## Municipal Finance and Labor Mobility

Pengjie Gao Xiaodan Gao

University of Notre Dame RUC

2025 Municipal Finance Conference July 23, 2025

#### Motivation

- Prior municipal bond studies lack theoretical foundation, with few addressing this gap:
  - Carlson et al. (2024); Gordon and Guerron-Quintana (2023); Myers (2024)
- Public finance: Ricardian equivalence, tax-smoothing hypothesis
  - Barro (1979): "neglects any effects of public debt policy on migration, which would be an important consideration for a local government" (p. 941)
- Urban economics: tax and migration:
  - Tiebout (1956): how individuals "vote with their feet" based on local public goods and taxes, without considering debt

### Research Questions

#### How does labor migration impact municipal tax and debt financing?

- What are the key empirical patterns?
- Can we build a model that explains these patterns?
- How does the elasticity of mobility affect the trade-off?
- Can the model offer guidance for municipal financing policies?
  - Detroit: fiscal distress
  - Janesville: sound management after 2008 GM plant closure

#### Main Results

- Empirically, an increase in working-age population:
  - increases tax rates while reducing debt reliance
  - robust to alternative measures and IV estimation
- Theoretically, tax elasticity of mobility determines the choices:
  - if high elasticity, debt > tax; if low elasticity, tax > debt
  - data indicate a low tax elasticity of  $-0.14 \Rightarrow \text{tax} \succ \text{debt}$
  - simulation replicates Janesville's choices; but recommends alternatives for Detroit
  - mechanism test: low labor mobility drives the result
  - extension: In the case of risky bonds, in-migration leads to lower yields (Zimmerschied, 2025)



#### Contributions

Construct a panel dataset of the 1,200 largest U.S. municipalities:

- source: 2008-2021 Annual Comprehensive Financial Report (ACFR)
- leverage the unique data to document new stylized facts

#### Develop a theoretical framework:

- rationalize empirical observations
- guide future empirical research on municipal finance or bond

# Distribution of Municipalities







## Empirical Methodology

- Key variables:
  - leverage: gross direct debt-to-total personal income ratio (analogous to the debt-to-GDP ratio at the national level)
  - tax: tax millage rate (i.e., property tax rate)
  - labor migration: change in working-age population
- Regression specification:
  - analyze the impact of labor migration on leverage and tax-rate adjustments over the past decade (from 2011 to 2020)
  - 10-year difference specification:

 $\Delta \mathsf{leverage}_{i,t} = \beta_1 \Delta \ln \mathsf{working-age\ population}_{i,t-1} + \beta_2' \Delta X_{i,t-1} + \Delta \epsilon_{i,t}$ 

 $\Delta$ tax rate $_{i,t}=\gamma_1\Delta\ln$  working-age population $_{i,t-1}+\gamma_2'\Delta X_{i,t-1}+\Delta\epsilon_{i,t}$ 

# Labor Migration and Leverage

|                                     | I. OLS    |           | II. WLS   |           |           |           |
|-------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                     | (1)       | (2)       | (3)       | (4)       | (5)       | (6)       |
| $\Delta$ WA population (log)        | -0.028*** | -0.020*** | -0.021*** | -0.027*** | -0.019*** | -0.020**  |
|                                     | (0.005)   | (0.007)   | (800.0)   | (0.004)   | (0.007)   | (0.008)   |
| $\Delta$ Surplus (or deficit) ratio |           | -0.013*** | -0.012*** |           | -0.013*** | -0.013*** |
|                                     |           | (0.003)   | (0.004)   |           | (0.003)   | (0.004)   |
| $\Delta$ Capital-to-assets          |           | -0.030*** | -0.028*** |           | -0.030*** | -0.029*** |
|                                     |           | (0.008)   | (0.009)   |           | (800.0)   | (0.009)   |
| $\Delta$ Cash-to-assets             |           | -0.030*** | -0.027*** |           | -0.030*** | -0.028*** |
|                                     |           | (800.0)   | (0.009)   |           | (0.008)   | (0.009)   |
| $\Delta$ Size (log)                 |           | 0.004*    | 0.004     |           | 0.004*    | 0.004     |
|                                     |           | (0.002)   | (0.003)   |           | (0.002)   | (0.003)   |
| $\Delta$ Productivity               |           | 0.005     | 0.008     |           | 0.004     | 0.008     |
|                                     |           | (0.005)   | (0.006)   |           | (0.005)   | (0.006)   |
| $\Delta$ Housing price (log)        |           | -0.006*   | -0.006*   |           | -0.006*   | -0.007*   |
|                                     |           | (0.003)   | (0.004)   |           | (0.003)   | (0.004)   |
| $\Delta$ Debt borrowing cost        |           |           | 0.024     |           |           | 0.020     |
|                                     |           |           | (0.177)   |           |           | (0.181)   |
| R-squared                           | 0.030     | 0.088     | 0.072     | 0.028     | 0.087     | 0.071     |
| No. of Obs.                         | 864       | 827       | 696       | 864       | 827       | 696       |



#### Robustness

- different leverage measures:
  - (gross direct debt + net applicable overlapping debt)/total income (√)
  - gross direct debt/tax revenue (analogous to the debt/equity for corporations √)
  - gross direct debt/total revenue (√)
- different migration measure:
  - working-age population → population (✓)
- IV: China's accession to the WTO in 2001 (√)
  - Autor et al. (2013); Pierce and Schott (2016)
  - increased U.S. exposure to Chinese imports.
  - more exposed areas saw larger, sustained employment declines



# Labor Migration and Tax Rate

|                              | Unweighted       |          |          | Weighted |          |          |
|------------------------------|------------------|----------|----------|----------|----------|----------|
|                              | (1)              | (2)      | (3)      | (4)      | (5)      | (6)      |
|                              | A. OLS estimates |          |          |          |          |          |
| $\Delta$ WA population (log) | -0.001           | 0.012*** | 0.016*** | -0.001   | 0.012*** | 0.016*** |
|                              | (0.001)          | (0.004)  | (0.003)  | (0.001)  | (0.004)  | (0.003)  |
| Other controls               | No               | Yes      | Yes      | No       | Yes      | Yes      |
| No. of Obs.                  | 853              | 815      | 667      | 853      | 815      | 667      |
|                              | B. IV estimates  |          |          |          |          |          |
|                              | $IV_1$           | $IV_2$   | $IV_3$   | $IV_1$   | $IV_2$   | $IV_3$   |
| $\Delta$ WA population (log) | 0.031**          | 0.028**  | 0.024**  | 0.033**  | 0.030**  | 0.026**  |
|                              | (0.014)          | (0.012)  | (0.010)  | (0.014)  | (0.013)  | (0.010)  |
| Other controls               | Yes              | Yes      | Yes      | Yes      | Yes      | Yes      |
| No. of Obs.                  | 814              | 814      | 806      | 814      | 814      | 806      |

### Summary

- empirically document: higher working-age population (†)
  - leads to higher tax rates  $(\uparrow)$  and a reduced debt reliance  $(\downarrow)$
  - Surprising! As tax is typically viewed as distortive burdens.
- propose a theoretical model
  - explain these patterns
  - explore the resulting implications for municipal finance

#### Theoretical Framework

- build a partial equilibrium model of a municipality
- draw inspiration from dynamic corporate finance models

#### Table: Corporations vs. Municipalities

|                             | Corporation                | Municipality                                    |
|-----------------------------|----------------------------|-------------------------------------------------|
| Objective                   | maximize shareholder value | maximize community welfare                      |
| Investment                  | profitable projects        | public infrastructure and services              |
| Capital structure           | debt vs. equity            | debt vs. taxation                               |
| Cost of "equity"            | purchase of shares         | payment of taxes                                |
| Benefit of holding "equity" | dividend payments          | access to infrastructure $\&$ transfer payments |

#### Model Features

- infinite periods
- a municipal government:
  - values the total utility of local residents, derived from public infrastructure (q) and transfer payments (e);
  - local working-age **population** (N) is determined by economic condition (z), local infrastructure, and **tax rates** ( $\tau$ ):

$$\log N(z, q, \tau) = \kappa \log z + \alpha \log q + \theta \log \tau$$

- is subject to productivity shocks;
- finances operations and investment through a combination of taxes and debt (b);
- faces both real and financial frictions;
- retains the option to declare a fiscal emergency.

### The Municipal Government's Problem

- objective: maximize the expected discounted streams of infrastructure benefits and transfer payments
- periodic utility:  $u\left(q,e\right)=Nq^{\psi}+\mathbf{e}-\Phi\left(e\right)\mathbf{1}_{e<0}$
- "transfer payment" e:

$$e = \underbrace{wN(z,q,\tau)\tau}_{\text{tax revenue}} + \underbrace{\lambda q}_{\text{service charges}} + \underbrace{b' - (1+r)b}_{\text{change in debt}} - \underbrace{(c_0 + c_1 q)}_{\text{operating costs}} \\ - \underbrace{[q' - (1-\delta)q]}_{\text{investment}} - \underbrace{[A(q,q') + A(\tau,\tau_{-1})]}_{\text{adjustment costs}},$$

• Bellman equation:

$$V(z, q, \tau_{-1}, b) = \max_{q', \tau, b'} \left\{ N(z, q, \tau) q^{\psi} + e - \Phi(e) 1_{e < 0} + \beta EV(z', q', \tau, b') \right\}$$

### Optimal Tax Policy

we set aside the emergency-declaration scenario:

$$\underbrace{-\frac{\partial N(z,q,\tau)}{\partial \tau}q^{\psi} + \frac{\partial A(\tau,\tau_{-1})}{\partial \tau} + \beta E\{\frac{\partial A(\tau',\tau)}{\partial \tau}\}}_{\text{marginal costs}} = \underbrace{\frac{\partial w N(z,q,\tau)\tau}{\partial \tau}}_{\text{marginal "benefit"}} \\ = z(1-\eta)N^{1-\eta}[1+(1-\eta)\theta]$$

marginal "benefits" of additional tax hike (right-hand side):

- $(1 \eta)\theta \le -1$ , high tax elasticity  $\to$  tax revenue  $\downarrow \to$  debt  $\succ$  tax
- $(1-\eta)\theta \in (-1,0)$ , low tax elasticity  $\to \tan \theta$  revenue  $\uparrow \to \tan \theta$  debt

## Optimal Debt Financing

• Euler equation:

$$1 + \phi_1 1_{e < 0} = E\{1 + \phi_1 1_{e' < 0}\}\$$

- marginal benefits (left-hand side):
  - the additional dollar increase in transfer payments
  - or the saved costs associated with the emergency declaration
- marginal costs (right-hand side):
  - foregone transfer payments next period
  - or costs associated with declaring an fiscal emergency next period



### Model Parameterization

| Parameter                                             | Value |
|-------------------------------------------------------|-------|
| Direct Estimation                                     |       |
| discount factor $(\beta)$                             | 0.98  |
| curvature of preference function( $\psi$ )            | 0.53  |
| economic-condition elasticity $(\kappa)$              | 0.043 |
| public-infrastructure elasticity $(\alpha)$           | 0.034 |
| tax elasticity $(\theta)$                             | -0.14 |
| capital share $(\eta)$                                | 0.32  |
| persistence of productivity shock $(\rho_z)$          | 0.76  |
| standard deviation of productivity shock $(\sigma_z)$ | 0.032 |
| capital depreciation rate $(\delta)$                  | 0.05  |
| service charge $(\lambda)$                            | 0.08  |
| Matching Moments                                      |       |
| linear capital adjustment costs $(\gamma_{1,q})$      | 0.05  |
| quadratic capital adjustment costs $(\gamma_{2,q})$   | 0.20  |
| resale price for disinvestment $(\chi)$               | 0.40  |
| fixed operating costs $(c_0)$                         | 0.13  |
| linear operating costs $(c_1)$                        | 0.24  |
| quadratic tax adjustment costs $(\gamma_t)$           | 1.16  |
| Assigned to make the emergency declare rare           |       |
| fixed costs of emergency declare $(\phi_0)$           | 1.00  |
| linear costs of emergency declare $(\phi_1)$          | 1.00  |



### With the Parameterized Model

- validate the model by replicating key empirical patterns
- study the model's implications for municipal fiscal choices
  - Detroit vs. Janesville (Goldstein, 2024, Financial Times)
  - initialize the simulation with each city's conditions in 2009
  - feed in economic shocks each city experienced from 2010
- test underlying mechanism: the role of mobility elasticity

### Impulse Responses to a 2.5% Positive Shock



### Model Simulation: Detroit

• initially: q - 37th percentile;  $\tau$  - the 91st percentile; b/q=0.7



#### Model Simulation: Janesville

• initially: q - 61st percentile;  $\tau$  - the 53rd percentile; b/q=0.53



## Suggestive Evidence for Model Mechanism

- Do cities respond differently based on labor mobility?
- We perform the following test:
  - classify sectors by labor mobility levels;
  - assign scores: 3 for high-mobility sectors, 2 for medium, and 1 for low:
  - calculate each city's labor mobility score in 2010 (pre-adjustment), weighted by sector employment shares.

## U.S. City Workforce Mobility in 2010



### Heterogeneous Financing Choices: Empirical Facts

high mobility: above 66-percentile; low mobility: below 33-percentile

|                              | Unwei         | σhted        | Weighted      |              |  |  |
|------------------------------|---------------|--------------|---------------|--------------|--|--|
|                              | (1) (2)       |              | (3)           | (4)          |  |  |
|                              | ` '           | ` '          | ` '           | ` '          |  |  |
|                              | high mobility | low mobility | high mobility | low mobility |  |  |
|                              | A. Leverage   |              |               |              |  |  |
| $\Delta$ WA population (log) | -0.013        | -0.026**     | -0.012        | -0.026*      |  |  |
|                              | (0.011)       | (0.013)      | (0.011)       | (0.013)      |  |  |
|                              | , ,           | ,            | , ,           | ,            |  |  |
| Other controls               | Yes           | Yes          | Yes           | Yes          |  |  |
| No. of Obs.                  | 278           | 275          | 278           | 275          |  |  |
| NO. OI ODS.                  | 210           | 213          | 210           | 213          |  |  |
|                              |               |              | _             |              |  |  |
|                              | B. Taxes      |              |               |              |  |  |
| $\Delta$ WA population (log) | 0.008**       | 0.019***     | 0.008**       | 0.019***     |  |  |
|                              | (0.004)       | (0.007)      | (0.004)       | (0.007)      |  |  |
|                              | ` '           | ` ,          | ` '           | ` ,          |  |  |
| Other controls               | Yes           | Yes          | Yes           | Yes          |  |  |
| No. of Obs.                  | 287           | 264          | 287           | 264          |  |  |

#### Conclusion

- Labor migration significantly shapes municipal financing decisions.
- In response to in-migration, cities tend to raise taxes and reduce reliance on debt.
- A structural model rationalizes these fiscal responses to migration, emphasizing the importance of mobility's tax elasticity.
- **Implication**: Migration-responsive policies can improve outcomes:
  - Detroit: recommends earlier and more proactive interventions.
  - Janesville: model simulations track actual fiscal adjustments.