Employment Impacts of the CHIPS Act

Bilge Erten Joseph Stiglitz Eric Verhoogen

Northeastern Columbia Columbia University University University

BPEA Fall 2025 Meeting, Sept. 24, 2025

- ▶ Under Biden, industrial policy underwent a revival in the U.S.
 - Industrial policy was long "submerged," operating especially through defense procurement.
 - ▶ Recent round is more self-consciously interventionist.

- ▶ Under Biden, industrial policy underwent a revival in the U.S.
 - Industrial policy was long "submerged," operating especially through defense procurement.
 - ▶ Recent round is more self-consciously interventionist.
- ► CHIPS Act is a key element.

- ▶ Under Biden, industrial policy underwent a revival in the U.S.
 - Industrial policy was long "submerged," operating especially through defense procurement.
 - ▶ Recent round is more self-consciously interventionist.
- ▶ CHIPS Act is a key element.
- ▶ Motivations:
 - National security.
 - Resilience to shocks (e.g. covid).
 - Creating good, high-paying jobs.

- ▶ Under Biden, industrial policy underwent a revival in the U.S.
 - Industrial policy was long "submerged," operating especially through defense procurement.
 - ▶ Recent round is more self-consciously interventionist.
- ► CHIPS Act is a key element.
- ▶ Motivations:
 - National security.
 - ▶ Resilience to shocks (e.g. covid).
 - Creating good, high-paying jobs.
- ▶ We focus on employment.
 - ▶ Has the act created jobs? How many?
 - ▶ Politically salient, in past and probably future.

- ▶ Paper is unusual in trying to evaluate impacts very quickly.
 - ▶ Maybe quickly enough to inform policy process.

- ▶ Paper is unusual in trying to evaluate impacts very quickly.
 - ▶ Maybe quickly enough to inform policy process.
- ► Challenge: data constraints.

- ▶ Paper is unusual in trying to evaluate impacts very quickly.
 - ▶ Maybe quickly enough to inform policy process.
- ► Challenge: data constraints.
 - Micro-data on plants not available for a couple of years.

- ▶ Paper is unusual in trying to evaluate impacts very quickly.
 - ▶ Maybe quickly enough to inform policy process.
- ► Challenge: data constraints.
 - Micro-data on plants not available for a couple of years.
 - ▶ Employment available sooner than other data.

- Paper is unusual in trying to evaluate impacts very quickly.
 - ▶ Maybe quickly enough to inform policy process.
- ► Challenge: data constraints.
 - Micro-data on plants not available for a couple of years.
 - ▶ Employment available sooner than other data.
 - ▶ Most recent QCEW wave: 2025q1 (released 9/9/25).

- Paper is unusual in trying to evaluate impacts very quickly.
 - ▶ Maybe quickly enough to inform policy process.
- ► Challenge: data constraints.
 - Micro-data on plants not available for a couple of years.
 - ▶ Employment available sooner than other data.
 - ▶ Most recent QCEW wave: 2025q1 (released 9/9/25).
 - ▶ First finalized major CHIPS Award: Nov. 2024.

- Paper is unusual in trying to evaluate impacts very quickly.
 - ▶ Maybe quickly enough to inform policy process.
- ► Challenge: data constraints.
 - ▶ Micro-data on plants not available for a couple of years.
 - ▶ Employment available sooner than other data.
 - ▶ Most recent QCEW wave: 2025q1 (released 9/9/25).
 - ▶ First finalized major CHIPS Award: Nov. 2024.
 - Longer-run idea: compare firms with final awards to firms with Preliminary Memoranda of Terms (PMTs) but no award.

- Paper is unusual in trying to evaluate impacts very quickly.
 - ▶ Maybe quickly enough to inform policy process.
- ► Challenge: data constraints.
 - ▶ Micro-data on plants not available for a couple of years.
 - ▶ Employment available sooner than other data.
 - ▶ Most recent QCEW wave: 2025q1 (released 9/9/25).
 - ▶ First finalized major CHIPS Award: Nov. 2024.
 - ▶ Longer-run idea: compare firms with final awards to firms with Preliminary Memoranda of Terms (PMTs) but no award.
- ▶ This paper: county-level difference-in-differences.

- Paper is unusual in trying to evaluate impacts very quickly.
 - ▶ Maybe quickly enough to inform policy process.
- ► Challenge: data constraints.
 - ▶ Micro-data on plants not available for a couple of years.
 - ▶ Employment available sooner than other data.
 - ▶ Most recent QCEW wave: 2025q1 (released 9/9/25).
 - ▶ First finalized major CHIPS Award: Nov. 2024.
 - ► Longer-run idea: compare firms with final awards to firms with Preliminary Memoranda of Terms (PMTs) but no award.
- ▶ This paper: county-level difference-in-differences.
 - Counties with semiconductor facility vs. counties with high-tech employment but no semiconductor facility.

- Paper is unusual in trying to evaluate impacts very quickly.
 - ▶ Maybe quickly enough to inform policy process.
- Challenge: data constraints.
 - Micro-data on plants not available for a couple of years.
 - ▶ Employment available sooner than other data.
 - ▶ Most recent QCEW wave: 2025q1 (released 9/9/25).
 - ▶ First finalized major CHIPS Award: Nov. 2024.
 - ► Longer-run idea: compare firms with final awards to firms with Preliminary Memoranda of Terms (PMTs) but no award.
- ▶ This paper: county-level difference-in-differences.
 - Counties with semiconductor facility vs. counties with high-tech employment but no semiconductor facility.
 - Counties with semiconductor fabrication facility ("fab") vs. counties with semiconductor facility but no fab.

Background 0000 Data O

Empirical Strategies

Results 00000000

- 1. Anticipation effects (à la Ramey (2011)).
 - ▶ Began with introduction of pre-cursor bill (USICA) in Senate.
 - ▶ Bipartisan support evident very early on.

Background

Data O

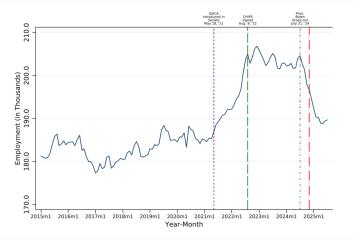
Empirical Strategies

Results 000000 iscussion O

- 1. Anticipation effects (à la Ramey (2011)).
 - ▶ Began with introduction of pre-cursor bill (USICA) in Senate.
 - Bipartisan support evident very early on.
- 2. Robust employment effects in semiconductors.
 - Direct effect: 100-140 jobs per affected county (from baseline specification).

- 1. Anticipation effects (à la Ramey (2011)).
 - ▶ Began with introduction of pre-cursor bill (USICA) in Senate.
- Bipartisan support evident very early on.
- 2. Robust employment effects in semiconductors.
 - Direct effect: 100-140 jobs per affected county (from baseline specification).
- 3. Local spillovers on employment in supplier industries, construction.
 - ▶ Indirect effect: 190-220 jobs per affected county.

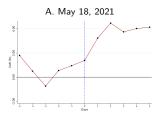
- 1. Anticipation effects (à la Ramey (2011)).
 - ▶ Began with introduction of pre-cursor bill (USICA) in Senate.
 - ▶ Bipartisan support evident very early on.
- 2. Robust employment effects in semiconductors.
 - Direct effect: 100-140 jobs per affected county (from baseline specification).
- 3. Local spillovers on employment in supplier industries, construction.
 - ▶ Indirect effect: 190-220 jobs per affected county.
- ▶ Back-of-the-envelope calculations of national effects:
 - ▶ Direct effect: 14,900-20,860 jobs.
 - ▶ Indirect effect: 28,310-32,780 jobs.
 - ▶ Not enormous relative to projected spending of \$52.7 billion.
 - ▶ But larger than many expected, given industry capital-intensity.

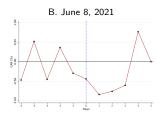

Background

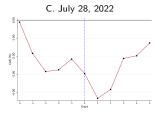
- ► Components of CHIPS Act:
 - ▶ \$39 billion: direct subsidies for production of semic_i+-¿onductors and related equipment and materials.
 - ▶ \$11 billion: R&D funding.
 - 25% investment tax credit.
 - ▶ Increased to 35% in July 2025.

Background

- Components of CHIPS Act:
 - \$39 billion: direct subsidies for production of semici+-ionductors and related equipment and materials.
 - ▶ \$11 billion: R&D funding.
 - ▶ 25% investment tax credit.
 - Increased to 35% in July 2025.
- ➤ Timing:
 - May-June 2020: Endless Frontiers, CHIPS for Americas Acts introduced.
 - May 18, 2021: US Innovation and Competition Act (USICA) introduced.
 - ▶ June 8, 2021: USICA passed Senate 68-32 (with 19 Rep. votes).
 - ▶ Feb. 4, 2022: America COMPETES Act passed House.
 - ▶ July 27-28, 2022: CHIPS and Science Act passed Senate & House.
 - ▶ Aug. 9, 2022: CHIPS and Science Act signed by Biden.
 - Nov. 15, 2024: First major CHIPS Award finalized.


Employment in Semiconductors




Notes: Figure plots national employment in the semiconductor industry (NAICS 334413) from the Current Employment Statistics (National Series).

Stock Market Reaction: Cumulative Abnormal Returns

Notes: Cumulative Average Abnormal Returns (CAARs) for 21 seminconductor firms. Abnormal Returns (ARs) calculated by estimating the regression $R_{it} = \gamma_i R_{mt} + \alpha_i + \varepsilon_{it}$, where R_{it} is firm i's return and R_{mt} is the SkP 500's return, over the period 250 days to 30 days before the event, and then defining $AR_{it} = R_{it} - \hat{\gamma}_i R_{mt} - \hat{\alpha}_i$ for the indicated event window. The ARs are averaged across firms and summed across event window to get CAARs.

▶ Example of companies' responses: GlobalFoundries, Malta NY

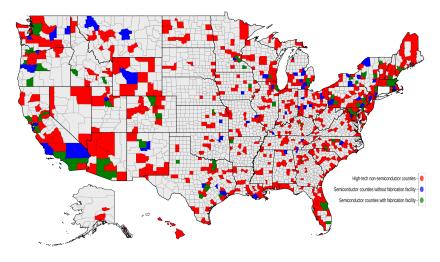
- ► Example of companies' responses: GlobalFoundries, Malta NY
 - ▶ July 19, **2021**: Press conference with Schumer and Raimondo to announce expansion of existing facility, plans for new facility.

- ► Example of companies' responses: GlobalFoundries, Malta NY
 - ▶ July 19, **2021**: Press conference with Schumer and Raimondo to announce expansion of existing facility, plans for new facility.
 - CEO Caulfield later told CNBC: "We believe that for economies of scale and the ability to bring capacity online quicker it's better to expand existing facilities."

- ► Example of companies' responses: GlobalFoundries, Malta NY
 - ▶ July 19, **2021**: Press conference with Schumer and Raimondo to announce expansion of existing facility, plans for new facility.
 - CEO Caulfield later told CNBC: "We believe that for economies of scale and the ability to bring capacity online quicker it's better to expand existing facilities."
- ▶ Covid chips shortage evident by Jan. 2021 (King et al., 2021).

Data

- ▶ Main datasets:
 - Quarterly Census of Employment and Wages (QCEW)
 - ▶ Draws on administrative records from unemployment systems.
 - ▶ 6-digit industry (e.g. NAICS 334413), county, quarter level.
 - ▶ Extensive suppression/non-disclosure to preserve confidentiality.
 - Main estimates: impute zeros for missings. Robustness: drop missings.


Data

- Main datasets:
 - Quarterly Census of Employment and Wages (QCEW)
 - ▶ Draws on administrative records from unemployment systems.
 - ▶ 6-digit industry (e.g. NAICS 334413), county, quarter level.
 - Extensive suppression/non-disclosure to preserve confidentiality.
 - Main estimates: impute zeros for missings. Robustness: drop missings.
 - Semiconductor Industry Association (SIA) Ecosystem Map
 - ▶ Indicates locations of facilities of members (99% of industry).
 - ▶ Indicates type of facility (e.g. production, design, R&D).

Data

- Main datasets:
 - Quarterly Census of Employment and Wages (QCEW)
 - ▶ Draws on administrative records from unemployment systems.
 - ▶ 6-digit industry (e.g. NAICS 334413), county, quarter level.
 - Extensive suppression/non-disclosure to preserve confidentiality.
 - Main estimates: impute zeros for missings. Robustness: drop missings.
 - Semiconductor Industry Association (SIA) Ecosystem Map
 - Indicates locations of facilities of members (99% of industry).
 - Indicates type of facility (e.g. production, design, R&D).
- Secondary datasets:
 - Quarterly Workforce Indicators (QWI).
 - Bureau of Economic Analysis (BEA) County GDP series.
 - Current Employment Survey.

Treatment & Control Groups

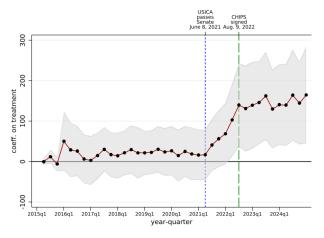
Source: Semiconductor Industry Association's (SIA) U.S. Semiconductor Ecosystem Map. Counties with a pre-existing fabrication facility are marked in green. Counties with pre-existing semiconductor facility but no fabrication facility are marked in blue. Counties with employment > 100 in 11 high-tech sectors (defined by Census Bureau) but no pre-existing semiconductor production facility are marked in red.

Specifications

Simple D-in-D:

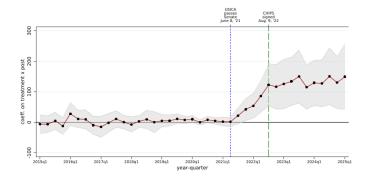
$$Y_{it} = \mu + \alpha_i + \gamma_t + \beta \cdot \mathsf{Treated}_i \cdot \mathsf{Post}_t + \varepsilon_{it}$$

D-in-D event study:


$$Y_{it} = \mu + \alpha_i + \gamma_t + \sum_{\tau=2015q2}^{2024q4} \beta_\tau \cdot D_{i,t}^\tau + \varepsilon_{it}$$

Synthetic D-in-D (Arkhangelsky et al., 2021):

$$\left(\hat{\beta}, \hat{\mu}, \hat{\alpha}, \hat{\gamma}\right) = \underset{\beta, \mu, \alpha, \gamma}{\arg\min} \left\{ \sum_{i=1}^{n} \sum_{t=2015q1}^{2024q4} \left(Y_{it} - \mu - \alpha_i - \gamma_t - W_{it}\beta\right)^2 \hat{\omega}_i \hat{\lambda}_t \right\}$$


▶ Key assumption: Treatment & control groups (possibly with reweighting) would have been on parallel trends in absence of CHIPS.

Employment, Simple D-in-D, Semi vs High-Tech

Notes: Event-study specification. Outcome is the number of workers employed in the semiconductor sector (NAICS industry code 334413). Source is QCEW 6-digit data. Sample includes all counties with at least 100 workers in 11 high-tech sectors, as defined in Census Bureau (2024), as of 2021Q1. Shaded area is 95% confidence interval. Standard errors are clustered at the county level.

Employment, Synthetic D-in-D, Semi vs High-Tech

Notes: QCEW 6-digit data. Outcome is the number of workers employed in the semiconductor sector (NAICS industry code 334413). Estimated treatment effects produced by implementing the event-study estimator proposed by Clarke et al. (2024). Shaded area is confidence interval at the 95% level. Standard errors are clustered at the county level.

Employment, Simple D-in-D, Semi vs High-Tech

	Semiconductor production employment (1)	Semiconductor equipment & materials employment (2)	Semiconductor production, equipment & materials employment (3)	
Panel A: Treatment effect post-USICA				
Treated x Post-USICA	106.087***	34.810**	140.898***	
	(39.905)	(16.819)	(50.166)	
Observations Pre-USICA outcome mean (treated counties) County FE Year-Quarter FE	36941	36941	36941	
	868.8	164.5	1033.3	
	Y	Y	Y	
	Y	Y	Y	
Panel B: Treatment effect post-CHIPS, omitting 2021Q2-2022Q3				
Treated x Post-CHIPS	127.543***	36.088**	163.631***	
	(46.912)	(18.252)	(57.996)	
Observations Pre-USICA outcome mean (treated counties) County FE Year-Quarter FE	31535	31535	31535	
	868.8	164.5	1033.3	
	Y	Y	Y	
	Y	Y	Y	

Notes: QCEW 6-digit data 2015Q1-2025Q1. In Panel A, the "Post" indicator identifies quarters after USICA passed in the U.S. Senate. In Panel B, the "Post" indicator identifies quarters after the CHIPP SA ct was signed into low. Panel B omits the time period from USICA until CHIPP SA Ct was dispended and the period from USICA until CHIPP SA Ct was dispended so that to those prior to the precursor of CHIPS, the USICA. Outcome in Column 1 is the number of workers employed in the manufacturing of equipment (NAICS 333242) or material injunts (NAICS 310423) or material injunts (NAICS 333242) or material injunts (NAICS 333280) or material injunts (NAICS 333242) or material injunts (NAICS 333282) or material injunt

Employment, Synthetic D-in-D, Semi vs High-Tech

	Semiconductor production employment (1)	Semiconductor equipment & materials employment (2)	Semiconductor production, equipment & materials employment (3)
Panel A: Treatment effect post-USICA			
Treated x Post-USICA	110.411***	15.755	124.082***
	(35.189)	(11.996)	(38.533)
Observations	36941	36941	36941
Pre-USICA outcome mean (treated counties)	868.8	164.5	1033.3
Panel B: Treatment effect post-CHIPS, omitting	2021Q2-2022Q3		
Treated x Post-CHIPS	133.055***	13.836	142.392***
	(43.520)	(15.049)	(48.336)
Observations	31535	31535	31535
Pre-USICA outcome mean (treated counties)	868.8	164.5	1033.3

Notes: QCEW 6-digit data 2015Q1-2025Q1. In Panel A, the "Post" indicator identifies quarters after USICA passed in the U.S. Senate. In Panel B, the "Post" indicator identifies quarters after the CHIPP SA ct was signed into low. Panel B omits the time period from USICA until CHIPP SA Ct was signed short by the proper of the precursor of CHIPPs, the USICA. Outcome in Column 1 is the number of workers employed in the semiconductor sector (NAICA industry code 344413). Outcome in Column 2 is the number of workers employed in the manufacturing of equipment (NAICS 333242) or material inputs (NAICS 34912A) or material inputs (NAICS 333242) or material inputs (NAICS 333242) or material inputs (NAICS 333242) or material inputs (NAICS 33518Q) or material

roduction Background Data Empirical Strategies Results Discussion

Spillovers, Synthetic D-in-D, Semi vs High-Tech

	Semiconductor inputs employment (1)	Non-residential construction employment (2)	Total county employment (3)	County GDP (00,000s USD (4)
Panel A: Treatment effect post-USICA				
Treated x Post-USICA	53.807**	135.779**	-2246.017	-4.590
	(25.688)	(56.641)	(2643.470)	(5.061)
Observations	36941	36941	36941	7920
Pre-USICA outcome mean (treated counties)	1069.256	1800.271	307456.376	590.851
Panel B: Treatment effect post-CHIPS, omittin	g 2021Q2-2022Q3			
Treated x Post-CHIPS	59.478*	159.816**	-3238.834	-5.378
	(34.654)	(78.206)	(3155.699)	(5.947)
Observations Pre-USICA outcome mean (treated counties)	31535	31535	31535	7040
	1069.256	1800.271	307456.376	590.851

Notes: Outcome in Column 1 is the aggregate number of workers employed in the input sectors for semiconductors (NAICS codes 331410, 334418, 334412, 334418, 334417, 334418, 334417, 334418, 334612, 34418, 334418, 334518, 34518 and 34518 a

Additional Results

- Robustness:
 - ▶ Not imputing zeros for missings. No imputation
 - Doing analysis at 4-digit level, using QWI to supplement QCEW.
 4-digit (4-digit no imp.)
- Wages:
 - Generally find positive effects, but less robust than employment effects.
 Wages No imp.

Employment, Simple D-in-D, Fab vs Fabless

Introduction

	Semiconductor production employment (1)	Semiconductor equipment & materials employment (2)	Semiconductor production, equipment & materials employment
Panel A: Treatment effect post-USICA			
Treated × Post-USICA	191.345*** (70.800)	78.533** (31.212)	269.878*** (88.806)
Observations Pre-USICA outcome mean (treated counties) County FE Year-Quarter FE	6109 1523.5 Y Y	6109 238.1 Y Y	6109 1761.6 Y Y
Panel B: Treatment effect post-CHIPS, omitting	2021Q2-2022Q3		
Treated × Post-CHIPS	229.122*** (83.147)	82.931** (34.247)	312.053*** (102.710)
Observations Pre-USICA outcome mean (treated counties) County FE Year-Quarter FE	5215 1523.5 Y Y	5215 238.1 Y Y	5215 1761.6 Y

Notes: Treated counties are ones that have a semiconductor production facility; control counties are ones that have a semiconductor facility but not a production facility (e.g. are fabless). Under this definition, treatment group is 125 counties, control group is 24 counties.

Employment, Synthetic D-in-D, Fab vs Fabless

	Semiconductor production employment (1)	Semiconductor equipment & materials employment (2)	Semiconductor production, equipment & materials employment (3)	
Panel A: Treatment effect post-USICA				
Treated x Post-USICA	180.131*** (52.476)	27.269 (18.312)	210.942*** (64.336)	
Observations	6109	6109	6109	
Pre-USICA outcome mean (treated counties)	1523.5	238.1	1761.6	
Panel B: Treatment effect post-CHIPS, omitting	2021Q2-2022Q3			
Treated x Post-CHIPS	217.933*** (62.164)	28.452 (20.637)	252.678*** (76.549)	
Observations	5215	5215	5215	
Pre-USICA outcome mean (treated counties)	1523.5	238.1	1761.6	

Notes: Treated counties are ones that have a semiconductor production facility; control counties are ones that have a semiconductor facility but not a production facility (e.g. are fabless). Under this definition, treatment group is 125 counties, control group is 24 counties.

▶ D-in-D estimates *relative* impacts.

- ▶ D-in-D estimates *relative* impacts.
- ▶ Part of absolute impact of CHIPS may be absorbed by intercept term ("missing intercept" problem).

- ▶ D-in-D estimates *relative* impacts.
- ▶ Part of absolute impact of CHIPS may be absorbed by intercept term ("missing intercept" problem).
- ▶ Most widely accepted solution is to structurally estimate a model of macro-economy, which is beyond the scope of our paper.

- ▶ D-in-D estimates relative impacts.
- ▶ Part of absolute impact of CHIPS may be absorbed by intercept term ("missing intercept" problem).
- Most widely accepted solution is to structurally estimate a model of macro-economy, which is beyond the scope of our paper.
- ► Following Chodorow-Reich (2020), we argue that scaled-up D-in-D is reasonable estimate of aggregate effect in our setting.
 - ▶ Counties are small relative to macro-economy.
 - Labor mobility between treated and control counties within semiconductors is likely small.
 - ▶ CHIPS funding is modest relative to macro-economy.

- ▶ D-in-D estimates *relative* impacts.
- ▶ Part of absolute impact of CHIPS may be absorbed by intercept term ("missing intercept" problem).
- Most widely accepted solution is to structurally estimate a model of macro-economy, which is beyond the scope of our paper.
- ► Following Chodorow-Reich (2020), we argue that scaled-up D-in-D is reasonable estimate of aggregate effect in our setting.
 - ▶ Counties are small relative to macro-economy.
 - Labor mobility between treated and control counties within semiconductors is likely small.
 - ▶ CHIPS funding is modest relative to macro-economy.
- Scaling up D-in-D estimate gives roughly the increase observable in raw time-series data.
 - ▶ Estimate from raw time series: 18.000.
 - Estimate from scaling up D-in₁+-¿-D estimate (semi vs. high-tech): 14,900-20,860.

- ► Main findings:
 - 1. Strong anticipation effects.
 - 2. Robust positive impacts on semiconductor employment.
 - Spillover effects on employment in suppliers, non-residential construction.

- Main findings:
 - 1. Strong anticipation effects.
 - 2. Robust positive impacts on semiconductor employment.
 - Spillover effects on employment in suppliers, non-residential construction.
- ▶ Employment impacts (from semi vs high-tech strategy):

▶ Direct: 14,900-20,860 jobs.

▶ Indirect: 27,565-33,525 jobs.

- Main findings:
 - 1. Strong anticipation effects.
 - 2. Robust positive impacts on semiconductor employment.
 - Spillover effects on employment in suppliers, non-residential construction.
- ▶ Employment impacts (from semi vs high-tech strategy):
 - ▶ Direct: 14,900-20,860 jobs.
 - ▶ Indirect: 27,565-33,525 jobs.
- ▶ Need more research ...
 - ... on other outcomes (output, productivity, profits).
 - ... on longer-term impacts.

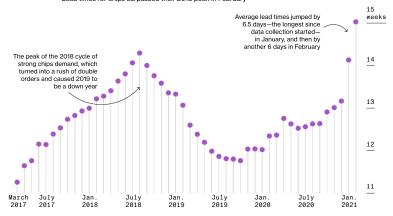
Will have to wait for data (e.g. Annual Survey of Manufacturers) to become available.

- Main findings:
 - 1. Strong anticipation effects.
 - 2. Robust positive impacts on semiconductor employment.
 - Spillover effects on employment in suppliers, non-residential construction.
- ▶ Employment impacts (from semi vs high-tech strategy):
 - ▶ Direct: 14,900-20,860 jobs.
 - Indirect: 27,565-33,525 jobs.
- ▶ Need more research ...
 - ... on other outcomes (output, productivity, profits).
 - ... on longer-term impacts.

Will have to wait for data (e.g. Annual Survey of Manufacturers) to become available.

- ▶ CHIPS Act raises important issues about design of industrial policy:
 - ➤ Targeted subsidies vs. tax credits?
 - ▶ How can government claim part of upside?
 - ▶ Should social policy be embedded in industrial policy?

References I

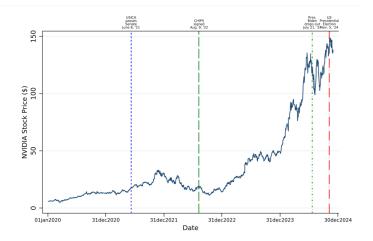

- Arkhangelsky, Dmitry, Susan Athey, David A Hirshberg, Guido W Imbens, and Stefan Wager, "Synthetic Difference-in-Differences," American Economic Review, 2021, 111 (12), 4088–4118.
- Census Bureau, "BDS-High Tech Methodology," https: //www.census.gov/programs-surveys/ces/data/public-use-data/experimental-bds/bds-high-tech/methodology.html October 2024.
- Chodorow-Reich, Gabriel, "Regional Data in Macroeconomics: Some Advice for Practitioners," <u>Journal of Economic Dynamics and Control</u>, 2020, <u>115</u>, 103875. St. Louis Fed -JEDC-SCG-SNB-UniBern Conference, titled "Disaggregate Data and Macroeconomic Models".
- Clarke, Damian, Daniel Pailañir, Susan Athey, and Guido Imbens, "On Synthetic Difference-in-Differences and Related Estimation Methods in Stata," <u>Stata Journal</u>, 2024, 24 (4), 557–598.
- King, Ian, Debby Wu, and Demetrios Pogkas, "How a Chip Shortage Snarled Everything from Phones to Cars," Bloomberg, 2021. March 29.
- Ramey, Valerie A., "Identifying Government Spending Shocks: It's all in the Timing," Quarterly Journal of Economics, 02 2011, 126 (1), 1–50.

Background Data Empirical Strategies Results Discussion

Chips Shortage Evident in Jan. 2021

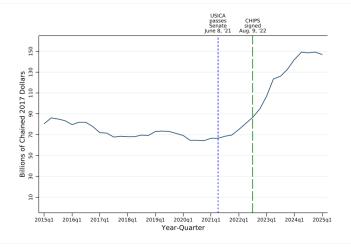
Patiently Waiting

Lead times for chips surpassed their 2018 peak in February


Note: Averages calculated on data from four different distributors. Source: SFG Research

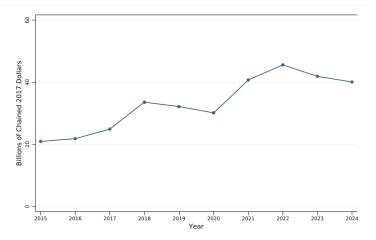
Source: King et al., Bloomberg News, March 29, 2021.

Introduction

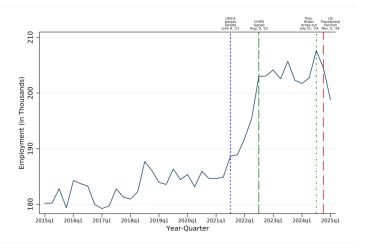

Nvidia

Design Issues

- ▶ Targeted subsidies vs. tax credits
 - Pros for targeted subsidies:
 - Less fiscal uncertainty.
 - ▶ Greater transparency about which firms benefit.
 - More flexible when there are multiple market failures, and/or redistribution is a social goal.
 - Cons for targeted subsidies:
 - Gov't may bear a larger share of cost of mistakes.
 - lackbox Discretion ightarrow possibility of political capture.
- ▶ How can government claim upside potential?
 - Ownership stakes can generate benefits to taxpayers and restrain rent-seeking.
 - lackbox But again, discretion ightarrow possibility of political capture.
 - ▶ Loans combined with warrants (purchase options) may be preferable.
- Should social policy be embedded in industrial policy?
 - ▶ Admittedly poses problems for intellectual consistency.
 - ▶ If childcare is desirable, why not require it of all sectors?
 - Political compromise is pragmatic and necessary.


Investment in Structures in Manufacturing

Source: U.S. Bureau of Economic Analysis, Gross Private Domestic Investment and Capital Transfers: Private Fixed Investment in Structures by Type, Chained dollars: Manufacturing. Data are seasonally adjusted and annualized (by BEA). Dotted blue line indicates Q2 of 2022, when the USICA was passed and the dotted green line indicates Q3 of 2022 when the CHIPS Act and Inflation Reduction Act (IRA) were passed. Y-axis is investment per quarter.


Introduction Background Data Empirical Strategies Results Discussion 000 0000 0 00 0000000 00

Plant/Property/Equipment Spending, Semi. Firms

Source: Security and Exchange Commission Form 10-K filings by semiconductor firms. Following the Semiconductor Industry Association, the following firms are included: Akoustis, AMD. Analog Devices, Broadcom, Cirrus Logic, Global Foundaries, Intel, Lattice Semiconductor, Littelfuse, Luminar, Marvell, Microchip, Micron, Nvidia, ONSEMI, Qorvo, Qualcomm, Silicon Labs, Skywater, SkyWorks, Texas Instruments, Western Digital, and Wolfspeed. The y-axis variable is total purchases of property, plant and equipment for the above firms in billions of 2017 dollars. The 10-K forms report purchases for entire calendar year, 2021 thus includes more than six months following the Senate assage of USIGA on June 8, 2021.

Semiconductor Employment, using QCEW

Notes: Y-axis is the total number of workers in the semiconductor industry (NAICS 334413) across the United States, as reported in the BLS Quarterly Census of Employment and Wages.

 Introduction
 Background
 Data
 Empirical Strategies
 Results
 Discussion

 000
 000
 0
 00000000
 0

Employment, Simple D-in-D, No Imputation

	Semiconductor production employment (1)	Semiconductor equipment & materials employment (2)	Semiconductor production, equipment & materials employment (3)
Panel A: Treatment effect post-USICA			
Treated x Post-USICA	176.681** (75.985)	68.035** (33.372)	244.716** (97.154)
Observations Pre-USICA outcome mean (treated counties) County FE Year-Quarter FE	27157 1593.5 Y Y	27157 285.9 Y Y	27157 1879.3 Y Y
Panel B: Treatment effect post-CHIPS, omitting	2021Q2-2022Q3		
Treated x Post-CHIPS	219.107** (92.304)	72.493* (37.127)	291.600** (115.628)
Observations Pre-USICA outcome mean (treated counties) County FE Year-Quarter FE	23218 1593.5 Y	23218 285.9 Y	23218 1879.3 Y Y

Introduction Background Data Empirical Strategies Results Discussion 000 0000 0 00 0000000 00

Employment: Simple D-in-D, 4-digit

	Semiconductor production employment (1)	Semiconductor equipment & materials employment (2)	Semiconductor production, equipment & materials employment (3)
Panel A: Treatment effect post-USICA			
Treated x Post-USICA	76.195*	83.415***	159.609***
	(44.515)	(25.525)	(61.753)
Observations Pre-USICA outcome mean (treated counties) County FE Year-Quarter FE	43747	43747	43747
	1716.142	552.479	2268.621
	Y	Y	Y
	Y	Y	Y
Panel B: Treatment effect post-CHIPS, omitting	2021Q2-2022Q3		
Treated x Post-CHIPS	92.916*	94.609***	187.525**
	(52.904)	(29.166)	(72.915)
Observations	37345	37345	37345
Pre-USICA outcome mean (treated counties)	1716.142	552.479	2268.621
County FE	Y	Y	Y
Year-Quarter FE	Y	Y	Y

 Introduction
 Background
 Data
 Empirical Strategies
 Results
 Discussion

 000
 000
 0
 00000000
 0

Employment, Simple D-in-D, No Imputation, 4-digit

	Semiconductor production employment (1)	Semiconductor equipment & materials employment (2)	Semiconductor production, equipment & materials employment (3)
Panel A: Treatment effect post-USICA			
Treated × Post-USICA	83.703* (50.370)	94.465*** (28.642)	178.168** (69.657)
Observations Pre-USICA outcome mean (treated counties) County FE Year-Quarter FE	33273 1929.851 Y Y	33273 606.507 Y Y	33273 2536.358 Y Y
Panel B: Treatment effect post-CHIPS, omitting	2021Q2-2022Q3		
Treated × Post-CHIPS	102.111* (59.689)	107.044*** (32.666)	209.155** (82.041)
Observations Pre-USICA outcome mean (treated counties) County FE Year-Quarter FE	28433 1929.851 Y Y	28433 606.507 Y	28433 2536.358 Y Y

 Introduction
 Background
 Data
 Empirical Strategies
 Results
 Discussion

 000
 000
 0
 00000000
 00

Wages, Simple D-in-D, Semi vs. High-Tech

	Semiconductor wages (1)	Semiconductor equipment & materials wages (2)	Semiconductor production, equipment & materials wages (3)	
Panel A: Treatment effect post-USICA				
Treated × Post-USICA	254.233** (99.656)	95.027** (38.288)	268.961*** (99.652)	
Observations	36941	36941	36941	
Pre-USICA outcome mean (treated counties)	822.8	409.2	923.5	
Panel B: Treatment effect post-CHIPS, omitting	2021Q2-2022Q3			
Treated x Post-CHIPS	261.672**	107.926**	273.105***	
	(101.537)	(45.983)	(100.863)	
Observations	31535	31535	31535	
Pre-USICA outcome mean (treated counties)	822.8	409.2	923.5	

Introduction Background Data Empirical Strategies Results Discussion 000 0000 0 00 0000000 00

Wages, Simple D-in-D, No Imputation

	Semiconductor wages (1)	Semiconductor equipment & materials wages (2)	Semiconductor production, equipment & materials wages (3)	
Panel A: Treatment effect post-USICA				
Treated x Post-USICA	328.889**	123.085**	294.889**	
	(149.634)	(52.739)	(147.968)	
Observations	27157	27157	27157	
Pre-USICA outcome mean (treated counties)	1412	593.8	1452.8	
Panel B: Treatment effect post-CHIPS, omitting	2021Q2-2022Q3			
Treated x Post-CHIPS	305.651**	141.957**	270.644*	
	(145.188)	(65.103)	(142.802)	
Observations Pre-USICA outcome mean (treated counties)	23218	23218	23218	
	1412	593.8	1452.8	

Cumulative Abnormal Returns

			Eve	nt Window				
	(-1,1)			(-3,3)			(-5,5)	
CAAR	SE	p-val	CAAR	SE	p-val	CAAR	SE	p-val
Panel A: USICA	Introducti	on (May 1	8, 2021)					
0.0273***	0.4848	0.0000	0.0338***	0.4002	0.0000	0.0430***	0.4698	0.0000
Panel B: USICA	Senate Pa	ssage (Jur	ne 8, 2021)					
-0.0117***	0.5856	0.0070	-0.0105	0.6266	0.1440	0.0014	0.6169	0.5490
Panel C: CHIPS Senate Passage (July 28, 2022)								
-0.0152	1.5295	0.1580	-0.0016	0.9623	0.6600	-0.0107	0.9821	0.3940

Notes: Cumulative Average Abnormal Returns (CAARs) around major semiconductor policy events are calculated as follows (using the Stata estudy command). We first calculate Abnormal Returns (ARs) by estimating the regression $R_{it} = \gamma_i R_{mt} + \alpha_i + \varepsilon_{it}$, where R_{it} is firm i's return and R_{mt} is the S&P 500's return, over the period 250 days to 30 days before the event, and then defining $AR_{it} = R_{it} - \widehat{\gamma}_i R_{mt} - \widehat{\alpha}_i$ for the indicated event window. The ARs are averaged across firms and then summed across the event window to get CAARs. Inference is based on the Boehmer–Musumeci–Poulsen (BMP) test. Windows are indicated in days. The sample excludes Global Foundries and Skywater, who began trading on October 28, 2021 and April 21, 2021, respectively. *p <0.10; **p <0.05; ***p <0.01.

