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Abstract

How do financial markets respond to anticipated climate-driven wildfire risk? Us-
ing high-resolution meteorological forecasts, land use data, and U.S. municipal bond
spreads, we find that municipalities facing greater future wildfire exposure already in-
cur higher borrowing costs: A one standard deviation increase in projected wildfire
risk raises primary (secondary) market spreads by 14 (26) basis points - over 40% of
the sample mean. Impacts are significantly larger in areas with higher minority pop-
ulations and greater reliance on local revenue. Our study contributes to the broader
literature by introducing a new approach to identifying the financial effects of evolving

climate risks.
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1 Introduction

Wildfires are imposing increasing costs on the US economy. Already in 2018, the direct
costs from wildfire events, measured by the sum of insured and estimated uninsured losses,
amounted to $30 billion (in 2024 USD), accounting for 26% of the total damages incurred
from climate-related natural disasters in the US (NOAA, 2024). More recently, the catas-
trophic January 2025 wildfires in Los Angeles may turn out to be the costliest natural disaster
in US history, with some estimates of insured property losses alone of $75 billion (Li and
Yu, 2025). The rising property losses from growing wildfire risks (Boomhower, 2023) have
also been associated with substantial fiscal costs (Baylis and Boomhower, 2023; Barrage,
2024) including for affected municipalities (Liao and Kousky, 2022). Even costlier are the
estimated health impacts of wildfire smoke, which include over 15,000 excess deaths per year
(Qiu et al., 2024). Importantly, the potential for wildfires is expected to continue rising in
many parts of the US due to climate change (Brown et al., 2021).

Despite this growing evidence on their potential economic importance, wildfires have
received comparatively little attention in the literature on the financial asset capitalization
and social cost of climatic risks.! Recent industry reports also indicate continued skepticism
as to whether climatic risks are reflected in municipal bond prices (see, e.g., NYSE: ICE
2022 and Stern and Smull 2024).

This paper presents what is to the best of our knowledge the first dedicated academic
analysis of the capitalization of rising wildfire risks in US financial markets, specifically
municipal bonds market. We exploit high-resolution meteorological predictions and granular
variations in land use patterns to study whether asset prices reflect climate-induced wildfire
risk changes. One of the important differences between wildfires and other climatic risks that
have been studied in recent literature, such as exposure to long-run sea-level rise (Goldsmith-

Pinkham et al., 2023), is that wildfire risks are already present and changing in the near and

IWildfire impacts are typically not modeled in climate-economic assessment models and feature limited reflection in leading
recent empirical and policy estimates of the social cost of carbon (see, e.g., discussion in EPA 2023).



medium run, but differentially so across locations. Consequently, our analysis differs from
cross-sectional comparisons across areas with different levels of present or long-term risk
(e.g., Painter 2020) and is able to leverage variation in the wildfire risk across bonds issued
by the same municipality to aid in the identification of the effects of climatic risk changes on
asset prices. As other climatic risks are also already changing significantly and differentially
so across space (e.g., extreme precipitation, Marvel et al., 2023; Kim et al., 2023), we believe
that our approach has broader applicability outside the study of wildfire risks as well.

The specifics of our analysis can be summarized as follows. The main outcome of interest
is municipal bond spreads, defined by the difference between a bond’s yield-to-maturity and
a maturity-matched risk-free benchmark yield. We focus on school district bonds due to
their fine-scaled spatial variation in climatic risks, close link to local property markets,?
and overall economic significance, with an estimated debt outstanding of $450 billion in
2022 (Ciccarone, 2023). This focus also aligns with recent work on the capitalization of sea
level rise into municipal bonds (Goldsmith-Pinkham et al., 2023). Our bond-specific climate
risk measure combines bond maturity structure with estimates of local historical and future
physical wildfire risks and the number of housing units in the Wildland Urban Interface
(where vegetation meets residential structures) to quantify the local economic wildfire risk
change embodied over the lifetime of each bond. Our analysis permits the inclusion of a rich
set of control variables including district-by-month fixed effects (e.g., Santa Barbara Unified
School District in May 2024) and district-by-maturity-date-group fixed effects (e.g., Santa
Barbara Unified School District bonds maturing between 2040 and 2044).

Our central finding is that future wildfire risks appear to be increasingly capitalized into
US municipal bond markets. We observe both statistically and economically significant ef-
fects of future wildfire risk increases on bond spreads, with a one standard deviation increase
in future wildfire exposure leading to a 14 (26)-basis point rise in school district primary

(secondary) market bond spreads post-2014, which is equivalent to over 40% of the mean

2 A majority of fixed income securities issued by school districts are general obligation bonds backed by property taxes, which
establishes a direct link between local economic conditions and the ability to service debt.



spreads in the sample. The estimated impacts are robust to other estimation methods, ex-
pansion of spatial coverage to include the contiguous United States, and alternative wildfire
measures. The results are also robust to excluding communities directly affected by wildfire
events over our sample period and several controls for potentially confounding future heat
risks. Delving into heterogeneity, we find that the capitalization of wildfire risks is more
pronounced in districts with larger non-white population shares even after accounting for
income. In the secondary market, we also observe higher wildfire risk impacts in districts
heavily reliant on local revenue sources post-2014, consistent with a mechanism via local
economies and property values, for which we provide additional suggestive evidence as well.?
In sum, our results indicate that anticipated future wildfire risk changes are already hav-
ing economically significant impacts on financial markets, municipal borrowing costs, and
vulnerable communities.

This paper relates to four main strands of research. First, this analysis contributes to
our understanding of how climate risks are capitalized into asset prices. While a larger set
of studies has examined the capitalization of “climate risks,” broadly defined to include,
e.g., regulatory risks or present-day natural disaster risks (see, e.g., Giglio et al. 2021 and
Campiglio et al. 2023 for reviews), we specifically contribute to a more nascent body of
evidence on the capitalization of not only current but also future risk changes from physical
climate change. For housing as an asset class, several studies have found evidence of at least
partial capitalization of future sea level rise (Bernstein et al., 2019; Baldauf et al., 2020;
Bakkensen and Barrage, 2022), though some disagreement remains (Murfin and Spiegel,
2020). Certain future climate risks have also been found to be partially capitalized into
equity markets (e.g., drought trends as in Hong et al. 2019, heat stress as in Acharya et
al. 2022, and general climate risk indices as in Ling et al. 2023), corporate bonds markets
(e.g., heat stress as in Acharya et al. 2022), and land markets (e.g., extreme temperature

and precipitation as in Severen et al. 2018). Most closely related to our analysis is the

31In the appendix, we document a negative correlation between housing values and future wildfire risk increases in our sample.



capitalization of future climate risks in the US municipal bond markets, which has been
observed for future sea level rise (Painter, 2020; Goldsmith-Pinkham et al., 2023) and future
heat stress (Acharya et al., 2022).* To the best of our knowledge, this paper is the first
to demonstrate the capitalization of anticipated climate-driven future wildfire risk changes
into asset prices, and the first to utilize our research design with bond-specific risk measures
within municipalities.

Second, this analysis adds to a nascent body of work demonstrating the capitalization
of current wildfire risks into asset prices, which to date include property insurance premi-
ums (Boomhower et al., 2024), housing (as discussed below), options (Ouazad, 2022), and
mortgage-backed securities (Kahn et al., 2024).5 Several recent studies have also used broad
measures of historic natural disaster exposure that may include wildfires to demonstrate the
overall impacts on financial market outcomes, including insurers’ stock returns (Jung et al.,
2023) and municipal bond returns (Auh et al., 2022).% In addition, Lopez et al. (2025) find
a positive association between historic wildfire smoke pollution and borrowing costs in the
healthcare sector, as well as distributional impacts on high-minority areas. We contribute to
this literature by studying the municipal bond pricing impacts of current and climate-driven
future wildfire risks.

Third, this paper relates to a relatively new body of literature that quantifies the economic
impacts of wildfires. The literature on environmental economics has quantified the direct
impacts of historic wildfire and smoke events on outcomes such as structure survival rates
(Baylis and Boomhower, 2022), employment and income (Borgschulte et al., 2022; Walls and
Wibbenmeyer, 2023; Roth Tran and Wilson, 2023), local business activities (Addoum et al.,

2024a), crop yields (Behrer and Wang, 2024), student test scores (Wen and Burke, 2022),

4Several studies have documented associations between general climate risk indices from proprietary sources and bond prices,
such as (Smull et al., 2023)’s cross-sectional analysis of US municipal bond prices and a proprietary climate risk index and
several analyses of sovereign borrowing costs and a broad climate risk and resilience index (Beirne et al., 2021; Cevik and Jalles,
2022). Some recent studies, such as Mallucci (2022) and Phan and Schwartzman (2023), have also used quantitative models to
simulate the impacts of changing climate risks on sovereign bond markets.

5Berry-Stolzle and Hao (2025) examine the cross-sectional relation between present-day fire risks and city bond issue spreads.

6These studies use the Spatial Hazard Events and Losses Database for the United States (SHELDUS), which encompasses
various natural disaster events including but not limited to wildfire events. Globally, other studies have considered the impacts
of disasters such as floods on sovereign bond markets (Klomp, 2017).



and outdoor recreational activities (Gellman et al., 2023), in addition to well-established
adverse health impacts (Wen et al., 2023; Qiu et al., 2024). The literature on consumer
finance has recently quantified the direct costs of wildfire events on household balance sheets
through consumer credit outcomes (McConnell et al., 2021), mortgage repayment (An et al.,
2024; Biswas et al., 2023; Issler et al., 2024), and student loans (Cornaggia et al., 2023a).
Finally, several studies on real estate markets have linked present-day wildfire risks to housing
prices using spatially discontinuous hazard map updates (Ma et al., 2024; Garnache, 2023),
historic wildfire events (McCoy and Walsh, 2018), and exposure to smoke plumes (Huang
and Skidmore, 2024; Addoum et al., 2024b).

A fourth related strand is the emerging literature examining the fiscal perils associated
with climate-related disasters. Most relevant, Liao and Kousky (2022) empirically find that
wildfire events increase the probability of municipal budget deficits by 25 percentage points.
Similarly, Jerch et al. (2023) document adverse impacts of hurricane strikes on several US
municipal fiscal outcomes and that these impacts are larger in communities with larger non-
white population shares. Our findings of unequal future wildfire risk capitalization add to
these insights. While a growing literature investigates the impacts of different climatic risks,”
there exists a distinct concern regarding the escalating fiscal burden resulting from wildfire
risks (CBO, 2022; OMB, 2022). Recent studies have evaluated rising expenditures on specific
programs directly related to fire events, such as wildfire suppression costs (Wibbenmeyer
et al., 2019; Plantinga et al., 2022; Baylis and Boomhower, 2023) and Medicare spending
(Miller et al., 2017). But none of them explores the rising borrowing costs that may arise
due to growing wildfire risks. Our analysis uncovers a potential vicious cycle in which
school districts facing larger future wildfire risks could experience lower provision of public
goods due to increasing borrowing costs. Reduced fiscal space could, in turn, hamper future
disaster recovery or lead to further unintended consequences, such as hindered human capital

accumulation (Park et al., 2020; Biasi et al., 2024).

"In the United States, this literature has considered fiscal impacts of hurricanes (Deryugina, 2017; Jerch et al., 2023),
temperature extremes (Barrage, 2024), and general disasters (Miao et al., 2018).



The remainder of this paper proceeds as follows. Section 2 delineates our methodology
for quantifying future economic wildfire risk. Additionally, we describe the municipal bond
data and historic fire perimeters. In Section 3, we discuss our identification strategy and
empirical results on the capitalization of future wildfire risk changes on municipal credit

spreads. Section 4 concludes.

2 Data

2.1 Economic wildfire risks

From an economic perspective, wildfire risk encompasses two factors: physical wildfire risk,
based on meteorological conditions, and the presence of valuable assets, such as residential
structures in proximity to vegetative fire fuels. To quantify wildfire potential based on this
intuition, we rely on two data sources. First, Brown et al. (2021) compute the Keetch-Byram
Drought Index (KBDI) across the contiguous United States, which is calculated at a spatial
resolution of 12 km for both historic (1995-2004) and mid-century (2045-2054) periods. It
is based on weather predictions from a climate model under a high emissions scenario.®
The KBDI is a widely-used metric for assessing meteorological conditions related to wildfire
events using factors such as daily maximum temperature, daily precipitation, and annual
accumulated precipitation (Keetch and Byram, 1968).

The US Global Change Research Program (USGCRP) divides the contiguous United
States into seven regions to evaluate region-specific climate risks in its National Climate As-
sessment: Northwest (NW), Southwest (SW), Northern Great Plains (NGP), Southern Great
Plains (SGP), Midwest (MW), Northeast (NE), and Southeast (SE) (USGCRP, 2017).7 We

restrict our sample to regions that have historically experienced KBDI values indicative of

a high potential for wildfire events (> 400 in the period from 1995-2004, Liu et al. 2010),

8Brown et al. (2021) use the Weather Research and Forecast (WRF) simulations driven by Community Climate System Model
(CCSM) version 4 under the Representative Concentration Pathway 8.5 (RCP 8.5), which assumes high levels of greenhouse
gas emissions by the end of this century (Riahi et al., 2011).

9See Table Al for the grouping of states by region.



specifically the NW, SW, and SGP regions. We provide a robustness check on our main
regression by including other regions. To count the number of housing units exposed to dif-
ferent KBDI levels, we overlay 12 km resolution KBDI polygons with 2010 US census blocks,
which represent the smallest geographical units used by the Census Bureau for housing data
tabulation during its decennial census.

Second, Radeloff et al. (2018) categorize US census blocks into two groups based on
whether their residential structures intersect with wildland vegetation, using housing data
from the 2010 Decennial Census and the National Land Cover Data from the US Geologi-
cal Survey. This classification, known as the Wildland-Urban Interface (WUI), helps local
communities identify areas where wildfires can pose risks due to their proximity to vegeta-
tive fuels. To link meteorological conditions relevant to wildfire potential with available fuel
sources, we integrate WUI status into the KBDI assessment. For example, a census block
in downtown San Francisco may exhibit a high level of KBDI by mid-century. However,
accounting for its WUI status could reduce its fire potential significantly, as there is little
flammable vegatation.'®

To evaluate the fire risk of each bond issuer, we aggregate the KBDI and WUI data
from the census block level to the school district level in the following way. For a given
school district d, let N, represent the number of census blocks intersecting with the district.
Within each block i, data on the number of housing units (HU) and the WUI classification
is available. We compute the weighted KBDI for both historic and mid-century periods,
using the number of housing units in the wildland-urban interface areas as weights: for
p € {historic, mid-century},

Ng

HU.
WEIGHTED KBDI,(p) = Z o Us

Sy, KBDI, (p) x I(i = WUI) | . (1)

10Gannon and Steinberg (2021) confirm a positive correlation between fire occurrences and risk measures taking into account
both meteorological conditions and land cover (globally and at a coarser resolution (1/4°) than Brown et al. (2021)).
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Figure 1 maps the historic and mid-century weighted KBDI, along with their difference, in
the Northwestern, Southwestern, and Southern Great Plains regions. In general, the South-
western region exhibits high risk levels for both the historical and mid-century periods. But
the Southern Great Plains area additionally stand out when considering the difference. We
also consider an alternative measure of future wildfire potential in our robustness checks.!!
Importantly, as (1) captures only cross-sectionally varying risk, we transform the data to

derive dynamically varying bond-level fire risks as described further below.

| FIGURE 1 HERE |

2.2 Bond trades in the secondary and primary markets

We use the Refinitiv Data Platform Application Programming Interface (RDP API) to ex-
tract bond characteristics of US school districts. We filter municipal bonds where their
purpose is classified as “Primary or Secondary Education” and their federal tax status is
marked as “Exempt.” We also use this dataset as the main source for the primary market
analysis as it contains the issue price of each bond. Our secondary market transaction data
comes from the Municipal Securities Rulemaking Board (MSRB) Academic Historical Trans-
action Data, covering trades from 2005 to 2020 (our data access cutoff year). We then merge
these datasets using the 9-digit Committee on Uniform Securities Identification Procedures
(CUSIP) number.

First, we construct a monthly panel of yield-to-maturity in the secondary market using
historical trade data at the bond level. Municipal bond issuers often pre-refund their bonds
prior to their call date by issuing new debt and holding the proceeds in US government
securities to cover remaining payments until their call date. We exclude transactions of
bonds labeled as “pre-refunded,” as they are essentially risk-free (Chalmers, 1998). The

changes in sample size resulting from this and other data processing steps are provided in

ILANL (2023) calculates the seasonal average daily Fire Weather Index (FWI) — a wildfire risk index developed by the
Canadian Forest Service — using Argonne’s downscaled 12 km climate data under RCP 8.5. We find a strong correlation of
0.843 and 0.887 at the school district level in our sample between the difference in the weighted KBDI and the weighted FWI
for the historic and mid-century periods, respectively. For details, see Appendix A.



Table 1. Following Green et al. (2010), we address clerical errors by excluding trades without
prices, those occurring on holidays or weekends, those priced above $150 or below $50 per
$100 par value, and those with coupon rates exceeding 20%. To ensure a sufficient level of
liquidity, we limit our sample to bonds that were traded at least 10 times during our sample
period (Schwert, 2017). We remove trades during the first three months after the issuance
and during the last year before the maturity as these transactions are noisy (Green et al.,
2007). We exclude trades with a time-to-maturity greater than 30 years as our benchmark
yield curve for credit spread calculation spans from 1 to 30 years. We then compute the
trading volume and price standard deviation of a bond for each year-month.

In the secondary market for municipal bonds, trades occur infrequently, and intraday
price fluctuations can be substantial compared to changes in fundamentals due to differing
terms among various types of investors (Green et al., 2007). Therefore, following Green et
al. (2010), we aggregate transaction data on a daily frequency by computing the midpoint
between the lowest price at which dealers sell to customers and the highest price at which
dealers purchase from customers. If both of them are not observed on a given day, we
use the average price of all interdealer transactions. If neither method is applicable, we
exclude the data (Schwert, 2017). We construct a monthly panel by taking the arithmetic
mean of daily fundamental prices in a given month and compute the yield to maturity.
To calculate credit spreads, we match the yield to maturity of a bond with its maturity-
matched Municipal Market Analytics (MMA) municipal yield benchmarks obtained from
the Bloomberg Terminal, based on the last date a trade occurred each year-month following
Goldsmith-Pinkham et al. (2023).

Second, we create a yield-to-maturity dataset in the primary market using bond-level
issue prices. As in the secondary market analysis, we address clerical errors by excluding
issues without issue prices or par values, those priced above $150 or below $50 per $100
par value, and those with coupon rates exceeding 20%. We also remove issues with a time-

to-maturity of less than 365 days and more than 30 years. We then compute the yield to



maturity and match it with maturity-matched MMA municipal yield benchmarks based on
the issue date to calculate credit spreads. Table 1 summarizes the changes in sample size
from this process.

We then merge these two transaction datasets with the economic wildfire risk data. To
tabulate wildfire risks by school districts, we use the Institute of Education Sciences National
Center for Education Statistics (NCES) school district boundaries that can be uniquely
identified with Local Education Agency Identification (LEAID) numbers. We match the
LEAID with the 6-digit CUSIP, which uniquely corresponds to bond issuers. Details of our
name matching procedure are provided in the appendix C.

In our baseline regression, we account for potential countywide interdependence in local
economic conditions by clustering standard errors at the county level. But some school
districts in the sample overlap more than one county. We overlay the NCES school district
boundaries with the US Census county shapefiles to identify their geographic relation in the
2010 vintage. We then restrict our sample to bonds issued in counties that contain more than
one district without overlaps. We also provide a robustness check on our main regression
by including bonds issued in school districts that span across two counties and clustering

standard errors at the district level.

2.3 Maturity year-matched future wildfire risks

In contrast to sea level rise, wildfires pose risks both in the near and far future. Abatzoglou
and Williams (2016) find that climate change has heightened fuel aridity across Western
US forests from 1979 to 2015, correlating with increased wildfire occurrences. Additionally,
Brown et al. (2021) observe a rising trend in annual mean KBDI over forested regions in the
Southwestern and Northwestern US since 1982 as well. Both indicate a persistent drying
trend, which could potentially exacerbate fire activities, even in the near future. Appendix
Figure A1 displays the distribution of time-to-maturity in years for the bonds traded each

year. The maturity calendar dates range from 2006 to 2051 in our secondary market data
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and from 2002 to 2052 in our primary market data, respectively. To leverage the variation
in wildfire risks over time within a district, we match wildfire risks based on the maturity
date of a bond.

We first group maturity calendar dates into intervals of 5 years. For a bond b issued by

a district d, let m(b) denote the group to which its maturity calendar date belongs:

(

0 if its maturity calendar date is before 2005,

1 if its maturity calendar date falls between 2005 and 2009,

9 if its maturity calendar date is after 2045.

We then interpolate the weighted KBDI using a stepwise function with equal steps from the

historic (1995-2004) to mid-century (2045-2054) levels. For a bond b issued by a district d,

WEIGHTED KBDI ) = WEIGHTED KBDI,(history)

+ [ WEIGHTED KBDI,(mid-century) — WEIGHTED KBDI,(history) | x

m(b)
o (3)

We then define the maturity-calendar-date-group-matched fire risk change as the differ-
ence between the maturity-calendar-date-group-matched interpolated value and the histori-

cal level:
AFIREg ) = WEIGHTED KBDIy,,4) — WEIGHTED KBDI,(history). (4)

We conduct a robustness check by varying the step size from 5 years to 4 and 6 years.
Table 1 summarizes the sample construction and provides summary statistics.

[ TABLE 1 HERE |

In the secondary market, after winsorizing at the 1% level, the spreads range from -61.16 to

279.62 basis points. The average time to maturity is 7.70 years, and the average increase

11



in the weighted KBDI is 12.20. The sample comprises 405,621 bond-month trades spanning
from 2005 to 2020, with 52,280 bonds issued by 1,641 school districts. Conditional on trading,
the mean (median) number of bonds traded in a district-trade-year-month is 3.60 (2).

On the other hand, in the primary market, after winsorizing at the 1% level, the spreads
vary from -53.06 to 145.23 basis points. The average time to maturity is 10.29 years, and
the average increase in the weighted KBDI is 14.56. The sample comprises 150,013 issues
spanning from 2001 to 2021 by 1,881 school districts. Conditional on issuance, the mean
(median) number of bonds issued in a district-issue-year-month is 13.92 (14). The mean
(median) number of bonds traded is higher in the primary market because issuers structure
debt with multiple maturities — either level or escalating — when borrowing large amounts
of capital upfront.

Appendix Table A2 presents the sample composition, breaking down each bond’s trade
by its issuing state and trading year. Bonds issued in California and Texas, or those traded
in the later 2010s, are overrepresented. Thus, we provide a robustness check by weighting

each bond by the inverse of the count of distinct bonds within each state for a specific year.

2.4 Historic wildfire perimeters

In this paper, we study how future wildfire risks are priced in the municipal bond market.
But throughout our sample period, a number of wildfires burned across the US. Indeed, Liao
and Kousky (2022) document that the probability of municipal budget deficits increases in
the aftermath of wildfires in California. Moreover, there is burgeoning empirical evidence
on the direct costs of historic wildfire events on real estate, consumer credit, and the labor
market, which could potentially weaken municipalities’ ability to service debt and impact
bond prices. To isolate the capitalization of future fire risks from the direct impacts of
historic fire events, we exclude observations that were directly affected by such events in our

robustness checks.
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To identify school districts affected by large-scale fires, we use the Monitoring Trends in
Burn Severity (MTBS) data provided by the US Geological Survey Earth Resources Obser-
vation and Science center and the US Department of Agriculture Forest Service Geospatial
Technology and Applications center. This dataset is available from 1984 to present. We over-
lay the MTBS wildfire footprint polygons with the 2010 US census blocks to locate census
blocks impacted by historic wildfire events. For a given school district d, let Ny represent the
number of census blocks within the school district. Within each block 7, data are available
on the number of housing units (HU) and whether the block experienced wildfire events. We
then compute the percent of housing units affected by historic wildfires at the school district

levels as follows:

Ny
1
XD [ HU, x I(i is in the MTBS fire footprint) |. (5)
Zj:l HU; 3

We filter events that occurred after 2005 to match municipal bond transaction data. We
then define school districts impacted by large-scale wildfire events as those where more than
0.1% of housing units were affected for the first time during our sample period. We provide a
robustness check by excluding all the transactions from school districts since they were first
impacted by large-scale wildfire events, which amounts to 79,250 bond-month observations

in the secondary market and 24,160 issues in the primary market.

2.5 Socioeconomic and municipal finance data

We collect socioeconomic and municipal finance data for all school districts for heterogeneity
analysis. First, the National Center for Education Statistics (NCES) Education Demographic
and Geographic Estimates program uses the Census Bureau’s American Community Survey
to summarize socioeconomic information for each district. We collect data on median house-
hold income and the percentage of the population identifying as white to examine whether

districts with higher minority population shares face higher borrowing costs in response to
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an increase in future wildfire risks. Second, our municipal finance data is from the NCES
Common Core Data School District Finance survey, which provides the data on school dis-
trict finances. We focus on revenues to determine whether districts with a greater reliance
on local revenue sources incur higher interest rates in response to rising wildfire risks. We

then merge these datasets with our bond data using the Local Education Agency Identity.

3 Empirical methods and results

3.1 Identification strategy

We use the same empirical strategy to identify the correlation between future wildfire risk
changes and municipal spreads in both primary and secondary markets, which only differ
in the covariates. For expositional purposes, we explain the strategy only for the primary

market. Specifically, we adopt the following regression equation:

2021

SPREADbd’C,t = )\d,t+05d,m(b)+ Z ]I(YEAR = y) [ﬁyAFIREdym(b) + 9;Zb,d,c,t] +7/Xb,d,c,t+€b,d,c,ta

y=2001
y#2012

(6)
for the issuance of bond b, by school district d within county ¢ and occurring in year-
month ¢. We define SPREAD as the yield to maturity over its maturity-matched MMA
municipal yield benchmark on the issue date for that bond.'? Maturity calendar dates
are grouped into intervals of 5 years, and wildfire risks are interpolated using a stepwise
function with equal steps from the historic level (1995-2004) to the mid-century prediction
(2045-2054). We define AFIRE as the difference between the maturity calendar date group-
matched interpolated value and the historic level, which is now standardized to a mean of
zero and standard deviation of one. The covariates in Z include the natural logarithm of the

number of years before the maturity date (time to maturity in years) and insurance status to

I2Painter (2020) considers not just yields at issuance but also annualized gross spreads to account for higher search costs
when marketing bond issuances with higher climate risks. Since the RDP API does not provide gross spreads data, we focus
on yield at issuance, making our estimate likely a lower bound on the capitalization of wildfire risks in the primary market.
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account for time-varying term premia and the evolution of municipal bond insurance value
(Chun et al., 2019; Cornaggia et al., 2023b). Other covariates in X include each bond’s
natural logarithm of face value, its sales method (negotiated or competitive), as well as its
callability and sinkability status. In the secondary market analysis, we consider each bond’s
age in years, its monthly trading volume divided by its face value (turnover), the monthly
standard deviation of its prices, as well as its callability and sinkability status.

We also include the bond’s district-by-maturity-calendar-date-group fixed effects aug )
to absorb any time-invariant differences across bonds with varying maturity calendar dates
within the same district. For example, bonds maturing at later years may inherently carry
greater credit risks compared to those with earlier maturity dates within a district. Addition-
ally, we include district-by-trade-year-month fixed effects \s; to control for any time-varying
local economic conditions and issuer credit ratings, which helps account for factors that may
correlate with trends in wildfire risks and the creditworthiness of a school district. Standard
errors are clustered at the county level to account for within-county interdependence in local
economic conditions. We put equal weights to each bond-year-month observation.

In line with Goldsmith-Pinkham et al. (2023) and Acharya et al. (2022), we consider
that awareness of future climate perils may have increased over time, following the release
of the IPCC’s fifth assessment report in 2014. The coefficient 3, measures the year-to-year
variation in spreads in response to a one standard deviation increase in wildfire risk changes

relative to 2012. To summarize impacts after 2014, we adopt the following specification:

SPREADp 4t = Adt + Qamp) + 8 L(YEAR > 2015)AFIRE 5

2021

+ Z I(YEAR = y)G;Z@d,c,t + ’Y’Xb,cac,t + Eb,d,e,ts (7)

y=2001
y#2012

where the year indicators are replaced by I(YEAR > 2015), which equals one for all periods
post-2014 and zero otherwise. The parameter § summarizes the average effect after 2014.

The other covariates are identical to those specified in Equation 6.
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3.2 Primary market results

Table 2 presents the year-by-year and post-2014 impacts of wildfire risk changes on the
credit spreads of school district bonds in the primary market. In column (1), our regression
analysis adopts parsimonious controls by including district-by-issue-year-month fixed effects
to address time-varying local economic conditions. In column (2), we further control for
district-by-maturity-calendar-date-group fixed effects to account for any time-invariant dif-
ferences across bonds with varying term structures within the same district. In column (3),

our benchmark regression specification additionally controls for bond-level characteristics.
[ TABLE 2 HERE |

In the most parsimonious specification, we find a positive association between future
wildfire risk changes and spreads in the baseline year (2012). This positive correlation can
be partly attributed to the varying term structures of bonds issued by the same district;
bonds with later maturity calendar dates could inherently carry higher time-invariant risks
compared to those maturing sooner. After adjusting for district-by-maturity-calendar-date-
group fixed effects to account for such factors, we see that the impact of future wildfire risk
changes on spreads begins to diverge in the late 2010s. However, this positive association
could be resulting from time-varying bond-level characteristics such as term premia or the
value of bond insurance. In particular, Chun et al. (2019) and Cornaggia et al. (2023b) find
that the creditworthiness of municipal bond insurers declined following the Great Recession,
and the benefits of insurance dissipated in both secondary and primary markets.

After accounting for bond-level characteristics, the positive correlations diminish, and
the yearly variation in spreads from 2001 to 2014 becomes statistically indistinguishable
from the baseline issue year. Similar to the findings in Goldsmith-Pinkham et al. (2023)
and Acharya et al. (2022), we observe positive yearly coefficients around the release of the
fiftth IPCC report, which suggests that the difference in spreads among bonds with varying

maturities begins to widen further in the mid-2010s compared to 2012. On average, a one
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standard-deviation increase in the weighted KBDI leads to a 13.6-basis point rise in school
district bond spreads post-2014, which is about 40.5% of the average spreads in the sample.
Figure 2 plots the year-by-year estimates in column (3), which suggest a marked increase

in the capitalization of future wildfire risks into financial markets.

| FIGURE 2 HERE |

3.3 Secondary market results

Although municipal bonds are relatively illiquid compared to other asset classes, they are also
traded among investors in the secondary market after issuance. To identify the correlation
between future wildfire risk changes and the market’s assessment of school districts’ credit-
worthiness, we use the same empirical strategy as in Equation 6 focusing on the fundamental
price in the secondary market. Table 3 presents the year-by-year and post-2014 impacts of

wildfire risk changes on the credit spreads of school district bonds in the secondary market.
| TABLE 3 HERE |

In the most parsimonious specification (Column 1), we observe a positive correlation
between future wildfire risk changes and spreads in the baseline year, which can be attributed
to varying term structures. After controlling for district-by-maturity-calendar-date-group
fixed effects in column (2), spreads begin to diverge in the late 2010s, potentially due to
time-varying bond characteristics such as bond age or liquidity. After controlling for bond-
level characteristics, the positive correlation diminishes, and the yearly variation in credit
spreads from 2005 to 2014 becomes statistically insignificant relative to the baseline trade
year. Similar to the primary market, we find positive and statistically significant yearly
coefficients starting 2015. On average, a one standard-deviation increase in the weighted
KBDI leads to a 26.2-basis point rise in school district bond spreads post-2014, which is
about 48.9% of the average spreads in the sample. Figure 3 visualizes the year-by-year

estimates in column (3).
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| FIGURE 3 HERE |

3.4 Robustness

The results so far indicate that, even within the same municipality, bonds with larger em-
bodied future wildfire risk increases command economically significantly higher yields. We
conduct several robustness checks on our benchmark regression for both primary and sec-
ondary markets by adopting different estimation methods, expanding spatial coverage to
include the contiguous US, using an alternative metric for wildfire risk, excluding commu-
nities directly impacted by wildfire events during our sample period, varying the step size
for interpolating future wildfire risks within districts, and including heat risk in addition to
wildfire risk. First, we assign weights to bond-year-month observations by the inverse of the
count of distinct bonds within each state for a specific year. We use this new weight because
bonds issued in California and Texas, or those traded in the later 2010s, are overrepresented
in our sample (see Table A2). Column (2) in Appendix Table A4 and Table A5 report the
year-by-year and post-2014 impacts using equal weights. The post-2014 average impact of
wildfire risk on spreads is higher, but the year-by-year patterns are qualitatively similar.
Second, we expand our sample by including bonds issued in counties that contain either
only one district or span across two counties to improve the representativeness of our sample.
The number of districts increases from 1,881 to 2,961 in the primary market whereas the
number of bonds and districts in the secondary market increases from 52,280 to 68,780 and
1,641 to 2,458, respectively. Accordingly, the sample size increases from 148,461 to 205,694
in the primary market and from 361,194 to 469,381 in the secondary market, respectively.
The associated summary statistics are provided in Appendix Table A3, which are similar to
those of our benchmark sample. With this expansion, school districts are not nested within
counties, and thus, we cluster standard errors at the school district level. Columns (3) and
(4) in Appendix Table A4 and Table A5 present the year-by-year and post-2014 impacts

after including these instances. The former does not use equal weights, while the latter does.
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The average impact post-2014 is higher, but the year-by-year patterns remain qualitatively
similar to those observed in the benchmark regression.

Third, we expand the spatial coverage of our sample by including the Northeast, South-
east, Midwest, and Northern Great Plains regions. Appendix Table A6 and Table A7 repli-
cate the main regression analysis with this expanded sample. While the year-by-year esti-
mates exhibit similar patterns, the average impact post-2014 is smaller than the benchmark
regression. The impact on credit spreads is smaller because the extended regions have mete-
orological conditions that are less prone to wildfires (Brown et al., 2021), meaning that a one
standard deviation rise in wildfire risk represents a smaller increase than in our benchmark
specification.

Fourth, we use the Fire Weather Index (FWI) calculated by ANL (2023) as an alternative
metric for assessing wildfire risks. Specifically, we apply the same weighting methods outlined
in Section 2 to the Summer average daily FWI, as the index reaches its peak during this
season, to quantify the future wildfire risks for each district (see Appendix A for details).
Panels (c) and (d) in Appendix Figure A2 map the spatial distribution of the weighted FWI
across the contiguous US. The correlation between the weighted KBDI and the weighted
FWTI in our final sample is 0.84 and 0.89 in historic and mid-century periods, respectively.
Appendix Table A8 and Table A9 replicate our main regression analysis using the weighted
FWI. Both the year-by-year and post-2014 estimate exhibit the same pattern.

Fifth, we exclude observations starting from the year-month in which school districts were
first affected by large-scale wildfire events to isolate the capitalization of future fire risks from
the direct impact of historic wildfires. Appendix Table A10 and Table A11 replicate the main
regression analysis using the sample without directly affected communities. The year-by-year
estimates exhibit similar patterns.

Sixth, we vary the step size used for interpolating future wildfire risks. Appendix Table
A12 and Table A13 replicate the main regression analysis using step sizes of 4 and 6 years.

The year-by-year patterns remain qualitatively similar.
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Lastly, we include heat risks in addition to wildfire risks to see if our main result is driven
by extreme heat events. Appendix Table A14 and Table A15 replicate our main regression
analysis on the capitalization of wildfire risks using a Heat Index, which incorporates both
temperature and humidity to evaluate how hot it feels to the human body (see Appendix
B for details on quantifying economic heat risk). It is worth noting that the Keetch-Byram
Drought Index (KBDI) is in general negatively correlated with the Heat Index because the
KBDI is positively correlated with dry air, whereas the Heat Index increases with humidity.'?
The post-2014 average impacts of wildfire risk on spreads in primary and secondary markets
are about 11 - 12 and 20 - 23 basis points when we control for the number of summer days

4" However,

with a seasonal average daily maximum heat index above 105 - 125 degrees.
the estimated impact attenuates when controlling for a 95 degree threshold or the seasonal
average daily maximum Heat Index. This is because wildfire risk and these alternative heat

measures are more positively correlated (see Appendix Figure A5).

3.5 Heterogeneity and further analysis

We examine whether there exist any unequal impacts of wildfire risk changes on credit
spreads. We first test whether credit spreads are higher for districts with a greater reliance
on local revenue sources, as might be expected if the estimated impacts reflect risks to
future property values (Auh et al., 2022; Goldsmith-Pinkham et al., 2023). To implement
the heterogeneity analysis, we categorize school districts into two groups: one with its own
historical average ratio of local to total revenue greater than the national mean, and the
other with a ratio below the national mean. We interact this indicator with wildfire risk
changes in Equation 7.

The column (2) in Table 4 reports the post-2014 impact of wildfire risk changes on

municipal spreads, interacted with the indicator of school districts heavily dependent on

13Recent empirical studies highlight the importance of accounting for both temperature and humidity, showing that mortality
impacts extend not only to the elderly but also to infants (Wilson et al., 2024).

MFor further details, see “Heat Index Chart,” National Oceanic And Atmospheric Administration National Weather Service
https://www.noaa.gov /sites/default/files/2022-05/heatindex_chart_rh.pdf.
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local sources. The national average ratio of local to total school district revenue from 2005
through 2021 is about 40%. In the secondary market, about 50.6% of bond-month trades in
our sample are issued by districts classified as locally dependent. A one-standard deviation
increase in the weighted KBDI results in a 20.8-basis point increase in municipal spreads
post-2014 for districts where less than 40% of revenues are from local sources. Locally
dependent school districts face a 34.0-basis point increase in credit spreads in response to a
one-standard deviation in the weighted KBDI. On the other hand, in the primary market,
about 46.3% of bonds in our sample are issued by locally dependent districts. These do not,
however, command economically nor statistically higher initial yield increases from future

wildfire risks.
| TABLE 4 HERE |

We also examine whether districts with a higher percentage of minorities face higher
interest rates in response to future wildfire risks, motivated by Jerch et al. (2023)’s findings
that the municipal fiscal impacts of hurricane strikes are more pronounced in such commu-
nities. We categorize districts into two groups: one with its own historical ratio of nonwhite
population greater than 35%, and the other with a percentage less than 35%. The white
alone population account for about 70% and 60% in the 2010 and 2020 US Census, re-
spectively. We choose the midpoint as a threshold and about 30.3% and 39.7% of trades
in our sample are issued by districts classified as high minority share in the primary and
secondary market, respectively. We further control for district-wide income levels to miti-
gate their potential confounding effects on distributional outcomes. The nationwide average
median household income by school district from 2009 to 2021 is about $58,107 (in 2017
USD). We classify school districts as “High Income” if their own average median household
income is above $58,107 (in 2017 USD). Our finding in column (3) of Table 4 shows that a
one-standard deviation increase in the weighted KBDI leads to an 9.9 and 21.2-basis point
increases in credit spreads post-2014 for districts where less than 35% of the population

identifies as non-white in the primary and secondary market, respectively. School districts
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with higher minority shares experience a 16.9 and 34.7-basis point increases in municipal
spreads following a one-standard deviation increase in the weighted KBDI in the primary
and secondary market, respectively, which remain robust even after controlling for income
levels. Taken together, these results suggest that both fiscal structure and racial composition
may be relevant to identifying vulnerable communities.

Finally, in appendix D, we provide some suggestive evidence on the capitalization of
future wildfire risk increases into housing values. If residents are forward-looking, growing
wildfire risks should be reflected in property values which, in turn, could affect the value of
tax bases and alert lenders to credit risks related to climate change. While identification is
more challenging for this outcome (as we cannot include the same set of fixed effects as in
our main estimation), we find that higher increases in a district’s future fire risks appear to

be associated with significant reductions in property values as well.

4 Conclusion

This paper examines whether financial markets are responding to projections of climate-
driven wildfire risk changes. We ask this question in the context of the US municipal bond
market and wildfire risks, where policy makers have shown increasing concern,'® but little is
known about their impacts empirically. Our main result is that increases in projected wildfire
risks over the next 30 years are already associated with economically significant increases in
municipal borrowing costs. The emergence of this association in the mid-2010s coincides with
increased capitalization of other climatic risks into US municipal bond markets, including sea
level rise (Goldsmith-Pinkham et al., 2023) and heat stress (Acharya et al., 2022), suggesting
that these trends are not limited to a specific type of climatic risk. At the same time, our
results also demonstrate the importance of studying different climate risk factors individually,

as prior work considering wildfires only as part of general climate risk indices has often failed

15 “Investing in the Future: Safeguarding Municipal Bonds from Climate Risk (Full Committee Hearing on Wednesday,
January 10, 2024, 10:00 AM),” United States Senate Committee on the Budget https://www.budget.senate.gov/hearings/
investing-in-the-future-safeguarding-municipal-bonds- from-climate-risk. Accessed on 2024-10-08.

22



to detect economically significant impacts, such as we see in our analysis. Our analysis also
offers a new strategy for identifying the impacts of climatic risks that are already changing
in the near and medium term by deriving bond-level measures of risk changes that vary even
within a municipality and over time, permitting the inclusion of rich fixed effects.

Our results also suggest that future wildfire risk changes have larger effects on districts
with higher minority population shares and potentially those with more reliance on local
revenue sources. These findings add to the emerging evidence on the disproportionate fiscal
costs of climate change facing lower-income and vulnerable populations (e.g., Jerch et al.,
2023; Lopez et al., 2025; Barrage, 2024; Miao et al., 2023). Our results also suggest the
risk of a “vicious cycle,” where greater wildfire risk may reduce vulnerable municipalities’
fiscal space and, thus, their ability to provide public goods and disaster recovery, further
undermining their ability to borrow in the future. Similar risks have been recently pointed
out in the international context for disaster-prone emerging markets, where both policy-
makers and scholars are exploring risk-sharing financial innovations (e.g., Mallucci, 2022;
Phan and Schwartzman, 2023). Whether and which risk-sharing innovations could aid US

municipalities facing growing climate risks is thus an important area for future research.
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Panel A: Steps to Cleaning Municipal Bond Data

Primary Market Secondary Market
# of Issues # of Trades
Full RDP Sample (Federally tax-exempt school district bonds) 1,016,775 Full MSRB sample 145,451,842
Remove clerical errors 938,179 Select federally tax-exempt school district bonds 23,062,421
Drop issues with a time to maturity greater than 30 years 937,348 Drop pre-refunded bonds 13,517,019
Drop issues with a time-to-maturity of less than one year 897,707 Remove clerical errors and select bonds traded at least 10 times 12,248,508
Merge with MMA benchmark yield 724,112 Drop bonds with a time to maturity greater than 30 years 12,188,308
Merge with climate risks and other socioeconomic data 691,466 Drop trades during the last year before maturity 11,355,720
Drop issues for which the sales method is not available 595,377 Drop trades during the first three months after the issuance 8,161,606
Select bonds issued in the NW, SW, and SGP regions 208,223 Construct a monthly panel and merge with MMA benchmark yield 1,269,703
Select bonds issued in counties with more than one school district 150,013 Merge with climate risks and other socioeconomic data 1,140,972
Select bonds issued in the NW, SW, and SGP regions 531,640
Select bonds issued in counties with more than one school district 406,621
Panel B: Summary Statistics
Primary Market Secondary Market
Mean  Std. Dev.  Observations Mean  Std. Dev.  Observations
Fire Risk Change 14.56 16.88 150,013 Fire Risk Change 12.20 15.59 406,621
Yield-To-Maturity 2.82 1.29 150,013 Yield-To-Maturity 2.38 1.22 406,621
Spread (basis points) 33.64 43.23 150,013 Spread (basis points) 53.66 62.28 406,621
Time to Maturity (years) 10.29 6.51 150,013 Time to Maturity (years) 7.70 6.22 406,621
Face Issued Total (Millions USD) 2.03 7.44 150,013 Bond Age (years) 3.06 2.74 406,621
I{Insured} 0.31 0.46 150,013 Monthly Trading Volume (Thousands USD)  599.84 2,659.69 406,621
I{Callable} 0.51 0.50 150,013 Monthly Turnover 0.23 0.55 406,621
I{Sinkable} 0.08 0.27 150,013 Monthly Standard Deviation of Price 0.62 0.66 406,621
I{Competitive} 0.40 0.49 150,013 I{Insured} 0.35 0.48 406,621
I{Callable} 0.42 0.49 406,621
I{Sinkable} 0.09 0.28 406,621

Table 1: Sample construction

This table summarizes the sample construction for the secondary and primary municipal bond market analyses. Panel A outlines the process of cleaning the municipal bond data.
Potential clerical errors include trades without prices, those priced above $150 or below $50 per $100 par value, and those with coupon rates exceeding 20%. See Section 2 for details
on each step. The final sample in the secondary market analysis comprises 406,621 bond-month trades spanning from 2005 to 2020, with 52,280 bonds issued by 1,641 school districts.
The primary market sample consists of 150,013 bonds issued by 1,881 school districts, spanning from 2001 to 2021. Panel B reports the summary statistics for the variables used in the
final sample. Fire Risk Change is the difference between the maturity-calendar-date-group-matched interpolated weighted KBDI and the historical weighted KBDI within a district.
Yield-to-Maturity is an annual interest rate that equates the present value of cash flow payments received from a bond with the monthly mean of its daily fundamental prices and
the issue price for the secondary and primary markets, respectively. Spread is the yield-to-maturity above the maturity-matched MMA benchmark yield. Time to Maturity is the
number of years between the transaction date and the maturity date in the bond-year-month. Bond Age is the number of years between the issue date and the transaction date in the
bond-year-month for the secondary market. Monthly Trading Volume is the sum of the par value traded in the bond-year-month for the secondary market. Face-issued total is the par
value for the primary market. Monthly Turnover is the ratio of Monthly Trading Volume to the total face value in the bond-year-month for the secondary market. Monthly Standard
Deviation of Price denotes the standard deviation of quoted prices (per $100 par value) within the bond-year-month for the secondary market. I{Insured}, I{Callable}, and I{Sinkable}
denote the insurance, callability, and sinkability status, respectively. I{ Competitive} denotes the sales method by which the bond is traded, either through negotiation or competitive
bidding.



1 2 3
A FIRE 28.26%**
(3.174)
A FIRE X I(YEAR = 2001) -23.59%Fk 4] 19%** 7.277*
(3.524) (4.077) (3.773)
A FIRE X I(YEAR = 2002) -20.75%%*  _46.69%** 1.246
(3.366) (4.110) (4.539)
A FIRE X I(YEAR = 2003) -27.69%F*  _50.61%** -2.402
(5.277) (5.386) (4.066)
A FIRE X I(YEAR = 2004) -23.23%F*% 4] 5THH* 1.449
(3.300) (4.218) (3.458)
A FIRE X I(YEAR = 2005) -18.28%**  _3(.23%** 4.286
(3.242) (3.705) (3.201)
A FIRE X I(YEAR = 2006) -22.4T*¥x _30.38%** 4.625%
(3.115) (2.693) (2.788)
A FIRE X I(YEAR = 2007) -20.97%%*  _25.26%** 6.359*
(3.302) (3.516) (3.365)
A FIRE X I(YEAR = 2008) -33.34%F% 34 .60%** 5.305
(3.779) (3.853) (3.482)
A FIRE X I(YEAR = 2009) S27.92%F% 3T 14%¥*F  _14.05%F*
(3.911) (4.172) (4.012)
A FIRE X I(YEAR = 2010) S17.19%F* _15.07FF* -0.924
(3.529) (3.631) (3.480)
A FIRE X I(YEAR = 2011) -21.91%%* 2] 13%** -4.003
(3.994) (4.309) (3.740)
A FIRE X I(YEAR = 2013) -5.964 2.178 2.599
(4.118) (2.904) (2.784)
A FIRE X I(YEAR = 2014) 5.385 11.03%** 3.630
(3.557) (2.717) (2.563)
A FIRE X I(YEAR = 2015) 10.46*** 17.44%%* 12.28***
(4.024) (2.633) (2.598)
A FIRE X I(YEAR = 2016) 23.72%¥%  31.76FFK 13.3T¥**
(3.978) (2.871) (3.131)
A FIRE X I(YEAR = 2017) 24.38%**  32.09*** 11.01%%*
(4.347) (2.784) (3.076)
A FIRE X I(YEAR = 2018) 23.57H** 42.44%%* 18.43***
(4.732) (2.942) (2.866)
A FIRE X I(YEAR = 2019) 45.22%%* 61.20%** 24.50%**
(5.992) (3.810) (3.284)
A FIRE X I(YEAR = 2020) 35.03***  56.24%FF  26.16%**
(6.207) (3.572) (2.938)
A FIRE X I(YEAR = 2021) 32.82%¥* 5. 78%FK 20 44%**
(4.276) (3.119) (3.781)
R2 0.714 0.869 0.910
A FIRE 11.15%%*
(1.130)
A FIRE X I(YEAR >= 2015) 43.29%** 47.31%** 13.63%**
(3.463) (2.053) (1.336)
R2 0.707 0.860 0.909
District-by-Issue-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 149,530 148,461 148,461

Table 2: Effect of wildfire risk changes on municipal credit spreads in the primary market

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal spreads in the primary market, as
described by Equation 6 and Equation 7. Standard errors are reported in parentheses, clustered at the county level. *, ** and ***
indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit spread of a bond is defined as the difference
between its yield to maturity, calculated from its issue price, and its maturity-matched Municipal Market Analytics (MMA) yield
benchmarks in basis points, based on the issue date. Maturity calendar dates are grouped into intervals of 5 years (e.g., Santa Barbara
Unified School District bonds maturing in 2030-35), and wildfire potentials are interpolated using a stepwise function from the historic
level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE as the difference between the maturity-calendar-date-
group-matched interpolated value and the historic level, which is standardized to a mean of zero and standard deviation of one. The
regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and district-by-issue-year-month fixed effects. It
also contains the log of the number of years before the maturity date and insurance status interacted with the issue year indicator. In
addition, we control for the bond’s log of face value, its sales method (negotiated or competitive), as well as its callability and sinkability
status.
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1 2 3

A FIRE 47.33%**
(3.503)
A FIRE X I(YEAR = 2005) -20.74%F* 32 27F¥* 8.588
(4.239) (8.870) (8.404)
A FIRE X I(YEAR = 2006) -29.93%F* A7 7E¥H* 1.982
(4.244) (7.177) (7.575)
A FIRE X I(YEAR = 2007) -26.98%** -39 89*H* 3.594
(3.764) (7.301) (5.138)
A FIRE X I(YEAR = 2008) -37.08%F* 4R 34%** -0.224
(10.95) (12.80) (6.426)
A FIRE X I(YEAR = 2009) -22.29% -30.56** -6.011
(12.13) (15.12) (13.53)
A FIRE X I(YEAR = 2010) -12.11 -20.41%* -3.541
(8.359) (9.788) (8.322)
A FIRE x I(YEAR = 2011) S11.84%  -18.18%* -5.663
(6.247) (8.200) (7.859)
A FIRE x I(YEAR = 2013) -10.56** -7.608%F* 7 T 4%
(4.090) (2.373) (2.271)
A FIRE X I(YEAR = 2014) -6.987 -2.125 3.197
(5.102) (3.878) (3.230)
A FIRE X I(YEAR = 2015) -4.616 6.971 18.45%**
(4.129) (5.371) (4.235)
A FIRE X I(YEAR = 2016) 9.633** 24.26%¥*  21.70%**
(4.113) (6.415) (4.890)
A FIRE X I(YEAR = 2017) 7.469%* 24.47F** 21.90%**
(3.781) (6.523) (4.833)
A FIRE X I(YEAR = 2018) 6.740* 20.42%** 23.70%**
(3.789) (6.951) (4.624)
A FIRE X I(YEAR = 2019) 25.41%** 56.42%** 33.21%**
(5.286) (8.859) (5.173)
A FIRE X I(YEAR = 2020) 28.68***  62.43%FF  33.63%**
(6.538) (10.16) (6.074)
R2 0.525 0.657 0.760
A FIRE 32.14%**
(3.725)
A FIRE X I(YEAR >= 2015) 31.08%**  39.19%**  26.21%**
(7.469) (5.694) (5.232)
R2 0.523 0.653 0.760
District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 362,876 361,967 361,194

Table 3: Effect of wildfire risk changes on municipal credit spreads in the secondary market

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal spreads in the secondary market, as
described by Equation 6 and Equation 7. Standard errors are reported in parentheses, clustered at the county level. * ** and ***
indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit spread of a bond is defined as the difference
between its yield to maturity, calculated from the monthly mean of its fundamental daily prices, and its maturity-matched Municipal
Market Analytics (MMA) yield benchmarks in basis points, based on the last trade date each year-month. Maturity calendar dates are
grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing in 2030-35), and wildfire potentials are
interpolated using a stepwise function from the historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE
as the difference between the maturity-calendar-date-group-matched interpolated value and the historic level, which is standardized to
a mean of zero and standard deviation of one. The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects
and district-by-trade-year-month fixed effects. It also contains the log of the number of years before the maturity date and insurance
status interacted with the trade year indicator. In addition, we control for the bond’s age in years, its monthly trading volume divided
by its face value, the monthly standard deviation of its prices, as well as its callability and sinkability status.
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Panel A: Primary Market

1 2 3
A FIRE X [(YEAR >= 2015) 13.63%%*  13.32%F*% 9 851%**
(1.336) (1.802) (2.055)
A FIRE x I(YEAR >= 2015) X I(LOCALLY DEPENDENT) 0.731
(2.356)
A FIRE X I(YEAR >= 2015) x I(WITH A RACIAL MINORITY POPULATION) 7.083%**
(2.456)
A FIRE X I(YEAR >= 2015) x [(HicH INCOME) 3.183
(2.176)
R? 0.909 0.909 0.909
District-by-Issue-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects Y Y Y
Controls Y Y Y
Observations 148,461 148,461 148,461
Panel B: Secondary Market
1 2 3
A FIRE X [(YEAR >= 2015) 26.21%¥*  20.82%**  2].15%**
(5.232) (5.388) (5.536)
A FIRE X I(YEAR >= 2015) X I(LOCALLY DEPENDENT) 13.14%*
(6.604)
A FIRE x I(YEAR >= 2015) x I(WITH A RACIAL MINORITY POPULATION) 13.59%*
(5.424)
A FIRE X I(YEAR >= 2015) x [(HicH INCOME) -0.267
(6.212)
R? 0.760 0.760 0.760
District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects Y Y Y
Controls Y Y Y
Observations 361,194 361,194 361,194

Table 4: Effect of wildfire risk changes on municipal credit spreads in the secondary market
- Heterogeneity analyses

This table reports the heterogeneous impacts of wildfire risk increases on municipal spreads in the primary and secondary market
post-2014, as outlined in Equation 7 in which fire risk changes are further interacted with the indicator for heterogeneity. Standard
errors are reported in parentheses, clustered at the county level. *, ** and *** indicate the corresponding p-value less than 0.10, 0.05,
and 0.01, respectively. The nationwide average ratio of local to total school district revenue from 2005 through 2021 is about 40%. We
classify school districts as “Locally Dependent” if their average revenues from local sources exceed 40% of total revenues. The White
alone population decreased from 70% to 60% from 2010 to 2020 Census. We categorize school districts as “With a Racial Minority
Population” if the proportion of White-alone population is below 65%. The nationwide average median household income by school
district from 2005-2009 to 2017-2021 is $58,107 (in 2017 USD). We classify school districts as “High Income” if their own average
median household income is above $58,107 (in 2017 USD). The credit spread of a bond is defined as the difference between its yield
to maturity and its maturity-matched Municipal Market Analytics (MMA) yield benchmarks in basis points. Maturity calendar dates
are grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing in 2040-44), and fire potentials are
interpolated using a stepwise function from the historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE
as the difference between the maturity-calendar-date-group-matched interpolated value and the historic level, which is standardized to
a mean of zero and standard deviation of one. The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects
and district-by-trade-year-month fixed effects. Controls include bond’s logarithm of the number of years before the maturity date and
its insurance status interacted with the year indicator, as well as its callability and sinkability status. For the primary market analysis,
we further control for the bond’s log face value and its sales method (negotiated or competitive). For the secondary market analysis, we
control for the number of years since issuance, the bond’s monthly trading volume relative to its face value, and the monthly standard
deviation of its prices.
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Figure 1: Wildfire exposure by school district

This figure maps school districts’ historic and mid-century weighted Keetch-Byram Drought Index (KBDI), based on Equation 8,
along with their differences in the Northwestern (NW), Southwestern (SW), and Southern Great Plains (SGP) regions, as classified by
USGCRP (2017). We restrict the sample to these regions because their average daily unweighted KBDI values exceed 400 in September,
October, and November during the historic period from 1995 to 2004 (Brown et al., 2021). This threshold generally indicates late summer
or early fall weather conditions with a high potential for wildfire events (Liu et al., 2010). We provide a robustness check on our main
regression by including other regions in the appendix. The weights are determined by the number of housing units at the US census
block level, further interacted with the Wildland-Urban Interface (WUI) classification.

38



Wildfire Risks - Primary Market

50
40
30 T o
20 T .0

10 T T T o1 /]

Basis Points

O—D\\/O """" Lo A 1 R o /O’/ """" R R
-10 - ) 1 K4
-20 1

-30

T T T T T T T T T T T
2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021

Issue Year

Figure 2: Effect of wildfire risk changes on municipal credit spreads in the primary market

This figure plots the year-by-year impact of wildfire risk increases on the credit spreads of school district bonds in the primary market,
as described by Equation 6, with the baseline year set to 2012. The vertical lines denote the 95% confidence intervals, with standard
errors clustered at the county level. The credit spread of a bond is defined as the difference between its yield to maturity, calculated
from its issue price, and its maturity-matched Municipal Market Analytics (MMA) yield benchmarks in basis points, based on the
issue date. Maturity calendar dates are grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing
in 2030-35), and wildfire potentials are interpolated using a stepwise function from the historic level (1995-2004) to the mid-century
prediction (2045-2054). We define AFIRE as the difference between the maturity-calendar-date-group-matched interpolated value and
the historic level, which is standardized to a mean of zero and standard deviation of one. The regression includes the bond’s district-
by-maturity-calendar-date-group fixed effects and district-by-trade-year-month fixed effects. It also contains the log of the number of
years before the maturity date and insurance status interacted with the trade year indicator. In addition, we control for the bond’s log
of face value, its sales method (negotiated or competitive), as well as its callability and sinkability status.
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Figure 3: Effect of wildfire risk changes on municipal credit spreads in the secondary market

This figure plots the year-by-year impact of wildfire risk increases on the credit spreads of school district bonds in the secondary
market, as described by Equation 6, with the baseline year set to 2012. The vertical lines denote the 95% confidence intervals, with
standard errors clustered at the county level. The credit spread of a bond is defined as the difference between its yield to maturity,
calculated from the monthly mean of its fundamental daily prices, and its maturity-matched Municipal Market Analytics (MMA) yield
benchmarks in basis points, based on the last trade date each year-month. Maturity calendar dates are grouped into intervals of 5
years (e.g., Santa Barbara Unified School District bonds maturing in 2030-35), and wildfire potentials are interpolated using a stepwise
function from the historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE as the difference between the
maturity-calendar-date-group-matched interpolated value and the historic level, which is standardized to a mean of zero and standard
deviation of one. The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and district-by-trade-year-
month fixed effects. It also contains the log of the number of years before the maturity date and insurance status interacted with the
trade year indicator. In addition, we control for the bond’s age in years, its monthly trading volume divided by its face value, the
monthly standard deviation of its prices, as well as its callability and sinkability status.
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Online Appendix for

Pricing Climate Risks: Evidence from Wildfires and Municipal Bonds

A  An Alternative Measure of Economic Wildfire Risks

Argonne National Laboratory calculates the Fire Weather Index (FWI) — developed by
the Canadian Forest Service — across the contiguous US at a spatial resolution of 12 km
for historic (1995-2004) and mid-century (2045-2054) periods (ANL, 2023). To generate
the ensemble mean of the seasonal average daily FWI, they use Argonne’s downscaled 12
km climate data under the high-emissions scenario (RCP 8.5) and across three different
climate models: Community Climate System Model (CCSM), Geophysical Fluid Dynamics
Laboratory (GFDL), and Hadley Centre Global Environmental Model (HadGEM). It uses
daily readings of temperature, relative humidity, wind speed, and 24-hour precipitation to
assess fire potential, focusing on early to mid-afternoon conditions when weather conditions
are favorable for fire spread.

As a robustness check, we use their summer average daily FWI to measure the wildfire
potential of each school district, as this index reaches its peak during summer.'® Given
the consistency in spatial resolution, prediction time scale, and emissions scenario between

KBDI and FWI, we apply the same method in Section 2 to compute the economic fire risks.
| FIGURE A2 HERE |

Figure A2 maps the spatial distribution of the weighted KBDI, the weighted summer FWI,
and their correlation coefficients across school districts in the contiguous United States. In
the mid-century, the Northwest (NW), Southwest (SW), and Southern Great Plains (SGP)
regions exhibit elevated wildfire potentials in both metrics. The Northern Great Plains

(NGP) show high fire risks for FWI, while the Southeast (SE) regions display high risks for

16 ANL (2023) divides the seasons into winter (December, January, February), spring (March, April, May), summer (June,
July, August), and autumn (September, October, November).



KBDI. The correlation coefficient between KBDI and summer FWI is 0.843 and 0.887 for

the historic and mid-century periods, respectively.

B Economic Heat Risks

ANL (2023) computes the extended Heat Index (HI), developed by Lu and Romps (2022),
across the contiguous US at a spatial resolution of 12 km for both historic (1995-2004) and
mid-century (2045-2054) periods. It uses temperature and relative humidity to assess how hot
it feels to the human body, based on the model of human thermoregulation by Steadman
(1979). Low humidity helps sweat evaporate faster, making high temperatures feel less
extreme, while high humidity slows sweat evaporation, making moderate temperatures feel

much hotter.
| FIGURE A3 HERE |

Figure A3 displays the Heat Index chart from the National Weather Service, based on the
extended Heat Index developed by Lu and Romps (2022). It shows how the weather feels
to the human body based on temperature and relative humidity. A Heat Index greater than
105 indicates that sunstroke, heat cramps, or heat exhaustion are likely, and heat stroke
is possible with prolonged exposure and/or physical activity.!” Using Argonne’s climate
data under the high-emissions scenario (RCP 8.5) and across three different climate models
mentioned above, ANL (2023) generates the ensemble mean of the summer daily maximum
Heat Index. They then calculate five different measures of the Heat Index: the seasonal
average of daily maximum Heat Index for the summer months (June, July, and August) and
the number of summer days with daily maximum Heat Index above 95, 105, 115, and 125

degrees Fahrenheit.

17«Heat Index Chart,” National Oceanic And Atmospheric Administration National Weather Service https://www.noaa.gov/
sites/default/files/2022-05/heatindex_chart_rh.pdf.
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Similar to economic wildfire risks, we aggregate Heat Index (HI) data from the census
block level to the school district level, using population as weights. For a given school district
d, let Ny represent the number of census blocks intersecting with the district. Within each
block i, the population is available. We compute the weighted HI for both historic and

mid-century periods, using the population as weights: for p € {historic, mid-century},

Ng
WEIGHTED HIy(p) = Z

i=1

Population,
Z?]jl Population;

x HI;(p)| . (8)

Figure A4 maps the historic and mid-century weighted HI in the contiguous United States.
In general, the Southern Great Plains and Southeast regions exhibit high risk levels for both
the historical and mid-century periods, along with parts of the Southwestern and Midwest

regions.

| FIGURE A4 HERE |

C Name Matching

In our economic wildfire risk data, we compute the weighted KBDI using the NCES school
district boundary map, in which each district is uniquely identified by Local Education
Agency Identification (LEAID) and the associated district names used in the Common Core
of Data (CCD). But in our bond characteristics data, each district is uniquely identified
by the 6-digit Committee on Uniform Securities Identification Procedures (CUSIP) and the
associated issuer names. To the best of our knowledge, there is no established mapping
between LEAID and the 6-digit CUSIP that can be used to assign climate risks to each
bond issuer. Here, we describe the algorithm that we develop to match the 2010 vintage

LEAID with the 6-digit CUSIP.
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1. Within each state, drop duplicates and select unique string values for district and issuer
names, along with their corresponding LEAID and 6-digit CUSIP, from the economic

wildfire risk and bond characteristics data, respectively.

2. Within each state, extract the first word from each school district name and then apply

the following filters:
(a) Drop any cases where the first word extracted appears more than once, as we
want to keep only unique names.

(b) Keep only those cases where the length of the first word exceeds 3 characters to

avoid generic names such as ”San”.

(c¢) Exclude cases where the first word includes directional terms, such as, North,
Northern, Northeast, Northeastern, Northwest, Northwestern, South, Southern,
Southeast, Southeastern, Southwest, Southwestern, East, Eastern, West, and

Western.

3. Within each state, find issuer names that contain the filtered first words of district

names using a Cartesian product between two datasets, and apply the following filters:

(a) Drop cases where multiple issuers are matched to a single school district.

(b) Drop cases where multiple first words are matched to a single issuer.

After completing the algorithm-based matching, there may still be unmatched instances.

In such cases, we manually match them according to the following guidelines:

1. Find special proper nouns within each issuer name and search for matches in district

names.
2. If the previous step does not work, follow these steps:

(a) Search for the issuer name on the Electronic Municipal Market Access (EMMA)

and open its official statement.
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(b) Identify the issuer’s special proper name from this document and match it.
(c) Extract any relevant information from the description in the document.
(d) Visit the NCES Search for Public School Districts.’® Enter the information iden-

tified above and match accordingly.

3. Check the manually matched outcomes and categorize any unmatched cases as follows:

(a) Multiple districts per issuance (e.g., AUBURN CALIF UN SCH DIST)
(b) No official statement (e.g., BAY AREA SCH FOR INDPT STUDY INC CALIF)

(¢) No issuer name on EMMA (e.g., ARKANSAS ST DEV FIN AUTH CAP IMPT
REV)

(d) College (e.g., ALABAMA ST UNIV CTFS PARTN)
(e) State, county, or city (e.g., PELHAM ALA)

(f) Technical/vocational (e.g., EAST VY ARIZ INST OF TECHNOLOGY DIST NO
401)

(g) Charter (e.g., CALIFORNIA MUN FIN AUTH CHARTER SCH LEASE REV)

(h) Others (e.g., ARIZONA INDL DEV AUTH REV)

4. Drop the unmatched cases.

8https://nces.ed.gov/ccd /districtsearch/
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D Housing Value Capitalization

The National Center for Education Statistics (NCES) Education Demographic and Ge-
ographic Estimates program uses the US Census Bureau’s American Community Survey
(ACS) to summarize data on economic and housing conditions for each school district. The
estimates are derived from the ACS 5-year data, thus only accessible for the years from
2005-09 to 2017-21. For our analysis, we restrict our sample to the years from 2009 to 2021.
We collect information on the median value of owner-occupied housing units, along with
control variables such as mean household income and the unemployment rate. We then con-
struct a balanced panel by merging this dataset together with our risk map using the Local
Education Agency Identity (LEAID). Appendix Table A16 provides summary statistics.

If residents are forward-looking, they will consider anticipated wildfire risk changes when
purchasing properties. The capitalization of future wildfire risk changes into housing values
could potentially undermine school districts’ ability to pay debt, alerting lenders to credit
risks related to climate-driven wildfire events. To examine the association between future

wildfire risk changes and housing values, we consider the following regression specification:

2021

Yier = Ay + g + Z ByAFIREGL(YEAR = y) + ' Xyt + €aets 9)

y=2009
y#2011

for school district d within county ¢ and in year t. Our outcome variable is the median
value of owner-occupied housing units.!'® We exclude school districts that span across more
than one county to control for time-varying economic conditions at the county level (\.;).
Additionally, we exclude all observations starting from the year in which they were first
impacted by large-scale fires, to isolate the effects of future fire risk changes from the direct
impacts of historical fires. To align with the results from bond pricing, we restrict our sample

to school districts located in the Northwest, Southwest, and Southern Great Plains regions.

19While the ACS housing value data are reported by respondents, recent evidence indicates that Census- and transactions-
based price data analyses yield comparable results in other settings (Cassidy et al., 2022).
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We define AFIRE by the difference between mid-century and historic weighted KBDI
values within a district, standardized to a mean of zero and standard deviation of one. The
covariates in X include the mean household income and unemployment rate to account for
time-varying local economic conditions within a district. We include district fixed effects
g to absorb any time-invariant differences across school districts. Moreover, we include
county-by-year fixed effects A.; to control for time-varying local economic conditions at the
county level. While we would like the coefficient of interest 3, to measure the year-to-
year within-county variation in Y in response to a one standard deviation rise in future
fire risks across districts, we here cannot include the rich set of district-by-year fixed effects
that would account for economic conditions varying at the district level over time. If, for
example, there are differential trends within school districts facing higher or lower future
wildfire risk increases, these differing time trends could threaten the identification of the
association between wildfire risk changes and housing values. We therefore consider the
estimates as suggestive. Standard errors are clustered at the county level to account for
within-county interdependence.

Figure A6 plots the year-by-year association of future wildfire risk changes with median
value of owner-occupied housing units, which exhibits a persistent negative correlation since
2017. A one standard-deviation in the weighted KBDI is associated with an approximately
$6,000 (in 2017 USD) decrease in the median value of owner-occupied housing units in 2021
relative to 2011, which is equivalent to 2.3% of the average median value of owner-occupied
housing units across all school districts. We also run a before-and-after analysis for the year
2015, similar to the equation (7). The corresponding coefficients have the same sign as the

year-by-year estimates and are statistically significant at the 5% level.
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Region State

Northeast Connecticut, Maine, Massachusetts, New Hampshire, New Jersey,
New York, Pennsylvania, Rhode Island, Vermont, West Virginia

Southeast Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana,
Mississippi, North Carolina, South Carolina, Tennessee, Virginia

Midwest Michigan, Minnesota, Missouri, Illinois, Indiana, Iowa,
Ohio, Wisconsin
Northern Great Plains | Montana, Nebraska, North Dakota, South Dakota, Wyoming

Southern Great Plains | Kansas, Oklahoma, Texas

Northwest Idaho, Oregon, Washington

Southwest Arizona, California, Colorado, Nevada, New Mexico, Utah

Table Al: National Climate Assessment (NCA) regions of the contiguous United States (CONUS)

Source: US Global Change Research Program (USGCRP, 2017)
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Panel A: By State

Primary Market

# of Issues  Percent

Arizona 7,044 4.70
California 65,095 43.39
Colorado 3,003 2.00
Idaho 1,036 0.69
Kansas 3,034 2.02
New Mexico 3,150 2.10
Oklahoma 5,135 3.42
Oregon 2,494 1.66
Texas 50,420 33.61
Utah 1,804 1.20
Washington 7,798 5.20
Total 150,013 100

Panel B: By Year

Primary Market

# of Issues  Percent

2001 1,473 0.98
2002 2,721 1.81
2003 1,208 0.81
2004 4,953 3.30
2005 10,192 6.79
2006 9,389 6.26
2007 9,158 6.10
2008 7,008 4.67
2009 5,683 3.79
2010 5,878 3.92
2011 5,591 3.73
2012 7,386 4.92
2013 7,648 5.10
2014 7,923 5.28
2015 12,101 8.07
2016 11,962 7.97
2017 10,361 6.91
2018 7,747 5.16
2019 8,878 5.92
2020 6,764 4.51
2021 5,989 3.99
Total 150,013 100

Secondary Market

# of Trades  Percent

Arizona 30,319 7.46
California 200,481 49.3
Colorado 10,313 2.54
Idaho 2,006 0.49
Kansas 7,767 1.91
New Mexico 3,488 0.86
Oklahoma 2,741 0.67
Oregon 6,413 1.58
Texas 105,135 25.86
Utah 6,313 1.55
Washington 31,645 7.78
Total 406,621 100

Secondary Market

# of Trades  Percent

2005 8,556 2.1
2006 12,353 3.04
2007 13,533 3.33
2008 14,586 3.59
2009 15,622 3.84
2010 15,994 3.93
2011 16,650 4.09
2012 15,821 3.89
2013 20,893 5.14
2014 18,414 4.53
2015 22,378 5.5
2016 28,903 7.11
2017 39,230 9.65
2018 52,607 12.94
2019 53,944 13.27
2020 57,137 14.05
Total 406,621 100

Table A2: Sample composition
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Primary Market Secondary Market

Mean  Std. Dev.  Observations Mean  Std. Dev. Observations

Fire Risk Change 14.91 16.84 208,223 Fire Risk Change 12.20 15.47 531,640
Yield-To-Maturity 2.77 1.29 208,223 Yield-To-Maturity 2.35 1.21 531,640
Spread (basis points) 32.02 41.98 208,223 Spread (basis points) 52.06 60.96 531,640
Time to Maturity (years) 10.09 6.49 208,223 Time to Maturity (years) 7.54 6.12 531,640
Face Issued Total (Millions USD) 2.02 6.76 208,223 Bond Age (years) 3.01 2.68 531,640
I{Insured} 0.28 0.45 208,223 Monthly Trading Volume (Thousands USD)  620.85 2,677.29 531,640
I{Callable} 0.49 0.50 208,223 Monthly Turnover 0.23 0.55 531,640
I{Sinkable} 0.08 0.27 208,223 Monthly Standard Deviation of Price 0.60 0.65 531,640
I{Competitive} 0.44 0.50 208,223 I{Insured} 0.32 0.47 531,640
I{Callable} 0.41 0.49 531,640

I{Sinkable} 0.08 0.27 531,640

Table A3: Summary Statistics (No restriction on counties with more than one districts)

This table reports the summary statistics for the variables used in the sample, which includes bonds issued in counties that either contain only one district or span across two counties
to improve the representativeness of our sample. The final sample in the secondary market analysis comprises 531,640 bond-month trades spanning from 2005 to 2020, with 68,780
bonds issued by 2,458 school districts. The primary market sample consists of 208,223 bonds issued by 2,961 school districts, spanning from 2001 to 2021. Fire Risk Change is the
difference between the maturity-calendar-date-group-matched interpolated weighted KBDI and the historical weighted KBDI within a district. Yield-to-Maturity is an annual interest
rate that equates the present value of cash flow payments received from a bond with the monthly mean of its daily fundamental prices and the issue price for the secondary and primary
markets, respectively. Spread is the yield-to-maturity above the maturity-matched MMA benchmark yield. Time to Maturity is the number of years between the transaction date
and the maturity date in the bond-year-month. Bond Age is the number of years between the issue date and the transaction date in the bond-year-month for the secondary market.
Monthly Trading Volume is the sum of the par value traded in the bond-year-month for the secondary market. Face-issued total is the par value for the primary market. Monthly
Turnover is the ratio of Monthly Trading Volume to the total face value in the bond-year-month for the secondary market. Monthly Standard Deviation of Price denotes the standard
deviation of quoted prices (per $100 par value) within the bond-year-month for the secondary market. I{Insured}, I{Callable}, and I{Sinkable} denote the insurance, callability, and
sinkability status, respectively. I{ Competitive} denotes the sales method by which the bond is traded, either through negotiation or competitive bidding.



1 2 3 4

A FIRE X I(YEAR = 2001) 7.277* -2.534 5.736* 3.933
(3.773) (5.569) (3.083) (5.736)
A FIRE X I(YEAR = 2002) 1.246 -3.329 0.528 -2.765
(4.539) (7.038) (3.517) (4.962)
A FIRE x I(YEAR = 2003) -2.402 -14.83 -1.693 -9.986
(4.066) (9.245) (5.048) (7.595)
A FIRE X I(YEAR = 2004) 1.449 10.74 -0.269 3.489
(3.458) (10.49) (2.741) (5.983)
A FIRE x [(YEAR = 2005) 4.286 -4.807 3.809 3.879
(3.201) (4.941) (2.469) (3.904)
A FIRE X I(YEAR = 2006) 4.625* -1.945 4.066* 0.827
(2.788) (4.418) (2.387) (3.652)
A FIRE X I(YEAR = 2007) 6.359% -1.917 4.992** 2.625
(3.365) (4.563) (2.496) (3.720)
A FIRE X I(YEAR = 2008) 5.305 -4.746 2.041 -6.384
(3.482) (5.130) (2.829) (4.412)
A FIRE X I(YEAR = 2009) -14.05%F%  _24.05%F% 15 21%FF  _17.38%**
(4.012) (5.547) (3.198) (4.746)
A FIRE X I(YEAR = 2010) -0.924 -11.96** -1.964 -5.073
(3.480) (4.675) (2.530) (4.685)
A FIRE X I(YEAR = 2011) -4.003 -15.15%* -5.795% -8.266
(3.740) (6.050) (3.021) (6.931)
A FIRE X I(YEAR = 2013) 2.599 -5.677 2.135 -1.140
(2.784) (4.672) (2.711) (3.774)
A FIRE X I(YEAR = 2014) 3.630 -4.205 2.298 -1.567
(2.563) (4.412) (2.527) (3.989)
A FIRE X I(YEAR = 2015) 12.28%** 6.503 12.81%%* 11.46%**
(2.598) (4.472) (2.360) (3.546)
A FIRE X I(YEAR = 2016) 13.37%%* 7.182 12.13%%* 12.01%%*
(3.131) (5.560) (2.465) (3.812)
A FIRE X I(YEAR = 2017) 11.01%** 7.108%* 10.81%*** 12.62%**
(3.076) (3.952) (2.325) (4.340)
A FIRE X I(YEAR = 2018) 18.43%%* 12.99%** 17.27%%* 16.78***
(2.866) (4.488) (2.527) (4.368)
A FIRE X I(YEAR = 2019) 24.50%** 25.39%** 25.81%** 30.81%**
(3.284) (5.345) (2.768) (4.794)
A FIRE X I(YEAR = 2020) 26.16%** 26.47%** 26.12%** 35.91%**
(2.938) (6.569) (2.870) (6.706)
A FIRE x [(YEAR = 2021) 29.44%** 28.45%** 27.63*** 31.00%**
(3.781) (5.700) (2.956) (4.707)
R? 0.910 0.913 0.906 0.911
A FIRE X I(YEAR >= 2015) 13.63*** 18.67*** 14.47%%% 20.30%**
(1.336) (1.814) (1.001) (2.055)
R? 0.909 0.913 0.905 0.910
Equal Weights N Y N Y
More Than One District Per County Y Y Y Y
Cluster for Standard Error County County District District
Number of Districts 1,881 1,881 2,961 2,961
Observations 148,461 148,461 205,694 205,694

Table A4: Wildfire risk changes and municipal credit spreads in the primary market
- Robustness specification

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads in the primary market.
Standard errors are reported in parentheses. *, ** and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively.
The credit spread of a bond is defined as the difference between its yield to maturity, calculated from its issue price, and its maturity-
matched Municipal Market Analytics (MMA) yield benchmarks in basis points, based on the issue date. Maturity calendar dates
are grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing in 2030-35), and fire potentials are
interpolated using a stepwise function from the historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE
as the difference between the maturity-calendar-date-group-matched interpolated value and the historic level, which is standardized to
a mean of zero and standard deviation of one. The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects
and district-by-issue-year-month fixed effects. It also contains the log of the number of years before the maturity date and insurance
status interacted with the issue year indicator. In addition, we control for the bond’s log of face value, its sales method (negotiated or
competitive), as well as its callability and sinkability status. Column (1) presents the benchmark specification. Column (2) weights each
observation by the inverse of the count of distinct bonds within each state for a specific issue year. Column (3) additionally includes
bonds issued in counties that contain only one district or span across two counties. Column (4) removes geographic restrictions and
applies equal weighting across states.
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1 2 3 4

A FIRE X I(YEAR = 2005) 8.588 -13.73 7.385 -8.747
(8.404) (13.13) (8.783) (9.847)
A FIRE X I(YEAR = 2006) 1.982 -17.35 3.555 -6.797
(7.575) (13.93) (8.207) (10.88)
A FIRE X I(YEAR = 2007) 3.594 -5.065 3.882 -0.608
(5.138) (8.305) (6.481) (6.533)
A FIRE X I(YEAR = 2008) -0.224 -17.37 -1.101 -14.89*
(6.426) (11.55) (5.993) (7.694)
A FIRE X I(YEAR = 2009) -6.011 -29.99% -7.811 -28.66%**
(13.53) (15.88) (7.396) (8.859)
A FIRE X I(YEAR = 2010) -3.541 -20.13 -3.607 -13.13*
(8.322) (13.14) (4.568) (7.464)
A FIRE X I(YEAR = 2011) -5.663 -14.21 -6.733 -15.51%*
(7.859) (9.348) (5.107) (6.901)
A FIRE X I(YEAR = 2013) ST.T14%%* -7.989 -4.999 -3.143
(2.271) (7.135) (3.151) (4.363)
A FIRE X I(YEAR = 2014) 3.197 -7.959 5.401 2.622
(3.230) (8.142) (3.550) (5.530)
A FIRE X I(YEAR = 2015) 18.45%** 12.20* 20.06%**  18.13%**
(4.235) (7.051) (4.026) (5.273)
A FIRE X I(YEAR = 2016) 21.70%** 18.73%*%  23.06%**  25.37%**
(4.890) (7.815) (4.311) (5.340)
A FIRE X I(YEAR = 2017) 21.90%*** 19.19%*  23.98%** 28 85%**
(4.833) (7.983) (4.529) (5.734)
A FIRE X I(YEAR = 2018) 23.70%F*%  20.51%**F 25 50%**  32.37HF*
(4.624) (7.712) (4.464) (5.535)
A FIRE X I(YEAR = 2019) 33.21%** 32.24%**  35.22%%* 44.07%**
(5.173) (8.005) (4.746) (5.905)
A FIRE X I(YEAR = 2020) 33.63%*%  38.14%**  35.72%**  47.85%**
(6.074) (8.812) (4.779) (6.152)
R? 0.760 0.713 0.754 0.702
A FIRE X [(YEAR >= 2015) 26.21%¥*  28.75¥*¥*  26.66%**  30.49***
(5.232) (5.161) (3.170) (3.495)
R? 0.760 0.713 0.753 0.701
Equal Weights N Y N Y
More Than One District Per County Y Y Y Y
Cluster for Standard Error County County District District
Number of Bonds 52,280 52,280 68,780 68,780
Number of Districts 1,641 1,641 2,458 2,458
Observations 361,194 361,194 469,381 469,381

Table A5: Wildfire risk changes and municipal credit spreads in the secondary market
- Robustness specification

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads in the secondary
market. Standard errors are reported in parentheses. *, ** and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01,
respectively. The credit spread of a bond is defined as the difference between its yield to maturity and its maturity-matched Municipal
Market Analytics (MMA) yield benchmarks in basis points. Maturity calendar dates are grouped into intervals of 5 years (e.g., Santa
Barbara Unified School District bonds maturing in 2030-35), and fire potentials are interpolated using a stepwise function from the
historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE as the difference between the maturity-calendar-
date-group-matched interpolated value and the historic level, which is standardized to a mean of zero and standard deviation of one.
The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and district-by-trade-year-month fixed effects.
Controls include bond’s logarithm of the number of years before the maturity date and its insurance status interacted with the trade
year indicator, the number of years since issuance, its monthly trading volume divided by its face value, its monthly standard deviation
of prices, as well as its callability and sinkability status. Column (1) presents the benchmark specification. Column (2) weights each
observation by the inverse of the count of distinct bonds within each state for a specific trade year. Column (3) additionally includes
bonds issued in counties that contain only one district or span across two counties. Column (4) removes geographic restrictions and
applies equal weighting across states.
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1 2 3
A FIRE 17.21%%*
(1.894)
A FIRE x I(YEAR = 2001) -14.50%*%*  -30.52%** -0.780
(2.236) (2.882) (2.546)
A FIRE X I(YEAR = 2002) -14.01%%%  _34.94%** -1.577
(2.086) (2.883) (2.948)
A FIRE X I(YEAR = 2003) -22.98%**  _35.96%F*F  _7.204%*
(4.149) (3.511) (3.001)
A FIRE X I(YEAR = 2004) -14.46***  -30.08%**  -5.064**
(1.995) (2.893) (2.079)
A FIRE X I(YEAR = 2005) -9.492%** 21 22%** -2.091
(1.886) (2.448) (1.998)
A FIRE X I(YEAR = 2006) S13.11%FF 20, 72%H* -1.719
(1.809) (1.839) (1.904)
A FIRE X I(YEAR = 2007) -11.36%*%*  -16.72%** -0.560
(1.889) (2.243) (2.145)
A FIRE X I(YEAR = 2008) -26.02%** 27 .68%** -1.346
(2.298) (2.806) (2.160)
A FIRE X I(YEAR = 2009) -28.68***  _32.06%F*  -13.4T***
(2.558) (2.721) (2.417)
A FIRE x I(YEAR = 2010) S14.69%%%  _13.19%F% 2763
(1.995) (2.758) (2.216)
A FIRE x I(YEAR = 2011) -18.65%*FF  _17.14%FF  _6.800%**
(2.472) (2.898) (2.473)
A FIRE X I(YEAR = 2013) -2.163 3.785%* 0.717
(2.358) (1.918) (1.926)
A FIRE X I(YEAR = 2014) 9.238%** 12.72%%* -1.313
(2.342) (2.014) (1.688)
A FIRE X I(YEAR = 2015) 13.45%¥%  18.45%** 7. 703%**
(2.771) (2.005) (1.768)
A FIRE X I(YEAR = 2016) 24.07***  29.30%FF  8.143%**
(2.673) (2.080) (1.914)
A FIRE X I(YEAR = 2017) 24.88*** 29.98*** 6.713***
(3.138) (2.248) (1.979)
A FIRE X I(YEAR = 2018) 24.49%**  37.10%** 11.51%%*
(3.630) (2.361) (1.924)
A FIRE X I(YEAR = 2019) 43.93%*%  53.94%FK  17.86%**
(4.651) (3.445) (2.162)
A FIRE X I(YEAR = 2020) 32.78*** 46.56%** 15.71%%*
(4.301) (2.842) (2.311)
A FIRE X I(YEAR = 2021) 3L.85¥** 42 78Kk 17 58%**
(3.215) (2.340) (2.905)
R? 0.732 0.869 0.903
A FIRE 6.030%**
(0.898)
A FIRE X I(YEAR >= 2015) 37.83*** 40.06%** 12.04%%%*
(2.894) (1.848) (0.949)
R? 0.727 0.864 0.903
District-by-Issue-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 381,031 378,047 378,047

Table A6: Wildfire risk changes and municipal credit spreads in the primary market
- Contiguous United States (CONUS)

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads in the primary market.
The sample includes the contiguous United States, with 381,884 bonds issued by 5,715 school districts. Standard errors are reported in
parentheses, clustered at the county level. * ** and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively.
The credit spread of a bond is defined as the difference between its yield to maturity, calculated from its issue price, and its maturity-
matched Municipal Market Analytics (MMA) yield benchmarks in basis points, based on the issue date. Maturity calendar dates
are grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing in 2030-35), and fire potentials are
interpolated using a stepwise function from the historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE
as the difference between the maturity-calendar-date-group-matched interpolated value and the historic level, which is standardized to
a mean of zero and standard deviation of one. The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects
and district-by-issue-year-month fixed effects. It also contains the log of the number of years before the maturity date and insurance
status interacted with the issue year indicator. In addition, we control for the bond’s log of face value, its sales method (negotiated or
competitive), as well as its callability and sinkability status.
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1 2 3

A FIRE 41.28%%*
(3.492)
A FIRE X I(YEAR = 2005) -19.16%** 27 77k 9.729
(3.978) (7.325) (6.450)
A FIRE x I(YEAR = 2006) -28.90%*F*  _40.17*** 7.085
(4.333) (6.198) (6.178)
A FIrRE X [(YEAR = 2007) -25.04%**%  _33.71%** 8.584*
(3.709) (6.404) (5.160)
A FIRE x I(YEAR = 2008) -35.70%F%  _43.62%FF  3.246
(10.29) (11.60) (4.670)
A FIRE X [(YEAR = 2009) -23.92%* -28.78%* -2.482
(11.70) (13.50) (10.50)
A FIRE X [(YEAR = 2010) -13.96* -19.42%* -0.765
(8.134) (8.936) (6.440)
A FIRE x I(YEAR = 2011) -13.75%* -18.17%* -3.679
(6.269) (7.776) (6.405)
A FIRE X [(YEAR = 2013) -10.53%** 7 127%F* -4.038
(3.862) (2.217) (2.512)
A FIRE x I(YEAR = 2014) -8.252% -2.269 5.456
(4.804) (3.579) (3.754)
A FIRE X [(YEAR = 2015) -4.991 5.469 19.12%**
(3.635) (4.656) (4.776)
A FIRE X I(YEAR = 2016) 8.938*** 21.76%F* 22 44%**
(3.307) (5.888) (5.254)
A FIRE x I(YEAR = 2017) 6.497** 21.70%**  2].88%**
(3.026) (5.972) (5.250)
A FIRE X [(YEAR = 2018) 5.779* 25.86%** 23.75%**
(3.114) (6.389) (5.179)
A FIRE x I(YEAR = 2019) 22.37**%  49.96%FF 32, 13%**
(4.085) (8.157) (5.625)
A FIRE X [(YEAR = 2020) 25.35%** 55.48%** 32.31%¥*
(5.106) (9.285) (6.416)
R2 0.553 0.679 0.771
A FIRE 25.75%**
(3.211)
A FIRE X [(YEAR >= 2015) 29.46%** 34.5T*** 23.43%**
(6.422) (4.943) (4.673)
R2 0.551 0.676 0.771
District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 642,440 639,543 637,969

Table A7: Wildfire risk changes and municipal credit spreads in the secondary market
- Contiguous United States (CONUS)

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads in the secondary market.
The sample includes the contiguous United States, with 116,644 bonds issued by 5,176 school districts. Standard errors are reported in
parentheses, clustered at the county level. * ** and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively.
The credit spread of a bond is defined as the difference between its yield to maturity and its maturity-matched Municipal Market
Analytics (MMA) yield benchmarks in basis points. Maturity calendar dates are grouped into intervals of 5 years (e.g., Santa Barbara
Unified School District bonds maturing in 2030-35), and fire potentials are interpolated using a stepwise function from the historic
level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE as the difference between the maturity-calendar-date-
group-matched interpolated value and the historic level, which is standardized to a mean of zero and standard deviation of one.
The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and district-by-trade-year-month fixed effects.
Controls include bond’s logarithm of the number of years before the maturity date and its insurance status interacted with the trade
year indicator, the number of years since issuance, its monthly trading volume divided by its face value, its monthly standard deviation
of prices, as well as its callability and sinkability status.
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1 2 3

A FIRE 20.84***
(3.496)
A FIRE x I(YEAR = 2001) -16.14%%* 47 49%** 10.26**
(4.700) (8.034) (4.793)
A FIRE X I(YEAR = 2002) -14.87FFF 44 BR¥** 6.571
(4.861) (8.632) (5.826)
A FIRE X I(YEAR = 2003) -18.62%**  _56.94%** -0.700
(6.260) (8.229) (7.447)
A FIRE X I(YEAR = 2004) -18.76***  _40.61%** 2.896
(3.468) (4.719) (4.001)
A FIRE X I(YEAR = 2005) S12.78%F*  _29 44%** 5.211
(3.562) (3.914) (3.841)
A FIRE X I(YEAR = 2006) S15.59%FF 24 T4¥H* 8.006**
(3.222) (3.790) (3.343)
A FIRE X I(YEAR = 2007) -15.81%**  .20.35%** 8.503**
(3.692) (3.762) (3.869)
A FIRE X I(YEAR = 2008) -26.25%%*  _27.09%** 6.258%*
(3.553) (3.822) (3.325)
A FIRE X I(YEAR = 2009) -24.60%**  _33.23%F*  _1(.82%**
(3.717) (3.405) (3.665)
A FIRE X I(YEAR = 2010) -13.02%*%*  _13.09*** -1.441
(3.321) (2.909) (2.704)
A FIRE x I(YEAR = 2011) -19.89%** 21 79¥** -7.297*
(4.316) (4.398) (4.204)
A FIRE X I(YEAR = 2013) 0.525 3.553 3.769
(3.808) (3.380) (3.271)
A FIRE X I(YEAR = 2014) 10.24*** 12.23%** 3.451
(3.471) (2.750) (3.029)
A FIRE X I(YEAR = 2015) 15.77%F%  18.64%**  11.13%**
(3.356) (2.968) (3.171)
A FIRE X I(YEAR = 2016) 24.96%**  32.79%Fk  14.20%**
(3.889) (2.997) (3.128)
A FIRE X I(YEAR = 2017) 29.09*** 33.29%** 10.91%%*
(3.473) (3.694) (3.049)
A FIRE X I(YEAR = 2018) 29.64*** 43.59%** 17.24%%%*
(4.098) (4.541) (3.461)
A FIRE X I(YEAR = 2019) 47.64%*%  59.85%FK  19.82%**
(7.251) (7.053) (5.083)
A FIRE X I(YEAR = 2020) 44.11%%* 56.23*** 21.96%**
(4.921) (4.393) (3.716)
A FIRE X I(YEAR = 2021) 37.00%**  48.36%**  23.5]%**
(4.322) (5.855) (4.549)
R2 0.683 0.864 0.910
A FIRE 8.701***
(1.326)
A FIRE X I(YEAR >= 2015) 42.83*** 46.78%** 11.74%%%
(2.309) (3.364) (1.751)
R? 0.678 0.858 0.909
District-by-Issue-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 149,530 148,461 148,461

Table A8: Wildfire risk changes and municipal credit spreads in the primary market
- Summer Fire Weather Index (FWI)

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads in the primary market.
The weighted summer Fire Weather Index (FWI) is used. Standard errors are reported in parentheses, clustered at the county level.
* **and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit spread of a bond is defined
as the difference between its yield to maturity, calculated from its issue price, and its maturity-matched Municipal Market Analytics
(MMA) yield benchmarks in basis points, based on the issue date. Maturity calendar dates are grouped into intervals of 5 years (e.g.,
Santa Barbara Unified School District bonds maturing in 2030-35), and fire potentials are interpolated using a stepwise function from
the historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE as the difference between the maturity-
calendar-date-group-matched interpolated value and the historic level, which is standardized to a mean of zero and standard deviation
of one. The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and district-by-issue-year-month fixed
effects. It also contains the log of the number of years before the maturity date and insurance status interacted with the issue year
indicator. In addition, we control for the bond’s log of face value, its sales method (negotiated or competitive), as well as its callability
and sinkability status.
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1 2 3
A FIRE 48.78%**
(8.066)
A FIrRE X [(YEAR = 2005) -19.89%%  _41.20%** 6.533
(9.256) (8.631) (10.91)
A FIRE x I(YEAR = 2006) S28.27FF%  _57.90%FF  4.873
(7.942) (7.401) (11.24)
A FIRE X [(YEAR = 2007) -26.75%FF .49 94%%* 6.019
(6.835) (6.329) (5.598)
A FIRE X I(YEAR = 2008) -32. 75Kk BT TRk 6.537
(9.453) (10.34) (5.671)
A FIRE x I(YEAR = 2009) -14.54 -35.59%* -2.485
(12.69) (14.77) (13.77)
A FIrRE X [(YEAR = 2010) -1.517 -21.73%* 0.838
(8.702) (9.522) (8.229)
A FIRE x I(YEAR = 2011) -5.222 -20.62%* -4.443
(6.931) (8.121) (7.814)
A FIRE X [(YEAR = 2013) -18.56%** -3.889 -4.398
(4.677) (4.180) (3.551)
A FIRE X [(YEAR = 2014) -16.88%** 2.875 7.089%*
(4.553) (3.686) (2.855)
A FIRE X I(YEAR = 2015) -7.754 10.18%* 19.98%**
(7.199) (4.799) (3.748)
A FIRE X [(YEAR = 2016) 5.647 28.85%** 24.75%**
(7.543) (5.744) (4.299)
A FIRE x I(YEAR = 2017) 1.219 28.87**k  23.95%K*
(7.515) (5.819) (3.954)
A FIRE X [(YEAR = 2018) -0.941 33.79%** 25.70%**
(6.568) (6.309) (4.082)
A FIRE x I(YEAR = 2019) 18.57%* 60.90%**  36.07***
(7.809) (7.223) (4.264)
A FIRE X I(YEAR = 2020) 26.49%**  69.47FFF  39,03%**
(7.750) (8.095) (5.011)
R2 0.505 0.656 0.760
A FIRE 33.77F**
(7.263)
A FIRE x I(YEAR >= 2015) 25.54%**  38.65%HF*F 25 13%F*
(7.355) (4.343) (3.367)
R2 0.503 0.652 0.760
District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 362,876 361,967 361,194

Table A9: Wildfire risk changes and municipal credit spreads in the secondary market
- Summer Fire Weather Index (FWI)

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads in the secondary market.
The weighted summer Fire Weather Index (FWI) is used. Standard errors are reported in parentheses, clustered at the county level.
* ** and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit spread of a bond is defined as
the difference between its yield to maturity and its maturity-matched Municipal Market Analytics (MMA) yield benchmarks in basis
points. Maturity calendar dates are grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing in
2030-35), and fire potentials are interpolated using a stepwise function from the historic level (1995-2004) to the mid-century prediction
(2045-2054). We define AFIRE as the difference between the maturity-calendar-date-group-matched interpolated value and the historic
level, which is standardized to a mean of zero and standard deviation of one. The regression includes the bond’s district-by-maturity-
year-group fixed effects and district-by-trade-year-month fixed effects. Controls include bond’s logarithm of the number of years before
the maturity date and its insurance status interacted with the trade year indicator, the number of years since issuance, its monthly
trading volume divided by its face value, its monthly standard deviation of prices, as well as its callability and sinkability status.
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1 2 3
A FIRE 29.13***
(3.788)
A FIRE x I(YEAR = 2001) -24.80%*F*  -39.85%** 5.398
(4.190) (4.995) (4.206)
A FIRE X I(YEAR = 2002) -22.16%F% 44 97F** -0.132
(3.669) (4.636) (4.694)
A FIRE X I(YEAR = 2003) -28.61%%* 47 52%HE -2.630
(5.926) (6.015) (4.299)
A FIRE X I(YEAR = 2004) -24.46%** -39 81*** 1.005
(3.895) (5.225) (3.732)
A FIRE X I(YEAR = 2005) -20.00%**  -30.03%** 2.677
(3.782) (4.547) (3.388)
A FIRE X I(YEAR = 2006) -23.80%*%*  _29.66%** 3.758
(3.776) (3.718) (3.013)
A FIRE X I(YEAR = 2007) -22.79%F* 25 gR¥** 4.422
(3.888) (4.219) (3.579)
A FIRE X I(YEAR = 2008) -35.4T*** _33.84%F* 4.887
(4.389) (5.106) (4.029)
A FIRE X I(YEAR = 2009) -31.58*** 39 23%F* 15 gq%**
(4.357) (5.297) (4.653)
A FIRE X I(YEAR = 2010) -20.38%**  _19.63%** -1.989
(3.443) (3.475) (3.577)
A FIRE x I(YEAR = 2011) -24.61%FF 22 53¥** -6.271
(4.246) (5.028) (4.072)
A FIRE X I(YEAR = 2013) -6.229 1.149 1.362
(4.383) (2.705) (2.718)
A FIRE X I(YEAR = 2014) 6.463* 9.869%*** 2.879
(3.791) (3.188) (3.172)
A FIRE X I(YEAR = 2015) 8.045% 15.52%¥*% g goq¥**
(4.134) (2.796) (2.794)
A FIRE X I(YEAR = 2016) 19.98%**  30.29%** 11.72%%*
(4.258) (3.267) (3.369)
A FIRE X I(YEAR = 2017) 23.85%** 30.70%** 9.769***
(4.516) (3.308) (3.252)
A FIRE X I(YEAR = 2018) 21.56%***  37.83%** 15.62%**
(5.735) (3.222) (3.178)
A FIRE X I(YEAR = 2019) 44.41%** 55.15%** 18.28%**
(7.114) (4.955) (3.262)
A FIRE X I(YEAR = 2020) 33.48*** 54.05%** 24.22%**
(5.620) (4.431) (3.561)
A FIRE X I(YEAR = 2021) 25.46%**  43.26%FF 21 71%**
(4.670) (3.841) (4.700)
R2 0.699 0.863 0.907
A FIRE 9.454%**
(1.046)
A FIRE x I(YEAR >= 2015) 42.53%%F  45.44%Fk 1] 8QRHF
(4.383) (2.935) (1.289)
R? 0.692 0.855 0.906
District-by-Issue-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 125,500 124,500 124,500

Table A10: Wildfire risk changes and municipal credit spreads in the primary market
- Excluding directly-affected school districts

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal spreads in the primary market, excluding
transactions from school districts affected by large-scale wildfire events since their first occurrence. Standard errors are reported in
parentheses, clustered at the county level. * ** and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively.
The credit spread of a bond is defined as the difference between its yield to maturity, calculated from its issue price, and its maturity-
matched Municipal Market Analytics (MMA) yield benchmarks in basis points, based on the issue date. Maturity calendar dates
are grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing in 2030-35), and fire potentials are
interpolated using a stepwise function from the historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE
as the difference between the maturity-calendar-date-group-matched interpolated value and the historic level, which is standardized to
a mean of zero and standard deviation of one. The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects
and district-by-issue-year-month fixed effects. It also contains the log of the number of years before the maturity date and insurance
status interacted with the issue year indicator. In addition, we control for the bond’s log of face value, its sales method (negotiated or
competitive), as well as its callability and sinkability status.
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1 2 3

A FIRE 39.69%**
(4.765)
A FIRE X I(YEAR = 2005) -15.19%%%  _21.80** 8.862
(5.026) (9.029) (10.32)
A FIRE x I(YEAR = 2006) -24.42%F*% 37 45F*X 2.486
(5.494) (8.193) (8.645)
A FIrRE X [(YEAR = 2007) -22.36%*%%  _31.26%** 5.732
(4.952) (7.670) (6.220)
A FIRE x I(YEAR = 2008) -32.90%%  -40.65%%*  2.794
(14.91) (15.36) (6.689)
A FIRE X [(YEAR = 2009) -18.61 -23.75 1.599
(14.21) (15.02) (10.75)
A FIRE X I(YEAR = 2010) -10.71 -14.61 2.225
(10.11) (9.202) (5.688)
A FIRE x I(YEAR = 2011) -12.51%* -14.00%* 0.552
(6.440) (7.964) (5.870)
A FIRE X [(YEAR = 2013) -4.860 -5.920%* -4.608**
(3.744) (2.328) (1.928)
A FIRE x I(YEAR = 2014) 1.549 -1.567 4.363
(5.944) (3.330) (2.700)
A FIRE X [(YEAR = 2015) 0.537 6.724 19.15%**
(4.232) (5.935) (4.893)
A FIRE X I(YEAR = 2016) 13.59%#*  2518%** 22, 777***
(3.833) (8.217) (5.500)
A FIRE X I(YEAR = 2017) 11.84%** 25.40%** 23.01%%*
(3.925) (8.943) (6.026)
A FIRE X [(YEAR = 2018) 10.83*** 30.28%** 23.97%**
(3.821) (9.199) (5.629)
A FIRE x I(YEAR = 2019) 28.87***  55.86%K*F  32.49%**
(5.309) (11.69) (6.545)
A FIRE X [(YEAR = 2020) 35.88*** 63.82%** 33.81%**
(5.602) (12.66) (7.256)
R2 0.530 0.665 0.763
A FIRE 27.32%**
(3.967)
A FIRE X [(YEAR >= 2015) 32.71%** 37.14%** 23.89%%*
(8.508) (8.444) (6.801)
R? 0.527 0.661 0.763
District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 291,555 290,757 290,078

Table A11: Wildfire risk changes and municipal credit spreads in the secondary market
- Excluding directly-affected school districts

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal spreads in the secondary market,
excluding transactions from school districts affected by large-scale wildfire events since their first occurrence. Standard errors are
reported in parentheses, clustered at the county level. * ** and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01,
respectively. The credit spread of a bond is defined as the difference between its yield to maturity and its maturity-matched Municipal
Market Analytics (MMA) yield benchmarks in basis points. Maturity calendar dates are grouped into intervals of 5 years (e.g., Santa
Barbara Unified School District bonds maturing in 2030-35), and fire potentials are interpolated using a stepwise function from the
historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE as the difference between the maturity-calendar-
date-group-matched interpolated value and the historic level, which is standardized to a mean of zero and standard deviation of one.
The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and district-by-trade-year-month fixed effects.
Controls include bond’s logarithm of the number of years before the maturity date and its insurance status interacted with the trade
year indicator, the number of years since issuance, its monthly trading volume divided by its face value, its monthly standard deviation
of prices, as well as its callability and sinkability status.
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1 2 3

A FIRE X I(YEAR = 2001) 7.277* 6.533 5.689
(3.773) (3.973) (3.980)
A FIRE X I(YEAR = 2002) 1.246 -0.162 -1.467
(4.539) (4.733)  (4.646)
A FIRE X I(YEAR = 2003) -2.402 -3.920 -4.743
(4.066) (4.323) (4.112)
A FIRE X I(YEAR = 2004) 1.449 1.702 0.650
(3.458) (3.539)  (3.483)
A FIRE X I(YEAR = 2005) 4.286 3.773 3.252
(3.201) (3.447)  (3.338)
A FIRE X I(YEAR = 2006) 4.625* 3.360 2.849
(2.788) (2.956) (2.845)
A FIRE X I(YEAR = 2007) 6.359% 5.295 5.021
(3.365) (3.527)  (3.431)
A FIRE X I(YEAR = 2008) 5.305 4.385 6.853%*
(3.482) (3.541)  (3.469)
A FIRE X I(YEAR = 2009) -14.05%*%%  -10.04%¥*  -9.594**
(4.012) (4.278)  (4.013)
A FIRE X I(YEAR = 2010) -0.924 -1.881 -3.028
(3.480) (3.477)  (3.626)
A FIRE X I(YEAR = 2011) -4.003 -4.077 -3.823
(3.740) (4.040) (3.924)
A FIRE X I(YEAR = 2013) 2.599 1.476 2.654
(2.784) (2.803)  (2.754)
A FIRE X I(YEAR = 2014) 3.630 2.530 4.324
(2.563) (2.725)  (2.641)
A FIRE X I(YEAR = 2015) 12.28%** 11.91%%*%  13.40%**
(2.598) (2.765)  (2.753)
A FIRE X I(YEAR = 2016) 13.37%%*%  14.03%F*%  17.59%%*
(3.131) (3.260)  (3.079)
A FIRE X I(YEAR = 2017) 11.01%%% 9. 982*** 12 46%**
(3.076) (3.172) (3.102)
A FIRE X I(YEAR = 2018) 18.43%**  16.25%%*  17.55%**
(2.866) (3.105) (3.138)
A FIRE X I(YEAR = 2019) 24.50%** 21.90%*%*  20.21%**
(3.284) (3.401) (3.426)
A FIRE X I(YEAR = 2020) 26.16%**  27.10%**  23.65%**
(2.938) (3.088)  (2.982)
A FIRE X I(YEAR = 2021) 20.44%**  30.16***  28.09%**
(3.781) (3.722) (3.651)
R? 0.910 0.913 0.906
A FIRE X I(YEAR >= 2015) 13.63%** 13.72%%*%  14.81%**
(1.336) (1.439)  (1.222)
R? 0.909 0.913 0.906
Stepsize (years) 5 4 6
District-by-Issue-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects Y Y Y
Controls Y Y Y
Observations 148,461 148,045 148,632

Table A12: Wildfire risk changes and municipal credit spreads in the primary market
- Step Size for Interpolation

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads in the primary market.
Standard errors are reported in parentheses. *, ** and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively.
The credit spread of a bond is defined as the difference between its yield to maturity, calculated from its issue price, and its maturity-
matched Municipal Market Analytics (MMA) yield benchmarks in basis points, based on the issue date. Maturity calendar dates
are grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing in 2030-35), and fire potentials are
interpolated using a stepwise function from the historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE
as the difference between the maturity-calendar-date-group-matched interpolated value and the historic level, which is standardized to
a mean of zero and standard deviation of one. The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects
and district-by-issue-year-month fixed effects. It also contains the log of the number of years before the maturity date and insurance
status interacted with the issue year indicator. In addition, we control for the bond’s log of face value, its sales method (negotiated or
competitive), as well as its callability and sinkability status. Column (1) presents the benchmark specification. Columns (2) and (3)
use step sizes of 4 and 6 years, respectively, for interpolating wildfire risks.
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1 2 3

A FIRE x I(YEAR = 2005) 8.588 4.462 -6.28
(8.404) (9.972) (8.366)
A FIRE X I(YEAR = 2006) 1.982 -0.593 -4.905
(7.575) (8.485) (6.973)
A FIRE X I(YEAR = 2007) 3.594 3.857 -0.101
(5.138) (5.510) (5.043)
A FIRE x I(YEAR = 2008) -0.224 -3.458 -4.004
(6.426) (8.786) (7.275)
A FIrRE X [(YEAR = 2009) -6.011 -0.493 -9.601
(13.53) (12.67) (13.96)
A FIRE x I(YEAR = 2010) -3.541 -1.173 -10.84
(8.322) (9.943) (11.40)
A FIRE X [(YEAR = 2011) -5.663 -3.743 -10.43
(7.859) (8.213) (8.179)
A FIRE X [(YEAR = 2013) STUTLLRRR 5 601FFF -6.618%*
(2.271) (2.097) (2.590)
A FIRE x I(YEAR = 2014) 3.197 1.699 -0.244
(3.230) (2.405) (2.950)
A FIrRE X [(YEAR = 2015) 18.45%** 17.71¥%%  16.46%**
(4.235) (3.059) (3.739)
A FIRE x I(YEAR = 2016) 21.70%** 20.97%** 20.53%**
(4.890) (3.863) (5.141)
A FIRE X [(YEAR = 2017) 21.90%** 19.05%** 18.62%**
(4.833) (3.728) (5.320)
A FIRE X I(YEAR = 2018) 23.70%** 19 77FFK 19 46%**
(4.624) (3.541) (5.084)
A FIRE x I(YEAR = 2019) 33.21%**  27.88%KF  26.05%**
(5.173) (3.848) (5.275)
A FIRE X I(YEAR = 2020) 33.63*** 30.71%** 27.23%**
(6.074) (4.470) (6.012)
R?2 0.760 0.764 0.758
A FIRE X I(YEAR >= 2015) 26.21%**  23.09%FF  25.42%F*
(5.232) (4.370) (5.859)
R2 0.760 0.764 0.757
Stepsize (years) 5 4 6
District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects Y Y Y
Controls Y Y Y
Observations 361,194 360,928 361,384

Table A13: Wildfire risk changes and municipal credit spreads in the secondary market
- Step Size for Interpolation

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads in the secondary
market. Standard errors are reported in parentheses. *, ** and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01,
respectively. The credit spread of a bond is defined as the difference between its yield to maturity and its maturity-matched Municipal
Market Analytics (MMA) yield benchmarks in basis points. Maturity calendar dates are grouped into intervals of 5 years (e.g., Santa
Barbara Unified School District bonds maturing in 2030-35), and fire potentials are interpolated using a stepwise function from the
historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE as the difference between the maturity-calendar-
date-group-matched interpolated value and the historic level, which is standardized to a mean of zero and standard deviation of one.
The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and district-by-trade-year-month fixed effects.
Controls include bond’s logarithm of the number of years before the maturity date and its insurance status interacted with the trade
year indicator, the number of years since issuance, its monthly trading volume divided by its face value, its monthly standard deviation
of prices, as well as its callability and sinkability status. Column (1) presents the benchmark specification. Columns (2) and (3) use
step sizes of 4 and 6 years, respectively, for interpolating wildfire risks.
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1 2 3 4 5

A FIRE X I(YEAR >= 2015) 11.23%** 11.54%** 11.87%%* 6.765%** 4.795%*
(1.791) (1.803) (1.911) (2.144) (2.154)

A HEAT X [(YEAR >= 2015) 14.20%%* 14.12%%* 13.72%%% 17.55%%% 19.77%%*
(1.741) (1.778) (1.556) (1.714) (1.402)

R? 0.910 0.910 0.910 0.911 0.911

Heat Risk # of summer days with  # of summer days with  # of summer days with  # of summer days with  Seasonal average

a seasonal average a seasonal average a seasonal average a seasonal average daily maximum
daily maximum daily maximum daily maximum daily maximum heat index
heat index above 125 heat index above 115 heat index above 105 heat index above 95

District-by-Trade-Year-Month FE Y Y Y Y Y

District-by-Maturity-Calendar-Date-Group FE Y Y Y Y Y

Controls Y Y Y Y Y

Observations 148,461 148,461 148,461 148,461 148,461

Table A14: Wildfire risk changes and municipal credit spreads in the primary market
- Heat risks

This table reports the post-2014 impact of wildfire risk increases on municipal spreads in the primary market, including heat risks. Standard errors are reported in parentheses, clustered
at the county level. *, ** and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit spread of a bond is defined as the difference between its yield
to maturity, calculated from its issue price, and its maturity-matched Municipal Market Analytics (MMA) yield benchmarks in basis points, based on the issue date. Maturity calendar
dates are grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing in 2030-35), and fire potentials are interpolated using a stepwise function from the
historic level (1995-2004) to the mid-century prediction (2045-2054). We define AFIRE as the difference between the maturity-calendar-date-group-matched interpolated value and the
historic level, which is standardized to a mean of zero and standard deviation of one. Similarly, we define AHEAT as the difference between the maturity-calendar-date-group-matched
interpolated value and the historic level, which is standardized to a mean of zero and standard deviation of one. The regression includes the bond’s district-by-maturity-calendar-date-
group fixed effects and district-by-issue-year-month fixed effects. It also contains the log of the number of years before the maturity date and insurance status interacted with the issue
year indicator. In addition, we control for the bond’s log of face value, its sales method (negotiated or competitive), as well as its callability and sinkability status.



oV

1 2 3 4 5

A FIRE X I(YEAR >= 2015) 20.20%** 21.13%** 22.77FF* 13.30%* 4.999
(4.775) (4.703) (4.660) (5.965) (4.259)
A HEAT X [(YEAR >= 2015) 30.67F** 31.52%%* 28.85%** 32.53%** 36.84%**
(4.646) (4.454) (3.828) (4.326) (3.840)
R? 0.761 0.761 0.761 0.761 0.762
Heat Risk # of summer days with ~ # of summer days with  # of summer days with  # of summer days with  Seasonal average
a seasonal average a seasonal average a seasonal average a seasonal average daily maximum
daily maximum daily maximum daily maximum daily maximum heat index
heat index above 125 heat index above 115 heat index above 105 heat index above 95
District-by-Trade-Year-Month FE Y Y Y Y Y
District-by-Maturity-Calendar-Date-Group FE Y Y Y Y Y
Controls Y Y Y Y Y
Observations 361,194 361,194 361,194 361,194 361,194

Table A15: Wildfire risk changes and municipal credit spreads in the secondary market
- Heat risks

This table reports the post-2014 impact of wildfire risk increases on municipal spreads in the secondary market, including heat risks. Standard errors are reported in parentheses,
clustered at the county level. *, ** and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit spread of a bond is defined as the difference
between its yield to maturity and its maturity-matched Municipal Market Analytics (MMA) yield benchmarks in basis points. Maturity calendar dates are grouped into intervals
of 5 years (e.g., Santa Barbara Unified School District bonds maturing in 2030-35), and fire potentials are interpolated using a stepwise function from the historic level (1995-2004)
to the mid-century prediction (2045-2054). We define AFIRE as the difference between the maturity-calendar-date-group-matched interpolated value and the historic level, which is
standardized to a mean of zero and standard deviation of one. Similarly, we define AHEAT as the difference between the maturity-calendar-date-group-matched interpolated value and
the historic level, which is standardized to a mean of zero and standard deviation of one. The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and
district-by-trade-year-month fixed effects. Controls include bond’s logarithm of the number of years before the maturity date and its insurance status interacted with the trade year
indicator, the number of years since issuance, its monthly trading volume divided by its face value, its monthly standard deviation of prices, as well as its callability and sinkability
status.



Mean Std. Dev. Observations

Fire Risk Change 28.84 28.85 18,040
Median value of owner-occupied housing units in 2017 USD (in thousands of dollars)  260.26 224.63 18,040
Mean household income in 2017 USD (in thousands of dollars) 74.94 28.72 18,040
Unemployment rate (%) 4.92 2.42 18,040

Table A16: Summary statistics for socioeconomic data

This table reports the summary statistics for the variables used in the sample. The sample comprises 18,040 district-year observations
spanning from 2009 to 2021, with 1,885 school districts.
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Figure Al: Distribution of time to maturity by year

This figure displays the distribution of time-to-maturity (in years) for the school district bonds traded each year in our benchmark
regression. Our primary and secondary school district bond market data cover trades from 2001 to 2021 and issues from 2005 to 2020.
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Figure A2: Alternative measures of wildfire risks

This figure maps school districts’ housing unit-weighted Keetch-Byram Drought Index (KBDI) and housing unit-weighted summer Fire
Weather Index (FWI), calculated from Brown et al. (2021) and ANL (2023), respectively, along with their two-way scatter plots. KBDI

values exceeding 400 and FWI values exceeding 21 indicate late summer or early fall weather conditions associated with an elevated
risk of wildfire occurrences (Liu et al., 2010; ANL, 2023).
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Figure A3: Corrected Heat Index chart on the website of the National Weather Service (NWS)

Adapted from “Extending the heat index,” by Y. Lu and D. M. Romps, 2022, Journal of Applied Meteorology and Climatology, 61
(10), 1367-1383 (10.1175/JAMC-D-22-0021.1). Copyright 2022 American Meteorological Society.
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Figure A4: Population-weighted economic heat Risks

This figure maps school districts’ population-weighted number of summer days with a seasonal average daily maximum heat index
above 125 and 105 degree, as well as the seasonal average daily maximum heat index, calculated from ANL (2023). Heat index values
exceeding 105 indicate that sunstroke, heat cramps, or heat exhaustion are likely, and heat stroke is possible with prolonged exposure
and/or physical activity.

A-27



8¢V

Number of Days Above 125 Number of Days Above 115 Number of Days Above 105 Number of Days Above 95 A ge of Daily Max

100 100 100
2 80 2 50 2 80 2 H
® ® ® ) =
3 3 3 3 &
< < < < )
x x x x =
3 3 3 3 3
2 60 2 60 2 60 2 2
® ® ® ® =
3 b g g ]
z T E4 E- K]
£ 40 £ 40 £ 40 g Y
5 5 5 5 2
] @ k] 2 2
z S T I z
20 20
o R
100 200 300 400 500 600 100 200 300 400 500 600 0 100 200 300 400 500 600 300 0 100 200 300 400 500 600
KBDI Historical KBDI Historical KBDI Historical KBDI Historical KBDI Historical
Number of Days Above 125 Number of Days Above 115 Number of Days Above 105 Number of Days Above 95 A of Daily Max
100 100
° 3 7 2 E
F3 2 2 2 g
8 80 8 80 3 8 g
x x x x =
3 3 3 g x
k] < k] 3 3
£ £ £ £ 2
= 60 L 60 = ot =
] ] ] B =
3 i 3 g 8
z 4 T S 2
2 z 2 z >
2 40 2 40 2 2 s
g £ g g 2
3 g 3 g €
g g g g ]
2 2 2 2z hd
= 20{ =) = = = :
100 200 300 400 500 600 0 100 200 300 400 500 600 300 400 0 100 200 300 400 500 600 0 100 200 300 400 500 600
KBDI Mid KBDI Mid KBDI Mid KBDI Mid KBDI Mid

Figure A5: Scatter plot: KBDI versus Heat Index

This figure displays a two-way scatter plot of housing unit-weighted KBDI against five different population-weighted heat indices at the school district level in our benchmark regression
for the historic and mid-century periods in the Northwestern (NW), Southwestern (SW), and Southern Great Plains (SGP) regions, as classified by USGCRP (2017).
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Figure A6: Association between future wildfire risk changes and housing values

This figure plots the year-by-year impacts of wildfire risk increases on the median value of owner-occupied housing units, as described by
Equation 9, with the baseline period set to 2011. The vertical lines represent the 95% confidence intervals, with standard errors clustered
at the county level. We exclude all observations starting from the year in which they were first impacted by large-scale wildfires. We
define AFIRE as the difference between mid-century and historic weighted KBDI values per district. The regression includes district
fixed effects and county-by-year fixed effects. Additionally, we control for the mean household income and unemployment rate of each
district.
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