, as we will later estimate the mortality consequences

of particulate matter from wildfire. Figure 7 shows that most wildfire smoke exposure has been in

the West, and specifically the Pacific Northwest and California, although the impact of Canadian

wildfires on the northern states is also apparent. Figure 8 shows changes over a little more than

a decade, and shows increases almost as large as the current levels, suggesting that these levels of
9Also, for multi-county events, the ASU SHELDUS data allocate total damages uniformly between all affected

counties which may distort the per-capita metrics.
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wildfire particulate matter exposure are new.10

Figure 7: County-Level average annual ambient wildfire smoke PM2.5 (2020-2024)

Figure 8: Difference in the annual ambient wildfire smoke PM2.5 (2020–2024 vs. 2006-2010)
10The wildfire data begin in 2006, constraining our early period.
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The last two columns of Table 1 report correlation coefficients between socioeconomic and

demographic characteristics of the counties and particulate matter from wildfire smoke, as well as

the changes in that variable. Counties with higher median income experience less wildfire smoke

exposure, as do more urban counties, although neither correlation is particularly strong. Other

than the South dummy, none of the other correlation coefficients are above 0.15 in absolute value,

indicating that exposure has impacted all sorts of counties. Wildfire smoke is negatively correlated

with CDDs and changes in CDDs and positively correlated with crop and property damage.

2.4 Attribution to climate change

We take several approaches to assessing the extent to which observed changes in heat, extreme

weather and wildfire smoke may be due to climate change, relying when possible on modeling by

climate scientists.

To assess the degree to which changes in heat are due to climate change, we compare the actual

changes to simulated changes averaged across 23 different climate models, which are essentially

updated versions of the climate models used in Carleton et al. (2022). The climate models simulate

how the climate has changed due to historical emissions. Figure 9 plots our measured county-level

change in CDDs compared to the modeled change in temperature due to cumulative emissions from

the historical baseline average from 1981–1990 to the recent average from 2020–2024. We also include

a 45-degree line for comparison. The majority of the points fall below the 45-degree line, suggesting

that our measure of climate change is smaller than those implied by the climate models.11 Our

estimates below will focus on observed temperature changes and assume that recent changes are due

to climate change.

For extreme weather, climate models provide more limited guidance, so we opt to assess a “less

conservative” and “more conservative” degree to which climate change has contributed to extreme

weather damage. First, the red dashed lines in Figure 5 demonstrate that on both a total and

per capita basis, property and crop damage have increased, dramatically so for total damages.12

While damages adjust for overall inflation and per capita damages adjust for changes in population,
11Previous work has noted that the current climate models, CMIP6, overstate warming (Scafetta, 2024).
12One might be concerned that reporting or data retention was less complete in the early period. Although we

cannot rule out that theory entirely, the creators of the ASU SHELDUS database have gone to some lengths to reflect
data in the early period and addressed earlier critiques of a similar NOAA database.
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Figure 9: County-level changes in observed CDD versus modeled ensemble CDD changes

attributing the remaining changes in damage from extreme weather events to climate change is

at best a rough approximation. For instance, there may be changes over that period unrelated to

climate change that impact the degree of property damage from extreme weather events, including

changes in where within a county people live, and the associated share of structures exposed to

extreme events; changes in the costs of rebuilding may not be accurately captured by general inflation.

Further, technological change, in building materials, storm forecasts, or zoning restrictions, may

reduce the damage from storms of a given intensity. An indication of this type of adaptation is that

mortality associated with extreme events in Figure 10 has declined markedly over this period. If

some of the technological improvements were made in response to more damaging natural disasters

caused by climate change, then the recorded damages underestimate the true cost of responding

to climate change. With all of these caveats in mind, we use the increase in per capita damages

over time – 60%, suggesting that approximately one-third of natural-disaster-related damages are

attributable to climate change – as a higher-end indication of the increase in damages due to climate

change. This supports our “less-conservative” estimates below.
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Figure 10: Count of people directly killed by climate-related hazards per 100k

Our estimate is consistent with several papers that have examined specific events and attempted

to attribute a share of damages to climate change. For example, Davenport et al. (2021) find that 36%

of U.S. flood damages between 1988 and 2017 are attributable to changes in extreme precipitation

driven by historical warming. Similarly, Frame et al. (2020) use a combination of climate and

statistical modeling to calculate that about 31% of the damages associated with Hurricane Harvey

are attributable to climate change.

The second approach we use to attribute damages from extreme weather is based on climate

modeling reflected in insurance data, described below. This suggests that 6% of extreme weather

damages are due to climate change and supports our “more-conservative” estimates below.

For wildfires, research has linked climate change, including lower humidity and higher tempera-

tures, to increased flammability of “fuels,” larger swaths of forests at high risk of fires, and higher

frequency of fire-conducive weather, although scientists note the interactions with forest management

practices. We again opt to assess a “less conservative” and “more conservative” share of changes

in wildfire-related particulate matter attributable to climate change, using 50% on the lower end

and 80% on the higher end. Supporting the lower end, Abatzoglou and Williams (2016) estimate

that climate change led to a doubling of forest fire burned area between 1986 and 2015. Consistent

with the upper end, Kirchmeier-Young et al. (2017) found that 2017 Fort McMurray fires were as

much as 6 times more likely as a result of climate change. Using the “Fraction of Attributable Risk”
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methodology, this implies that 83% of damages are attributable to climate change.13 Separately,

Williams et al. (2019) show that California experienced a five-fold increase in annual burned area,

which is consistent with 80% of damages due to climate change.

3 Economic losses

This section examines how household costs are impacted by climate change. For home insurance

and energy costs, we examine how changes in weather patterns in recent decades affect household

expenditure. For other types of expenditure, our analysis will focus on gleaning insights from the

literature, as well as current spending patterns. In general, climate change is likely to increase the

cost of basic necessities such as energy and housing, resulting in a regressive impact, as discussed in

U.S. Department of the Treasury (2023) and Hsiang et al. (2023). The mechanism is simple; poorer

households dedicate a larger share of their consumption bundles to these basic necessities compared

to richer households.

3.1 Insurance costs

Keys and Mulder (2024) develop a novel dataset using over 47 million observations from mortgage

escrow accounts to measure homeowners’ insurance expenditures from 2014 to 2023. They find

that average nominal premiums rose by 33% between 2020 and 2023, with disaster-prone areas

experiencing particularly steep increases. The authors attribute much of this rise to growing disaster

risk and a strengthened relationship between risk and premiums: a one standard deviation increase

in disaster risk was associated with a $500 premium increase by 2023, up from $300 in 2018. Using

variation in insurers’ exposure to reinsurance markets, they show that the pass-through of rising

reinsurance costs explains over half of this increase in the risk-to-premium gradient. Their empirical

design isolates the causal role of reinsurance prices in shaping household premiums and finds that

reinsurance shocks added more than $375 annually to premiums in the highest-risk zip codes.

We present two estimates of the increase in homeowners’ insurance costs due to climate change.

The first closely mirrors the forecasting exercise in Keys and Mulder (2024). This approach accounts
13The Fraction of Attributable Risk measures the share of damages to attribute to climate change as (1 – p0/p1)

where p0 is the probability of an event happening under natural forcing and p1 is the probability of an event happening
under natural and anthropogenic forcing.
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for both the change in the climate risk of each county as well as the change in the response to

insurance premiums from a change in the risk score and the change in that response over time. We

refer to this scenario as the “more-conservative estimate.” The second uses the observed increase in

Figure 5.

To assess how insurance costs may evolve with climate change, Keys and Mulder (2024) project

premium impacts through 2053 using risk projections from the First Street Foundation. They

estimate that, under current reinsurance market conditions, homeowners in the top 5% of climate

risk exposure will see annual premiums rise by $700 by 2053. If reinsurance markets revert to their

pre-2018 conditions, this increase would be closer to $480. Our exercise is similar, but backward-

looking. To estimate the insurance premium impacts of climate change between 1990 and 2023 for

the present analysis, we use First Street Foundation’s 2023 and 2050 climate risk scores and, after

consultation with First Street, construct a linear backcast of climate risk from 1990 to 2023. This

enables us to apply the elasticities from Keys and Mulder to the observed increase in climate risk

over that period, yielding a novel estimate of the increase in insurance premiums attributable to

climate change to date. We deviate from Keys and Mulder in one sense. Keys and Mulder also

account for changes in reinsurance rates due to climate change. This relationship—the relationship

between reinsurance rates and climate change—may be non-linear. Therefore, our baseline estimates

ignore this second effect.

Figure 12 maps our estimated damages.14 We find an average insurance premium increase from

1990 to 2023 due to climate change of $73; this represents, on average, 6 percent of the observed

increase in premiums over this time period. Interestingly, if we classify counties based on the deciles

of median income, the impact does not follow a consistent pattern. Figure 11 plots the average

premium increase by decile. The relatively flat impact across deciles in levels necessarily translates

into a regressive impact. The bottom panel of the figure plots the increases as a fraction of average

income.

Note that in this analysis, and in several of those that follow, we are inferring outcomes for

households based on county averages; this captures typical inequalities across counties, but it does

not capture income variation that occurs within counties. Still, there is substantial income variation
14Key and Mulder omit counties with fewer than 20 insurance premium observations. We interpolate those counties

by taking the average of the damage estimates of all adjoining counties.
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between counties; metropolitan and coastal counties have higher incomes than their rural and inland

counterparts (US Census, 2018).

Our analysis indicates important differences across census divisions; two divisions have observed

premium increases of over $100, but in three divisions the average increase was only about $15. One

of the shortcomings of the census divisions is that many of them span a large north-to-south range.

This potentially masks important heterogeneity as we move from north to south. For instance,

counties below 30 degrees latitude experience an average premium increase of $201 per year, while

the premium increase is $52 per year for the northernmost counties.

Our less conservative scenario leads to a much larger average increase of $250, with the biggest

differences in the south, although there is also a reduced range of impacts. The hardest hit census

divisions experience increases due to climate change exceeding $300, and only the Mid Atlantic

division experienced an increase below $220.

Finally, we note that homeowners’ insurance is 70% of the market for property insurance. While

increases in insurance rates of commercial and industrial firms are directly paid by those property

owners, at least a portion is likely to be passed through to consumers. As a back-of-the-envelope

measure of pass-through, we calculate this increase and refer to it as “indirect insurance costs. These

average $30 and $102 per household in the more- and less-conservative scenarios, respectively.

This analysis does not yet incorporate the problem of insurance non-renewals, which are highly

concentrated in certain areas of the country, such as the North Carolina coast, the coastal regions of

Florida, the Gulf coast, and sections of rural California (Flavelle and Rojanasakul, 2024; U.S. Senate

Budget Committee, 2024); we hope to address this issue with improved data in the final version of

this paper.

3.2 Energy expenditures

The literature highlights the disparate impacts of climate change on energy expenditures. For

example, Cohen et al. (2017) find that, by the end of the century, housing units will spend $5,600

on adaptation and that electricity demand will rise because of increased air conditioner use, while

gas demand will decrease because of reduced heating, for an overall increase of 13%. Deschênes

and Greenstone (2007) similarly estimate an 11% increase in annual energy consumption. The U.S.

Environmental Protection Agency (2024) finds that electricity use has nearly doubled since 1973,
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Figure 11: Comparison of disaster risk and damages by income decile (1990–2023).

while gas use has decreased over that period, and estimates that increased energy consumption in

future summers will outweigh any decrease during winters. However, Auffhammer (2022) estimates

that energy consumption in the California residential sector will decrease once one accounts for

long-run adaptation, with a maximum 17.4% increase in electricity use by the end of the century

offset by a predicted decrease of 19.5% in natural gas consumption over the same period.

On the supply side, weather events that disrupt energy production or damage infrastructure

may also lead to price increases (U.S. Department of the Treasury, 2023). A countervailing factor

may be that higher-income households respond more to intemperate weather in their energy use
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(a) More Conservative Estimate

(b) Less Conservative Estimate

Figure 12: Average climate-induced insurance damages by county (1990–2023)
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since they can better afford adaptations like air conditioning. Doremus et al. (2022) estimate that

higher-income households spend 0.5-1.2% more on monthly energy bills as compared to low-income

households, which spend only 0-0.5% more.

Our analysis demonstrates significant inequities across income categories and geography. Figure 13

illustrates that the poorest decile spends approximately 10% of their income on energy, decreasing

steadily to about 2.5% in the richest decile. This pattern remains consistent across rural and urban

households.

Figure 13: Average predicted household energy expenditure (as a proportion of income)

3.3 How has climate change affected the quantity of US energy expenditures?

In this section, we provide estimates of the change in household expenditures on energy due to

existing climate change, and how this correlates with incomes, other socio-economic variables, and

geography.

Ultimately, we are interested in estimating how energy expenditures respond to changes in climate

at a household level. As noted above, these data do not exist. We rely on the methodology proposed

in Green et al. (2025) and Batlle et al. (2024), which employ an adaptive lasso model to select

19



Figure 14: Change from 1981-1990 to 2020-2024 in average household electricity expenditure on
space cooling by census tract for the continental United States (winsorized at 95%)

relevant independent variables, or features, and predict household-level expenditures. The model

is trained on representative household-level data from the 2020 Residential Energy Consumption

Survey (RECS 2020). The RECS is a survey of a representative sample of households in a given

year. The survey collects information on energy expenditures, household demographics, housing

stock information, and weather outcomes in the given year. We train a machine learning model on

energy expenditures and use these models to predict changes in home energy expenditures resulting

from the changes in heating and cooling degree days experienced between the years 1981 to 1990

and 2020 to 2024. This implicitly holds the prices of energy constant over this time period; we come

back to this in the next section.

We first divide the survey data into “training” and “testing” subsets. On the “training” subsample,

we run a cross-validation lasso regression with �min as the penalty. There are two choices for the

penalty term—�min and �1se. �min is the minimum possible value of � while �1se is maximum

possible value within one standard deviation of �min. As the independent variables in our dataset

are highly correlated, we use �min for the first step lasso as it reduces errors from overfitting.

The second step is another cross-validation lasso regression using two choices of penalty terms
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�min or �1se. Moreover, we introduce coefficients obtained from the first step as weights in the

second step lasso as follows:

L(y,�) = argmin
�

�����y �
pX

j=1

xj�j

�����

2

+ �
pX

j=1

wj

����j
���, (1)

where, wj = 1

|�
lassofs
j |

. Here, the weights are the inverse of coefficients from the first-step cross-

validation lasso, �lassofs
j . Finally, � is the penalty term. A larger value of � leads to a more restrictive

variable selection, while a smaller value means less restrictive variable selection.

The selected features from our model are used to predict expenditures at the census tract level.

This is possible by creating a set of variables that are also reported in the nationally representative

datasets of the American Community Survey (ACS). We also allow for nonlinear relationships

between the variables and energy expenditures by considering squares or interactions of relevant

variables of the independent variables. We choose between four independent variable matrices:

(1) base model with features from the representative dataset, (2) the base model plus the squares

of relevant variables, (3) the base model plus interactions between relevant variables, and (4) a

final model including both squares and interactions. In addition, we consider two choices for the

dependent variables—levels and logs. Finally, we consider two prediction functions—the Ordinary

Least Squares (OLS) predict function and the lasso predict function. This amounts to 32 choices of

models—two �s, two prediction functions, four independent variable matrices, and two dependent

variable choices for each of the energy expenditures. We choose the model based on the out-of-sample

R-squared (or minimum out-of-sample mean squared error).15

The adaptive lasso model is able to choose from several features that capture the location of the

household (e.g., states and urbanity), household demographics (e.g., income and size of household),

characteristics of the home (e.g., number of bedrooms and heating source), prices (e.g., the price

of electricity or natural gas), and weather outcomes (e.g., cooling and heating degree days). A full

list of the features is available in Appendix A.6. Our preferred model ultimately yields estimates

of the level of energy expenditures and how energy expenditures correlate with changes in weather

patterns at the tract level.
15Note that two variables, Urban and Log of Income, are forced irrespective of whether they are selected by the

first-step lasso.
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The thought experiment we pose is how a given household’s expenditures would change if,

instead of facing weather patterns that arise from the current climate, they faced weather patterns

generated from a past climate. This requires additional assumptions. First, we assume the observed

relationships between energy expenditures and weather are causal. In general, the literature has

taken variation in weather conditions to be exogenous to measures like mortality, energy expenditures,

etc., conditional on the set of covariates included in the model. One potential concern in our setting

is that we are allowing the data to select the other covariates through the adaptive lasso. Therefore,

an important covariate for causal inference might be omitted from the model because including it

adds noise to out-of-sample predictions. We confirm that our results are very similar under the basic

model when we force all of the covariates to be included (e.g., OLS) versus estimating via adaptive

lasso. Second, we measure the change in weather patterns due to observed climate change as the

change in average weather between 1980 and 1990 and the average weather between 2020 and 2024.

Finally, we assess goodness of fit in Appendix B.

3.3.1 Home energy expenditure results: changes in quantities

As the climate warms, households will be required to spend more on cooling, but less on heating.

To understand the complete picture, we estimate the energy expenditures for electricity, electricity

for cooling, as well as the fossil fuels used for heating (natural gas, propane, and kerosene). We focus

on how the change in expenditures varies across deciles of the median census tract income and across

geography. In this section, we hold prices for energy constant; therefore, our change in expenditures

is driven completely by changes in projected quantities. Our results suggest modest changes in home

energy costs resulting from the observed climate change, with meaningful variation across regions.

Figure 15 (blue bars) plots the average increase in electricity expenditures by median-income

decile, as well as the 25th and 75th percentiles. The average across all households is an annual

increase of roughly $28. As incomes increase, so does the increase in expenditures. The impact on the

bottom-income decile is $24.2 and grows monotonically to $33 for census tracts in the highest decile.

This is not surprising since the level of electricity consumption increases with income. However, as a

share of income, the increase in expenditures strictly falls, implying that climate change has had

a regressive effect on electricity expenditures. Not surprisingly, we find very similar, but slightly

higher, increases in electricity expenditures devoted to cooling, with a mean of $33 per household
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and similar differences across deciles, though more muted.16

Figure 15: Difference in predicted fuel use by income decile (2020-2024 vs. 1981-1990)

The increases in electricity expenditures are offset by reductions in energy used for heating.

Figure 15 plots the average increase in the sum of natural gas, propane, and kerosene by census

tract, by income decile (green, peach, and purple bars). Appendix C plots them each separately.

The increase in electricity expenditures exceeds the decrease in fossil-fuel expenditures. The mean

decrease is roughly $13. The decrease is not monotonic across income deciles, but rather U-shaped.

The increases in electricity expenditures and the decreases in heating expenditures are not equally

felt across the country. As Figure 2 shows, the southern part of the U.S. has faced the largest

increase in CDDs, while Figure 4 shows the northern part has experienced a large decrease in HDDs.

Figure 16 plots the mean change in electricity and fossil fuel expenditures by census division. There

are clear winners and losers from the observed climate change. The Mountain census division sees the

largest increase in total expenditures with an increase in electricity expenditures of approximately

$42, but a decrease in fossil fuel expenditures of $6. Total expenditures, therefore, increase by

roughly $36 per year. The Mid-Atlantic, Pacific, and New England divisions all experience increases
16We would expect the cooling portion of electricity to increase more than total electricity since there will be some

savings for households that use electricity as their source of heating.
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in electricity expenditures of roughly $40 per year, but differ in terms of their reductions in fossil

fuel use. Average fossil fuel expenditures fall in the Mid-Atlantic division by roughly the increase in

electricity expenditures ($26 per year), but in the western divisions, this decrease is much lower, at

$6 and $8. For this reason, the Mountain and Pacific Census divisions see the largest increase in

total energy expenditures.

Figure 16: Predicted change in fuel use by census division (2020-2024 vs. 1981-1990)

Our estimates suggest that the increase in electricity expenditures going toward cooling is highest

in northern and southernmost latitude bands, increasing in both regions by roughly $35 per year.

However, because the southernmost region relies on electricity for heating, its total electricity

expenditures roughly stay the same, and its total energy expenditures fall once we account for

the fossil fuel expenditures. In contrast, the total energy expenditures in the northernmost region

increase by $32 per year.

3.4 How has climate change affected the price of US energy expenditures?

Another way in which household energy expenditures are impacted by climate change is through

utility rates. Utility equipment, particularly above-ground poles and wires for electricity companies,

is vulnerable to storms and wildfires and needs to be repaired and rebuilt after natural disasters. In
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Figure 17: Change from 1981-1990 to 2020-2024 in average household energy expenditure by census
tract for the continental United States (winsorized at 95%)

addition, in the case of wildfires, utilities are subject to lawsuits for wildfire damages when there is

reason to believe the wildfires were caused by their equipment.17 As a result, utilities are increasing

electricity rates in response to wildfire and hurricane events, either to fund recovery or to mitigate

future damage.

Recent increases in utility revenue requirements and their expected impacts on customer rates

due to wildfire and hurricane recovery and mitigation can be found in rate filings. Recent examples

from California, Florida, Oregon, and Texas are summarized below:

• The Public Advocates Office at the California Public Utilities Commission finds that wildfire

costs made up 15–21% of total revenue requirements for three major California utilities in 2023,

where the range reflects differences across the three investor-owned utilities in California.18

The costs stem from planned mitigation efforts, claim payouts for utility-caused wildfires, and

grid restoration. Assuming the revenue requirements are spread evenly across different utility
17Even if the utility equipment, e.g., a falling transmission line, is the proximate cause of the fire, research suggests

that the conditions that led to the fire, such as increased drought and high winds, which topple utility equipment, are
tied to climate change.

18Public Advocates Office Q4 2024 Electric Rates Report. (2025).
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customers, residential customer bills would increase by this amount.

• In December 2024, Florida’s Public Service Commission approved a request from Florida

Power and Light, the state’s largest utility, for incremental storm restoration costs related to

Hurricanes Debby, Helene, and Milton.19 The costs were passed on to customers as an interim

monthly charge of $12.02 for 12 months, which is approximately an 8-10% increase based on

the typical Florida Power and Light residential customer bill.

• Oregon’s Public Utility Commission approved two wildfire mitigation cost recovery additions

to Portland General Electric’s bills—one in 2022 and one in 2024—totaling $49.9 million for a

utility serving over 900,000 customers.20 These add up to more than 2.5% bill increases due to

wildfires.

• Winter storm Uri hit Texas in February 2021. Electricity prices spiked by 12% that month,

but then quickly reverted to prices closer to pre-storm levels. To recover Uri-related costs,

the Texas Public Utilities Commission authorized utilities to collect $3 billion over 30 years,

adding approximately $20 per household, or 1% for 30 years.

While these numbers provide a sense of the magnitudes of some storm-related costs, they are

selected examples from states that are particularly hard hit by wildfires and hurricanes. To get a

more systematic picture of the impact of large storms on electricity prices, we regressed state-level

electricity prices from the U.S. Energy Information Administration (EIA) on disaster costs from

the NOAA NCEI U.S. Billion-Dollar Weather and Climate Disasters data, normalized by state

population shares.21 Figure 18 reports the predicted change in electricity prices due to wildfire-

or storm-related costs using disaster costs from 2020-2023. We estimate a two-way fixed effects

regression, clustering standard errors by state, that allows the electricity price–disaster relationship to

vary across states. The model includes contemporaneous, 1-, 2-, and 3-year lags of disaster exposure,

and we interpret the cumulative long-run effect for each state as the sum of these coefficients. We

estimate separate specifications for storms and wildfires, excluding states that did not experience

these events. States marked with cyan stars indicate a statistically significant relationship (p < 0.10)
19Florida Public Service Commission. (2024). Final Order in Docket No. 20240149.
20Oregon Public Utility Commission. (2023). Order No. 23-370. and Oregon Public Utility Commission. (2024).

Order No. 24-251.
21Appendix A.4 explains why we use the Billion-Dollar Disasters data instead of ASU’s SHELDUS data, summarized

above, for this exercise.
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between disaster costs and electricity prices.22

Figure 19 plots the implied increase in electricity expenditures, using the weighted average

expenditures in 2020 from the RECS. Unlike the results in Section 3.3.1, where increases in electricity

costs stemmed solely from higher consumption in warmer climates, here we isolate the impact of

rising electricity prices—driven by damage to utility infrastructure and subsequent rate increases.

Across the entire sample, we find that electricity price impacts are economically significant and show

meaningful variation across regions and income levels.

(a) Storm Estimates (b) Wildfire Estimates

Figure 18: Estimated average percent change in electricity prices from wildfire or storm-related
disaster costs (1990–2023).

The average increase in per-household electricity expenditures due to price changes is $9. Price

increases are typically higher in lower-latitude bands and more disaster-prone areas, reflecting

infrastructure vulnerability in these regions.

As with other energy burdens, the dollar increase grows modestly with income, but the burden

as a share of income is regressive, disproportionately affecting lower-income households. On average,

households in the lowest income decile (Decile 1) experienced an increase of $30 in annual electricity

expenditures due to climate-driven price changes. This rises to $36 in Decile 2, and peaks at $42

in Decile 10. While the absolute dollar amount increases with income, these increases represent a

larger share of income for lower-income households, reinforcing the regressive nature of energy price

impacts.

Across census divisions, electricity price-driven cost increases also differ substantially. Households

in New England saw the largest average increase, at $40 per year. In the South Atlantic division, the
22There are no data on billion-dollar disasters in the District of Columbia. We exclude Texas from the map for

storms as the coefficient is a large outlier. We include it in the expenditure estimates.
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Figure 19: Estimated cumulative change in residential electricity expenditure from wildfire or
storm-related disaster costs (2020-2023)

increase is nearly as high, at $38. In contrast, households in the Middle Atlantic division experienced

a more modest average increase of $17 per year.

We do not attribute all increases in electricity prices related to disasters to climate change.

Following the discussion in Section 2, an upper bound estimate is that about one-third of recent

disaster-related costs are climate-related, and the lower bound is based on the discussion in Section

3.1. Aside from the attribution issues, we expect this to be a lower bound since we are not accounting

for the impacts of disasters on other non-electricity utility infrastructure, like natural gas and water.

Utility price increases and increases in insurance costs, discussed in Section 3.2, may overlap in

ways that could result in households paying twice for the same damages, at least in the short run.

Utilities raise rates partly to pay for lawsuits filed by insurance companies seeking compensation for

wildfire or storm damages. If insurance companies recover money from utilities, they may not need to

raise premiums as much. However, both insurance companies and utilities tend to be cautious about

financial risks and operate under government regulation. As a result, both may pass similar costs on

to their customers, meaning households could pay for some of the same storm damage through both

higher utility bills and higher insurance premiums. In the long run, this sort of double-counting
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should go down.

3.5 Disaster-related costs borne by governments

In addition to damaging homes and utility infrastructure, extreme weather events can cause

significant harm to public infrastructure, including schools, roads, bridges, and airports; modeling

efforts indicate the fiscal costs are likely to be significant (e.g., see Barrage (2020)). After a natural

disaster, governments at all levels step in to provide temporary assistance and relief. Previous

work has analyzed several dimensions of government responses to extreme weather, including their

impacts on local government budgets (Liao and Kousky, 2022; Jerch et al., 2023), moral hazard and

other incentive effects (Baylis and Boomhower, 2023), and increased costs associated due to social

insurance expenditures (Deryugina, 2017). We have a more basic goal: to add up these expenditures

since paying for them ultimately falls on US taxpayers.

We combine data on federal, state, and local government spending on disasters. Federal spending

includes the federal cost share of Federal Emergency Management Agency (FEMA) Public Assistance

projects, the FEMA Individuals and Households Program, other FEMA programs, the Department

of Housing and Urban Development’s Community Development Block Grant–Disaster Recovery

Grants Program, and implicit subsidies for the National Flood Insurance Program. The costs are not

intended to be exhaustive. State and local costs include insurance payouts for public assets (assumed

equal to insurance costs in expectation and ignoring markups) and the state and local government

share of FEMA Public Assistance and other projects. Details are provided in the appendix.

Table 2 summarizes these costs from 2017-2021, both in aggregate and per household. Values

are nominal and attributed to the year the event happened instead of the year the expenditure

was made. (For example, a 2020 repair for a storm in 2017 will be in the first row.) The annual

average per household over the period is almost $150. Figure 20 shows how the expenses have varied

across states. Again, some of the states prone to hurricanes, wildfires, and tornadoes have higher

government costs.

These are approximations to the total costs and may be understated because we exclude, for

example, Congressionally approved, one-off basic supplemental appropriation funds for agencies

other than FEMA. On the other hand, it is possible that the new infrastructure built to replace

public assets destroyed by extreme weather events is better than the old, suggesting that some new
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Table 2: Annual State, Local, and Federal Natural Disaster Costs and Per-Household Burden

Year State & Local Cost Federal Cost Total Cost Total per HH

(Billions $) (Billions $) (Billions $) ($)

2017 5.23 22.96 28.18 236
2018 4.68 17.00 21.68 179
2019 1.75 4.81 6.56 54
2020 4.00 10.06 14.06 113
2021 3.69 12.43 16.12 127

AVERAGE 3.87 13.45 17.32 142

Note: All amounts are in nominal dollars.

value is created (Roth Tran and Wilson, 2020).

Figure 20: Average annual total government burden per household (2017-2021)

3.6 Food expenditures

Extreme weather events can reduce agricultural production, increasing food prices (Lee, 2024).

USDA reports predict price increases by 2050 under various climate scenarios (Crane-Droesch et al.,

2019; Brown et al., 2015). Global studies also forecast annual food inflation impacts (Kotz et al., 2024;

Kabundi et al., 2022; Hultgren et al., 2025). These price impacts are likely to be regressive. Figure 21

indicates that the bottom decile spends more than twice the income share on food compared to the
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top decile.

Figure 21: Food expenditure by income decile (as a proportion of income)

A study of the impact of existing climate change on global food production is beyond the scope

of this paper. However, we do provide estimates of the impact of temperature change over the

past three decades on US crop production. Projecting forward, Schlenker and Roberts (2009) finds

average yields will decrease as much as 45% before the end of the century under the slowest warming

scenario and by as much as 80% under the most rapid warming scenario.

To understand how the already observed climate change has affected crop yields, we reproduce the

empirical models as in Schlenker and Roberts (2009) and backcast yields based on observed changes

in temperatures. Specifically, we calculate the predicted change in yields when using temperature

data from 1981 to 1990, compared to years 2019 to 2023.23 We study wheat, soybeans, and corn.

We value changes in yields using observed annual average prices received by farmers provided by the

United States Department of Agriculture’s National Agricultural Statistical Service (converted to

2023 dollars).
23The slightly earlier recent period compared to our other analyses arises because our primary temperature dataset

omits precipitation. For this analysis, we therefore use a source that includes precipitation, the cleaned PRISM
weather data from Schlenker (2024).
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Figure 22: Average annual crop losses per household by county from 1981-1990 to 2019-2023

Figure 22 maps the average household county-level changes in crop values. The losses are

near-zero across all three crops; the largest effect across counties is smaller than $1 per household.

These results are not very surprising given the changes in cooling degree days mapped in Figure 2

where we see that the midwest, where much of these crops are grown, experienced minimal heating

over the period.

3.7 Other economic channels

Beyond the scope of our analysis, there remain several other important economic channels through

which climate change affects US households, many of which are discussed in U.S. Department of

the Treasury (2023).24 A salient topic for future research is a further examination of the migration

response to climate change (Sinha et al., 2018; Avtar et al., 2023); such migration costs may have

a disproportionate impact on lower-income households (Cattaneo et al., 2019; Bakkensen and Ma,

2020).
24These include the potential for lost earnings, higher transportation costs, and challenges due to the loss of access

to public benefits and healthcare.
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4 Mortality impacts

Climate change increases exposure to a number of risks, including extreme heat, particulate

matter from wildfires, flooding, hurricanes, tornadoes, and other extreme weather events. This

section considers the mortality impacts of this exposure.

4.1 Heat-related mortality

With the literature on the social cost of carbon (Burke et al., 2024; Carleton et al., 2022) as a

guide, we estimate the relationship between temperature and mortality using the following form:

Mit = g(Tit) + q(Rit) + FE

where Mit is the county-month mortality rate. The right-hand side covariates include a fourth-

order polynomial in cumulative monthly average daily midpoint temperature (following Burke et al.,

2024), where daily midpoint temperature is computed as the mean of the daily maximum and

minimum temperatures and controls for a monthly quadratic in cumulative precipitation. We include

county, year-by-month and county-by-month fixed effects, following Burke et al., 2024. Results are

summarized in Figure 23 and are broadly similar to the previous literature.25

Our model implies net health benefits from recent climate change. This is consistent with

downward-sloping mortality response functions in cooler regions that have warmed modestly over

recent decades.

We also estimated separate mortality response functions by income and race. Previous literature

has analyzed mortality rates within small geographic areas, such as counties, and tried to infer

demographic impacts based on average characteristics of a place. Deryugina and Molitor (2021)

highlight difficulties in interpreting heterogeneity in place-based effects on health outcomes. For

example, they point out that if people with similar socioeconomic characteristics sort into areas

with particular attributes, a researcher might confound the effects of the characteristics and the

effects of the place. To avoid those issues, we use individual-level mortality data from the 2003–2022

restricted-use Detailed Mortality – All Counties files.26 These data include the month and county of
25We weight observations by population, which follows some of the sensitivities reported by Carleton et al., 2022.

Unweighted results are similar. Also, using daily maximum temperatures suggests a similar pattern. See the Appendix.
26The data are disseminated to researchers upon project approval by the Division of Vital Statistics (DVS) at the
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Figure 23: Temperature-mortality relationship

death, as well as individual demographic characteristics such as age and race.

To examine heterogeneity by income, we use a second dataset to predict income based on a set of

demographic variables that are in the mortality dataset and then use the resulting model to predict

income in the mortality data. Specifically, we use the American Community Survey Public Use

Microdata Sample (PUMS). We apply a lasso model to the PUMS data to predict income. Based on

these predictions, we estimate separate temperature response functions for the top 20% and bottom

20% of the income distribution. Further details are in Appendix A.6.

Figures 24 and 25 report the results, which indicate that deaths of Black and low-income people

are more sensitive to temperatures, with Black people particularly sensitive to heat and low-income

households particularly sensitive to cold.27 This implies disproportionate benefits from increasing

National Center for Health Statistics (NCHS).
27For the income specification, we replace the dependent variable in the above equation (Mit) with the county-month

counts of deaths among the predicted top 20% and bottom 20% income groups (Age > 64, winsorized at the 5% level)
as we lack a denominator for a mortality rate.
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Figure 24: Temperature-mortality relationship, blacks and whites

temperatures for lower-income households, a finding in line with Heutel et al. (2021) who describe

the importance of the mortality burden on colder places.

4.2 Mortality from particulate matter

In this section, we consider the mortality impacts of increased wildfire smoke exposure attributable

to climate change. Qiu et al. (2025) undertake a similar analysis, finding a partial social cost of

carbon of $15 per ton due to climate-induced wildfire smoke mortality in the United States.

We begin by assembling county-level estimates of ambient wildfire-specific PM2.5 from Childs

et al. (2022) and updates from the authors. These data provide daily estimates of wildfire-related

PM2.5 across the contiguous United States from 2006 through 2024, combining satellite, monitor,

and reanalysis sources. Figure 8 above shows that average exposure has increased markedly in the

West, particularly in California and the Pacific Northwest. We attribute total daily wildfire smoke
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Figure 25: Temperature-mortality relationship, low and high predicted income

to climate change using attribution estimates described in Section 2.4, with a 50% (conservative)

and 80% (less conservative) attribution.

We then estimate excess mortality using the quasi-experimental results from Deryugina et al.

(2019), who find that each 1 µg/m3 increase in daily PM2.5 leads to 1.541 additional deaths per

million elderly Medicare beneficiaries per day. We apply this estimate to the increase in average daily

wildfire PM2.5 concentrations at the county level and multiply by the county’s elderly population to

compute the number of deaths that would result from this increase in air pollution.

Because our estimates reflect a shift in daily average PM2.5, and because the Deryugina et al.

(2019) coefficient is also derived from daily variation, we scale the resulting mortality estimate by 365

to reflect annual impacts. This approach assumes persistent exposure throughout the year, which

may over- or understate mortality based on the actual dose-response function. For example, Miller

et al. (2025) find a concave dose-response function with outsize health impacts at lower doses and a
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flattening out and even slight drop in responses at higher doses above 6µg/m3.

To monetize the mortality impacts, we multiply the total number of deaths by an assumed value

of $150,000 per life-year lost, in line with commonly used estimates for the value of a statistical

life-year. We also assume that the average number of life-years lost per death is 2.737, based on

Deryugina et al. (2019)’s estimated life-years lost. Finally, we aggregate up to households to follow

the energy and insurance cost estimates above. Combining these elements yields an estimate of the

economic cost of wildfire smoke mortality.

Figure 26 maps the annual per-household mortality costs at the county level. Not surprisingly,

costs are concentrated in the West. The average per-household impact across all counties is $176

per year. Geographic disparities are especially stark, however. Households in the Pacific Census

division have the highest average per household mortality damages at $269, with an interquartile

range of $134 to $368. Damages in the West North Central and Mountain divisions both exceed

$180 per household, while damages in the other divisions are between $100 and $160. In addition to

geographic inequalities, PM2.5 mortality has a disproportionate impact by income; see Figure 27.

This pattern reflects the distribution of wildfire smoke across counties, which disproportionately

impacts lower-income counties; we assume a constant value of a statistical life in our analysis. These

costs reflect all mortality from wildfire smoke, before attributing them to climate change. Below we

attribute 50% of the costs to climate change in our “more conservative” approach and 80% in our

“less conservative” approach.

4.3 Other risks

Temperature and wildfire smoke are not the only levers affecting mortality; extreme weather

events can also generate risks that lead to both direct deaths at the time of the event and excess

deaths due to more lasting harms. For example, Young and Hsiang (2024) find that hurricanes and

tropical storms cause excess mortality rates that persist for as long as fifteen years after the events,

and Wu et al. (2024) examine adverse health outcomes due to floods.

The National Weather Service reports annual weather-related fatalities at a national level

(National Weather Service, 2025). (They also report fatalities due to “Heat” and “Cold” but we

exclude those categories given the estimation strategy in Section 4.1.) Table 3 summarizes fatalities

by weather event in 2024 as well as the average over the ten-year period ending in 2024. As with
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Figure 26: Average PM2.5-induced losses by county

other extreme events, there is considerable year-to-year variation, so we use the 10-year average.

To monetize the mortality impacts, we multiply the total number of deaths by an assumed value

of statistical life, reflecting the assumption that victims of events like floods and hurricanes span

the age distribution. We use $13.4 million for a current value of statistical life, based on estimates

from the Department of Transportation and the Department of Health and Human Services.28 Per

household, the mortality costs are about $40. We use the same two approaches discussed above to

attribute these to climate change.
28See https://www.transportation.gov/office-policy/transportation-policy/

revised-departmental-guidance-on-valuation-of-a-statistical-life-in-economic-analysis and https:
//aspe.hhs.gov/sites/default/files/documents/cd2a1348ea0777b1aa918089e4965b8c/standard-ria-values.
pdf.
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Figure 27: Average PM2.5-induced losses by income quintile

Table 3: Fatalities by natural hazard

Natural Hazard 2024 fatalities 2015–2024 10-year average fatalities

Flood 145 110

Lightning 10 19

Tornado 52 48

Hurricane 78 31

Winter storms 22 16

Wind 71 58

Rip currents 73 76

Fire weather 9 31

Subtotal, natural disasters 460 389

Temperature 2,416 2,513

PM2.5 Exposure 35,304 23,842

Table 3 also summarizes fatalities from temperature and PM2.5 exposure based on the calculations

in Sections 4.1 and 4.2. About 2,500 people per year die from temperature-related causes, although
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more from cold than heat, so the recent shifts in temperature due to climate change have reduced

temperature-related mortality. Our calculations suggest that an order of magnitude more people

die from wildfire-related PM2.5 exposure, and the figure has increased as the prevalence of wildfire

smoke has increased. We calculate that wildfire smoke led to over 35,000 deaths in 2024.

5 Discussion

5.1 Aggregating across categories

Table 4 summarizes estimates of the aggregate costs per U.S. household based on more conservative

(column 1) and less conservative (column 2) estimates for eight of the categories considered above:

household insurance costs, energy expenditures due to quantity changes, energy expenditures due to

price changes, infrastructure costs borne by governments, crop losses, and mortality costs from heat,

particulate matter and weather.

Table 4: Estimated annual average household costs by category

Category
More

Conservative

Less

Conservative

Average Average

90th

Percentile

Costs

90th

Percentile

County

Insurance Costs 73 250 399 399

Indirect Insurance Costs 30 102 163 163

Energy Costs: Quantity Increase 10 10 32 27

Energy Costs: Price Increase 3 4 82 8

Indirect Energy Costs 2 4 73 7

Costs Borne by Governments 12 49 75 84

Crop Losses 0 0 0 0

Mortality Costs: Heat -1 -1 -1 -2

Mortality Costs: Wildfire PM2.5 88 140 200 189

Mortality Costs: Natural Disasters 2 13 13 13

TOTAL 219 571 888

Note: All amounts are in current (roughly 2023) dollars. See Sections 4 and 5 for details on specific items.

We also add indirect energy costs because, in the same way residential households have paid

higher electricity bills, commercial and industrial customers have also paid higher electricity bills for

cooling, and due to the increased costs of running electricity systems in the face of climate-related

changes in extreme weather. The costs are not as directly visible to households, but, aside from the

small share of goods the U.S. produces for export (11 percent of U.S. GDP in 2024), those costs
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would typically be passed on to U.S. households in the form of higher prices for goods and services.29

According to the Energy Information Administration, residential electricity customers pay for 47% of

U.S. electricity costs, so to derive the indirect energy costs, we scale the previous row up by 1/47%.

Indirect insurance costs similarly reflect costs that commercial and industrial customers pay to cover

the costs of damage from extreme weather events.

Our more conservative estimates imply that the average household has experienced an increase

of just $220 per year from observed climate change, while our less conservative estimates suggest an

increase of over $570.30 For both measures, property insurance and mortality effects due to wildfire

smoke are the most important categories. Overall, heat-related categories (energy costs: quantity

increase, crop losses, and mortality costs: heat) account for a much smaller share than categories

related to natural disasters (the remaining categories).

Columns 3 and 4 of Table 4 describe the higher tails of the estimates. Column 3 reports the

90th percentile of each cost category, and column 4 reports the cost category values for the county

in the 90th percentile of total costs (Garden County, in the western part of Nebraska). Ten percent

of counties have annual household costs exceeding $880. To visualize this variation, Figure 28 maps

both estimates by county. There are large swathes of the country, especially in the west, midwest,

and southeast, where damages are concentrated and exceed $1000 per household per year.

To understand what correlates with this variation, we plot average costs (and their interquartile

ranges) across income deciles (Figure 29) and census divisions (Figure 30). Both measures are similar

across deciles, if not falling somewhat for the top deciles. This necessarily implies that the climate

change that has already been observed has had regressive effects.

Regional differences are even more stark, as shown in Figure 30. The Pacific census division

bears the highest total costs, at $805 per household, driven by large insurance costs and high

wildfire-related mortality burdens. The Mountain and West North Central regions also face notably

high burdens, largely due to elevated insurance premiums and rising energy prices. In contrast, the

Middle Atlantic experience substantially lower total costs—less than half the national average—with

lower exposure to wildfire smoke, and more moderate increases in utility costs.

Taken together, these estimates underscore two dimensions of inequality in climate-related
29If prices are not allowed to rise, this could also be modeled as a reduction in real income by lowering wages. In

either case, real wages decrease. Further, foreign costs associated with climate change may increase US import prices.
30The correlation between the two measures is 0.47.
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(a) More Conservative Estimate

(b) Less Conservative Estimate

Figure 28: Aggregate costs per household by county
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Figure 29: Estimated damages per household by income decile

Figure 30: Estimated damages per household by census division

43



damages. First, costs are disproportionately borne by lower-income households due to their greater

exposure to health risks, higher insurance costs relative to income, and more limited adaptive

capacity. Second, the geographic distribution of damages further amplifies disparities, with western

and southern states bearing the brunt of heat- and smoke-related harms. While our estimates do

not reflect every climate-related cost category (e.g., food prices, migration, or employment shocks),

the observed patterns offer strong evidence that climate change imposes regressive and regionally

concentrated burdens across the United States.

5.2 Important caveats

We offer several important caveats in interpreting these numbers. First, the costs summarized in

Table 4 are clearly incomplete. We have not reflected many vectors through which climate change

affects households, including more invasive pests, loss of ecosystem benefits, and the greater spread of

disease. We do not account for all the additional disruptions and dislocations that extreme weather

events cause, including expenditures after natural disasters for general social safety net programs

that do not specifically target extreme weather events (Deryugina, 2017) or crop losses. Further,

there are many channels beyond mortality through which adverse weather changes affect health and

productivity.31

Second, other than changes in energy expenditures that result from shifting weather patterns, we

have not estimated adaptation costs associated with climate change. These may represent investments

in infrastructure and other capital, such as air conditioning, or migration due to heat, storms, or

climate change-induced pollution. These are important areas for important research. Carleton

et al. (2022) estimate the future climate change-adaptation costs by combining a revealed-preference

approach with estimates of how the temperature-mortality response function changes with baseline

temperatures to forward simulate adaptation costs. In principle, a similar approach could be taken

within a country, looking backwards.

Third, we have not considered climate-related changes in property values. Recent work by

Fairweather et al. (2024) finds that housing prices respond to changes in information regarding
31There is a broad literature considering the impact of climate change on wider health outcomes such as miscarriages

(Xu et al., 2025), conflict (Hsiang et al., 2013), suicide (Burke et al., 2018), mental health (Obradovich et al.,
2018), learning acquisition (Park et al., 2021; Graff Zivin et al., 2018), sleep (Obradovich et al., 2017), and exercise
(Obradovich and Fowler, 2017). Heat and wildfire smoke also have negative consequences for productivity (Rode et al.,
2022; Borgschulte et al., 2024).
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climate risk. To the extent that housing markets rationally capitalize expected future flows of

climate-related insurance costs, the present discounted value of our insurance premiums will already

proxy for a large component of the effect of climate change on housing prices. However, changes in

property values may reflect more than just higher expected insurance costs. For example, households

may place a premium on non-insurable attributes of climate risk—such as increased anxiety about

future disasters (not reflected in our natural disaster costs), the disutility of living in an area

repeatedly disrupted by evacuations, or the expectation of reduced local public services as municipal

budgets are strained by repeated disasters. Property prices may also decline when lenders tighten

credit availability or impose stricter mortgage terms in high-risk areas, independent of insurance

costs. Similarly, non-renewal of insurance or withdrawal of insurers from a region may depress

property values above and beyond the actuarially fair increase in premiums.

In short, while our insurance premium measure captures an important and quantifiable channel

linking climate change to household wealth, it likely underestimates the full impact on property

values. The portion of value changes not tied to insurance costs reflects broader capital market

responses, credit frictions, and the behavioral salience of risk, and is omitted from our accounting.

Fourth, our methods may result in undercounting of some costs. As an example of the possible

under-counting, Young and Hsiang (2024) estimate that hurricanes in the US have led to 7,000 to

11,000 excess deaths per event, while the official reported numbers are 24. Reflecting this estimate

in the last row of Table 4 increases the estimate of mortality costs associated with natural disasters

to $600-6000.

Fifth, we have not distinguished social costs from private costs. For example, insurance costs to

households include firm profits, which reflect transfers and overstate the true social costs. Similarly,

energy expenditures are costs to households and do not reflect additional social costs associated

with increases in the quantity of energy used. Directionally, local and climate-related greenhouse gas

pollution may fall, especially in areas where the electricity sector has become cleaner, since we find

that the use of direct fossil fuels decreases, while the quantity of electricity consumption increases.

In addition, to the extent that climate-related price increases reduce consumption, emissions will fall.

Sixth, applying the value of statistical life (VSL) estimates in this context presents several

challenges. Standard VSL calculations, typically derived from revealed preference studies in labor

markets, assume homogeneous populations and may not adequately account for the heterogeneous
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mortality risks associated with climate change. While VSL-based approaches provide useful bounds

for climate damage estimates, they should be interpreted with caution.

Finally, our analysis is focused solely on the United States, which is certainly not representative

of the world, due to its geography, high income, and consumption patterns. Further, the United

States appears to have adapted less well to climate events in some instances.32 Nonetheless, these

estimates provide a useful starting point to both inform conversations about how U.S. households

are currently experiencing climate change and to guide future research. Some of the categories in

the table above have received much less attention from researchers than others.

In sum, our findings show that US households are likely facing modest to significant costs from

climate change. We are not able to measure all climate-related costs, but it is apparent that these

costs do not affect all groups equally. Those in hotter or more disaster-prone regions of the country

will face disproportionate costs, and vulnerable people are more likely to face mortality risk. When

climate change increases the costs of basic necessities such as energy, housing, or food, those cost

increases will comprise a higher share of income for those lower in the income distribution.33

5.3 On climate policy burdens

In general, the costs of climate inaction might usefully be compared to the costs of climate

action. For example, in Bistline et al. (2025), the energy costs to households are compared across

seven policy scenarios (ranging from repeal of the Inflation Reduction Act subsidies alongside a

rollback of key energy regulations, to layering either a carbon fee or a clean electricity standard on

top of Biden-era climate policy). Despite this wide range of policy possibilities, differences in annual

household energy costs due to policy variation are very modest; costs vary only about $200 from

minimum to maximum, an amount comparable to the more-conservative estimates of the cost of

climate inaction detailed above.

Still, costs from climate policy action entail more than household energy costs; there are also

fiscal and abatement costs. In Bistline et al. (2025), abatement costs range from $18 to $69 per

metric ton, falling well below most estimates of the social cost of carbon. Fiscal costs can be quite a
32For example, Hsiang (2011) shows how the hurricane damages vary by country, noting that high income countries

are less impacted by natural disasters, but the United States is an outlier in adapting less well.
33While the costs borne by governments are a minority of total costs, those come at the expense of taxpayers. The

distribution of the tax burden depends on the source of funding. For the federal government, the tax system as a
whole is progressive, so those costs will be disproportionately borne by richer households.
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bit larger, reaching as high as $600 per person under the most expensive policy scenario (a scenario

substantially increasing the IRA subsidies beyond their Biden-era levels).

In addition to the total costs of policy action, there are also distributional concerns about the

relative burdens of policy action. Green et al. (2025), using a similar methodology to this paper,

consider the inequities of climate policy choices. This work includes disaggregated geographic

analysis at the census tract level, showing the geographic disparities that are missing from typical

tax policy analyses. Consistent with the literature, they find that a carbon tax combined with an

even per-capita rebate is a progressive tax instrument, but that it would still introduce geographic

inequities due to larger carbon footprints in the center of the country relative to the coasts. Policy

can be tailored to respond to such disparities. Likewise, regulatory standards have distributional

effects analogous to carbon taxes without dividends, in that they are generally regressive (Davis and

Knittel, 2019; Borenstein and Kellogg, 2023; Green et al., 2025).

More generally, the literature typically finds that carbon taxes by themselves are regressive,

though the extent of regressivity depends on modeling decisions, and policy design choices can

mitigate or reverse the regressivity (Goulder et al., 2019; Horowitz et al., 2017; Metcalf, 2019; Caron

et al., 2018; Green et al., 2025).34 Somewhat less appreciated, tax subsidies such as those in the

Inflation Reduction Act also have regressive impacts, disproportionately cutting taxes for those at

the top of the distribution (Bistline et al., 2025; Buhl, 2023).35

6 Conclusion

Although the chief concerns about climate change lie in the future, climate change is already

having consequential effects for US households and taxpayers. While a complete catalog of the

myriad impacts of climate change is beyond the scope of this analysis, we examine several important

channels through which climate change affects US households. In terms of economic effects, the

most quantitatively significant channel we examine is effects on home insurance premiums, where
34Subtle decisions about modeling can have large impacts on regressivity; for example, methods that pass-forward

the carbon tax into higher prices find more regressivity than methods that hold the price level fixed and pass-back the
impact into lower real incomes, since the latter method also reduces rent incomes, which are concentrated at the top
of the income distribution.

35Brown et al. (2023) find progressive effects from the IRA tax credits, but their analysis includes far broader
criteria (e.g., positive effects from improved air quality) as well as nonstandard fiscal assumptions (e.g., assuming that
increased capital taxes, themselves progressive, will meet the government budget constraint).
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the average premium increase due to climate change ranges from $75 to $250, depending on what

fraction of premium increases is assumed to be caused by climate change-driven extreme weather

events. Additionally, we also document increased home cooling costs.

Beyond economic consequences, climate change also has important effects on mortality, as both

temperature change (in theory) and particulate matter from wildfires can have adverse effects on

health outcomes. In the United States, temperature change has so far had a benign effect on

mortality, but the consequences of wildfire smoke have been more negative, generating mortality

costs that average $90 to $140 per household.

While our analysis does not forecast the future, nor can it capture all the consequences of climate

change, it documents important ways in which climate change has disparate impacts. First, geography

is important. Hotter areas, and those subject to more extreme weather events, face disproportionate

costs. For example, those households in the 90th percentile of climate costs experience about 50

percent higher-than-average US household costs. Second, most climate costs are regressive, impacting

lower-income households more negatively than higher-income households. Poorer households, on

average, face increased cooling and home insurance costs that are higher shares of their income, and

they face higher mortality risks from extreme temperatures and particulate exposure.

Although the costs we highlight are modest at present, aggregating to an annual per household

cost ranging from $220 to $570, several caveats are important to bear in mind. First, the literature

on climate change has often emphasized temperature as a key vector for harmful impacts, whereas

extreme weather events may be equally or more important. However, since extreme weather events

are highly variable, continued research is needed to better pin down their consequences. Second,

while current US costs are modest, most climate modeling indicates the importance of threshold

effects that can cause costs to rise steeply in the future if climate change is not addressed. Third, it is

imperative to also consider impacts on other countries. US costs are only part of the global problem,

and the United States is the largest cumulative contributor to cumulative emissions worldwide.
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A Data Appendix

A.0.1 Temperature Data

As in the study on mortality, the temperature data still come from Wolfram Schlenker’s website.

The raw data files give daily minimum and maximum temperature as well as total precipitation on a

2.5→2.5 mile grid for the contiguous United States from 1950-2023. I construct several county-level

dependent variables:

• Average Heating Degree Days (2019–2023) =
∑

max(0, 65↑daily mean temperature (°F)).

Based on the NOAA’s definition, I set the baseline at 65°F. The daily average temperature is

calculated as the mean of the day’s maximum and minimum temperatures.

• Average Cooling Degree Days (2019–2023) =
∑

max(0, daily mean temperature (°F) ↑

65).

• Di!erence in Average Heating Degree Days (2019–2023 vs. 1981–1990).

• Di!erence in Average Cooling Degree Days (2019–2023 vs. 1981–1990).

A.0.2 Particulate Matter Data

County-level highest annual average PM2.5 concentration data are derived from the CDC National

Environmental Public Health Tracking Network. The U.S. Environmental Protection Agency (EPA)

provided site-level raw data; however, many counties are missing data due to the absence of monitoring

sites. To address this gap, the CDC supplemented the dataset with modeled estimates of PM2.5

concentrations at the census tract centroids. Daily county-level modeled estimates are computed by

selecting the maximum value among all census tracts within each county. This metric integrates

monitor data for counties with su!cient observations and modeled estimates for locations lacking

monitor data. Modeled data for the period 2001–2020 are available.

The county-level ambient wildfire smoke PM2.5 data were obtained from Childs et al. (2022). This

dataset was produced by a team of environmental scientists at Stanford University, who generated

daily local estimates of air pollution from wildfire smoke across the contiguous United States from

2006 to 2020. This measure has been employed in scientific literature, including publications in

Nature, The Lancet and PNAS, as well as in economics literature (see, e.g., Qiu et al., 2024; Coury

et al., 2024; Coulombe and Rao, 2025; Lee and Beatty, 2024; Gellman and Wibbenmeyer, 2025).
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A.0.3 Income Data

The county income data are obtained from the 2020 American Community Survey 5-Year Data,

specifically from Table S1903 – Median Income in the Past 12 Months (in 2020 Inflation-Adjusted

Dollars).

A.0.4 Metropolitan Statistical Area Data

In line with mortality studies, the MSA list is obtained from the NBER’s Census Core-Based

Statistical Area (CBSA) to Federal Information Processing Series (FIPS) County Crosswalk. The

NBER data are created directly from the Census Bureau’s delineation files, which list metropolitan

divisions and their components by FIPS state and county.

A.1 Observed Climate Data and Degree Day Model Comparison

This appendix expounds on the climate datasets, modeling assumptions, and computations for

Figure 9 which compares observed and modeled changes in annual average CDDs at the U.S. county

level.

The y-axis represents the observed change in annual average Cooling Degree Days (CDD) between

2019–2023 and 1981–1990, consistent with the definitions used in Figures 1 and 2. The x -axis shows

the modeled ensemble change in CDD under the SSP2-4.5 scenario from the Climate Impact Lab’s

Global Downscaled Projections for Climate Impacts Research (CIL GDPCIR) dataset.

Carleton et al. (2022) mainly used climate projections under the RCP4.5 scenario based on CMIP5

models. In contrast, the CIL GDPCIR dataset adopts the SSP-based framework introduced in CMIP6;

among these, SSP2–4.5 is considered the closest analog to RCP4.5 in terms of radiative forcing and so-

cioeconomic trajectory. Under the SSP2–4.5 experiment, 23 models are included: NESM3, GFDL-ESM4,

GFDL-CM4, NorESM2-MM, NorESM2-LM, MPI-ESM1-2-LR, UKESM1-0-LL, HadGEM3-GC31-LL, MIROC-ES2L,

MIROC6, INM-CM5-0, INM-CM4-8, EC-Earth3-Veg, EC-Earth3-Veg-LR, EC-Earth3, EC-Earth3-CC,

ACCESS-CM2, ACCESS-ESM1-5, CMCC-ESM2, CMCC-CM2-SR5, CanESM5, FGOALS-g3, and BCC-CSM2-MR.

Two models (EC-Earth3-AerChem and MPI-ESM1-2-HR) are excluded due to missing SSP2-4.5

data.

The historical daily data (excluding leap days) span January 1, 1950 to December 31, 2014,

2
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while SSP daily projections span January 1, 2015 to December 31, 2099 or 2100, depending on

model availability. Data are provided at a 0.25-degree spatial resolution. The dataset includes

daily precipitation, maximum near-surface air temperature (tasmax), and minimum near-surface

air temperature (tasmin). Daily average temperature is computed as: tasavg = tasmax+tasmin
2 . This

matches the calculation of observed average temperature, and follows the approach to using climate

projection data in Carleton et al. (2022), which states: “the daily average temperature is approximated

as the mean of daily maximum and daily minimum temperatures” (Online Appendix A22).

Using the stagg R package, each model’s daily average temperature is spatially mapped to U.S.

counties. County-year level CDD is then calculated based on NOAA’s definition, with a threshold of

18→C. For each model, we compute the mean CDD in 1981–1990 and 2019–2023 for each county and

take their di"erence. The values on the x -axis represent the average of these di"erences across all 23

models.

The dashed grey line denotes the 45-degree reference line; the solid red line shows the OLS fit,

with shaded bands representing the 95% confidence interval.

Note: NOAA typically defines the threshold for calculating Cooling Degree Days (CDD) as 65→F

(approximately 18.33→C), while the World Bank uses a threshold of 18→C. Carleton et al. (2022)

conduct several robustness checks using alternative definitions of CDD/HDD in their appendix,

employing a 25→C threshold in Appendix A42 and a 20→C threshold in other sections such as A43.

A.2 Notes on the Correlation Table between Socioeconomic and Demographic

Characteristics and Climate Outcomes

This appendix provides details on the data and calculations of Table 1. Each cell reports the

Pearson correlation coe!cient between the climate outcome variable (column) and the covariate

(row), based on the maximum number of observations available for the respective pair. The reported

coe!cient is followed by a significance indicator based on a two-sided t-test for the null hypothesis

of zero correlation. Significance levels are denoted as follows: ↑p < 0.05. Coe!cients are rounded to

two decimal places.

As with the county income data, most county characteristics are obtained from the 2020 5-year

American Community Survey (ACS). Total population is based on table B01003_001 and is

winsorized at the top 5%. Male population comes from table B01001_002 and white population

3
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from table B02001_002. The share of males and the share of whites are calculated by dividing each

respective subgroup population by the total population. The poverty rate is constructed using

Table B17001: Poverty Status in the Past 12 Months by Sex by Age, and is defined as the ratio of

individuals with income in the past 12 months below the poverty level to the total population. The

unemployment rate is derived from Table B23025: Employment Status for the Population 16 Years

and Over, and is calculated as the ratio of unemployed individuals—defined as the civilian labor

force minus the employed population—to the civilian labor force. The Gini index is taken from

Table B19083: Gini Index of Income Inequality. The high school graduation rate is computed from

Table B15003: Educational Attainment for the Population 25 Years and Over, and is defined as the

share of individuals with a regular high school diploma or higher over the total population aged 25

and above.

According to common definitions, Southern states include: Alabama (01), Arkansas (05), Delaware

(10), Florida (12), Georgia (13), Kentucky (21), Louisiana (22), Maryland (24), Mississippi (28),

North Carolina (37), Oklahoma (40), South Carolina (45), Tennessee (47), Texas (48), Virginia

(51), and West Virginia (54). Democratic vote share is obtained from the County Presidential

Election Returns dataset, which reports county-level vote shares for U.S. presidential elections from

2000 to 2020. The main variable is constructed as the share of votes received by the Democratic

candidate in the 2020 election, calculated as DEMOCRAT ÷ (DEMOCRAT + REPUBLICAN +

OTHER). In addition, two alternative measures, DEMOCRAT ÷ (DEMOCRAT + REPUBLICAN)

and (DEMOCRAT ↑ REPUBLICAN) ÷ (DEMOCRAT + REPUBLICAN), exhibit nearly identical

correlations with the climate outcome variables.

A.3 County-level Damage from Climate-Related Hazards

In Figure 5, all monetary figures are expressed in adjusted 2023 U.S. dollars. Per-capita measures

use the county population contemporaneous with each event. The plots highlight the average values

for the first 20 years of the sample (1960–1979) and the most recent 20 years (2004–2023) in the

database; for non-per-capita outcomes, these means are rounded to the nearest $10,000.
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A.4 Choice of Billion-Dollar Disasters data for Section 3.4; in particular, Figure

17

To regress state-level electricity prices on disaster costs, we use disaster cost data from NOAA’s

NCEI U.S. Billion-Dollar Weather and Climate Disasters data (normalized by state population

shares) (NOAA National Centers for Environmental Information, 2025b). We use NOAA data rather

than Arizona State University (ASU)’s SHELDUS data (based on National Weather Service data) due

to the benefit of incorporating bottom-up, post-event damage records (for Emergency Management

and Security, 2025). Though the Billion-Dollar Disasters dataset only includes disasters that cost

over $1B in real dollars, the cost is calculated by aggregating federal grant records, private insurance

payout records, government crop insurance claim records, o!cial local and state damage reports,

and more. These records may become available well after the initial disaster occurrence, for example,

in the case of insurance claims. On the other hand, the ASU SHELDUS dataset is based on an

estimation of costs of damages which needs to be completed close to the occurrence of the disaster,

specifically within 60 days of a month, for publication 75 days from the month (NOAA National

Centers for Environmental Information, 2025a). Due to the quick turnaround, costs are much

more estimate-based, or rely on third-party sources such as newspapers, which increases the cost

uncertainty. Therefore, we turn to BDD data to provide realized costs of disasters, which may more

accurately reflect likely damages incorporated into electricity price increases. An acknowledged

downside of the BDD data is the fact that disaster costs are not subdivided between a"ected states;

state-level allocation is done by splitting the total disaster cost among a"ected states by population.

Note that ASU’s SHELDUS data is still used to study property damage over time in section 2.2,

because only ASU’s data provide a breakdown of damage costs into crop vs. property damage.

A.5 Data on Government Costs

This section describes the method used to provide a lower-bound, bottom-up estimate of

government costs of responding to natural disasters and preparing for future events in the 48

contiguous United States plus Washington, D.C., focusing on disasters that climate literature has

indicated may worsen with climate change, such as hurricanes and wildfires. Disasters excluded

include human-caused disasters like terrorist attacks or toxic substances, earthquakes, tsunamis,
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and volcanic eruptions. Data from the years 2017 through 2021 are used to build this estimate. All

datasets were filtered on the above criteria to create a list of included cost instances.

Government costs were estimated separately for subnational (state and local) and federal

government before being aggregated. The costs calculated here are not meant to be exhaustive; some

costs are not included, such as Congress-approved, case-by-case basis supplemental appropriation

funds for agencies other than the Federal Emergency Management Agency (FEMA). Finally, all

dollars are nominal, and costs are assigned to the year the disaster was declared.

Datasets Used

The data for government costs came from federal government sources, with a majority coming

from FEMA. All datasets are publicly available. The list below includes all datasets used:

• Open FEMA Public Assistance (PA) program data: The PA program funds emergency work

and infrastructure repair for public infrastructure.

• Carnegie Disaster Dollar Database: Aggregates disaster project data at a disaster level from

multiple federal programs, including:

– FEMA PA

– FEMA Individuals and Households Program (IHP): Direct assistance to individuals and

households after disasters.

– Department of Housing and Urban Development’s Community Development Block

Grant–Disaster Recovery Grants (CDBG-DR): Flexible recovery grants for housing and

infrastructure provided through HUD

• Open FEMA Mission Assignments: The Mission Assignments program in FEMA provides

funding for state agencies to respond to disasters.

• Open FEMA Hazard Mitigation Grants: The Hazard Mitigation Grants program funds projects

to reduce future disaster risk (e.g., elevation, floodproofing).

• Open FEMA NFIP Claims data: Insurance claims for flood damages covered through the

National Flood Insurance Program.

• RAND 2020 public insurance report: Estimates private insurance payouts for public sector

disaster losses in the categories of public buildings, contents, vehicles, and equipment.
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• NFIP Waterworks Q4 reports: Financial performance and balance sheet data for the NFIP.

• U.S. Census Bureau B11001 Household data: State-level data on number and types of house-

holds, by year.

Methods

To calculate government costs of responding to disasters and preparing for future ones, the

following equations were used for state, local, and federal costs.

State and Local (SLG) Government Costs

SLG government costs = SLG insurance burden on public assets

+ SLG cost share of FEMA PA projects

+ SLG cost share of mission assignments

(1)

The SLG insurance burden on public assets was calculated by taking the portion of FEMA

PA projects dedicated to recovery and calculating the insurance on that project based on RAND’s

average insurance share of total project cost by project size (Dixon et al., 2020). Public assets

considered are Buildings, Contents, Vehicles, and Equipment, and do not include large infrastructure

as commercial insurance is rarer for large infrastructure. Insurance is not reported as a part of public

FEMA data, but was available to RAND at the time of their assessment; hence, a back calculation

is performed. It is assumed that insurance payouts equals insurance premiums, as the cost SLGs

have to pay in the long run is insurance premiums on property.

The SLG cost share of FEMA PA projects is calculable from FEMA PA data as the total project

amount minus the federal share obligated (it is often 25% of the project amount) (Federal Emergency

Management Agency, 2025d).

The SLG cost share of mission assignments is available from FEMA’s Mission Assignment data

as the projected state and local government cost share amount of each project (Federal Emergency

Management Agency, 2025c).

Additional state and local government costs that are not included are case-by-case state legislature-
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approved supplemental appropriations to state agencies to respond to disasters, funding from state

rainy-day funds, and intergovernmental transfers within the state to state agencies and local

governments.

Federal Government Costs

Federal government costs = Federal cost share of FEMA PA projects

+ FEMA IHP projects

+ CDBG-DR grants

+ Federal cost share of mission assignments

+ FEMA Hazard Mitigation Grants

+ Implicit subsidies to NFIP

(2)

The federal cost share of FEMA PA projects was taken from the Disaster Dollar Database,

which had aggregate PA projects to each disaster (Carnegie Endowment for International Peace,

2025). Likewise, the cost of IHP projects and CDBG-DR grants were taken from the Disaster Dollar

Database at a specificity of per-disaster. Each disaster was assigned to a state (meaning there may

be some simplified allocation of costs to the state where the majority of costs were incurred for that

disaster).

The federal cost share of missing assignments was taken from FEMA’s mission assignments data,

as the sum of federal cost share amounts per assignment (Federal Emergency Management Agency,

2025c).

FEMA Hazard Mitigation Grant Programs are federally funded, so the total obligated amount

from each grant was assigned as a federal cost (Federal Emergency Management Agency, 2025b).

Implicit subsidies to the NFIP program are hard to precisely calculate. It is clear based on

recent data that the NFIP program is operating at a loss; the government recently cancelled $16B of

debt to enable the program to pay claims for Hurricanes Harvey, Irma, and Maria (Congressional

Research Service, 2025). Figure 1 shows the current debt level and yearly inflows/outflows of debt

for the NFIP.

8



Figure A1: NFIP borrowing, repayment, and cumulative debt over time. A $16B debt forgiveness in
2017 is reflected as repayment. Debt levels have remained elevated.

There is no one perfect NFIP annual shortfall number to use; for the purposes of a high-level

estimate, NFIP’s operating gains (losses) for the years of interest were used, taken from the program’s

financial reports (Federal Emergency Management Agency, 2022). Another report has projected an

expected shortfall of $1.4B per year based on policy locations and flood simulations (Congressional

Budget O!ce, 2017). $1.4B is in line with the estimation that was used, though that projection

does not account for recent increases in premiums instituted after 2021 (outside of our date range).

To allocate operating losses to the state, FEMA’s NFIP by-state-by-year claims data were used to

calculate a proportion of the claim costs for each state (Federal Emergency Management Agency,

2025a). The proportion was used to allocate operating losses to states.

Additional federal government costs that are not included are case-by-case Congress-approved

supplemental appropriations to federal agencies to respond to disasters and implicit subsidies to

the United States Department of Agriculture (USDA)’s crop insurance program. Supplemental

appropriation agency examples include the Army Corps of Engineers and the USDA. To provide an

estimate of the scale of the above omissions, a 2023 Government Accountability O!ce report projects

that USDA crop insurance subsidies (subsidies to insurance companies to o"er policies at listed rates)
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will average around $3.8 billion yearly from 2024 through 2033 (Government Accountability O!ce,

2023). A 2019 supplemental appropriations for disaster relief bill in 2019 provided the Department

of Agriculture with $3 billion additional dollars to respond to crop losses for 2018 and 2019 disasters,

including Hurricanes Michael and Florence (U.S. Congress, 2019).

Reported Units and Household Aggregation

All costs were calculated on a per-state per-year basis, using nominal dollars. To aggregate,

household counts from the U.S. Census Bureau B11001 dataset were used to estimate a dollar-

per-household per-state per-year cost (United States Census Bureau, 2023). Note that the 2020

household number was interpolated between 2019 and 2021’s value due to a lack of 1-year census

estimate data for the year 2020.

Results Sense Check

Figure 2 shows the final costs by year. As a sense check, a Congressional Budget O!ce report

also estimates an expected value of federal government cost for hurricanes and floods at $17 billion

per year; hurricanes are one of the most costly disaster types (Congressional Budget O!ce, 2019).

A.6 Adaptive lasso Model Features

The adaptive lasso model includes a broad set of features capturing household characteristics,

demographics, energy use, and climate-related variables. These features are primarily indicator

variables created from categorical survey data, along with a set of continuous and log-transformed

predictors.

Housing characteristics are represented by variables such as HH_TYPE_1_UNIT_ATTACHED,

HH_TYPE_1_UNIT_DETACHED, HH_TYPE_2_TO_4_APTS, and HH_TYPE_5_OR_MORE_APTS, which identify

the physical structure of the dwelling unit. Building age is captured through indicators like

HH_BUILT_BEFORE_1959, HH_BUILT_1960_TO_1979, HH_BUILT_1980_TO_1999, HH_BUILT_2000_TO_2009,

and HH_BUILT_2010_ONWARDS.

Variables on dwelling size include HH_ROOMS_1, HH_ROOMS_2_OR_3, HH_ROOMS_4_OR_5, HH_ROOMS_6_OR_7,

and HH_ROOMS_8_OR_MORE, as well as bedroom counts like HH_BEDRM_NONE, HH_BEDRM_1, HH_BEDRM_2_OR_3,
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Figure A2: State and local and federal government costs per year (Nominal $). Costs are in the tens
of billions, aligning in magnitude with external sources on government costs.
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and HH_BEDRM_4_OR_MORE.

Demographic variables include age group indicators such as HH_AGE_UNDER_35, HH_AGE_35_TO_44,

HH_AGE_45_TO_54, HH_AGE_55_TO_64, HH_AGE_65_TO_74, HH_AGE_75_TO_84, and HH_AGE_ABOVE_85.

Racial and ethnic composition is captured by HH_RACE_WHITE, HH_RACE_BLACK, HH_RACE_ASIAN,

HH_RACE_AMERICAN_INDIAN_ALASKA_NATIVE, HH_RACE_NATIVE_HAWAIIAN_PACIFIC_ISLANDER,

HH_RACE_OTHER_OR_MIXED, and HH_HISPANIC_LATINO. Education level is indicated by HH_EDU_BELOW_HS,

HH_EDU_HS, HH_EDU_SOME_COLLEGE, and HH_EDU_BACHELORS_OR_HIGHER.

Household size is captured by HH_SIZE_1, HH_SIZE_2, HH_SIZE_3, and HH_SIZE_4_OR_MORE.

Housing tenure is indicated by OWNER_OCCUPY_HOUSING_UNITS. Location type is identified through

URBAN, SUBURBAN, and METROPOLITAN indicators. Climate variables include HDD65 and CDD65, which

refer to heating and cooling degree days, respectively.

Energy expenditure variables include DOLLAREL (total electricity expenditure), DOLLARNG (total

natural gas expenditure), DOLLARLP (total propane expenditure), and DOLLARFO (total kerosene ex-

penditure). The log-transformed unit prices for these energy types are given by LNDOLLAREL_PERKWH,

LNDOLLARNG_PERBTUNG, LNDOLLARLP_PERBTULP, and LNDOLLARFO_PERBTUFO, respectively.

For energy expenditure lasso models, CDDs and HDDs were captured with their log-transformed

versions, while insurance lasso models use disaster damages from extreme weather events. Finally,

the model includes NWEIGHT, the survey weight for each observation.
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A.7 Notes on heterogeneity in the mortality–temperature relationship by pre-

dicted income

This appendix provides details on the data and calculations of Figure 25.

To estimate heterogeneity in the mortality–temperature relationship by income, we rely on two

datasets: a micro-level mortality dataset used to construct the mortality variable, and a micro-level

demographic dataset containing demographic characteristics and income information. To predict

income levels, we use the American Community Survey 2019-2023 5-year Estimates Public Use

Microdata Sample (PUMS).

The fundamental challenge is that our micro-level mortality dataset does not report individuals’

income, but only a set of demographic characteristics. To address this, we apply the same adaptive

lasso model as in the government cost analysis to the PUMS data to predict income using almost all

available demographic variables from the mortality dataset as predictors, and then impute income

levels for individuals in the mortality dataset. Based on these predictions, we estimate separate

temperature response functions for the top 20% and bottom 20% of the income distribution.

For the analysis, we use mortality data from 2020 and 2022, as mortality records prior to 2020

do not include industry and occupation information, and the 2021 data lack race information.

Approximately 1.78% of education levels, 0.7% of marital statuses, and 0.2% of race observations

are recorded as “Unknown” (or multiracial). Around 4% of observations have missing values for

occupation and industry. In addition, about 20% of occupations fall into categories as 24 – Military,

25 – Other–Miscellaneous (excluding housewife), and 26 – Other–Housewife; similarly, approximately

20% of industries are coded as 22 – Military or 23 – Other–Miscellaneous/Missing. These categories

are not present in the PUMS dataset and are therefore treated as missing.

To address the issue of missing values while retaining as many observations as possible, we

implemented a Random Forest classification approach for imputing missing categorical variables in

the mortality dataset. The method utilized Random Forest parameters set to 100 trees and a terminal

node size of 10 observations to ensure model accuracy. We employed a hierarchical imputation

structure where occupation and industry variables were handled jointly due to their correlation,

followed by sequential imputation of demographic variables (race, marital status, and education)

ordered by ascending missing value count. This approach ensured that variables with fewer missing
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values were imputed first and could subsequently serve as predictors for variables with more extensive

missingness. For predictor selection, we utilized core demographic variables (age, MSA Population,

sex, state, age and age2) as the foundation, and progressively incorporated previously imputed

variables (such as using imputed occupation to predict industry, and both occupation and industry

to predict subsequent demographic variables) to enhance prediction accuracy through the sequential

imputation process.

To predict individual income levels, we train binary classification models to identify whether an

individual falls into the top 20% or bottom 20% of the income distribution using adaptive lasso. The

prediction is based on demographic and employment-related variables available in the ACS-PUMS

dataset. These include age (and its square), sex, race, marital status, educational attainment,

two-digit occupation and industry codes, state of residence, and the share of the individual’s county

population residing in a metropolitan statistical area (MSA). All categorical variables are encoded

as factors (in addition to age), and a model matrix is constructed using sparse representations to

improve computational e!ciency.

To ensure valid model estimation, we restrict the sample to complete cases—that is, observations

with no missing values in any of the predictor variables or target variables (top20 and bottom20

flags).

For each binary outcome (top20 and bottom20), we apply an adaptive lasso approach with

two-stage regularization. In the first stage, a standard lasso model is estimated via 10-fold cross-

validation, and the optimal penalty parameter ω is selected by minimizing the deviance. The

resulting coe!cients are then used to construct adaptive penalty weights, where predictors with

smaller absolute coe!cients receive greater penalization. In the second stage, a weighted lasso model

is fit using the same cross-validation procedure and the adaptive penalty weights.

Model OOS R2 N. Variables E!ciency
Top 20% (ωmin) 0.19 94 0.20
Top 20% (ω1se) 0.19 94 0.20
Bottom 20% (ωmin) 0.09 92 0.09
Bottom 20% (ω1se) 0.09 75 0.11

Table A1: Out-of-sample performance and e!ciency of Adaptive lasso income prediction models.

The adaptive lasso models achieve out-of-sample R² values of 0.193 for top 20% income prediction
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and 0.086 for bottom 20% income prediction (Table A1). OOS R2 calculated using 10-fold cross-

validation. Lambda selected using one-standard-error rule for parsimony. While these R2 values

may appear modest, they are consistent with the inherent di!culty of predicting income extremes

using demographic variables alone, without direct economic indicators.

We then apply the previously trained adaptive lasso models (choosing the ωmin solution) to the

cleaned mortality dataset by first constructing a sparse model matrix using the same predictors

and factor encodings as in training. We generate fitted probabilities for each individual’s likelihood

of being in the top 20% or bottom 20% of the income distribution. To translate probabilities

into income-level categories, we set dynamic thresholds at the 80th percentile of each probability

distribution, designating values above the threshold as “top 20%” (or “bottom 20%”).
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B Model Evaluation Tables

This appendix reports key model evaluation tables. It also provides an analysis of goodness of fit.

For each of the 32 model choices we can choose from, we report the out-of-sample test R-squared

and out-of-sample train R-squared in Tables B5 to B11. Table B13 to B18 report summary statistics

for “test” subsample compared to predicted estimates for each expenditure category.

We complement the out-of-sample R-squared measures by reporting the confidence intervals of

our predictions. Tables B19 to B25 show the 95% confidence intervals in Columns (1) and (2) for

predictions using the lasso predict functions, and Columns (5) and (6) for the predictions using OLS

predict functions. Columns (3) and (7) report the prediction means from lasso and OLS prediction

functions, respectively. Finally, Columns (4) and (8) report confidence intervals as a percentage of

the prediction mean.

Table B1: Relationship Between County Income and Cooling Degree Days

Average annual CDD 2020-2024

(Mean: 1509.75, SD: 885.69)

log(Median Household Income) 13.67 33.09↑↑↑ 28.15↑↑↑
(10.83) (5.55) (6.61)

MSA 24.40
(17.72)

Constant 1,382.06↑↑↑ 1,922.92↑↑↑ 1,959.27↑↑↑
(102.44) (70.87) (75.62)

State FE ↭ ↭
Observations 3,103 3,103 3,103

Di" in avg annual CDD (2020-2024 vs 1981-1990)

(Mean: 252.72, SD: 172.92)

log(Median Household Income) 1.20 1.41 ↑0.00
(2.12) (1.25) (1.49)

MSA 6.99↑
(4.00)

Constant 241.51↑↑↑ 277.69↑↑↑ 288.10↑↑↑
(20.00) (16.01) (17.08)

State FE ↭ ↭
Observations 3,103 3,103 3,103

Notes: Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table B2: Relationship Between County Income and Wildfire smoke PM2.5

Wildfire smoke PM2.5 2020-2024

(Mean: 1.46, SD: 0.45)

log(Median Household Income) ↑0.047↑↑↑ 0.005 ↑0.000
(0.005) (0.004) (0.005)

MSA 0.027↑
(0.014)

Constant 1.894↑↑↑ 1.417↑↑↑ 1.458↑↑↑
(0.052) (0.057) (0.061)

State FE ↭ ↭
Observations 3,108 3,108 3,108

Di" in wildfire smoke PM2.5 (2020-2024 vs 2006-2010)

(Mean: 1.19, SD: 0.38)

log(Median Household Income) ↑0.053↑↑↑ ↑0.002 ↑0.004
(0.005) (0.004) (0.004)

MSA 0.014
(0.012)

Constant 1.684↑↑↑ 1.187↑↑↑ 1.208↑↑↑
(0.043) (0.048) (0.051)

State FE ↭ ↭
Observations 3,108 3,108 3,108

Notes: Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table B3: Relationship Between County Income and Crop and Property Hazard Loss per capita

Average annual Crop and Property Hazard loss per capita 2004-2023

(Mean: 129.79, SD: 230.56)

log(Median Household Income) ↑32.68↑↑↑ ↑26.48↑↑↑ ↑28.74↑↑↑
(2.76) (2.91) (3.47)

MSA 11.16
(9.30)

Constant 435.06↑↑↑ 334.55↑↑↑ 351.18↑↑↑
(26.09) (37.18) (39.67)

State FE ↭ ↭
Observations 3,108 3,108 3,108

Di" in avg annual Crop and Property hazard loss per capita (2004-2023 vs 1960-1979)

(Mean: 35.34, SD: 232.11)

log(Median Household Income) 1.24 12.96↑↑↑ 15.01↑↑↑
(2.84) (3.15) (3.75)

MSA ↑10.13
(10.06)

Constant 23.72 ↑190.61↑↑↑ ↑205.71↑↑↑
(26.85) (40.21) (42.91)

State FE ↭ ↭
Observations 3,108 3,108 3,108

Notes: Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table B4: Aggregate Direct Damages by Climate-Related Hazard, 2004–2023

Crop Damage Property Damage Crop+ Property Damage

Hazard 2023$ Per Capita 2023$ Per Capita 2023$ Per Capita

Flooding 10,259,839,440
(15.3%)

698,580
(14.5%)

243,005,515,202
(41.3%)

2,427,717
(29.0%)

253,265,354,642
(38.6%)

3,126,297
(23.7%)

Hurricane / Tropical Storm 12,196,569,477
(18.2%)

697,524
(14.5%)

190,099,817,383
(32.3%)

2,872,063
(34.3%)

202,296,386,860
(30.9%)

3,569,586
(27.0%)

Tornado 410,158,514
(0.6%)

40,700
(0.8%)

41,424,505,588
(7.0%)

906,408
(10.8%)

41,834,664,102
(6.4%)

947,107
(7.2%)

Wildfire 474,073,127
(0.7%)

85,467
(1.8%)

34,195,675,529
(5.8%)

615,379
(7.3%)

34,669,748,656
(5.3%)

700,845
(5.3%)

Hail 3,033,934,389
(4.5%)

356,389
(7.4%)

32,586,900,628
(5.5%)

312,703
(3.7%)

35,620,835,017
(5.4%)

669,092
(5.1%)

Drought 28,411,885,268
(42.3%)

2,534,851
(52.6%)

2,060,231,702
(0.4%)

111,493
(1.3%)

30,472,116,970
(4.6%)

2,646,343
(20.0%)

Wind 2,163,257,893
(3.2%)

126,457
(2.6%)

25,669,257,293
(4.4%)

404,366
(4.8%)

27,832,515,186
(4.2%)

530,824
(4.0%)

Winter Weather 8,164,408,164
(12.2%)

165,547
(3.4%)

11,253,415,355
(1.9%)

519,124
(6.2%)

19,417,823,519
(3.0%)

684,671
(5.2%)

Severe Storm / Thunder Storm 1,278,327,695
(1.9%)

107,704
(2.2%)

5,453,006,280
(0.9%)

184,417
(2.2%)

6,731,333,975
(1.0%)

292,121
(2.2%)

Landslide 29,923,235
(0.0%)

139
(0.0%)

2,074,174,916
(0.4%)

20,075
(0.2%)

2,104,098,151
(0.3%)

20,215
(0.2%)

Heat 730,899,330
(1.1%)

7,036
(0.1%)

41,347,963
(0.0%)

3,529
(0.0%)

772,247,293
(0.1%)

10,564
(0.1%)

Coastal 0.0
(0.0%)

0
(0.0%)

387,399,522
(0.1%)

2,672
(0.0%)

387,399,522
(0.1%)

2,672
(0.0%)

Fog 1
(0.0%)

0
(0.0%)

48,233,102
(0.0%)

1,767
(0.0%)

48,233,103
(0.0%)

1,767
(0.0%)

Note: Values report the cumulative direct damages for each hazard across the contiguous United States over the past
20 years (2004–2023), ranked in descending order by total damage.
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Table B5: Out of Sample R-Squared for Electricity Expenditure for Heating

Model OOS R2 Train R2 Adj. R2 OOS R2 (OLS) Train R2 (OLS) Adj. R2 (OLS)

1 Level, base, ω.1se 0.3478 0.3480 0.3451 0.3644 0.3645 0.3617
2 Level, sq, ω.1se 0.3513 0.3514 0.3483 0.3648 0.3650 0.3619
3 Level, int, ω.1se 0.3467 0.3468 0.3444 0.3582 0.3584 0.3560
4 Level, sq int, ω.1se 0.3546 0.3548 0.3516 0.3648 0.3650 0.3619
5 Level, base, ω.min 0.3813 0.3814 0.3745 0.3816 0.3817 0.3748
6 Level, sq, ω.min 0.3887 0.3888 0.3804 0.3902 0.3904 0.3820
7 Level, int, ω.min 0.3831 0.3832 0.3760 0.3833 0.3834 0.3763
8 Level, sq int, ω.min 0.3900 0.3901 0.3820 0.3929 0.3931 0.3850
9 Log, base, ω.1se 0.2796 0.2797 0.2775 0.3041 0.3042 0.3021

10 Log, sq, ω.1se 0.2701 0.2702 0.2675 0.3173 0.3174 0.3149
11 Log, int, ω.1se 0.2756 0.2758 0.2736 0.3041 0.3042 0.3021
12 Log, sq int, ω.1se 0.2723 0.2725 0.2700 0.3195 0.3197 0.3173
13 Log, base, ω.min 0.3575 0.3576 0.3513 0.3600 0.3602 0.3539
14 Log, sq, ω.min 0.3737 0.3739 0.3650 0.3769 0.3771 0.3683
15 Log, int, ω.min 0.3580 0.3582 0.3516 0.3604 0.3606 0.3541
16 Log, sq int, ω.min 0.3789 0.3791 0.3698 0.3793 0.3795 0.3703
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Table B6: Out of Sample R-Squared for Electricity Expenditure (Non-Heating)

Model OOS R2 Train R2 Adj. R2 OOS R2 (OLS) Train R2 (OLS) Adj. R2 (OLS)

1 Level, base, ω.1se 0.3478 0.3480 0.3451 0.3644 0.3645 0.3617
2 Level, sq, ω.1se 0.3513 0.3514 0.3483 0.3648 0.3650 0.3619
3 Level, int, ω.1se 0.3467 0.3468 0.3444 0.3582 0.3584 0.3560
4 Level, sq int, ω.1se 0.3546 0.3548 0.3516 0.3648 0.3650 0.3619
5 Level, base, ω.min 0.3813 0.3814 0.3745 0.3816 0.3817 0.3748
6 Level, sq, ω.min 0.3887 0.3888 0.3804 0.3902 0.3904 0.3820
7 Level, int, ω.min 0.3831 0.3832 0.3760 0.3833 0.3834 0.3763
8 Level, sq int, ω.min 0.3900 0.3901 0.3820 0.3929 0.3931 0.3850
9 Log, base, ω.1se 0.2796 0.2797 0.2775 0.3041 0.3042 0.3021

10 Log, sq, ω.1se 0.2701 0.2702 0.2675 0.3173 0.3174 0.3149
11 Log, int, ω.1se 0.2756 0.2758 0.2736 0.3041 0.3042 0.3021
12 Log, sq int, ω.1se 0.2723 0.2725 0.2700 0.3195 0.3197 0.3173
13 Log, base, ω.min 0.3575 0.3576 0.3513 0.3600 0.3602 0.3539
14 Log, sq, ω.min 0.3737 0.3739 0.3650 0.3769 0.3771 0.3683
15 Log, int, ω.min 0.3580 0.3582 0.3516 0.3604 0.3606 0.3541
16 Log, sq int, ω.min 0.3789 0.3791 0.3698 0.3793 0.3795 0.3703
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Table B7: Out of Sample R-Squared for Electricity Expenditure for Cooling

Model OOS R2 Train R2 Adj. R2 OOS R2 (OLS) Train R2 (OLS) Adj. R2 (OLS)

1 Level, base, ω.1se 0.2636 0.2637 0.2604 0.3676 0.3678 0.3649
2 Level, sq, ω.1se 0.2632 0.2634 0.2623 0.2421 0.2423 0.2411
3 Level, int, ω.1se 0.2635 0.2636 0.2623 0.3157 0.3158 0.3146
4 Level, sq int, ω.1se 0.2620 0.2622 0.2608 0.3182 0.3183 0.3170
5 Level, base, ω.min 0.3479 0.3481 0.3450 0.3677 0.3679 0.3649
6 Level, sq, ω.min 0.2560 0.2561 0.2534 0.2558 0.2560 0.2532
7 Level, int, ω.min 0.3317 0.3318 0.3287 0.3332 0.3333 0.3302
8 Level, sq int, ω.min 0.3312 0.3313 0.3283 0.3303 0.3304 0.3273
9 Log, base, ω.1se 0.1275 0.1277 0.1265 0.1579 0.1581 0.1569

10 Log, sq, ω.1se 0.1317 0.1318 0.1305 0.1714 0.1716 0.1703
11 Log, int, ω.1se 0.1616 0.1618 0.1604 0.2052 0.2054 0.2041
12 Log, sq int, ω.1se 0.1500 0.1501 0.1489 0.2024 0.2026 0.2014
13 Log, base, ω.min 0.1973 0.1975 0.1949 0.2013 0.2014 0.1989
14 Log, sq, ω.min 0.1985 0.1986 0.1961 0.2021 0.2022 0.1997
15 Log, int, ω.min 0.2021 0.2022 0.1992 0.2014 0.2015 0.1985
16 Log, sq int, ω.min 0.2025 0.2026 0.1998 0.2009 0.2011 0.1982
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Table B8: Out of Sample R-Squared for Natural Gas Expenditure for Heating

Model OOS R2 Train R2 Adj. R2 OOS R2 (OLS) Train R2 (OLS) Adj. R2 (OLS)

1 Level, base, ω.1se 0.1977 0.1996 0.1967 0.2423 0.2442 0.2414
2 Level, sq, ω.1se 0.1997 0.2016 0.1987 0.2423 0.2442 0.2414
3 Level, int, ω.1se 0.1915 0.1935 0.1907 0.2308 0.2326 0.2300
4 Level, sq int, ω.1se 0.1868 0.1888 0.1858 0.2423 0.2442 0.2414
5 Level, base, ω.min 0.2910 0.2927 0.2862 0.2914 0.2931 0.2867
6 Level, sq, ω.min 0.2915 0.2932 0.2864 0.2917 0.2934 0.2867
7 Level, int, ω.min 0.2925 0.2942 0.2877 0.2929 0.2946 0.2882
8 Level, sq int, ω.min 0.2891 0.2908 0.2840 0.2905 0.2922 0.2854
9 Log, base, ω.1se 0.2336 0.2354 0.2323 0.2589 0.2607 0.2577

10 Log, sq, ω.1se 0.2335 0.2353 0.2322 0.2589 0.2607 0.2577
11 Log, int, ω.1se 0.2235 0.2253 0.2220 0.2665 0.2683 0.2651
12 Log, sq int, ω.1se 0.2228 0.2247 0.2216 0.2603 0.2620 0.2590
13 Log, base, ω.min 0.2849 0.2866 0.2804 0.2860 0.2877 0.2815
14 Log, sq, ω.min 0.2849 0.2866 0.2804 0.2860 0.2877 0.2815
15 Log, int, ω.min 0.2858 0.2875 0.2813 0.2874 0.2891 0.2829
16 Log, sq int, ω.min 0.2857 0.2875 0.2812 0.2874 0.2891 0.2829
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Table B9: Out of Sample R-Squared for Natural Gas Expenditure (Non-Heating

Model OOS R2 Train R2 Adj. R2 OOS R2 (OLS) Train R2 (OLS) Adj. R2 (OLS)

1 Level, base, ω.1se 0.0431 0.0432 0.0406 0.0431 0.0432 0.0406
2 Level, sq, ω.1se 0.0431 0.0432 0.0406 0.0431 0.0432 0.0406
3 Level, int, ω.1se 0.0431 0.0432 0.0406 0.0431 0.0432 0.0406
4 Level, sq int, ω.1se 0.0431 0.0432 0.0406 0.0431 0.0432 0.0406
5 Level, base, ω.min 0.0932 0.0933 0.0710 0.0886 0.0887 0.0663
6 Level, sq, ω.min 0.0942 0.0943 0.0720 0.0888 0.0888 0.0665
7 Level, int, ω.min 0.0917 0.0917 0.0669 0.0909 0.0910 0.0661
8 Level, sq int, ω.min 0.0926 0.0926 0.0704 0.0888 0.0888 0.0665
9 Log, base, ω.1se -0.0846 -0.0845 -0.0933 -0.0990 -0.0989 -0.1078

10 Log, sq, ω.1se -0.0773 -0.0773 -0.0860 -0.0990 -0.0989 -0.1078
11 Log, int, ω.1se -0.0828 -0.0827 -0.0914 -0.0990 -0.0989 -0.1078
12 Log, sq int, ω.1se -0.0813 -0.0812 -0.0899 -0.0990 -0.0989 -0.1078
13 Log, base, ω.min -0.0689 -0.0688 -0.0833 -0.0686 -0.0686 -0.0830
14 Log, sq, ω.min -0.0715 -0.0714 -0.0844 -0.0769 -0.0769 -0.0900
15 Log, int, ω.min -0.0690 -0.0689 -0.0834 -0.0686 -0.0686 -0.0830
16 Log, sq int, ω.min -0.0693 -0.0693 -0.0823 -0.0769 -0.0769 -0.0900
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Table B10: Out of Sample R-Squared for Propane Expenditure for Heating

Model OOS R2 Train R2 Adj. R2 OOS R2 (OLS) Train R2 (OLS) Adj. R2 (OLS)

1 Level, base, ω.1se 0.1682 0.1699 0.1479 0.1603 0.1621 0.1399
2 Level, sq, ω.1se 0.1682 0.1699 0.1479 0.1603 0.1621 0.1399
3 Level, int, ω.1se 0.1480 0.1498 0.1273 0.1169 0.1188 0.0955
4 Level, sq int, ω.1se 0.1480 0.1498 0.1273 0.1169 0.1188 0.0955
5 Level, base, ω.min 0.1958 0.1975 0.1594 0.1786 0.1804 0.1415
6 Level, sq, ω.min 0.1958 0.1975 0.1594 0.1786 0.1804 0.1415
7 Level, int, ω.min 0.1850 0.1868 0.1444 0.1624 0.1642 0.1206
8 Level, sq int, ω.min 0.1850 0.1868 0.1444 0.1624 0.1642 0.1206
9 Log, base, ω.1se 0.1810 0.1827 0.1555 0.1803 0.1820 0.1547

10 Log, sq, ω.1se 0.1810 0.1827 0.1555 0.1803 0.1820 0.1547
11 Log, int, ω.1se 0.1404 0.1422 0.1156 0.1022 0.1041 0.0763
12 Log, sq int, ω.1se 0.1404 0.1422 0.1156 0.1022 0.1041 0.0763
13 Log, base, ω.min 0.1937 0.1954 0.1610 0.1789 0.1806 0.1457
14 Log, sq, ω.min 0.1937 0.1954 0.1610 0.1789 0.1806 0.1457
15 Log, int, ω.min 0.1824 0.1842 0.1397 0.1763 0.1781 0.1333
16 Log, sq int, ω.min 0.1824 0.1842 0.1397 0.1763 0.1781 0.1333
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Table B11: Out of Sample R-Squared for Kerosene Expenditure for Heating

Model OOS R2 Train R2 Adj. R2 OOS R2 (OLS) Train R2 (OLS) Adj. R2 (OLS)

1 Level, base, ω.1se 0.1625 0.1686 0.1517 0.1723 0.1783 0.1616
2 Level, sq, ω.1se 0.1403 0.1465 0.1308 0.1228 0.1292 0.1131
3 Level, int, ω.1se 0.1578 0.1639 0.1469 0.1723 0.1783 0.1616
4 Level, sq int, ω.1se 0.1402 0.1465 0.1307 0.1228 0.1292 0.1131
5 Level, base, ω.min 0.1836 0.1895 0.1559 0.1447 0.1509 0.1156
6 Level, sq, ω.min 0.1730 0.1790 0.1401 0.1431 0.1493 0.1090
7 Level, int, ω.min 0.1838 0.1897 0.1560 0.1447 0.1509 0.1156
8 Level, sq int, ω.min 0.1712 0.1772 0.1382 0.1431 0.1493 0.1090
9 Log, base, ω.1se 0.1829 0.1888 0.1692 0.1961 0.2019 0.1827

10 Log, sq, ω.1se 0.1280 0.1344 0.1151 0.1210 0.1273 0.1079
11 Log, int, ω.1se 0.1827 0.1886 0.1691 0.1961 0.2019 0.1827
12 Log, sq int, ω.1se 0.1280 0.1343 0.1151 0.1210 0.1273 0.1079
13 Log, base, ω.min 0.2192 0.2249 0.1957 0.2034 0.2092 0.1795
14 Log, sq, ω.min 0.2025 0.2083 0.1738 0.1977 0.2035 0.1689
15 Log, int, ω.min 0.2191 0.2248 0.1957 0.2034 0.2092 0.1795
16 Log, sq int, ω.min 0.2025 0.2083 0.1738 0.1977 0.2035 0.1689
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Table B12: Summary Statistics for Actual and Predicted Electricity Use (Heating)

Statistic N Mean St. Dev. Min Median Max

Test data 2,848 1,649.57 954.84 2.85 1,499.38 12,064.84
Predicted, Adaptive Lasso 2,848 1,653.73 570.40 101.90 1,684.85 3,153.04
Predicted, OLS 2,848 1,657.92 573.90 73.07 1,688.98 3,190.18
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Table B13: Summary Statistics for Actual and Predicted Electricity Use (Non-Heating)

Statistic N Mean St. Dev. Min Median Max

Test data 2,848 1,649.57 954.84 2.85 1,499.38 12,064.84
Predicted, Adaptive Lasso 2,848 1,653.73 570.40 101.90 1,684.85 3,153.04
Predicted, OLS 2,848 1,657.92 573.90 73.07 1,688.98 3,190.18

28



Table B14: Summary Statistics for Actual and Predicted Electricity Use (Cooling)

Statistic N Mean St. Dev. Min Median Max

Test data 9,248 255.34 273.96 0.00 183.08 3,454.45
Predicted, Adaptive Lasso 9,248 256.47 152.89 0.00 247.00 834.30
Predicted, OLS 9,248 255.75 157.91 0.00 242.10 909.60
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Table B15: Summary Statistics for Actual and Predicted Natural Gas Use (Heating)

Statistic N Mean St. Dev. Min Median Max

Test data 4,797 713.13 446.50 0.37 619.62 8,154.98
Predicted, Adaptive Lasso 4,797 726.32 221.01 0.00 722.60 1,409.22
Predicted, OLS 4,797 726.25 221.98 0.00 722.88 1,410.99
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Table B16: Summary Statistics for Actual and Predicted Natural Gas Use (Non-Heating)

Statistic N Mean St. Dev. Min Median Max

Test data 754 251.74 303.40 0.97 199.90 4,332.04
Predicted, Adaptive Lasso 754 248.64 94.00 0.00 243.44 630.36
Predicted, OLS 754 248.99 101.02 0.00 244.95 656.80
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Table B17: Summary Statistics for Actual and Predicted Propane Use (Heating)

Statistic N Mean St. Dev. Min Median Max

Test data 464 962.60 641.44 1.59 838.38 6,118.84
Predicted, Adaptive Lasso 464 994.61 352.09 0.00 995.14 1,973.88
Predicted, OLS 464 990.02 383.45 0.00 991.98 2,009.94
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Table B18: Summary Statistics for Actual and Predicted Kerosene Use (Heating)

Statistic N Mean St. Dev. Min Median Max

Test data 549 1,383.2 806.2 115.8 1,218.2 7,003.7
Predicted, Adaptive Lasso 549 1,415.0 486.0 0.0 1,406.9 2,853.3
Predicted, OLS 549 1,424.1 541.6 0.0 1,419.9 3,214.3
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Table B19: Confidence Interval for Electricity Expenditure for Heating

Model LB
(ALASSO)

UB
(ALASSO)

Mean
(ALASSO)

CI Width
(ALASSO)

LB
(OLS)

UB
(OLS)

Mean
(OLS)

CI Width
(OLS)

Level, base, ω.1se 1624.04 1660.27 1642.15 2.21 1630.34 1670.50 1650.42 2.43
Level, sq, ω.1se 1624.15 1660.74 1642.45 2.23 1630.07 1670.28 1650.18 2.44
Level, int, ω.1se 1624.82 1661.51 1643.17 2.23 1630.26 1670.38 1650.32 2.43
Level, sq int, ω.1se 1625.27 1662.32 1643.80 2.25 1630.07 1670.28 1650.18 2.44
Level, base, ω.min 1625.11 1666.57 1645.84 2.52 1624.82 1666.56 1645.69 2.54
Level, sq, ω.min 1633.00 1674.90 1653.95 2.53 1636.09 1678.22 1657.16 2.54
Level, int, ω.min 1625.89 1667.42 1646.66 2.52 1622.79 1664.54 1643.67 2.54
Level, sq int, ω.min 1632.77 1674.69 1653.73 2.53 1636.84 1679.01 1657.92 2.54
Log, base, ω.1se 1460.32 1492.64 1476.48 2.19 1655.34 1696.14 1675.74 2.44
Log, sq, ω.1se 1453.73 1484.64 1469.19 2.10 1647.39 1689.23 1668.31 2.51
Log, int, ω.1se 1458.12 1490.01 1474.07 2.16 1655.34 1696.14 1675.74 2.44
Log, sq int, ω.1se 1454.81 1485.91 1470.36 2.12 1652.04 1693.86 1672.95 2.50
Log, base, ω.min 1491.24 1529.82 1510.53 2.55 1659.65 1703.15 1681.40 2.59
Log, sq, ω.min 1502.40 1541.89 1522.15 2.59 1669.39 1713.55 1691.47 2.61
Log, int, ω.min 1488.21 1526.60 1507.41 2.55 1653.31 1696.54 1674.92 2.58
Log, sq int, ω.min 1505.86 1545.70 1525.78 2.61 1671.48 1715.99 1693.74 2.63

34



Table B20: Confidence Interval for Electricity Expenditure (Non-Heating)

Model LB
(ALASSO)

UB
(ALASSO)

Mean
(ALASSO)

CI Width
(ALASSO)

LB
(OLS)

UB
(OLS)

Mean
(OLS)

CI Width
(OLS)

Level, base, ω.1se 1624.04 1660.27 1642.16 2.21 1630.34 1670.50 1650.42 2.43
Level, sq, ω.1se 1624.15 1660.74 1642.45 2.23 1630.07 1670.28 1650.18 2.44
Level, int, ω.1se 1624.83 1661.51 1643.17 2.23 1630.26 1670.38 1650.32 2.43
Level, sq int, ω.1se 1625.27 1662.32 1643.80 2.25 1630.07 1670.28 1650.18 2.44
Level, base, ω.min 1625.11 1666.57 1645.84 2.52 1624.82 1666.56 1645.69 2.54
Level, sq, ω.min 1633.00 1674.90 1653.95 2.53 1636.09 1678.22 1657.16 2.54
Level, int, ω.min 1625.89 1667.42 1646.66 2.52 1622.80 1664.54 1643.67 2.54
Level, sq int, ω.min 1632.77 1674.69 1653.73 2.53 1636.84 1679.01 1657.92 2.54
Log, base, ω.1se 1460.32 1492.64 1476.48 2.19 1655.34 1696.14 1675.74 2.44
Log, sq, ω.1se 1453.73 1484.65 1469.19 2.10 1647.39 1689.23 1668.31 2.51
Log, int, ω.1se 1458.12 1490.01 1474.07 2.16 1655.34 1696.14 1675.74 2.44
Log, sq int, ω.1se 1454.81 1485.91 1470.36 2.12 1652.04 1693.86 1672.95 2.50
Log, base, ω.min 1491.25 1529.82 1510.53 2.55 1659.65 1703.15 1681.40 2.59
Log, sq, ω.min 1502.40 1541.89 1522.15 2.59 1669.39 1713.55 1691.47 2.61
Log, int, ω.min 1488.21 1526.60 1507.41 2.55 1653.31 1696.54 1674.93 2.58
Log, sq int, ω.min 1505.86 1545.70 1525.78 2.61 1671.48 1715.99 1693.74 2.63
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Table B21: Confidence Interval for Electricity Expenditure for Cooling

Model LB
(ALASSO)

UB
(ALASSO)

Mean
(ALASSO)

CI Width
(ALASSO)

LB
(OLS)

UB
(OLS)

Mean
(OLS)

CI Width
(OLS)

Level, base, ω.1se 255.24 261.27 258.26 2.34 252.30 258.74 255.52 2.52
Level, sq, ω.1se 253.76 258.76 256.26 1.95 254.38 260.28 257.33 2.30
Level, int, ω.1se 253.73 259.37 256.55 2.20 253.24 259.27 256.26 2.35
Level, sq int, ω.1se 252.71 258.33 255.52 2.20 251.71 257.71 254.71 2.35
Level, base, ω.min 253.36 259.59 256.47 2.43 252.53 258.97 255.75 2.52
Level, sq, ω.min 252.96 258.89 255.93 2.32 252.76 258.71 255.74 2.33
Level, int, ω.min 250.22 256.34 253.28 2.42 249.91 256.09 253.00 2.44
Level, sq int, ω.min 250.51 256.63 253.57 2.41 250.40 256.57 253.49 2.43
Log, base, ω.1se 141.13 146.15 143.64 3.50 640.57 663.86 652.21 3.57
Log, sq, ω.1se 141.78 146.91 144.34 3.56 642.05 665.74 653.89 3.62
Log, int, ω.1se 144.80 150.33 147.57 3.75 619.65 645.19 632.42 4.04
Log, sq int, ω.1se 144.39 149.90 147.15 3.75 627.28 652.92 640.10 4.01
Log, base, ω.min 152.62 158.40 155.51 3.72 646.52 671.37 658.95 3.77
Log, sq, ω.min 152.48 158.29 155.39 3.74 646.37 671.32 658.85 3.79
Log, int, ω.min 154.08 160.01 157.04 3.77 638.60 663.12 650.86 3.77
Log, sq int, ω.min 153.08 158.96 156.02 3.76 645.69 670.39 658.04 3.75
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Table B22: Confidence Interval for Natural Gas Expenditure for Heating

Model LB
(ALASSO)

UB
(ALASSO)

Mean
(ALASSO)

CI Width
(ALASSO)

LB
(OLS)

UB
(OLS)

Mean
(OLS)

CI Width
(OLS)

Level, base, ω.1se 721.69 729.74 725.72 1.11 720.11 731.75 725.93 1.60
Level, sq, ω.1se 720.72 729.19 724.96 1.17 720.11 731.75 725.93 1.60
Level, int, ω.1se 710.76 718.22 714.49 1.04 706.86 718.24 712.55 1.60
Level, sq int, ω.1se 719.34 726.39 722.86 0.98 720.11 731.75 725.93 1.60
Level, base, ω.min 720.57 733.10 726.83 1.72 720.38 732.96 726.67 1.73
Level, sq, ω.min 719.89 732.37 726.13 1.72 718.46 731.07 724.77 1.74
Level, int, ω.min 720.03 732.53 726.28 1.72 719.96 732.53 726.25 1.73
Level, sq int, ω.min 719.96 732.37 726.16 1.71 719.51 732.04 725.78 1.73
Log, base, ω.1se 654.88 664.27 659.57 1.42 730.43 742.82 736.63 1.68
Log, sq, ω.1se 654.87 664.24 659.55 1.42 730.43 742.82 736.63 1.68
Log, int, ω.1se 649.76 658.57 654.16 1.35 730.82 743.28 737.05 1.69
Log, sq int, ω.1se 651.60 660.48 656.04 1.35 730.02 742.39 736.21 1.68
Log, base, ω.min 661.19 672.89 667.04 1.75 725.98 739.04 732.51 1.78
Log, sq, ω.min 661.18 672.88 667.03 1.75 725.98 739.04 732.51 1.78
Log, int, ω.min 660.58 672.24 666.41 1.75 725.63 738.68 732.15 1.78
Log, sq int, ω.min 660.47 672.12 666.29 1.75 725.63 738.68 732.15 1.78
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Table B23: Confidence Interval for Natural Gas Expenditure (Non-Heating)

Model LB
(ALASSO)

UB
(ALASSO)

Mean
(ALASSO)

CI Width
(ALASSO)

LB
(OLS)

UB
(OLS)

Mean
(OLS)

CI Width
(OLS)

Level, base, ω.1se 243.48 250.15 246.82 2.70 243.48 250.15 246.82 2.70
Level, sq, ω.1se 243.48 250.15 246.82 2.70 243.48 250.15 246.82 2.70
Level, int, ω.1se 243.48 250.15 246.82 2.70 243.48 250.15 246.82 2.70
Level, sq int, ω.1se 243.48 250.15 246.82 2.70 243.48 250.15 246.82 2.70
Level, base, ω.min 241.60 255.07 248.34 5.43 241.55 255.89 248.72 5.77
Level, sq, ω.min 241.92 255.36 248.64 5.41 241.77 256.21 248.99 5.80
Level, int, ω.min 241.60 255.41 248.51 5.56 241.82 256.13 248.97 5.75
Level, sq int, ω.min 241.85 255.34 248.59 5.43 241.77 256.21 248.99 5.80
Log, base, ω.1se 133.82 140.68 137.25 5.00 390.62 447.82 419.22 13.64
Log, sq, ω.1se 134.32 141.63 137.98 5.29 390.62 447.82 419.22 13.64
Log, int, ω.1se 134.01 140.98 137.50 5.07 390.62 447.82 419.22 13.64
Log, sq int, ω.1se 134.09 141.14 137.61 5.12 390.62 447.82 419.22 13.64
Log, base, ω.min 144.63 163.36 153.99 12.16 380.83 430.25 405.54 12.19
Log, sq, ω.min 143.60 161.67 152.64 11.84 380.16 429.74 404.95 12.24
Log, int, ω.min 144.39 162.93 153.66 12.07 380.83 430.25 405.54 12.19
Log, sq int, ω.min 143.34 161.09 152.21 11.66 380.16 429.74 404.95 12.24
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Table B24: Confidence Interval for Propane Expenditure for Heating

Model LB
(ALASSO)

UB
(ALASSO)

Mean
(ALASSO)

CI Width
(ALASSO)

LB
(OLS)

UB
(OLS)

Mean
(OLS)

CI Width
(OLS)

Level, base, ω.1se 990.62 1032.07 1011.35 4.10 977.19 1038.80 1007.99 6.11
Level, sq, ω.1se 990.62 1032.07 1011.35 4.10 977.19 1038.80 1007.99 6.11
Level, int, ω.1se 981.65 1025.53 1003.59 4.37 973.72 1038.06 1005.89 6.40
Level, sq int, ω.1se 981.65 1025.53 1003.59 4.37 973.72 1038.06 1005.89 6.40
Level, base, ω.min 962.49 1026.73 994.61 6.46 955.04 1025.00 990.02 7.07
Level, sq, ω.min 962.49 1026.73 994.61 6.46 955.04 1025.00 990.02 7.07
Level, int, ω.min 960.33 1025.07 992.70 6.52 955.72 1026.32 991.02 7.12
Level, sq int, ω.min 960.33 1025.07 992.70 6.52 955.72 1026.32 991.02 7.12
Log, base, ω.1se 851.30 896.85 874.08 5.21 987.21 1062.02 1024.62 7.30
Log, sq, ω.1se 851.30 896.85 874.08 5.21 987.21 1062.02 1024.62 7.30
Log, int, ω.1se 851.16 900.05 875.61 5.58 996.60 1072.38 1034.49 7.33
Log, sq int, ω.1se 851.16 900.05 875.61 5.58 996.60 1072.38 1034.49 7.33
Log, base, ω.min 856.83 917.12 886.98 6.80 973.84 1049.65 1011.75 7.49
Log, sq, ω.min 856.83 917.12 886.98 6.80 973.84 1049.65 1011.75 7.49
Log, int, ω.min 854.44 919.87 887.15 7.38 967.88 1046.89 1007.38 7.84
Log, sq int, ω.min 854.44 919.87 887.15 7.38 967.88 1046.89 1007.38 7.84
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Table B25: Confidence Interval for Kerosene Expenditure for Heating

Model LB
(ALASSO)

UB
(ALASSO)

Mean
(ALASSO)

CI Width
(ALASSO)

LB
(OLS)

UB
(OLS)

Mean
(OLS)

CI Width
(OLS)

Level, base, ω.1se 1377.44 1424.24 1400.84 3.34 1377.14 1449.82 1413.48 5.14
Level, sq, ω.1se 1355.81 1403.02 1379.41 3.42 1326.51 1394.48 1360.50 5.00
Level, int, ω.1se 1372.75 1419.20 1395.98 3.33 1377.14 1449.82 1413.48 5.14
Level, sq int, ω.1se 1355.42 1402.72 1379.07 3.43 1326.51 1394.48 1360.50 5.00
Level, base, ω.min 1374.30 1455.79 1415.04 5.76 1378.74 1469.55 1424.15 6.38
Level, sq, ω.min 1364.57 1448.15 1406.36 5.94 1381.37 1473.15 1427.26 6.43
Level, int, ω.min 1373.93 1455.35 1414.64 5.76 1378.74 1469.55 1424.15 6.38
Level, sq int, ω.min 1364.07 1447.90 1405.99 5.96 1381.37 1473.15 1427.26 6.43
Log, base, ω.1se 1221.91 1269.23 1245.57 3.80 1387.91 1461.98 1424.94 5.20
Log, sq, ω.1se 1190.67 1236.33 1213.50 3.76 1346.81 1413.15 1379.98 4.81
Log, int, ω.1se 1221.74 1269.04 1245.39 3.80 1387.91 1461.98 1424.94 5.20
Log, sq int, ω.1se 1190.62 1236.28 1213.45 3.76 1346.81 1413.15 1379.98 4.81
Log, base, ω.min 1241.64 1313.14 1277.39 5.60 1394.92 1482.05 1438.49 6.06
Log, sq, ω.min 1237.70 1310.93 1274.32 5.75 1393.51 1480.78 1437.15 6.07
Log, int, ω.min 1241.60 1313.10 1277.35 5.60 1394.92 1482.05 1438.49 6.06
Log, sq int, ω.min 1237.68 1310.90 1274.29 5.75 1393.51 1480.78 1437.15 6.07
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C Disaggregation of Energy Changes

Figure C3: Predicted levels in fuel use by census division and income decile
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D Additional Maps

(a) More Conservative Estimate

(b) Less Conservative Estimate

Figure D4: Insurance costs: More vs. Less Conservative Estimate
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(a) More Conservative Estimate

(b) Less Conservative Estimate

Figure D5: Indirect insurance costs: More vs. Less Conservative Estimate
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Figure D6: Energy cost quantity change
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(a) More Conservative Estimate

(b) Less Conservative Estimate

Figure D7: Energy cost price increase: More vs. Less Conservative Estimate

45



(a) More Conservative Estimate

(b) Less Conservative Estimate

Figure D8: Indirect energy cost price increase: More vs. Less Conservative Estimate
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(a) More Conservative Estimate

(b) Less Conservative Estimate

Figure D9: Cost borne by government: More vs. Less Conservative Estimate
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(a) More Conservative Estimate

(b) Less Conservative Estimate

Figure D10: Crop Costs: More vs. Less Conservative Estimate
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Figure D11: Mortality cost (heat)
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(a) More Conservative Estimate

(b) Less Conservative Estimate

Figure D12: Mortality cost (PM2.5): More vs. Less Conservative Estimate
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(a) More Conservative Estimate

(b) Less Conservative Estimate

Figure D13: Aggregate Damages: More vs. Less Conservative Estimate
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