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Main Goal

Question: Understand how technology improvements affect demand for labor. Challenges:

1. Technology can complement or substitute for labor in individual tasks.

2. Yet, even labor-saving technologies can increase demand for a specific occupation if

▶ Technology substitutes for only a narrow set of tasks; workers can reallocate effort.

▶ Increase overall labor demand at the sector level.

What we do: Disentangle these channels using a combination of theory and data.

1



Summary of Findings

Our Approach: Create theoretically-grounded measures of technology exposure that vary by
occupation and decade.

Model implies that direct effect of technology exposure on labor demand
depends on two sufficient statistics:

1. The mean exposure of an occupation’s tasks to technology.

2. The concentration of exposure into specific tasks.

Main Finding: Technological change over the last century has increased relative demand for
occupations that employ relatively more highly educated workers, more women, and paid higher
wages.

Speculation: Improvements in AI will partly reverse these relative shifts.
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Model Setup

Production:

CES Layer EoS

Industries → Aggregate Output θ

Occupations → Industries χ

Tasks → Occupations ψ

Capital and Labor → Tasks ν

Technological Innovation:

1. Decline in the quality-adjusted price of capital

∆ logq(j) =−ε(j).

2. New Products: Increases in number of products αI at industry level.
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Labor Supply

Within job: A worker chooses hours h(j) across tasks j

l(j) = h(j)1−β subject to ∑
j

h(j) = 1

Across jobs: Workers’ labor supply to job (o, I) function of job-specific wage index

Microfoundation: occupation-specific taste shocks, as in Lamadon-Mogstad-Setzler (2022)
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Technology and Labor Demand: Mean Exposure

∆ logN(o, f )≈ ζηm m(ε)+ζ
1

2β
η

2
o C(ε)+Spillovers

1. Mean technology improvement across tasks:

m(ε)≡ 1
J ∑

j∈J
ε(j)

Impact of mean exposure on labor demand:

ηm ≡− sk (ν−χ)

ζ+νsk +χ(1− sk)

Sign depends on the elasticity between capital and labor vs elasticity across occupations
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Technology and Labor Demand: Gains from Reallocation

∆ logN(o, f )≈ ζηm m(ε)+ζ
1

2β
η

2
o C(ε)+Spillovers

2. Concentration of improvements to specific tasks:

C(ε)≡ 1
J ∑

j∈J

(
ε(j)−m(ε)

)2

Impact depends on flexibility of hours reallocation (1/β) and ηo

ηo ≡− sk β(ν−ψ)

(1−β)+β(νsk +ψ(1− sk))

ηo captures magnitude of cross-task spillovers of technology improvements
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Technology and Labor Demand: Gains from Reallocation
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Technology and Labor Demand: Spillovers

∆ logN(o, f )≈ ζηm m(ε)+ζ
1

2β
η

2
o C(ε)+∆ logαI +ζηz ∆ε logZI︸ ︷︷ ︸

Industry Spillovers

+
ζηz

θ−χ
∆ε logΩ̄︸ ︷︷ ︸

Aggregate Spillovers

3. Industry Spillovers depend on

a) New products → increase labor demand at industry.

b) Declines in unit cost of production, whose impact on labor demand depends on

ηz ≡
θ−χ

sk ν+ sl χ+ζ
.

4. Aggregate Spillovers: Impossible to identify empirically; focus on relative labor demand
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Empirical Strategy

Construct direct empirical analogues of key model objects using text of new technologies (patents)
and occupation task descriptions.

Lots of details, but in a nutshell:

1. Estimate the mean similarity of task j to patents in decade T

2. Use (1) to construct estimates of m(ε) and C(ε) at occupation–decade level.

3. Measure industry spillovers based on growth in # of patents relevant to each industry.

4. Direction of technology endogenous; construct shift-share IV based on breakthrough
innovations in ‘upstream’ technology classes.
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Which Technologies Drive Worker Exposure?

1850–1920 1920–1980 1980–2020
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Composition of Overall Technology Exposure, by Task Type
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Note: This figure plots the composition of technology exposure by each task type τ ∈ {Manual, Cognitive, Interpersonal}. The composition

of each type-τ task, cτ, is defined as the share of all valid patent-task link that are contributed by type-τ tasks. 11



Technology Exposure and Labor Demand

A. IV

Employment Growth (%) 10 Years 20 Years

(1) (2) (3) (4)

Mean Task Exposure -8.08∗∗∗ -8.25∗∗∗ -16.2∗∗∗ -16.2∗∗∗

(2.06) (2.06) (3.21) (3.23)

Concentration in Task Exposure 4.06∗∗ 4.10∗∗ 8.44∗∗∗ 8.59∗∗∗

(1.88) (1.90) (2.83) (2.84)

Industry Spillovers 44.5∗∗ 43.3∗∗ 15.3∗ 19.1∗∗

(20.39) (17.18) (7.94) (7.40)

N 135,637 135,637 125,956 125,956

Year FE X X
Sector FE X X
Year × Sector FE X X
Employment Share, Lag X X X X
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Summary and Next Steps

So far: Model highlighting three key forces in how technology shapes labor demand:

1. Mean exposure of worker tasks to technology.

2. Degree to which exposure is concentrated in specific tasks.

3. Increases in labor demand due to productivity improvements and/or new products.

Empirical evidence supports all three mechanisms.

Next: What was the combined effect of these three channels in shaping labor demand?

Caveat: Missing intercept problem, so can only discuss shifts in relative labor demand.
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Looking Ahead: AI

Model seems consistent with the 1910–2020 experience. What does it imply about impact of AI?

Take some elasticities from literature, but need to take a stance on the following:

Which tasks can be substituted by AI?
Assumption: AI can (imperfectly) substitute for labor in all cognitive tasks that require less
than five years of experience
How much will the relative price of AI decline?
Assumption: Relative price will decline by a similar amount as the decline in the relative price
of computers during 1984–2015.
How much AI boost industry labor demand?
Assumption: AI will create new products and hence expand industry demand; calibrate based
on data on AI patents and patent-to-product elasticities from Argente et al. (2025)
Elasticity of substitution ν between AI and Labor?
Assumption: Use empirical estimates from 1910–2020 sample to back out ν = 4.63.

Important Caveat: No GE effects; purely predictions about relative labor demand.
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Summary

Technology task exposure need not lead to decline in labor demand.

Our estimates suggest that direction of technological progress over the 1910–2020 period has
consistently increased demand for ‘high-skill’ occupations and those with a larger share of
female workers.

AI advances over the medium run are likely to reverse these trends.

21


