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Abstract

Dealers intermediate trades in OTC markets through trading networks. In the mu-
nicipal bond market, we document greater complexity than the typical core-periphery
structure. Analyzing dealer reciprocity-the tendency to repay favors-we find reciprocity
generally reduces markups. Dealers trade lower markups today for future liquidity.
However, in small trading communities, reciprocity can foster collusion via quid-pro-
quo agreements, inflating transaction chain markups. Among high-centrality dealers in
large communities, high reciprocity lowers average markups by 80 basis points, while
among low-centrality dealers in small communities, it raises markups by 72 basis points.
Although only around 2% of transaction chains suggest collusive behavior, these sig-
nificantly affect regression results, highlighting the importance of controlling for such
outliers to accurately estimate centrality premiums or reciprocity discounts.
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Dealers play a pivotal role in most OTC markets, connecting buyers and sellers, providing

liquidity, and influencing price discovery through their trading networks. The decentralized

nature of these markets complicates the acquisition of information on assets and counter-

parties, but dealer networks help address this challenge by pooling expertise and enhancing

transparency, which leads to more accurate pricing and efficient trade matching (Brancac-

cio et al. (2017), Hendershott et al. (2020)). However, these networks also have potential

downsides. Close ties within them can foster collusion, distorting prices and undermining

competition.1 Central to both cooperative and collusive behaviors is dealer reciprocity, which

involves the mutual exchange of favors based on obligation or expectations of future repay-

ment.2 Reciprocity can lead to mutually beneficial transactions and stronger partnerships,

promoting trust and operational efficiency. Conversely, it can also facilitate collusion, where

dealers coordinate to limit competition and increase collective profits, ultimately harming

market efficiency and raising prices for end buyers.

In this study, we investigate the role that dealer reciprocity plays in dealer networks and,

in particular, the pricing of assets passing through these networks via inter-dealer transac-

tion chains.3 We hypothesize that reciprocity will manifest itself both positively as dealers

trade lower markups today for future liquidity and lower markups tomorrow; and negatively

as some dealers collude through quid pro quo arrangements to inflate transaction chain

markups. We further hypothesize that the trade outcome will be a function of the dealer’s

1We use “collusion” broadly to include informal, tacit coordination as well as explicit, potentially illegal
price-fixing. No claim is made that the conduct we document necessarily violates antitrust or securities law.

2Or in the words of Sobel (2005),“Reciprocity refers to a tendency to respond to perceived kindness with
kindness and perceived meanness with meanness and to expect this behavior from others....the hypothesis
that reciprocity is an instrumental motivation for human behavior is overwhelming.” Dealer reciprocity may
be preference-based or arise as a means for dealers to “sustain a profitable long-term relationship or to obtain
a (profitable) reputation for being a reliable associate” (Sobel, 2005). In either case, reciprocity gives way
to both cooperation and collusion. Gouldner (1960) explores the role of reciprocity as a foundational norm
that supports social stability, while Blau (1964) examines how reciprocal exchanges shape social structures
and cohesion, implicitly addressing the formation and stability of networks through trust and favors.

3Transaction chains are a common feature of OTC markets wherein a dealer will buy an asset from a seller
and then the asset passes through dealer-to-dealer transactions until it is placed with the ultimate buyer.
Each successive transaction garners a price markup on the asset making the ultimate price paid by the
buyer potentially much higher than if they were able to purchase the asset directly without the inter-dealer
transaction chain.
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local network size, with the latter outcome obtaining only in small communities where col-

lusion is more easily sustained.4 Similarly, we expect the outcome of reciprocity to depend

on a dealer’s centrality within the network. Dealers who occupy central positions and have

more connections will be able to more efficiently leverage positive reciprocity to secure future

liquidity or favorable pricing, whereas those in more peripheral positions with effectively less

oversight will be more willing to resort to collusion to gain competitive advantages.

The empirical setting for our study is the US municipal bond market. This market

consists of debt issued by states, counties, or municipalities to finance public projects such as

schools, roads, bridges, hospitals, or other infrastructure developments. It is the US’s largest

and most important source of capital for infrastructure investments, with outstanding debt

as of 2024 of about $4 trillion. Municipal bonds trade over the counter. Daily trading volume

in the US averages $12.5 billion, with about a sixth of this volume attributed to inter-dealer

trades.5 The Municipal Securities Rulemaking Board (MSRB) has expressed concerns about

transaction chain markups, noting that while each dealer in the chain does not generate

excessive profits individually, the cumulative markup can be substantial.6 Schultz (2012)

confirms these concerns and finds longer transaction chains result in higher prices for retail

buyers, while Piwowar (2007) argues that inter-dealer trading can create opportunities for

quid pro quo arrangements, where dealers might favor certain counterparties in exchange for

future benefits.

Municipal bond dealers typically operate on a principal basis, purchasing bonds from

sellers and holding them until a buyer is found, with sales often precipitated for liquidity

reasons such as funding a major purchase (Green et al., 2007)78. Once a bond is bought, the

4The notion that coordination becomes more challenging as the number of participants in collusion
schemes increases has been addressed in the theoretical IO literature (e.g. Stigler, 1964; Tirole, 1988). For
example, Stigler (1964) shows the incentive for deviation from collusion rises with the number of competitors
in oligopolistic markets, suggesting that larger groups may face greater difficulties in maintaining collusive
agreements.

5https://www.sifma.org/resources/research/us-municipal-bonds-statistics/
6https://www.sec.gov/files/rules/sro/msrb/2012/34-66625.pdf
7“A well-known adage in the municipal business is that bonds are not bought, they are sold. That is,

investors seldom approach dealers to purchase a specific bond.” (Schultz 2012)
8In the municipal bond market, principal and agency trades represent two distinct approaches to trans-
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dealer then has three options: retain the bond in inventory, sell it to a customer, or sell it

to another dealer, with retention involving risk and sales requiring a search. Prior research

has found that the municipal bond dealer network has a core-periphery structure, where

central “hub” dealers are more efficient at finding buyers, leading to faster trades but higher

markups compared to peripheral dealers, thus presenting a trade-off between execution speed

and cost (Li and Schürhoff, 2019).

In this context, consider a reciprocal dealer that maintains a high degree of mutuality

with its network of customers and other dealers. This dealer will also have lower search costs

since others in their network know that if they offer liquidity now, then the tacit expectation

is that the next time they need a buyer this dealer will be ready and willing to provide them

liquidity at a good price. We measure a dealer’s reciprocity using their node reciprocity,

which is a network-based measure calculated as the ratio of bidirectional connections to

all possible connections within a dealer’s network over the past 30 days. Higher values of

node reciprocity indicate a greater tendency for nodes to reciprocate interactions within the

network, reflecting stronger mutual relationships. Consistent with our hypotheses, we find

that after controlling for a dealer’s centrality, higher dealer reciprocity generally leads to lower

bond markups. For example, the average round-trip transaction chain markup for chains

where the first dealer is a central dealer9 is 1.99% for central dealers with low reciprocity and

1.19% for central dealers with high reciprocity, a statistically significant difference of 80 basis

points. We find the negative relationship between reciprocity and markups holds controlling

for bond and dealer characteristics, including dealer centrality (Li and Schürhoff, 2019), past

dealer relationships (Di Maggio et al., 2017), and measures of dealer market share (Griffin

action execution. In principal trades, the dealer acts as the counterparty, buying and holding the bonds in
their own inventory before selling them to clients. This allows the dealer to take on the price risk of the bond
and often leads to the inclusion of a markup in the final sale price, which may not be explicitly disclosed to
the client. In contrast, agency trades involve the dealer facilitating the transaction between the buyer and
seller without taking ownership of the bond. The dealer acts as an intermediary and charges a commission
for the service, with fees clearly disclosed to the client. The main difference lies in the dealer’s risk exposure
and the transparency of costs for the investor, with principal trades potentially obscuring hidden costs, while
agency trades provide more clarity on fees.

9A dealer in the upper tercile of eigenvector centrality.
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et al., 2023).

Dealer-level reciprocity is typically associated with lower cumulative markups, yet we

identify a small cohort of highly reciprocal, peripheral dealers that systematically charges

notably higher markups, on average 72 basis points more than their less-reciprocal counter-

parts. The evidence suggests that tacit collusion within these tightly knit networks inflates

trading costs: these dealers operate in networks roughly one-sixth the size of other peripheral

dealers, but their transaction chains are nearly twice as long, indicating repeated trading

within the same closed circle. Their transactions also feature slightly smaller trade sizes and

bonds with more complex contractual features, consistent with a strategic focus on retail

investors, who are more susceptible to cognitive biases or limited financial literacy.10

We also observe what appears to be a higher incidence of anomalous trading and strategic

pricing by these dealers. We find their deals have an unusually high incidence of “round-trip”

chains in which the initiating and concluding dealers are identical, raising concerns about

pump-and-dump strategies that shift costs onto retail investors.11 We also find that trades

routed through low-centrality, high-reciprocity networks are far more likely to employ coarse

price increments (e.g., eighths or whole numbers) and less likely to use fine yield quotations,

consistent with higher markups and reduced transparency for retail investors (Griffin et al.,

2023). Taken together, these findings suggest that peripheral, high-reciprocity dealers use

strategic behavior to obscure true transaction costs from less sophisticated retail clients.

An alternative explanation for our findings could be that the higher markups and longer

transaction chains observed among highly reciprocal, peripheral dealers stem from the nature

of the bonds they trade, specifically, illiquid or complex securities that demand specialized

10For example, see Harris and Piwowar (2006); Green et al. (2007); Edwards et al. (2007); and Brancaccio
and Kang (2022) which treat small trade size as a proxy for retail participation and bond complexity as a
source of cognitive strain.

11For example, suppose a bond is trading at 100 and dealers charge a 1% markup. Consider two scenarios.
Scenario 1: Dealer 1 buys the bond for 100 and resells it for 101 to a customer. Dealer 1 makes $1. Scenario
2: Dealer 1 buys the bond for 100 and resells it to Dealer 2, who then resells it to the customer. Here, Dealer
1 makes $1 and Dealer 2 makes $1.1, and the customer pays $1.1 more than in Scenario 1. Importantly,
even though Dealer 1 makes the same in both scenarios, Dealer 1 is better off in Scenario 2 since he is now
owed a favor from Dealer 2. Thus, the customer is worse off in Scenario 2, while Dealer 1 and Dealer 2 are
better off. For other examples, see Piwowar (2007).
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expertise and incur higher transaction costs. These dealers may operate in niche markets

where pricing and trading are more challenging, leading to longer chains and justified higher

markups due to increased risk, effort, and the value of their specialized services. Moreover,

the strong relationship-based trading within smaller networks could account for the repeated

interactions, potentially reflecting trust and reliability rather than opportunistic behavior.

This seems less likely given the large number of bond characteristics we control for in our

regression analysis. However, we find that our results persist even after controlling for bond

fixed effects, indicating that bond characteristics alone do not fully explain the observed

patterns.

Consistent with our hypothesis that reciprocal dealer behavior is driven by the expec-

tation of quid pro quo, our analysis finds that past dealer reciprocity predicts future quid

pro quo behavior. Specifically, we show that reciprocal dealers are more likely to engage

in reverse or reciprocating trades within one day. For instance, if dealer 1 sells to dealer 2

today, the probability that dealer 2 sells back to dealer 1 in the near future, what we define

as a reverse or reciprocal trade, significantly increases. A standard deviation increase in

dealer reciprocity raises the likelihood of a reverse trade by 7% within the day following the

initial trade. This effect is more pronounced among low-centrality, high-reciprocity dealers,

where the probability of a reciprocal deal occurring within a day is 34% higher than for those

in the middle-centrality, middle-reciprocity group. Additionally, consistent with the idea of

reciprocal dealers returning favors, we observe that transaction chains involving reciprocal

dealers are longer and less likely to result in direct customer placements. We attribute this

to the inclusion of extra dealers in the chain as part of favor exchanges. A standard deviation

increase in dealer reciprocity corresponds to a 6% decrease in the probability of placing the

bond with an ultimate customer and a 9% increase in chain length, with these effects being

even stronger among low-centrality, high-reciprocity dealers.

We further explore the role of reciprocity based on the size of a dealer’s local trading

network, hypothesizing that smaller networks facilitate collusive behavior. Our findings
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confirm that dealer reciprocity positively correlates with transaction chain markups in the

smallest quintile of local networks, while larger networks exhibit the opposite trend. Using

machine learning techniques, such as the Louvain community detection algorithm, we identify

dealer trading communities and find that when both buying and selling dealers belong to

the same community, markups are significantly higher, ranging from 50 to 60 basis points.

However, as the community size grows, the magnitude of these markups declines, reinforcing

the idea that small, close-knit groups of dealers may engage in collusion to the detriment of

customers. Further analysis reveals that reciprocity is a key factor in shaping these dealer

communities.

Our paper contributes to the empirical literature on OTC markets, with a focus on

municipal bond markets. While existing research often explores core-periphery network

structures in OTC markets12, our study unveils additional complexities within the municipal

bond market network. Specifically, we demonstrate that factors like node reciprocity and

trading communities contribute to price dispersion across the dealer network. Our findings

suggest broader implications for OTC markets beyond municipal bonds. Notably, existing

models have yet to explicitly incorporate the role of dealer reciprocity in dealer networks.13

In particular, our results highlight the importance of controlling for reciprocity when

assessing the relationship between dealer centrality and markups. For high-reciprocity firms

with low centrality, we observe a centrality discount, while elsewhere we find a centrality

premium. This distinction may explain why previous studies have reported mixed results

regarding the effect of dealer centrality on markups in various OTC markets. For instance,

Hollifield et al. (2017) and Goldstein and Hotchkiss (2020) find a centrality discount in the

12For example, a core-periphery structure has been found in the corporate bond market (Di Maggio
et al., 2017), the asset-backed securities market (Hollifield et al., 2017), the municipal bond market (Li
and Schürhoff, 2019), inter-bank markets (Bech and Atalay, 2010; Roukny and Battiston, 2014; Afonso
et al., 2013; Craig and Von Peter, 2014; Van Lelyveld and in’t Veld, 2014), the credit default swaps market
(Peltonen et al., 2014; Eisfeldt et al., 2023), and currency markets (King et al., 2012).

13Theoretical models include those based on search frictions which seek to endogenize the core-periphery
structure (Munyan and Watugala, 2018; Üslü, 2019; Sambalaibat, 2022) or those that take the core-periphery
structure as given (Gofman, 2011; Babus and Kondor, 2018; Malamud and Rostek, 2017; Collin-Dufresne
et al., 2020). Other models examine how information frictions shape the market structure (Chang and Zhang,
2015).
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asset-backed securities market and corporate bond market, while Di Maggio et al. (2017) and

Li and Schürhoff (2019) document centrality premiums in the corporate bond and municipal

bond markets. Examining the corporate bond market, Dick-Nielsen et al. (2021) find a

centrality discount in client transaction costs but a centrality premium in interdealer bid-ask

spreads. Our result also aligns with Schultz and Song (2019), which reports a shift toward a

centrality premium following increased transparency in the asset-backed securities market.

Relatedly, our contribution extends to the investigation of OTC dealer characteristics and

their impact on asset prices. These characteristics encompass dealer market share (Griffin

et al., 2023), dealer relationships (Di Maggio et al., 2017), dealer centrality (Li and Schürhoff,

2019; Hollifield et al., 2017), and dealer specialization (Jotikasthira et al., 2023). Despite

their interrelated nature, our study reveals that the influence of reciprocity on asset prices

persists even after accounting for these dealer characteristics. In a related study, Hendershott

et al. (2020) explore trading relationships between insurers and dealers in the corporate bond

market. Their findings suggest that while some insurers exclusively engage with a single

dealer, others maintain larger dealer networks. Notably, execution prices exhibit a non-

monotonic relationship with network size, initially declining with more dealers but increasing

once networks exceed 20 dealers. Similarly, our analysis of the inter-dealer market reveals

trading costs decline with trading community size.

Finally, we contribute to the literature on bond market trading costs. Early studies

by Harris and Piwowar (2006), Bessembinder et al. (2006), Green et al. (2007), and Ed-

wards et al. (2007) highlight disparities in trading costs between small and large investors in

municipal and corporate bond markets. These papers underscore the role of market opac-

ity, allowing dealers to wield disproportionate power over less sophisticated retail investors.

Green et al. (2007) and Schultz (2012) find significant markups in municipal bond transaction

chains, while Griffin et al. (2023) observe substantial pricing variation for identical trades of

the same bond on the same day from the same dealer, suggesting opportunistic behavior by

dealers. Our study extends this literature by uncovering additional reasons for transaction
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chain markup variation and evidence of potential dealer malfeasance. We find that while

reciprocity generally reduces transaction costs, a subset of dealers appears to exploit their

local trading community to inflate costs for their own gain at the expense of customers.

Literature Review and Hypotheses

Literature Review

The literature on over-the-counter (OTC) markets is extensive, with notable contribu-

tions summarized by Weill (2020). Most theoretical analyses leverage search theory, network

theory, or a combination of both. Search theory offers tractability, making it easier to model

dynamic processes such as trading, pricing, and market reactions to aggregate shocks, while

network theory embeds agent relationships into models, though at the cost of more complex

mathematics.

The seminal work by Duffie et al. (2005) demonstrates how illiquidity premia arise from

search frictions in OTC markets. Their model assumes independent, random matching be-

tween buyers and sellers, leading to transitory interdealer links and preventing natural emer-

gence of persistent dealer networks or centrality without introducing additional assumptions

such as dealer heterogeneity. These limitations motivate the incorporation of heterogeneity

and network persistence in later models. Subsequent research builds on this search the-

ory framework by adding dealer heterogeneity or extending economic settings, leading to

emergent network features such as core-periphery structures, centrality premia, and dealer

intermediation chains. For instance, differences in trader characteristics, such as their search

technologies (Neklyudov, 2013), valuations (Hugonnier et al., 2014), meeting rates (Üslü,

2019), or trade frequencies (Sambalaibat, 2022), can generate core-periphery networks.

A key criticism of the search-theoretic framework is its inability to capture repeated coun-

terparty trading, which empirical evidence suggests is prevalent in over-the-counter (OTC)

markets. Studies such as Afonso et al. (2013) document stable trading relationships in the
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interbank lending market, while Li and Schürhoff (2019) find a 65% likelihood of municipal

bond dealers trading with the same counterparties in consecutive months. Similarly, Hen-

dershott et al. (2020) report persistent client-dealer relationships in corporate bond markets.

To address this limitation, network-theoretic models offer an alternative or complementary

approach by embedding agent relationships directly into the analysis. Some studies even

adopt a hybrid approach, blending both search and network theories (Atkeson et al. (2015);

Colliard et al. (2020); Chang and Zhang (2015); Dugast et al. (2022)). Network theory pro-

vides insights into how interconnectedness influences market stability, examining the effects

of dealer position and centrality on liquidity, pricing, and efficiency. This sheds light on phe-

nomena such as contagion, liquidity crises, and market resilience. For instance, more central

dealers may have greater pricing power or access to liquidity, while shocks affecting one

part of the network can propagate through these links. Neklyudov and Sambalaibat (2015)

explore pricing in OTC markets by considering differences in dealers’ search and matching

efficiency due to network connections, predicting that bonds flow from fast, central dealers to

slower, peripheral ones. Other models (Babus (2016); Wang (2016)) predict core-periphery

network structures, highlighting the trade-offs between network efficiency and stability.14

Several network theories specifically examine how the structure of trading relationships

affects the centrality premium that key dealers enjoy. Babus and Kondor (2018) shows that

dealers’ positions within the trading network influence their ability to acquire and dissemi-

nate information, which can enhance central dealers’ advantages. Central dealers, by virtue

of their network positions, can access information more quickly and trade on it, reinforcing

their centrality premium. Chang and Zhang (2015) explore how market making and net-

work formation occur endogenously in over-the-counter markets. They demonstrate that

the network structure, shaped by the strategic formation of trading relationships, influences

market efficiency and liquidity. The centrality premium enjoyed by key dealers arises from

14An incomplete list of network-based models includes Farboodi (2021), Gofman (2011), Gofman (2017),
Malamud and Rostek (2017), Babus and Hu (2018), Babus and Kondor (2018), Wang (2016), Babus and
Parlatore (2022), Babus and Farboodi (2020), Manea (2018), Eisfeldt et al. (2023), Aymanns et al. (2023),
and Babus (2016).
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their strategic positions within the network, underscoring how relationships affect market

outcomes. Similarly, Gofman (2017) analyzes how the centralization of dealer networks im-

pacts the efficiency and stability of financial systems. He shows that while a more centralized

network can enhance overall efficiency by reducing transaction costs and improving liquidity,

it may also concentrate risk and pricing power in the hands of central dealers, potentially

increasing systemic risk. These findings relate to our result that dealer reciprocity can in-

fluence the advantages enjoyed by central dealers, although none of these models explicitly

captures the role of reciprocity in detail.

The two models in this strand of literature most closely related to our findings are Sambal-

aibat (2022) and Hendershott et al. (2020). Sambalaibat (2022) models endogenous network

formation between dealers, showing that core-periphery networks emerge as dealers special-

ize in clients with different trading needs. Her model assumes that customers must return to

the same dealer to reverse trades, effectively embedding reciprocity into the customer-dealer

relationship. Hendershott et al. (2020) highlight how repeated interactions between clients

and dealers lower search costs, increase market efficiency, and stabilize liquidity through

long-term relationships. While both models emphasize customer-dealer dynamics, they do

not address how dealer reciprocity affects transaction chain markups.

While the literature on OTC markets has extensively explored both search and network

theories, there is a noticeable gap in examining reciprocal relationships among dealers. Most

models focus on customer-dealer dynamics or assume that dealer interactions are independent

or random. This neglects the potential impact of long-term, repeated interactions between

dealers themselves. Such reciprocal relationships could influence liquidity provision, pricing

strategies, and centrality premiums, yet current models fail to fully capture how these dealer-

to-dealer connections shape market outcomes, leaving a crucial aspect underexplored. To

this end, we develop the following hypotheses which we test in our empirical analysis.
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Hypotheses

Building upon the existing literature on over-the-counter (OTC) markets, dealer net-

works, and reciprocity, we formulate the following hypotheses for our empirical analysis.

H1: Impact of Dealer Reciprocity on Transaction Markups

Hypothesis 1A: (Reciprocity Discount Hypothesis): Dealer reciprocity reduces trans-

action costs by lowering search frictions and incentivizing dealers to offer more competitive

pricing in order to secure future business.

Search frictions, as demonstrated by Duffie et al. (2005), can lead to higher transaction

costs in decentralized over-the-counter markets. The lack of price transparency and the

difficulty of finding counterparties in these fragmented markets further increase trading costs,

particularly for investors without established networks. Dealer reciprocity, characterized by

repeated trading relationships between counterparties, can serve as an effective mechanism

to mitigate these frictions.

In the framework of Hendershott et al. (2020), reciprocal relationships between dealers

help reduce the search intensity required to find counterparties and promote more efficient

trading execution. In these relationships, dealers balance the benefits of maintaining repeat

business with the need to compete for faster execution with other dealers. Reciprocity en-

hances intertemporal competition, where dealers aim to secure future transactions by offering

better terms today, which ultimately lowers transaction costs. This dynamic fosters a more

cooperative trading environment, leading to reduced markups as trust between reciprocal

dealers develops.

Hypothesis 1B: (Reciprocity Premium Hypothesis): In tightly knit dealer networks,

reciprocity facilitates collusive behavior, leading to higher transaction markups.

While generally we believe that reciprocity will reduce transaction costs and foster a more

efficient trading environment, as described in Hypothesis 1A, it can also have unintended

consequences in specific contexts. In smaller, tightly connected networks, the same reciprocal
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relationships that lower search frictions can enable collusion by providing dealers with op-

portunities to coordinate pricing strategies either implicitly or explicitly. In this hypothesis,

we explore how the mutual expectation of future interactions, which enhances cooperation in

large or competitive networks, can instead lead to collusive behavior in smaller, concentrated

dealer networks.

Economic theory suggests that smaller, tightly knit networks are particularly conducive

to building and sustaining collusive behavior due to several key mechanisms. In smaller

groups, participants can more easily monitor each other’s actions, reducing the likelihood of

defection and enabling implicit coordination. Kranton and Minehart (2001) highlight that

in strategic buyer-seller networks, the formation of links between participants can reduce

competition by limiting the number of available trading partners. This insulation from com-

petitive pressures allows network participants to implicitly coordinate on higher prices, as the

network structure itself restricts competition. Similarly, Blume et al. (2011) emphasize that

strategic complementarities—where one participant’s actions reinforce those of others—make

it easier for small groups to converge on collusive outcomes as an equilibrium, particularly

when network connections are dense. In such networks, the mutual expectation of future

interactions promotes long-term cooperation, allowing collusion to be sustained over time.

The combination of repeated interactions, mutual dependence, and ease of monitoring in

smaller networks creates a fertile environment for sustaining collusion, where participants

can manipulate transaction prices with minimal external interference. Theories of collu-

sion in oligopolistic markets further support this notion, as Stigler (1964) and Tirole (1988)

demonstrate that smaller, cohesive groups are better able to maintain collusive arrangements,

which can lead to inflated transaction markups.

However, regulatory oversight and the risk of detection may deter such behavior, limiting

the extent to which reciprocity results in inflated prices. Empirical evidence from cartel

studies (Levenstein and Suslow (2006); Harrington (2004)) shows that regulatory intervention

and the threat of legal action often disrupt collusive behavior by increasing the risks and
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costs of maintaining price-fixing arrangements. Green and Porter (1984) further demonstrate

that the risk of detection plays a critical role in destabilizing collusion, as firms are less

likely to sustain inflated prices when there is a heightened chance of regulatory scrutiny.

Furthermore, as networks grow larger or more competitive, the ability to maintain collusive

agreements becomes more challenging. In such cases, reciprocity is less likely to lead to

inflated markups, as increased competition dilutes the cohesiveness required for collusion.

Ultimately, we propose that under certain conditions—such as smaller, more concentrated

dealer networks with limited regulatory scrutiny—reciprocity can facilitate collusion and

result in higher transaction markups, while in larger or more competitive networks, this

effect is diminished.

H2: Dealer Reciprocity Predicts Future Quid Pro Quo Behavior and Longer Transaction

Chains

Hypothesis 2: Higher dealer reciprocity predicts future quid pro quo behavior among

dealers, resulting in longer inter-dealer transaction chains and a lower likelihood of immediate

placement with end customers.

Reciprocity among dealers fosters mutual obligations and strengthens relationships, which

can lead to quid pro quo behavior. We predict two ways this quid pro quo will manifest. First,

reciprocal dealers may feel compelled to return favors by involving their reciprocal partners

in transactions, even when direct trading with end customers is feasible. This practice can

lengthen transaction chains as assets pass through additional intermediaries before reaching

the final buyer or seller. Second, we expect reciprocal dealers to engage in more “reciprocal”

or “reverse” trades than non-reciprocal dealers. For instance, if a reciprocal dealer sells a

bond to another dealer, they are likely to purchase a bond from that dealer in the future as

a way of returning the favor and maintaining the relationship.
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H3: Moderating Role of Dealer Centrality on the Effect of Reciprocity

Hypothesis 3: The impact of dealer reciprocity on transaction markups is moderated

by dealer centrality; reciprocity leads to lower markups for central dealers but may result in

higher markups for peripheral dealers.

Building on Hypotheses 1A and 1B, we propose that dealer centrality moderates the

relationship between reciprocity and transaction markups. Central dealers, due to their

extensive network connections and influence, are in a better position to leverage reciprocity

to enhance market efficiency. Reciprocity facilitates cooperation, improves information flow,

and builds trust, allowing for smoother trading execution. While Li and Schürhoff (2019)

find that central dealers tend to charge a premium for liquidity and fast execution, reciprocity

might reduce these premiums by lowering the central dealer’s costs. Thus, central dealers

with more reciprocal trading relationships may charge relatively lower markups compared

to central dealers with fewer reciprocal relationships, as they can pass on the benefits of

reduced costs to their counterparties. This comparison highlights the role of reciprocity

in shaping pricing dynamics even among highly connected dealers (Hollifield et al. (2017);

Wang (2016)).

In contrast, for peripheral dealers, the interaction between centrality and reciprocity may

lead to different outcomes. Peripheral dealers, with their lower connectivity and reduced

visibility, are less exposed to competitive pressures and may use reciprocal relationships

to sustain collusive practices. Reciprocity among peripheral dealers could enable them to

coordinate on inflated prices, avoiding the need for aggressive competition (Stigler (1964);

Granovetter (1985)). Kranton and Minehart (2001) suggest that in networks with fewer

links, participants can exploit these relationships to maintain higher markups, reinforcing the

potential for collusive behavior as discussed in Hypothesis 1B. Thus, the interaction between

peripheral dealers’ weaker network position and reciprocity may contribute to sustained price

inflation, as they face fewer market checks and balances.
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H4: Reciprocity Premium Is More Pronounced in Smaller Dealer Networks

Hypothesis 4: Dealer reciprocity is more likely to result in higher transaction markups

in smaller dealer networks, where sustaining collusive arrangements is more feasible.

In smaller dealer networks, coordination among dealers is more feasible, and the risk

of detection by regulators or outsiders is lower, making collusion more sustainable (Stigler

(1964); Tirole (1988)). Reciprocity in these contexts can facilitate collusive behavior, leading

to higher markups. Theoretical models suggest that smaller groups are better able to enforce

collusive agreements and punish deviations (Farrell and Maskin (1989); Green and Porter

(1984)). Empirical studies, such as Levenstein and Suslow (2006), show that cartels tend

to be more stable and successful in smaller, concentrated industries, which parallels the

dynamics observed in tightly knit dealer networks.

Based on these arguments, we hypothesize that reciprocity in smaller dealer networks is

more likely to lead to higher transaction markups through sustained collusion. The ability

of dealers to easily monitor each other’s actions, coupled with lower regulatory oversight,

allows for more effective enforcement of collusive agreements. The close-knit structure of

smaller networks ensures that deviations from collusive arrangements are quickly detected

and punished, further strengthening the collusive behavior. Thus, dealer reciprocity in these

networks is expected to result in higher markups due to the feasibility of sustaining collusion

over time.

In contrast, larger networks make coordination more difficult and intensify competition

among dealers, reducing the likelihood that reciprocity leads to inflated prices. In these more

competitive settings, reciprocity may still play a role but primarily by promoting cooperation

and efficiency, potentially leading to lower transaction markups. The increased scrutiny and

number of participants in larger networks make it harder for collusion to persist, as the risks

of defection and detection are higher.

Overall, by testing these hypotheses, we aim to clarify how dealer reciprocity can have

dual effects in over-the-counter (OTC) markets: enhancing market efficiency through coop-
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eration in larger networks while fostering collusive practices in smaller ones. Understanding

the conditions that drive reciprocity toward one outcome versus the other is crucial for both

regulators and market participants in their efforts to promote fair and efficient markets.

Data and Sample Construction

Our starting sample consists of over 40 million intra-day municipal bond trades between

2014 and 2018, taken from the Municipal Securities Rulemaking Board (MSRB) Electronic

Municipal Market Access (EMMA) database, which records the universe of US Municipal

Bond Market transactions. For every transaction, EMMA records the corresponding bond’s

CUSIP, state and locality of issuance, date of issuance, and maturity date. It also reports

trade details such as whether the transaction was a customer purchase, customer sale, or

inter-dealer transaction; the selling price of the bond; the par value of trade, and anonymized

dealer identifiers (buy- and sell-side executing broker symbols (EBS)), with the latter being

unavailable in the public version of the dataset. Unfortunately, this dataset does not contain

customer identities. We augment this dataset with bond characteristics including issue size,

and bond rating, along with information on bond complexity, which is dependent on whether

the bond is insured, whether the bond is a general obligation bond, whether it has a call

provision, whether it is qualified for tax exemptions for bank investors, whether the bond

is subject to tax (state, federal, or alternative minimum tax), and whether the bond has a

sinking fund feature.

For our paper, we focus on secondary market bond transactions and prepare our dataset

following Li and Schürhoff (2019). To do this we limit our sample to seasoned bonds which are

more than 90 days from issuance. This permits us to focus on customers’ and dealers’ typical

bond trading experience.15 We eliminate trades with par value under $5,000 and consolidate

dealer IDs into dealer entities to account for some firms using multiple dealer IDs. We follow

15See Green et al. (2007) and Schultz (2012) for further discussion on the differences between the primary
and secondary municipal bond market.
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Li and Schürhoff (2019), Appendix B to construct roundtrip transaction chains, defined as

series of transactions on the same bond with the same par value starting with a customer

purchase and ending with a customer sale with none or many inter-dealer transactions in

between. Finally, we remove transaction chains initiated by new dealers (i.e., dealers without

a single transaction over the prior 30 trading days), as we cannot calculate their centrality

and reciprocity statistics. Our final roundtrip transaction chain sample contains 1,536,551

roundtrip chains, with 739,411 chains having at least one inter-dealer transaction.

For our measure of dealer centrality, we use eigenvector centrality as it is 98% correlated

with the Net (EW) Li and Schürhoff (2019), simpler to compute, and analogous to our node

reciprocity measure, though our results hold using both their Net Equal-Weight and Net

Value-Weight Centrality measures instead. For our measure of dealer reciprocity, we use the

node reciprocity measure for each dealer, as defined in the seminal network paper Newman,

Forrest, and Balthrop (2002). Node reciprocity in network analysis measures the tendency

of nodes (entities within a network, in our case dealers) to reciprocate connections with

each other. In simple terms, it assesses how likely two nodes are to form a bidirectional

connection or relationship. High node reciprocity indicates that nodes in the network tend

to have mutual connections with each other, while low node reciprocity suggests more one-

sided connections. We calculate both dealer centrality and reciprocity on a rolling 30-day

basis.

We further investigate the reciprocal relationships by documenting trade reversals (de-

fined in Appendix A) and organizing dealers into communities using the Louvain community

detection method (described in Appendix D), introduced by Blondel et al. (2008). Due to

the random nature of the Louvain method we obtain a bootstrap sample of communities

using 100 random seeds, ranging from 1 to 100, not only to ensure the replicability of our

results but also to account for the inherent instability of any methods involving randomness,

documented by Jain and Madhyastha (2019). Using a 100-seed bootstrap allows us to ex-

clude community members that are assigned to a community in which they don’t belong,
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as the Louvain algorithm is known for “forcing” nodes into communities regardless of how

often they interact with the “true” members of the given community. All other variable

definitions are provided in Appendix A.

Table 1 reports summary statistics for the variables used in our analysis. We measure

the average round-trip transaction chain markup as 1.02%. The average markup is 1.10% for

chains that trade bonds with small par sizes, and for 0.65% chains with medium and large

par sizes, both of which are close to values found in Griffin et al. (2023), whose sample spans

between 2011 and 2017. The average natural logarithm of days to maturity is 8.12, which

roughly corresponds to an average of 11.87 years. The average time since issuance (seasoning)

is approximately 5.72 years. Our centrality and reciprocity measures are normalized between

0 and 1, following Li and Schürhoff (2019), and are reported for the dealers that initiate

the chain. The distribution of the eigenvector centrality measure is comparable to that of

Li and Schürhoff (2019), while the average reciprocity sits at 0.41. The state and total

market share variables are slightly lower than those reported in Griffin et al. (2023), but

are generally within one standard deviation of their averages. The market share on specific

bonds is somewhat higher than that reported in Griffin et al. (2023), with an average of 68%.

The average local network size is approximately 20 dealers, suggesting that an average dealer

trades a given state’s bonds with an average of 20 other dealers. Finally, the average dealer

inventory is somewhat higher than the average inventory reported in Griffin et al. (2023).

Finally, we estimate the correlation between dealer reciprocity and dealer centrality to

be 63%. This is driven by the fact that most low reciprocity dealers have low centrality and

most high centrality dealers have high reciprocity, but this is far from the whole story as

much of the interesting effects lie in the low centrality, high reciprocity, or high centrality,

low reciprocity dealers. We explore this more in the univariate analysis below.
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Analysis

Univariate Analysis

We begin our analysis by examining the contrasting effects of centrality and reciprocity

using univariate sorts. In Table 2 we show that centrality and reciprocity are indeed distinct

features of a network’s structure despite having a fairly high correlation as documented in

Table 1. Before we do this though, it helps to discuss the differences between these two

variables more in depth.

Network centrality reflects the importance and influence of individual dealers within a

network, emphasizing their connectivity, role as bridges, or control over information flow.

In contrast, network reciprocity highlights the mutuality of relationships, focusing on two-

way interactions where both parties benefit or engage with each other in a similar manner.

Centrality and reciprocity are distinct but not necessarily independent concepts. A central

dealer may have numerous connections but relatively few reciprocal relationships, while a

highly reciprocal dealer pair might not hold a central position within the overall network.16

Table 2 presents average values for key metrics, including the number of dealers, trans-

actions, transaction chain markups, chain length, and community size, based on a double

sorting of the sample into dealer centrality and dealer reciprocity terciles. Panel A focuses

on the number of unique dealers contributing to our sample of transactions, providing an

initial overview of the dealer network structure. In line with Li and Schürhoff (2019), our

analysis reflects a core-periphery network structure, where a small number of central dealers

account for a significant proportion of all transactions. Specifically, 25 dealers fall within

the highest tercile of centrality, with the majority demonstrating medium to high levels of

reciprocity. Similarly, 82 dealers fall within the highest tercile of reciprocity, with 51 dealers

16The simple analogy is a social network. A person with many friends and who is often involved in
conversations might have high centrality. A pair of close friends who frequently interact and support each
other would have high reciprocity. Some nodes might have both high centrality and reciprocity. For example,
a popular and close-knit friend group could exhibit both. However, they can also be independent: a central
node might have many connections but few reciprocal relationships, while a highly reciprocal pair might not
be central to the overall network.
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exhibiting the most contrasting levels of centrality and reciprocity (e.g., high centrality-low

reciprocity or low centrality-high reciprocity).

Panel B provides the distribution of municipal bond transactions in categories defined

by dealer centrality and reciprocity. Approximately half of all transactions originate from

dealers classified as peripheral and non-reciprocal (lowest tercile of both centrality and reci-

procity, 26.6%) or central and reciprocal (highest tercile of both centrality and reciprocity,

20.6%). This distribution reveals a concentration of transactions within the extreme terciles

of dealer centrality, while the medium centrality terciles show a more even distribution across

reciprocity levels.

Panel C of Table 2 presents the core findings of our analysis, highlighting the impact

of dealer centrality and reciprocity on average transaction chain markups. Consistent with

existing literature, our analysis reveals that transactions involving dealers with higher levels

of centrality tend to be associated with larger markups. This pattern holds across different

levels of dealer reciprocity, with one notable exception: Dealers with low centrality but

high reciprocity impose some of the highest average markups, reaching 1.53%. A closer

examination of the interaction between dealer centrality and reciprocity reveals nuanced

patterns: markups for transactions with low-centrality dealers increase with reciprocity,

whereas those with medium- or high-centrality dealers show the opposite trend, with markups

decreasing as reciprocity grows.

These univariate results underscore the pivotal role of reciprocity in shaping dealer net-

work behavior and transaction cost patterns. Reciprocal trading relationships can provide

benefits such as improved information flow, liquidity sharing, and the fostering of trust

within the network, all of which help lower transaction costs, as reflected in Hypothesis 1A.

At the same time, the findings reveal a critical risk: in certain contexts, reciprocity may

facilitate collusion, as suggested by Hypothesis 1B. For instance, in the low-centrality group,

reciprocal relationships correlate with higher markups, likely due to easier coordination in

smaller or less competitive networks. The findings in Panel C further support Hypothesis
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3, showing that reciprocity moderates the effect of dealer centrality on markups: for low-

centrality dealers, higher reciprocity corresponds to increased markups, while for medium-

and high-centrality dealers, greater reciprocity is associated with lower markups.

We now examine the length of transaction chains. Longer chains generally result in

higher markups, as each link in the chain adds to the cumulative markup. Panel D of Table

2 presents the average transaction chain length, segmented by terciles of dealer centrality

and reciprocity. Across all transactions, chain lengths range from 2.74 to 4.18, with an

overall average of 2.97 transactions. Focusing first on the effect of centrality, we confirm

prior findings that central dealers are associated with shorter transaction chains. Specifically,

chain lengths tend to decrease for dealers with medium and high levels of centrality. However,

dealers with low reciprocity exhibit an exception, where chain lengths increase as centrality

increases. Turning to the effect of reciprocity, we observe that among highly central dealers,

chains initiated by more reciprocal dealers are shorter. In contrast, for dealers with low and

medium centrality, chain lengths increase as reciprocity grows. These findings suggest that

the interaction between dealer centrality and reciprocity plays a significant role in shaping the

length of the transaction chain. Specifically, chains initiated by dealers with low centrality

and high reciprocity stand out as the longest, averaging 4.18 transactions. This pattern aligns

with Hypothesis 2, which posits that higher reciprocity among less central dealers fosters

quid pro quo behavior, leading to extended transaction chains. Notably, these longer chains

are also associated with one of the highest average markups, recorded at 1.53%, underscoring

the dual impact of reciprocity on both chain structure and transaction costs.

In Panel E, we analyze the size of local networks within the municipal bond market,

defining it as the number of unique counterparties that a dealer traded with (bought from

or sold to) during the past 30 trading days, calculated for each state of issuance. The results

reveal consistent trends: the average size of the local network increases for more central

dealers across all terciles of reciprocity and similarly increases for more reciprocal dealers.

These findings suggest that centrality and reciprocity reinforce one another in expanding a
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dealer’s local network. However, an exception arises among dealers in the low centrality-high

reciprocity tercile, who have the smallest local networks. Notably, within the low centrality

group, local network size increases from the lowest to the medium reciprocity tercile but

sharply declines in the highest tercile.

These findings align with Hypothesis 4, which posits that smaller dealer networks, par-

ticularly those involving low-centrality dealers, are more conducive to sustaining collusive ar-

rangements. The observed decline in local network size among low-centrality, high-reciprocity

dealers may indicate that these dealers rely more heavily on a few reciprocal relationships to

coordinate transactions, a hallmark of tightly knit, collusive arrangements. In contrast, the

strengthening effects of centrality and reciprocity in expanding local networks highlight the

broader cooperative dynamics observed in larger or more competitive networks. This dual

role underscores the importance of network structure in mediating the impact of reciprocity

on market behavior and transaction costs.

Centrality Premium and Reciprocity Discount

Our results in the previous section reveal interesting patterns, but these may be driven

by factors such as the types of bonds traded by different dealers or other dealer-specific char-

acteristics. To account for these possibilities, we now turn to our results from multivariate

analysis.

The initial analyses explore the determinants of transaction costs, focusing on the ef-

fects of dealer centrality and reciprocity on the markups of transaction chains, measured in

percent. The markup of a chain is calculated as the pricing differential between the final

transaction of the chain (the sale to a customer) and the initial transaction of the chain (the

purchase from the customer). We estimate the following regression specification:

Markupi = β1Centralityi + β2Reciprocityi + β3MarketSharei +Xiβ + αs + αmy + ϵi (1)
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Centrality, reciprocity, and market shares are measured for the initiating dealer, specifi-

cally the dealer that purchases the bond from the customer. In this analysis, we standardize

all explanatory variables to facilitate comparisons of their effects on markups across different

covariates. Xi represents a vector of additional control variables, including market share,

chain length, and bond characteristics such as time to maturity, time since issuance, in-

surance, tax status, provisions, rating, and whether the bond is a general obligation bond.

Trade characteristics, including par size (modeled as small, medium, or large binary vari-

ables interacted with the natural logarithm of par size) and dealer inventory levels, are also

included. The terms αs and αym denote state fixed effects and month-year fixed effects, re-

spectively, accounting for regional and temporal variations in markups. ϵi is the error term.

Results are reported in Table 3.

In Column 1, we present results for dealer centrality and reciprocity controlling for bond

and trade characteristics, but not dealer market share or chain length. Consistent with

findings from Li and Schürhoff (2019), we observe a positive impact of dealer centrality on

transaction costs, though the results are economically small. Specifically, in our sample,

a one standard deviation increase in dealer centrality is associated with a 2.4 basis points

increase in markups. The effect of a one standard deviation increase in dealer reciprocity is

similarly sized, at 2.1 basis points.

Upon introducing measures of market share in Column 2, including overall dealer market

share, dealer market share in the bond’s domiciled state, and dealer market share in the

bond, we observe a reversal in the estimated effect of dealer centrality. We find a reduction

in markups by 3.5 basis points for a one standard deviation increase in dealer centrality.

Notably, the estimated effects for dealer reciprocity remain unchanged in terms of both sign

and magnitude.

These results are consistent with the evidence presented by Griffin et al. (2023) that shows

that dealer market share measures attenuate the effect of dealer centrality on transaction

chain markups. The estimated magnitudes of dealer market share, particularly for the overall
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dealer market share, are significantly larger when compared to the effects of dealer centrality

and dealer reciprocity on markups. We estimate a one standard deviation increase in dealer

market share leads to a 12.2 basis points increase in markups.

Moving to Column 3, where we control for chain length and its interaction with cen-

trality and reciprocity, we observe a reversion of the baseline coefficient on centrality to a

positive sign, akin to our estimate in Column 1. However, dealer reciprocity now exhibits

a negative baseline coefficient. Additionally, chain length itself shows a positive association

with markups. Although a one standard deviation increase in either centrality or reciprocity

yields coefficient estimates for their respective interaction with chain length, producing off-

setting effects, these effects are too small to counterbalance the sign of the baseline effects

described earlier.17 Column 4 introduces bond-month fixed effects, so the reciprocity esti-

mate now compares trades in the same bond in the same month; the coefficients remain

virtually unchanged, confirming the robustness of our results.

In Columns 5 - 8, we re-estimate the specifications used by columns 1 - 4 this time using a

sample of transactions excluding those involving dealers in the low-centrality, high-reciprocity

category identified in our univariate analysis. These excluded transactions, comprising 2.31%

of all transactions in our sample, are clear outliers to the general patterns observed in terms

of higher markups, longer transaction chains, and smaller local networks in our univariate

analysis.

Here, two main observations emerge: First, dealer centrality consistently exhibits a posi-

tive association with transaction costs, with estimated magnitudes ranging from 7.2 to 13.3

basis points. These magnitudes are not only much larger than those estimated using the

full sample but are also of similar magnitude to the estimated effects of dealer market share,

which remain relatively unchanged. Second, we consistently estimate a negative effect of

dealer reciprocity on markups. The magnitude of these estimated effects is 4-5 times larger

17Note that the median of our standardized measure of chain length is 0.0322, leading to coefficient
estimates of 0.018 and −0.039 for dealer centrality and dealer reciprocity, respectively, at the median value
of chain length. Both estimates are statistically significant at the 1 percent level.
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than those previously estimated.

Thus, we find that excluding a specific set of transactions restores one of Li and Schürhoff

(2019)’s insights: more central dealers charge higher markups, even when controlling for

dealer market share, effectively reconciling the tension between Li and Schürhoff (2019)

and Griffin et al. (2023) regarding the effect of centrality on markups. Additionally, our

results show that transactions involving more reciprocal dealers, when controlling for dealer

centrality and market share, are executed with lower markups, consistent with Hypothesis

1A. These results are also important because they help explain why dealer centrality leads to

a premium in some markets, such as the municipal and corporate bond markets (Di Maggio

et al., 2017; Li and Schürhoff, 2019), and a discount in others, such as ABS/MBS markets

(Hollifield et al., 2017).

Finally, we implement a two-step approach to further explore the effects of centrality

and reciprocity on markups, isolating their impact from bond and trade characteristics. In

the first step, we regress markups on bond and trade variables, as well as fixed effects, to

calculate residuals, which we term abnormal markups. In the second step, we double-sort

these residuals into terciles based on measures of centrality and reciprocity. The results,

presented in Panel F of Table 2, corroborate our findings from the univariate analysis and

those presented in Table 3. Specifically, we observe an increase in abnormal markups as

reciprocity increases within the lowest centrality tercile. Conversely, contrasting results

emerge for the medium and high centrality terciles, indicating a different relationship between

reciprocity and markups in these categories. Notably, the highest abnormal markups are

identified in the category characterized by the lowest centrality and highest reciprocity,

highlighting again the unique dynamics present within this subgroup.

Reciprocity and customer search costs

In this section, we examine how dealers find counterparties by analyzing their likeli-

hood of directly selling bonds to customers versus involving other dealers. Consistent with
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Hypothesis 2, we propose that reciprocal dealers are more likely to include intermediaries

in transactions to return favors and maintain relationships, even when direct sales to cus-

tomers are feasible. This behavior is expected to be most pronounced among low-centrality,

high-reciprocity dealers, who may rely heavily on inter-dealer trades, potentially inflating

transaction costs.

Following the approach of Li and Schürhoff (2019), we employ a panel Probit model

to analyze dealer-to-customer (DC) trades and inter-dealer transactions. Our explanatory

variables, measured at the initiating dealer of a transaction chain, include dealer centrality,

dealer reciprocity, dealer market shares, and the complete set of control variables outlined

in Table 3. To improve interpretability, we report marginal effects instead of probit coef-

ficients, showing the change in the probability of the dependent variable given a one-unit

increase in the explanatory variable. Thus, since continuous explanatory variables are stan-

dardized, each coefficient can be directly interpreted as the change in the probability of a

direct customer trade due to a one standard deviation increase in the explanatory variable.

In Column 1 of Table 4, we find that dealer centrality positively influences the likelihood

of the next trade being with a customer, while reciprocity exerts a negative impact. In

our sample, the probability of the next trade being with a customer is 51.74% when all

explanatory variables are set to their mean values. The marginal effect of centrality at

these means translates to an increase of 6.24 percentage points, constituting 12.1% of the

baseline probability. The corresponding effect of reciprocity is a decrease of 6.22 percentage

points, equivalent to 12% of the baseline probability. Notably, the effects of these two factors

counterbalance each other.

In Column 2, we use a categorical representation of dealer centrality and reciprocity

tercile affiliation, replacing the continuous measures. Here, the medium category serves

as the reference point. High centrality maintains its positive impact on the likelihood of

subsequent trades with a customer, although there is variation depending on reciprocity: low

reciprocity leads to a lower impact of high centrality. However, overall, for high centrality,
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variation in reciprocity does not fully offset the positive baseline effect. What stands out

most from these results is the estimate for the low-centrality, high-reciprocity group. Here

we find a 36% lower probability of placing the deal with a customer compared to the middle

centrality, middle reciprocity group, which aligns with Hypothesis 2.

Overall, these results highlight that while dealer centrality invariably enhances the prob-

ability of direct customer transactions, reciprocity presents a nuanced impact, depending on

its interplay with centrality. An increase in the initiating dealer’s degree of reciprocity, espe-

cially when paired with low centrality, markedly lowers the probability of a dealer-customer

trade, either because reciprocal in-network dealers agree to purchase a bond without access

to an adequate customer base to market the bond to, or because those dealers engage in some

form of collusive behavior to increase markups. In either case, we expect these instances to

lead to longer transaction chains and ultimately increased markups, issues we explore in the

following analyses.

Reciprocity and chain length

In Columns 3 and 4 of Table 4, we estimate a Poisson model to analyze the length of

transaction chains and its relationship with dealers’ network reciprocity. Our analysis in

Column 3, utilizing continuous measures of dealer centrality and dealer reciprocity, reveals a

negative impact of centrality on chain length, with a magnitude of 8.24 percent. This aligns

with previous research by Li and Schürhoff (2019), suggesting that more central dealers are

associated with shorter transaction chains. Conversely, reciprocity has a positive effect on

chain length, with a magnitude of 9.64 percent. This implies that transaction chains initiated

by reciprocal dealers tend to be longer, consistent with Hypothesis 2.

Using categorical centrality and reciprocity terciles in Column 4, the results remain con-

sistent with previous findings. Specifically, high centrality and high reciprocity are linked

to shorter and longer transaction chains, respectively. Conditional on high centrality, the

shortening effect persists in the medium and high terciles of reciprocity, albeit somewhat
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muted for low levels of reciprocity. Conversely, the lengthening effect of reciprocity remains

consistent across all terciles of centrality, with the most pronounced impact observed for low

levels of centrality. Once again, the most pronounced deviation occurs in the low-centrality,

high-reciprocity group, where transaction chain length is estimated to be 44% higher than

in the middle centrality, middle reciprocity group.

Overall this set of results aligns closely with our second hypotheses regarding customer

search costs. Specifically, our analysis indicates that while dealer centrality tends to decrease

the length of transaction chains, suggesting more efficient market transactions facilitated by

central dealers, the presence of reciprocity among dealers has the opposite effect, resulting

in longer transaction chains. This elongation implies that dealers involved in reciprocal rela-

tionships may prioritize trading within their network, potentially compromising transaction

efficiency and contributing to increased market fragmentation.

Corroborating evidence is presented in Columns 5 and 6 of Table 4, where we examine the

probability of completing a transaction chain within one minute, referred to as prearranged

trades. Two key observations emerge. First, in Column 5, we find that both centrality and

reciprocity have a positive impact on the probability of prearranging a chain: a one standard

deviation increase in centrality and reciprocity increases this probability by 3.1% and 2%,

respectively. Second, in Column 6, using categorical centrality and reciprocity terciles, we

observe that the groups with both low levels of centrality and reciprocity and high levels

of centrality and reciprocity drive these results. However, we find a negative impact on

the probability of prearranging, relative to the middle terciles, for groups characterized by

high centrality and low reciprocity or low centrality and high reciprocity. The finding of a

lower probability of quick customer-to-customer pass-throughs in the low centrality and high

reciprocity group, combined with their longer transaction chains and lower probabilities of

dealer-customer trades, reinforces their unique role in this market.
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Reciprocal dealers and reciprocal behavior

Next, we investigate evidence of reciprocity among dealers, specifically focusing on those

characterized by high levels of reciprocity. To do this, we estimate the probability of a reverse

inter-dealer trade, such as dealer 2 selling to dealer 1, occurring shortly after the original

trade, where dealer 1 sold to dealer 2. This analysis is conducted within pre-specified time

frames of a day, a week, or a month. The first three columns of Table 5 present our findings,

where we estimate the reverse trade propensities over the next 1, 7, and 30 days, respectively.

As in previous analyses, we control for the initiating dealer’s centrality and market shares,

along with a comprehensive set of control variables and fixed effects adopted from Table 3.

To make the results easier to interpret and compare, we report marginal effects instead of

probit coefficients, as in Table 4.

Across all three specifications, we obtain negative and consistent coefficients, indicating

that most of the activity occurs within the first day following the original trade. Over

the one-day horizon, shown in Column 1, we obtain a negative and significant coefficient on

dealer centrality, with a one standard deviation increase reducing the probability of a reverse

trade by 2.7 percent. In contrast, a one standard deviation increase in dealer reciprocity

raises the probability of a reverse trade by 7.1 percent. Over a 30-day period, the effect of

dealer centrality on reversals, while still negative, diminishes to 0.9 percent. In contrast, the

positive effect of reciprocity remains pronounced, increasing the probability of a reversal by

6.4 percent over the same timeframe.

Holding all control variables at their mean values, the baseline probability of observing a

reverse trade after one day is 24.85 percent. Accordingly, a one standard deviation increase

in dealer centrality represents a 10.95 percent decrease from the baseline probability, while

a one standard deviation increase in dealer reciprocity leads to a substantial 28.37 percent

increase.

The observed impact of reciprocity on reversal probabilities not only validates our mea-

sure of reciprocity out of sample but also underscores the significance of within-network
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trades for more reciprocal dealers. This finding is particularly pronounced when high reci-

procity is paired with low centrality, a combination we previously emphasized. In Column

4 of Table 5, we once again employ a model utilizing categorical representation of centrality

and reciprocity terciles, focusing on estimating the likelihood of 1-day reversals. Once again

we find the low-centrality, high-reciprocity dealers acting as outliers with a substantially

larger probability of reverse trades than all other dealer groups. For this dealer set we es-

timate the probability of the reverse deal occurring within one day as 34% higher than the

middle centrality, middle reciprocity group.

By demonstrating that dealers characterized by high reciprocity are more likely to engage

in reverse trades and that such reserve trades occur relatively quickly, our analysis potentially

edges towards uncovering evidence suggestive of collusive behavior. While the observed

behavior may reflect practices of trust and liquidity among reciprocal local dealer networks,

the rapidity of these reversals also opens the door to interpretations that may imply strategic,

coordinated actions aimed at inflating prices to the dealers’ mutual benefit.

Trade characteristics by dealer reciprocity

In this section we deepen our analysis of dealer behavior by relating network characteris-

tics to the attributes of the trades they arrange. We examine five dimensions in Table 6 that

jointly characterize the extent to which dealers (i) transact with retail customers, (ii) favor

complex bonds, (iii) generate anomalous “daisy–chain” transaction paths, (iv) quote coarse

prices, and (v) suppress informative fine–yield quotations. These metrics together sharpen

the picture of how low-centrality, high-reciprocity dealers appear to exploit opacity.

We hypothesize that if dealers use reciprocal relationships to extract rents (e.g., the

low-centrality, high-reciprocity dealer group), they will focus more on trades with retail

customers, who are more prone to cognitive biases compared to institutional customers.

They are also more likely to trade more complicated bonds, which provide an advantage over

less sophisticated retail investors and enable them to conceal price inflation more effectively

30



than with vanilla bonds, where such behavior is easier to detect. Moreover, we expect

their trading to display anomalous patterns, such as selling a bond to another dealer and

then repurchasing it at a much higher price after multiple inter-dealer trades, before finally

offloading it to a customer. We also anticipate them to rely heavily on coarse prices (quarter

and odd eighths) rather than fine price increments, signaling a large discretionary element

in their pricing.

We begin by considering trade size, which serves as a proxy for retail activity, with

smaller trades (par ≤ $100,000) typically linked to less sophisticated investors. Sorting

dealers into centrality and reciprocity terciles reveals that among low-centrality dealers, the

share of small-par trades rises sharply with reciprocity, from 42.36% in the lowest reciprocity

tercile to 51.07% in the highest. This 8.71-percentage-point increase is both statistically

and economically significant. By contrast, among medium and high-centrality dealers, the

relationship reverses: higher reciprocity correlates with fewer small-par trades. This cross-

sectional contrast supports the notion that low-centrality, high-reciprocity dealers target

retail flows as part of a broader rent-extraction strategy.

We next examine whether the same group of dealers prefers to trade bonds with more

complex contractual features, which exacerbate information asymmetries and may obscure

markups. Complexity is quantified by counting optional features such as callability, sinking-

fund provisions, and credit enhancement mechanisms. We find that within the low-centrality

tier, complexity increases with reciprocity. In contrast, this association weakens or reverses

among more central dealers. These findings align with Brancaccio et al. (2022), who argue

that complex structures can facilitate surplus extraction from less-informed investors.

To explore potentially anomalous trading behavior, we analyze the incidence of daisy

chains, i.e. round-trip paths in which the initiating dealer repurchases the same bond after

a sequence of inter-dealer trades and eventually sells it to a customer. These patterns

artificially inflate prices without any observable inventory benefit. Daisy chain probability

increases monotonically with reciprocity across all centrality groups and peaks at 19.17% for
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the medium-centrality, high-reciprocity group. The low-centrality, high-reciprocity cell also

exhibits a high rate of 11.31%, far exceeding the sub-2% rates observed for low-reciprocity

or high-centrality dealers. These patterns are consistent with the use of favor-trading to

camouflage price markups passed on to customers.

Supporting evidence of opacity also arises from dealers’ price-quoting behavior. We

measure the frequency of coarse pricing, e.g., quotes in eighths, quarters, or whole-dollar

increments, which tend to obscure true economic concessions. Among low-centrality dealers,

the share of trades executed at coarse price points increases markedly with reciprocity, from

7.15% to 11.14%. This 3.99-percentage-point rise contrasts sharply with medium- and high-

centrality groups, where higher reciprocity is associated with more granular quoting. A

complementary measure is the frequency of fine yield quotes, where precision is expressed

in basis points. For low-centrality dealers, reciprocity is associated with less frequent use of

such informative quotes (falling from 22.29% to 15.57%), while for high-centrality dealers,

the pattern reverses, with transparency increasing alongside reciprocity. The low-centrality,

high-reciprocity group thus not only relies more on coarse price grids but also provides the

least yield information, reinforcing the hypothesis of deliberate opacity.

Overall, these results present consistent evidence that dealers who are both peripheral

and highly reciprocal disproportionately engage in retail-oriented trades, prefer complex bond

structures, orchestrate circular transaction chains, avoid transparent execution, and routinely

obscure pricing information. This constellation of behaviors supports a rent-extraction hy-

pothesis, wherein reciprocity is not merely a marker of cooperative trading but a strategic

tool to exploit less-informed market participants.

The impact of reciprocity on markups and trading community size

In this section we examine our fourth hypothesis about how the effect of dealer reci-

procity on markups changes will vary with dealer community size. Intuitively, collusion

becomes increasingly difficult with more participants since coordinating actions and main-
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taining confidentiality become more complex, while the risk of detection rises, incentivizing

individual members to cheat and increasing the likelihood of internal conflicts. Thus, we hy-

pothesize that when local dealer networks are small, reciprocity will lead to inflated markups;

and when networks are large, reciprocity will lead to reduced markups.

To test this hypothesis we attempt to measure dealer network size in two ways. First, we

try a direct measurement and calculate local network size as a dealer’s number of interdealer

trading partners over the past 30 days. Second, we apply machine learning techniques

to classify dealers into local trading communities using the Louvain community detection

algorithm (Blondel et al., 2008). Overall, we find results consistent with our hypothesis.

Local Dealer Networks

To examine the impact of reciprocity conditional on dealer local network size, we re-run

the regression specification from Column 4 of Table 3, stratifying the sample into quintiles

based on each dealer’s local network size, or the number of their inter-dealer trading partners

over the preceding 30 days. Table 7 presents these results.

Consistent with our hypothesis, we observe that reciprocity increases markups for dealers

operating within smaller networks, specifically those in the lowest quintile. For transactions

within this subgroup, a one standard deviation increase in dealer reciprocity is associated

with a 9.5 basis point increase in markup. These findings suggest that dealers in smaller

networks may exploit reciprocal relationships to raise markups, potentially engaging in quid

pro quo trading practices.

Conversely, our analysis reveals that reciprocity leads to a reduction in markups for

dealers with larger networks across all other quintiles. Specifically, a one standard deviation

increase in reciprocity corresponds to a decline in markup ranging from 12.7 to 26.3 basis

points for these dealers. All coefficient estimates are significant at the 1 percent level.

Overall, this consistent trend suggests that in larger networks, the positive effects of liquidity

provision facilitated by reciprocal relationships, such as reduced search costs, outweigh any
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propensity toward markup-increasing behavior.

Louvain communities

We next apply the Louvain algorithm for community detection (Blondel et al., 2008)

to cluster dealers into trading communities.18 This clustering allows us to analyze how

community affiliation impacts transaction chain markups. Specifically, we focus on the

effect on markups when both dealers belong to the same community. Table 8 presents these

results. We employ essentially the same regression specification as in Column 4 of Table

3, omitting centrality and reciprocity measures, and incorporating our Louvain community

classification. We introduce the variable ’Same Community’ to identify transactions where

both dealers are within the same Louvain community, which occurs in 2.09% of cases. This

analysis uses dynamic Louvain communities defined at a resolution parameter of 40. We also

account for the sizes of the seller’s and buyer’s communities and their interactions with the

‘Same Community’ variable.

In the first three columns of Table 8, we observe a large, positive coefficient for the

’Same Community’ indicator. These estimates indicate that markups are approximately 60

to 70 basis points higher when both the seller and buyer belong to the same community.

Furthermore, the magnitude of this effect diminishes with the size of the buyer’s and seller’s

communities, as shown by the negative coefficients on the interaction terms between the

’Same Community’ indicator and the sizes of the respective communities. Notably, since

the average community consists of 3.56 dealers, we consistently observe a positive impact

of intra-community trades on markups across a typical community. These results remain

robust across all three specifications, regardless of whether we control for seller community

size or buyer community size. In the last three columns of Table 8, we exclude transactions

involving dealers assigned to the low-reciprocity, high-centrality group. This attenuates the

18To enhance the reliability of this non-deterministic algorithm, we run it multiple times with different
random seeds (from 1 to 100) and aggregate the outcomes. This method mitigates bias from any single ran-
dom state and ensures consistent dealer community assignments. Dealers assigned to multiple communities
are excluded from the analysis. The assignment process is detailed in Appendix D.
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effect of the same community dummy to around 50 basis points, despite representing only

0.7% of the transactions in the sample. We continue to observe the attenuating effects of

community size.

Overall, these findings closely relate to our earlier results on dealer reciprocity. The

elevated markups within the same community suggest that dealers may exploit close-knit

relationships to increase profits, similar to how reciprocity can lead to higher markups in

smaller networks. The attenuation of this effect with larger community sizes parallels the

observation that reciprocity reduces markups in larger networks due to enhanced liquidity

and reduced search costs. We conclude that community affiliation and dealer reciprocity

both play significant roles in shaping transaction costs, with their impacts conditioned by

the size and structure of the trading network.

Determinants of dealer communities

To provide a better understanding of the Louvain community measure employed in our

previous analysis, we now explore the primary factors that determine the community affil-

iation of dealers within the network structure. Table 9 outlines the significance of the top

20 determinants affecting whether trade counterparties are part of the same dynamic Lou-

vain community. Our analysis employs machine learning models, focusing on two types of

tree-based classifier models: LightGBM, a gradient-boosting machine learning framework,

introduced by Ke et al. (2017), and Random Forest (RF) classifier, introduced by Breiman

(2001). Despite some disparities between the models, LightGBM emerges as generally more

accurate, boasting over 90% correct predictions. Nonetheless, the RF classifier shows a

significantly lower rate of false negatives, demonstrating its effectiveness in accurately iden-

tifying trades within the same community. Feature importances reported in Table 9 are

averaged across 100 seeds to avoid dependence on random states, documented by Jain and

Madhyastha (2019).

Some of the results provided in Table 9 are quite intuitive - a larger local network size
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of either of the counterparties will likely result in the dealers being from the same, larger

community. A larger fraction of purchases and sales from one another (Di Maggio et al.,

2017) is another somewhat intuitive result - the more the two counterparties trade with

each other, the more likely it is that they belong to the same community. We also find

that the reciprocity measures and, to a smaller degree, centrality measures, tend to be

major predictors of whether the two counterparties belong to the same community, with the

reciprocity also being a prominent predictor in the RF classifier models. The importance

of the buyer’s and seller’s returns also hints at potential quid pro quo situations: A buyer

(seller) who has been financially well-off in the prior month wants to help out his community

members. The total value of the reverse trades and the number of such trades also seem to

accurately predict whether the two counterparties belong to the same community.

Additionally, the machine learning models reveal noteworthy findings regarding the deal-

ers’ retail trade market shares. This metric, defined as the percentage of sales a dealer

makes to customers, appears to influence whether two trading counterparties are from the

same community. It hints at potential quid pro quo dynamics, where a seller with a larger re-

tail market share might facilitate a transaction for a community member. Collectively, these

models indicate that the trades within the same community are primarily driven by the

reciprocity and centrality of the counterparties, their financial standing, and their history of

interactions. Our analysis underscores the complexity of factors influencing intra-community

trading behaviors.

Conclusion

The dynamics of dealer networks hold significant implications for asset pricing and mar-

ket efficiency. Our study illuminates the complex interplay between dealer reciprocity and

transaction chain markups, revealing both the beneficial and detrimental impacts of such

relationships on market outcomes.

36



Our research indicates that overall, reciprocity among dealers tends to foster a more co-

hesive and efficient trading environment. This mutual exchange of favors, grounded in the

expectation of future reciprocity, generally contributes to lower transaction costs for par-

ticipants. Notably, our findings underscore that higher levels of dealer reciprocity correlate

with reduced bond markups, particularly among central dealers with significant network

connections. This phenomenon suggests that reciprocal networks can enhance market effi-

ciency, streamline the flow of capital, and ultimately, benefit the broader financial ecosystem

through more competitive pricing.

Conversely, our study also reveals the problematic aspects of reciprocity, highlighting the

risks of collusion and market manipulation within these networks. Specifically, we identify a

particular group of peripheral dealers characterized by high levels of reciprocity, who main-

tain significant markups, suggesting a form of tacit collusion to artificially inflate transaction

chain markups.
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Duffie, D., Gârleanu, N., Pedersen, L. H., 2005. Over-the-counter markets. Econometrica 73,

1815–1847.
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Table 1: Univariate statistics for transaction chains.
This table contains summary statistics for key variables used in our analysis using our sample
of 1,536,551 transaction chains. We report the mean, median, standard deviation, 25th, and
75th percentiles for all variables. The last column of the table reports the correlation of
the given variable with the dealer reciprocity. Transaction characteristics reflect all trades
in a transaction chain, while dealer characteristics are based on the initial dealer only. All
variable definitions are provided in Appendix A.

Variable Mean St. Dev. 25% Median 75% Corr.

Transaction Characteristics
Markup (%) 1.02 2.00 0.17 0.68 1.94 0.04
Par Size (in $000s) 68.93 616.94 10.00 25.00 40.00 -0.03
Log(par) × Small 9.02 2.90 9.21 9.90 10.13 0.10
Log(par) × Medium 1.00 3.30 0.00 0.00 0.00 -0.09
Log(par) × Large 0.09 1.19 0.00 0.00 0.00 -0.04

Dealer Characteristics
Dealer centrality 0.13 0.07 0.07 0.14 0.18 0.63
Dealer reciprocity 0.41 0.17 0.29 0.44 0.52 1.00
Dealer market share 0.02 0.02 0.01 0.02 0.03 0.33
Dealer market share (State) 0.03 0.04 0.01 0.02 0.04 0.17
Dealer market share (Bond) 0.68 0.35 0.33 0.87 1.00 -0.00
Dealer network size 19.68 18.09 5.00 15.00 29.00 0.50
Dealer inventory 0.92 33.64 -1.47 0.00 1.54 -0.04

Bond Characteristics
Maturity 8.12 0.75 7.63 8.20 8.74 0.07
Seasoning 7.30 0.91 7.97 7.56 6.77 0.02
Issue size 18.78 1.39 17.81 18.86 19.81 -0.02
Rating 2.24 2.56 0.00 2.00 4.00 0.02
Junk 0.01 0.09 0.00 0.00 0.00 -0.03
Unrated 0.40 0.49 0.00 0.00 1.00 -0.04
Callable 0.65 0.48 0.00 1.00 1.00 0.09
Insured 0.00 0.05 0.00 0.00 0.00 -0.00
General obligation 0.33 0.47 0.00 0.00 1.00 0.01
Taxable 0.08 0.26 0.00 0.00 0.00 -0.03
Bank qualified 0.02 0.13 0.00 0.00 0.00 0.01
Subject to AMT 0.02 0.12 0.00 0.00 0.00 -0.02
Sinking fund 0.55 0.50 0.00 1.00 1.00 0.03
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Table 2: Transaction chain characteristics across dealer centrality and reciprocity
terciles.
This table presents the distribution and characteristics of municipal bond transaction chains
segmented by dealer centrality and reciprocity terciles. Panels A and B report the number
of unique initial dealers and transaction chains, respectively. Panels C through F provide
averages for key metrics, including transaction chain markups (Panel C), chain length (Panel
D), local network size (Panel E), and abnormal markups (Panel F). Local network size is
defined as the number of unique counterparties a dealer has bought from or sold to in
the past 30 trading days, and abnormal markup is the difference between actual markup
and predicted markup based on a regression model controlling for trade, dealer, and bond
characteristics. The data is based on 1,536,661 transaction chains. Statistical significance
for differences between high and low centrality (reciprocity) terciles is indicated at the 10%
(*), 5% (**), and 1% (***) levels. Definitions for all variables are provided in the appendix.

Panel A. Dealer entity counts
Reciprocity

Lowest Medium Highest

Centrality
Lowest 636 110 49
Medium 25 34 21
Highest 2 11 12

Panel B. Number of C(N)DC transaction chains
Reciprocity

Lowest Medium Highest

Centrality

Lowest
408,043 68,640 35,506
(26.56%) (4.47%) (2.31%)

Medium
93,485 258,015 160,710
(6.08%) (16.79%) (10.46%)

Highest
10,658 185,578 315,916
(0.69%) (12.08%) (20.56%)

Panel C. Average markups
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 0.81 1.00 1.53 0.88 0.72***
Medium 1.41 0.97 0.79 0.99 -0.62***
Highest 1.99 1.13 1.19 1.18 -0.80***
Total 0.94 1.03 1.09
H-L 1.18*** 0.13*** -0.34***
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Panel D. Average chain length
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 2.74 3.55 4.18 2.94 1.44***
Medium 3.00 3.11 3.39 3.18 0.39***
Highest 3.20 2.81 2.77 2.79 -0.43***
Total 2.79 3.06 3.06
H-L 0.46*** -0.74*** -1.41***

Panel E. Average local network size
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 6.46 8.86 1.34 6.43 -5.12***
Medium 16.33 20.06 24.11 20.65 7.78***
Highest 20.91 22.85 37.43 31.80 16.52***
Total 8.59 19.57 30.75
H-L 14.45*** 13.99*** 36.09***

Panel F. Average abnormal markup
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest -0.06 0.02 0.33 -0.03 0.39***
Medium 0.15 -0.06 -0.25 -0.08 -0.40***
Highest 0.29 0.03 0.15 0.11 -0.14***
Total -0.02 -0.02 0.03
H-L 0.35*** 0.01 -0.18***
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Table 4: Regressions analyzing the impact of centrality and reciprocity on cus-
tomer search costs, chain size and chain type
This table presents regression results examining three key transaction outcomes: (1) the
probability of a transaction being a chain-concluding customer sale (columns 1 and 2), (2)
the number of unique dealers involved in the transaction chain (columns 3 and 4), and (3)
the probability of the chain being a prearranged trade (columns 5 and 6). Independent vari-
ables include dealer centrality, reciprocity, their terciles, dealer market share, and bond- and
trade-level controls. Bond controls comprise attributes such as time to maturity, time since
issuance, insurance status, tax status, provisions, ratings, and whether the bond is a general
obligation bond. Trade controls include par size (categorized as small, medium, or large and
interacted with the natural logarithm of par size) and dealer inventory levels. Columns 1 and
2 use the full sample of all transactions and report marginal effects for probit regressions to
enhance interpretability, reflecting the change in the dependent variable’s probability given a
unit increase in the explanatory variable. Columns 3 through 6 are restricted to transaction
chain-level data. All independent variables are standardized to have a mean of 0 and unit
variance. Standard errors are shown in parentheses, with statistical significance denoted at
the 10% (*), 5% (**), and 1% (***) levels.

(1) (2) (3) (4) (5) (6)
Dep. Variable: Pr(DC trade) Pr(DC trade) N of dealers N of dealers Pr(Prearranged) Pr(Prearranged)
Dealer centrality 0.062∗∗∗ -0.086∗∗∗ 0.031∗∗∗

(0.001) (0.001) (0.001)
Dealer reciprocity -0.062∗∗∗ 0.092∗∗∗ 0.020∗∗∗

(0.001) (0.001) (0.001)
Low reciprocity 0.152∗∗∗ -0.015∗∗ -0.310∗∗∗

(0.008) (0.006) (0.09)
High reciprocity -0.114∗∗∗ 0.093∗∗∗ -0.051∗∗∗

(0.003) (0.002) (0.007)
Low centrality -0.199∗∗∗ 0.188∗∗∗ -0.175∗∗∗

(0.004) (0.003) (0.009)
High centrality 0.318∗∗∗ -0.095∗∗∗ -0.245∗∗∗

(0.005) (0.004) (0.007)
Low centrality × Low reciprocity 0.300∗∗∗ -0.294∗∗∗ 0.468∗∗∗

(0.009) (0.007) (0.013)
High centrality × Low reciprocity -0.333∗∗∗ 0.159∗∗∗ -0.718∗∗∗

(0.016) (0.017) (0.059)
Low centrality × High reciprocity -0.045∗∗∗ 0.029∗∗∗ -0.293∗∗∗

(0.005) (0.004) (0.016)
High centrality × High reciprocity 0.088∗∗∗ -0.115∗∗∗ 0.511∗∗∗

(0.006) (0.004) (0.010)
Controls Yes Yes Yes Yes Yes Yes
Market share controls Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Month-Year FE Yes Yes Yes Yes Yes Yes
Observations 4,169,705 4,169,705 1,536,551 1,536,551 1,536,551 1,536,551
Pseudo R2 0.01 0.01 0.01 0.01 0.10 0.10
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Table 5: Analysis of reverse transaction probabilities and dealer network char-
acteristics
This table contains probit regressions of the probability of the reverse transactions (a buyer
and a seller in a previous transaction becoming the seller and buyer in a later transaction)
occurring in the next 1, 7, and 30 trading days. Columns (1)-(3) report probit regressions
of the respective reversal probabilities on centrality, reciprocity, their terciles, dealer market
share controls as well as bond and trade controls. Bond controls include the bond character-
istics, such as time to maturity, time since issuance, insurance, tax status, provisions, rating,
and whether the bond is a general obligation bond, with state and month fixed effects, clus-
tered by bond, and time. Trade controls include par size (small, medium, or large binary
variables interacted with the natural logarithm of par size) controls and dealer inventory
levels. All of the independent variables are standardized to have a mean of 0 and unit vari-
ance. Column (4) reports the average baseline probabilities of each dealer category relative
to the dealer of average centrality (reciprocity). To aid in interpretability, rather than re-
port probit coefficient estimates all columns report their marginal effects, i.e. the change in
the probability of the dependent variable conditional on a unit increase in the explanatory
variable. Standard errors, clustered by bond and time, are reported in parentheses below
the parameter estimates. Statistical significance is denoted at the 10% (*), 5% (**), and 1%
(***) levels.

(1) (2) (3) (4)
Dep. Variable: Reversal 1 day Reversal 7 day Reversal 30 day Baseline Prob.
Dealer centrality -0.027∗∗∗ -0.016∗∗∗ -0.009∗∗∗

(0.001) (0.001) (0.001)
Dealer reciprocity 0.071∗∗∗ 0.076∗∗∗ 0.064∗∗∗

(0.001) (0.001) (0.001)
Low reciprocity -0.520∗∗∗

(0.013)
High reciprocity -0.037∗∗∗

(0.009)
Low centrality -0.180∗∗∗

(0.011)
High centrality -0.311∗∗∗

(0.011)
Low reciprocity × Low centrality 0.291∗∗∗

(0.017)
Low reciprocity × High centrality 0.095∗∗∗

(0.024)
High reciprocity × Low centrality 0.556∗∗∗

(0.015)
High reciprocity × High centrality 0.242∗∗∗

(0.013)
Controls Yes Yes Yes Yes
Market share controls Yes Yes Yes Yes
State FE Yes Yes Yes Yes
Month-Year FE Yes Yes Yes Yes
Observations 739,411 739,411 739,411 739,411
Pseudo R2 0.06 0.06 0.02 0.07
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Table 6: Comparison of trade size, bond complexity, daisy chains, and prear-
ranged trades across dealer centrality and reciprocity terciles.
This table reports the percentage of transaction chains with par size less than $100K (Panel
A), the percentage of transaction chains involving complex bonds –i.e., bonds with above-
median complexity score (Panel B), the percentage of daisy chains–i.e., chains initiated and
ended by the same dealer entity (Panel C), the percentage of transactions that use coarse
dollar prices (Panel D), and the percentage of transactions that use fine yields (Panel E),
by dealer centrality and reciprocity tercile. Percentages are reported as the total number
of transaction chains initiated by each dealer centrality and reciprocity tercile-sorted group
that fall under a given category (e.g. 42.36% of the transaction chains initiated by the deal-
ers with the lowest centrality and reciprocity involve the par amount of less than $100K.)

Panel A. Percentage of chains involving par size <$100K
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 42.36% 49.96% 51.07% 43.98% 8.71%***
Medium 62.21% 47.93% 55.83% 53.02% -6.38%***
Highest 84.16% 45.18% 47.70% 47.54% -36.46%***
Total 46.85% 47.21% 50.49%
H-L 41.80%*** -4.78%*** -3.37%***

Panel B. Percentage of chains involving complex bonds
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 8.91% 10.48% 14.62% 9.51% 5.71%***
Medium 16.36% 12.48% 12.81% 13.29% -3.55%***
Highest 21.53% 15.11% 13.50% 14.25% -8.03%***
Total 10.53% 13.16% 13.36%
H-L 12.62%*** 4.63%*** -1.12%***

Panel C: Percentage of chains with same initiating and ending dealer
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 0.56% 4.95% 11.31% 1.90% 10.7%***
Medium 0.33% 12.12% 19.17% 12.19% 18.84%***
Highest 0.37% 1.05% 1.92% 1.56% 1.55%***
Total 0.52% 7.15% 7.98%
H-L -0.19%*** -3.80%*** -9.39%***
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Panel D. Percentage of coarse-price transactions
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 7.15% 5.41% 11.14% 7.44% 3.99%***
Medium 4.94% 7.12% 4.07% 5.78% -0.87%***
Highest 6.36% 6.46% 5.18% 5.74% -1.18%***
Total 6.68% 6.65% 5.62%
H-L -0.79%*** 1.05%*** -5.96%***

Panel E. Percentage of fine-yield transactions
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 22.29% 20.28% 15.57% 21.13% -6.72%***
Medium 21.47% 29.98% 22.73% 26.19% 1.26%***
Highest 16.52% 18.59% 24.22% 21.54% 7.70%***
Total 21.63% 24.61% 22.62%
H-L -5.77%*** -1.69%*** 8.65%***
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Table 7: Regressions of markups on dealer centrality and reciprocity by dealer
network size
This table presents estimates of the same specification used in column 4 of Table 3 on
transaction chain samples sorted by the initiating dealers local network size quintile, where
local network size is defined as the number of unique counterparties a dealer has bought from
or sold to in the past 30 trading days. Column (1) reports results for dealers with the smallest
networks and column (5) for dealers with the largest networks. All samples are limited to
dealers within local networks containing at least two members. Independent variables are
standardized to have a mean of 0 and unit variance. Standard errors are clustered by bond
and time and are shown in parentheses, with statistical significance denoted at the 10% (*),
5% (**), and 1% (***) levels.

(1) (2) (3) (4) (5)
Local network size percentile: 0-20 21-40 41-60 61-80 81-100
Dep. Variable: Total Markup Total Markup Total Markup Total Markup Total Markup
Dealer Centrality -0.074∗∗∗ 0.092∗∗∗ 0.193∗∗∗ 0.151∗∗∗ 0.194∗∗∗

(0.006) (0.010) (0.011) (0.012) (0.015)
Reciprocity 0.095∗∗∗ -0.135∗∗∗ -0.263∗∗∗ -0.230∗∗∗ -0.127∗∗∗

(0.006) (0.010) (0.011) (0.013) (0.022)
Controls Yes Yes Yes Yes Yes
Market share controls Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes
Month-Year FE Yes Yes Yes Yes Yes
Observations 267,917 289,157 258,065 272,531 272,630
Adjusted R2 0.27 0.24 0.24 0.23 0.25
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Table 8: Regressions of markups on community membership and size
This table presents estimates of the same specification used in column 4 of Table 3 substi-
tuting dealer centrality and reciprocity variables with a dummy variable, Same community,
which equals one if both dealers belong to the same Louvain community and is zero other-
wise. Seller and buyer community sizes reflect the sizes of the respective dealers’ Louvain
communities. All of the independent variables are standardized to have a mean of 0 and
unit variance. Columns (1)-(3) report regression results on the entire sample of dealers that
are assigned to a community, and columns (4)-(6) report regression results for the sample
of dealers assigned to a community that does not belong to the group of dealers with high
reciprocity and low centrality. Independent variables are standardized to have a mean of 0
and unit variance. Standard errors are clustered by bond and time and are shown in paren-
theses, with statistical significance denoted at the 10% (*), 5% (**), and 1% (***) levels.

(1) (2) (3) (4) (5) (6)
Dealers All All All Ex. low c., high. r Ex. low c., high. r Ex. low c., high. r
Dep. Variable Total Markup Total Markup Total Markup Total Markup Total Markup Total Markup

Same community 0.494∗∗∗ 0.500∗∗∗ 0.507∗∗∗ 0.343∗∗∗ 0.343∗∗∗ 0.351∗∗∗

(0.020) (0.020) (0.020) (0.038) (0.038) (0.038)
Seller community size 0.054∗∗∗ 0.055∗∗∗ 0.056∗∗∗ 0.056∗∗∗ 0.057∗∗∗

(0.004) (0.004) (0.005) (0.005) (0.005)
Same community × -0.120∗∗∗ -0.079∗∗∗ -0.079∗∗∗

Seller community size (0.014) (0.016) (0.016)
Buyer community siz 0.043∗∗∗ 0.044∗∗∗ 0.042∗∗∗

(0.003) (0.003) (0.003)
Same community × -0.087∗∗∗ -0.125∗∗∗ -0.096∗∗∗

Buyer community size (0.010) (0.010) (0.011)
Controls Yes Yes Yes Yes Yes Yes
Market share controls Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Month-Year FE Yes Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes Yes
Observations 691,298 691,311 691,297 659,126 659,126 659,125
Adjusted R2 0.17 0.17 0.17 0.16 0.16 0.16
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Table 9: Feature importance of the determinants of the trades within the same
community.
This table documents the feature importance for 20 of the most important features used by
LightGBM (Ke et al., 2017) and Random Forest (Breiman, 2001) classifier models, boot-
strapped across 100 random seeds ranging from 1 to 100. The feature importance score in
LightGBM models is determined by the total number of improvements in all decision trees.
In Random Forest Models, the feature importance is defined as the decrease in node impu-
rity weighted by the probability of reaching that node. The training sample uses 70% of the
total sample of the inter-dealer trades, while the test sample uses the remaining 30%. The
forecast accuracy statistics are reported for the test sample.

Variable LightGBM Random Forest

Buyer local network size 88.00 0.04
Seller local network size 81.64 0.07
Seller’s retail market share 70.12 0.01
Purchase fraction 61.21 0.03
Seller’s reciprocity 58.52 0.08
Buyer’s retail market share 56.05 0.01
Buyer’s reciprocity 54.18 0.06
Seller’s par-weighted reciprocity 46.96 0.07
Seller’s 30-day return volatility 45.83 0.00
Buyer’s EW centrality 41.85 0.02
Buyer’s 30-day aggregate return 41.79 0.00
Buyer’s VW centrality 41.26 0.03
Seller’s EW centrality 40.25 0.02
Seller’s VW centrality 36.96 0.05
Reverse purchase fraction 34.74 0.02
Total value traded in reverse trades 34.52 0.01
Buyer’s eigenvector centrality 34.52 0.02
Total number of reversals in past 30 days 34.24 0.01
Seller’s 30-day aggregate return 32.08 0.00
Average dealer centrality in the given chain 31.69 0.01
Correct Predictions, % 90.53 71.80
Predicted same when different, % 0.04 29.12
Predicted different when same, % 9.43 0.08
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Appendix A. Variable Definitions

Below are the definitions of the variables used in our analysis:

1. Dependent Variables

Total Markup: Par-weighted difference of selling prices in the dealer-customer trades and

purchasing prices in initial customer-dealer trades divided by purchasing price in initial

customer-dealer trade, defined by Li and Schürhoff (2019).

Abnormal Markup: Difference between actual markup and predicted markup. Predicted

markup is estimated using the following specification that excludes dealer centrality and

dealer reciprocity:

M̂arkupi,t = Trade controls+Dealer Inventory+Bond Controls+State FE+Month FE, (1)

where Bond Controls are bond characteristics, and Trade Controls include natural logarithms

of par value for small, medium, and large trades.

DC Trade: Binary variable set to 1 if the given transaction is a customer sale.

N of Dealers: Total number of different dealers in a given transaction chain.

1-day Reversal: Binary variable set to 1 if the buyer and seller in a given transaction were

on the opposite ends of the trade in the previous trading day.

7-day Reversal: Binary variable set to 1 if the buyer and seller in a given transaction were

on the opposite ends of the trade in the previous 7 trading days.

30-day Reversal: Binary variable set to 1 if the buyer and seller in a given transaction

were on the opposite ends of the trade in the previous 30 trading days.

Same Community: Binary variable set to 1 if the buyer and seller belong to the same

Louvain community Blondel et al. (2008). For a definition of communities, see Appendix D.
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2. Explanatory Variables

Chain Length: Total number of transactions composing the transaction chain.

Dealer Inventory: Aggregate dealer inventory, calculated over the past 30 trading days and

standardized by subtracting its mean and dividing by its daily standard deviation, defined

by Li and Schürhoff (2019).

Dealer Market Share: The dealer’s national market share of par traded in customer

purchases, calculated on a rolling basis using trades from the past 30 trading days.

Dealer Market Share (State): The dealer’s market share of par traded in customer

purchases in the state where the bond is issued, calculated on a rolling basis using the past

30 trading days.

Dealer Market Share (Bond): The dealer’s market share of par traded in customer

purchases for the specific bond, calculated on a rolling basis using the past 30 trading days.

Retail Market Share: The dealer’s national market share of par traded in customer sales,

calculated on a rolling basis using trades from the past 30 trading days.

Small: Binary variable set to 1 if the par volume is less than $100K.

Medium: Binary variable set to 1 if the par volume is between $100K and $1M.

Large: Binary variable set to 1 if the par volume is greater than $1M.

log(par): Natural logarithm of the par volume of the trade.

Maturity: Natural logarithm of the number of days left until the bond matures.

Seasoning: Natural logarithm of the number of days since the bond was issued.

Issue Size: Natural logarithm of the bond’s issue size.

Rating: Bond’s credit rating based issued by Standard and Poor’s, arranged in a descending

manner of credit quality (e.g. 1: AAA, 2: AAA-, ..., 20: D).

Junk: Binary variable set to 1 if bond’s credit rating is BB+ and worse.

Unrated: Binary variable set to 1 if the bond is not rated.

Insured: Binary variable set to 1 if the bond has a measure of default protection.

General Obligation: Binary variable set to 1 if the bond is backed by credit and taxing
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power of the municipality it is issued by.

Callable: Binary variable set to 1 if the bond has a call provision.

Sinking Fund: Binary variable set to 1 if the bond has a sinking fund feature.

Bank Qualified: Binary variable set to 1 if the bond is qualified for tax exemptions for

bank investors.

Taxable: Binary variable set to 1 if the bond’s interest income is subject to federal or state

taxes.

Subject to AMT: Binary variable set to 1 if the bond is a ”private activity” bond and the

interest may be subject to Alternative Minimum Tax (AMT).

Low Centrality: Binary variable set to 1 if the dealer belongs to the first centrality tercile

(the tercile with the lowest centrality).

High Centrality: Binary variable set to 1 if the dealer belongs to the third centrality tercile

(the tercile with the highest centrality).

Low Reciprocity: Binary variable set to 1 if the dealer belongs to the first reciprocity

tercile (the tercile with the lowest reciprocity).

High Reciprocity: Binary variable set to 1 if the dealer belongs to the third reciprocity

tercile (the tercile with the highest reciprocity).

30-day aggregate return: Total percentage of markup charged by dealer i to all other

dealers and customers they sold to, net of the markup they paid to other dealers and percent

losses in the first inter-dealer transaction after customer purchase, aggregated over prior 30

trading days.

30-day aggregate return volatility: Standard deviation of the returns for dealer i, ag-

gregated over different bonds they traded over the prior 30 trading days.

Bond Complexity: Sum of Insured, General Obligation, Callable, Sinking Fund, Bank

Qualified, and Subject to AMT binary variables.
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3. Centrality, Reciprocity, and Community variables

Eigenvector (Dealer Centrality): Relative score based on the number of connections of

dealers with central and peripheral dealers, calculated over the prior 30 trading days.

Node reciprocity: see Appendix C.

Static (Dynamic) Community: Louvain community identifier. See Appendix D for the

definition of Louvain communities. Calculated over the entire sample (past 30 trading days).

Static (Dynamic) Community Length: Number of dealers in dealer i’s community. Size

is set to 1 if a dealer is not a part of any community. Calculated over the entire sample (past

30 trading days).

Local Network Size: Number of unique counterparties dealer i bought from or sold to

in the past 30 trading days. Calculated on a dealer level and identified separately for the

buyer, seller, and chain initiator.
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Appendix B. Data Filters, Roundtrip Transaction Chains

Our sample was prepared using the data filters from Li and Schürhoff (2019). These filters

include removing transactions on bonds with a par volume of less than 5,000, winsorizing

the sample using price filters for coupon and zero-coupon bonds separately, and restricting

to seasoned issues (issued over 90 days prior) with more than 1 year until maturity. We

began with 45.62M trades. After leaving only bonds with a par volume of over 5,000, we

were left with 42.27M transactions. Once we left bonds with at least one year until maturity

and 90 days since issuance, the number of trades decreased to 32.31M. Finally, removing the

trades with prices more than 3 standard deviations from the mean in either direction, our

final sample before chain construction was 31.20M.

The table below illustrates the progression of our sample after applying each of the filters.

Filter Customer Purchases Inter-dealer Transactions Customer Sales

Initial Sample 10,170,036 17,678,982 17,778,700

Keep trades with a par value of at least 5000 9,340,373 16,457,010 16,476,605

Keep trades at least 90 days since issuance 8,888,977 13,166,118 12,024,561

Keep trades at least 1 year until maturity 8,285,387 12,637,347 11,389,753

Remove trades with prices more than 3 SD away from mean 7,862,082 12,468,011 10,915,560

After applying the filters from Li and Schürhoff (2019), we construct roundtrip transaction

chains, defined as series of transactions on the same bond with the same par value starting

with a customer purchase and ending with a customer sale with none or many inter-dealer

transactions in between. The roundtrip transaction chains must also be performed on the

same bond with the same par size. The full algorithm of roundtrip chain construction is

described in Appendix B of Li and Schürhoff (2019). Our final roundtrip transaction chain

sample contains 1,536,551 roundtrip chains, with 739,411 chains having at least one inter-

dealer transaction.
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Appendix C. Node Reciprocity Calculation

We define our node reciprocity measure following Newman et al. (2002), as the total

number of dealers with whom dealer i has had two-way interactions (buying and selling)

divided by the total number of other dealers dealer i has interacted with over the previous

30 trading days:

ri,t =
L←→i,t

max(Li,t,1)
, (2)

where Li,t is the total number of interactions in both ways (in the context of municipal bond

markets, the number of both purchases and sales) for dealer i for the 30-day period t, and

L←→i,t is the number of interactions in both ways for dealer i with counterparties who both

bought from and sold to dealer i, calculated over the 30-day period t.19 Period t is defined

as a 30-trading-day-long period that ends on the trading day before the transaction. For

example, for February 15, 2014, the reciprocity measure for dealer i will be calculated over

the period between January 3, 2014 and February 14, 2014. For the dealer i that does not

have any two-way interactions, node reciprocity for dealer i is 0.

A visualization of node reciprocity can be seen in the figure below, which uses Kamada

and Kawai (1989) drawing method. The figure also uses various core-periphery thresholds

based on the number of two-way interactions, similar to Li and Schürhoff (2019), who use

10,000 trades as a threshold. Dealers with above-median reciprocity levels are highlighted

in red.

19This is a slight variation of the measure in Newman et al. (2002) in that we divide by max(Li,t,1), rather
than Li,t, to avoid a potential division by zero error due to dealers which only have both way interactions.
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Fig. A1. Order flow in the network with different core-periphery thresholds
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Appendix D. Community Detection Algorithm

We use the Louvain (Blondel et al., 2008) algorithm of community detection. Since the

algorithm is random, we fix the seed and make sure we obtain results from 1 different seed

(ranging from 1 to 100) to alleviate several concerns. First, we ensure that our results are

not driven by a singular random state (Jain and Madhyastha, 2019). Second, it reduces the

likelihood of dealers being arbitrarily “forced” into communities they do not naturally belong

to, as varying the random seeds can otherwise result in inconsistent community assignments

for these dealers across iterations. By aggregating the outcomes from multiple runs, we

improve the reliability and consistency of our community classifications.

After obtaining the 100 community samples, we group them and delete observations with

members that belong to a different distinct community, which is best demonstrated in an

example below:

Dealer ID Seed 1 community Seed 2 community Seed 3 community ... Seed 100 community

A 10 19 13 ... 4

B 10 19 13 ... 4

C 10 14 11 ... 4

... ... ... ... ... ...

Dealers A and B belong to the same community, while dealer C does not, even though in

some cases, such as in seeds 1 and 100, dealer C was in the same community as dealers A

and B. As a result, dealer C will be either in a different community or unassigned (in their

community). For this example, we assume that dealers A and B have the same community

assignment in the other 96 seeds.

Community detection is applied to both static (full 4 years) and dynamic (30-day rolling

windows) datasets, with fairly similar results. We use the dynamic community assignments

in reported results.

We also select different resolution parameters, which determine the size of the communi-
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ties, explained in Blondel et al. (2008). The higher resolution parameter results in a larger

community size. We also confirm the robustness of our findings across different resolution

parameters (1, 20, 40, and 60) and types of communities (dynamic and static). The subse-

quent discussion will focus on the outcomes for dynamic Louvain communities, derived using

a resolution parameter of 40. The figures below show the number of communities for a given

size for different resolution parameters in both static and dynamic communities.

Fig. A2. Number of static communities of a given length, by resolution parameter
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Fig. A3. Number of dynamic communities of a given length, by resolution pa-
rameter
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The table on the next page shows the number and the average size of Louvain communi-

ties, the percentage of dealers assigned to a community, as well the size of the largest Louvain

community, and the number of dealers that did not belong to any community after we ob-

tained our bootstrap sample. The summary statistics are reported for the default resolution

parameter of 1, as well as parameters of 20, 40, and 60. In addition to different resolution

parameters, we report statistics for two different types of communities - dynamic (recovered

from the entire 4-year sample) and static (constructed over the previous 30 trading days,

consistent with centrality calculations in Li and Schürhoff (2019)). On average, the default

parameter of 1 returns the largest communities, but also results in a large percentage of deal-

ers being unassigned to a community. Resolution parameters of 20 and 40 tend to return

much smaller communities, even though with either parameter, there is one large community

of 102 dealers. Finally, if we set the resolution parameter to 60, the proportion of dealers

in a community is roughly the same as when we set the parameter to 1, but the size of the

communities reduces radically as compared with when the resolution parameter is set to 40,

In regressions and machine learning models that use communities as dependent or outcome

variable, we find that our results are robust to different resolution parameters.
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Table A1: Louvain Communities descriptive statistics.
This table documents the summary statistics for Louvain communities, reported for 4 differ-
ent resolution parameters: 1, 20, 40, and 60. The statistics are calculated for both dynamic
(formed over the prior 30 trading days) and static (for the full, 4-year sample) communities.
The statistics reported are the total number of static and dynamic communities, the average
number of dealers in the communities, the percent of dealers that belong to a community, the
size of the largest Louvain community, and the number of dealers unassigned to a community
at any point. For the definition of the Louvain communities, see Appendix.

Resolution Statistic Static Dynamic

1

Number of communities 427 68,801
Average size (N of dealers) 6.05 6.07
% of dealers in a community 48.25 47.59
Size of largest community 105 106
N of dealers w/o community 370 212

20

Number of communities 340 182,615
Average size (N of dealers) 3.57 3.54
% of dealers in a community 72.87 73.66
Size of largest community 102 102
N of dealers w/o community 194 162

40

Number of communities 502 174,468
Average size (N of dealers) 3.57 3.56
% of dealers in a community 70.62 70.67
Size of largest community 102 102
N of dealers w/o community 210 208

60

Number of communities 427 148,589
Average size (N of dealers) 2.76 2.76
% of dealers in a community 46.71 46.71
Size of largest community 14 14
N of dealers w/o community 381 381
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Table A2: Markups and trading relationships. This table reports the results of the
linear regressions of markups on centrality, reciprocity, and purchase/sale fractions (Di Mag-
gio et al., 2017) for the first inter-dealer transactions of each transaction chain. Standard
errors are calculated using bond and time clusters and are reported in parentheses below
the parameter estimates, and the level of statistical significance is reported for parameters
significant at 10 (*), 5 (**), and 1 (***) percent significance levels.

(1) (2)
Dealers All Excl. low c., high r.
Dep. Variable Total Markup Total Markup
Dealer Centrality -0.113∗∗∗ -0.002

(0.007) (0.018)
Reciprocity 0.054∗∗∗ -0.084∗∗∗

(0.010) (0.025)
Purchase Fraction 0.138∗∗∗ 0.194∗∗∗

(0.050) (0.058)
Sale Fraction -0.257∗∗∗ -0.281∗∗∗

(0.026) (0.029)
Controls Yes Yes
Market share controls Yes Yes
State FE Yes Yes
Month-Year FE Yes Yes
Observations 715,151 683,133
Pseudo R2 0.10 0.09
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Table A3: Tercile comparisons of dealer trade participation and market shares.
This table contains the total number of trades each dealer type participated in and provides
a comparison of sizes of dealer market shares, expressed in percentage of unique bonds traded
by the dealer. Panel A shows the total number of trades each dealer group has initiated.
Panel B shows the average market shares within the overall municipal bond market in the
prior 30 trading days, panel C depicts the total average market share of the dealers on bonds
issued in specific states, and panel D shows the average dealer market share on trade of
specific bonds.

Panel A. Number of Trades Initiated by a Given Dealer Type
Reciprocity

Lowest Medium Highest

Centrality

Lowest
1,158,670 200,566 135,686
(25.84%) (4.47%) (3.03%)

Medium
285,525 730,124 479,302
(6.37%) (16.28%) (10.69%)

Highest
50,724 564,586 879,497
(1.13%) (12.59%) (19.61%)

Panel B. Average Dealer Market Share (Overall)
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 0.66% 1.02% 0.34% 0.68% -0.32***
Medium 1.50% 2.96% 2.68% 2.61% 1.18%***
Highest 3.04% 5.13% 3.42% 4.03% 0.38***
Total 0.86% 3.49% 2.98%
H-L 2.38%*** 4.11*** 3.08%***

Panel C. Average Dealer Market Share (Within State)
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 1.29% 1.44% 0.62% 1.26% -0.67***
Medium 3.47% 3.79% 3.48% 3.63% 0.01%
Highest 8.06% 5.64% 4.22% 4.82% 3.84***
Total 1.83% 4.15% 3.74%
H-L 6.77%*** 4.20*** 3.60%***

Panel D. Average Dealer Market Share (Within Specific Bonds)
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 68.37% 65.86% 63.06% 67.66% -5.30***
Medium 69.83% 68.25% 68.63% 68.66% -1.19%
Highest 71.94% 66.25% 68.72% 67.90% -3.21***
Total 68.71% 67.21% 68.30%
H-L 3.57%*** 0.39%** 5.66%***
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Table A4: Tercile comparisons second dealer relationships in the transaction
chain.
This table contains the average values of centrality and reciprocity of the second dealer in a
given transaction chain, based on the centrality and reciprocity terciles of the initial dealer.
Panel A shows the average centrality values. Panel B shows the average reciprocity values.
Panel C reports the probability of the initiating the reversal trade.

Panel A. Centrality of Second Dealers
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 0.05 0.06 0.01 0.05 0.04***
Medium 0.14 0.14 0.15 0.14 0.01***
Highest 0.18 0.19 0.22 0.21 0.04***
Total 0.07 0.15 0.18
H-L 0.13*** 0.12*** 0.21***

Panel B. Reciprocity of Second Dealers
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 0.22 0.39 0.77 0.28 0.55***
Medium 0.25 0.44 0.53 0.43 0.28***
Highest 0.20 0.44 0.59 0.53 0.39***
Total 0.07 0.15 0.18
H-L -0.02*** 0.05** 0.18***

Panel C. Percent of Chains Involving 1-day reversals
Reciprocity

Lowest Medium Highest Total H-L

Centrality

Lowest 16.36 22.98 38.79 20.22 22.43%***
Medium 15.06 36.80 31.52 31.24 16.46%***
Highest 12.82 27.69 30.79 28.10 17.97%***
Total 15.81 31.68 32.07
H-L -3.54%*** 4.71%*** -8.00%***
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Table A5: Feature importance of the determinants of the trades within the same
community (outside of top 20)
This table documents the feature importance for the features used by LightGBM (Ke et al.,
2017) and Random Forest (Breiman, 2001) classifier models, bootstrapped across 100 ran-
dom seeds ranging from 1 to 100. The feature importance score in LightGBM models is
determined by the total number of improvements in all decision trees. In Random Forest
Models, the feature importance is defined as the decrease in node impurity weighted by the
probability of reaching that node. The training sample uses 70% of the total sample of the
inter-dealer trades, while the test sample uses the remaining 30%. The forecast accuracy
statistics are reported for the test sample.

Variable LightGBM Random Forest

Buyer bond 30-day return volatility 30.59 0.00
Average dealer centrality in the chain 29.01 0.01
Seller eigenvector centrality 24.47 0.04
Seasoning 24.30 0.00
Log(transaction size) 24.10 0.00
Total par traded in the previous month’s reverse r. 23.72 0.01
Dealer’s sale fraction to the counterparty 20.82 0.04
Dealer total market share 20.23 0.00
Reverse sale fraction to the counterparty 18.26 0.01
Chain length * reverse purchase fraction 18.06 0.01
Maturity 17.28 0.00
Average VW reciprocity in the chain 17.19 0.03
Chain length * backward number of chains 17.01 0.00
Median EW centrality in the chain 15.89 0.00
Initiator interactions 15.53 0.02
Chain length * purchase fraction 15.47 0.01
Average reverse purchase fraction in the chain 15.16 0.01
Median EW reciprocity in the chain 15.13 0.00
Seller’s state market share 14.57 0.00
Chain length * dealer’s sale fraction to the counterparty 12.98 0.01
Average VW centrality in the chain 12.52 0.01
Chain length * average purchase fraction in the chain 12.38 0.00
Chain length * average sale fraction in the chain 12.09 0.00
Average EW centrality in the chain 11.19 0.01
Chain length * average reverse purchase fraction in the chain 11.05 0.01
Issue size 10.82 0.00
Initiator’s state market share 10.81 0.00
Chain length * forward number of chains 10.78 0.00
Median VW reciprocity in the chain 10.76 0.00
Chain length 10.34 0.00
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Variable LightGBM Random Forest

Chain length * reverse sale fraction 9.91 0.00
WA Year FE 9.59 0.00
Median VW centrality in the chain 9.24 0.00
Average sale fraction in the chain 8.86 0.00
Median eigenvector centrality in the chain 8.77 0.00
Forward number of chains 8.73 0.00
Average EW reciprocity in the chain 7.77 0.03
Average purchase fraction in the chain 7.52 0.01
Backward number of chains 7.44 0.00
Chain length * VW centrality 7.10 0.01
Chain length * average reverse sale fraction in the chain 6.92 0.00
Initiator Inventory 6.77 0.00
Chain length * EW reciprocity 6.75 0.01
Buyer state market share 6.32 0.00
Chain length * VW reciprocity 5.87 0.01
Average forward number of chains in the chain 5.54 0.00
Forward Number of daisy chains 5.24 0.01
Average forward number of chains in the chain 5.22 0.00
Initiator market share (State) 4.94 0.00
Chain length * eigenvector centrality 4.55 0.01
Average backward number of daisy chains in the chain 4.35 0.00
Chain length * average backward number of chains in the chain 4.21 0.00
WE Rating FE 4.19 0.00
Initiator local network size 3.82 0.00
Average backward number of chains in the chain 3.71 0.00
Chain length * EW centrality 3.50 0.00
Chain length * average forward number of chains in the chain 3.48 0.00
Initiator market share (bond) 3.23 0.00
Number of reversals (7 days) 3.17 0.00
Log(par)*small 2.50 0.00
Is a reversal within 30 days 2.40 0.00
Backward number of daisy chains 2.25 0.01
Log(par)*medium 1.98 0.00
Subject to AMT 1.71 0.00
Log(par)*large 1.42 0.00
Sinking fund provision 1.37 0.00
Callable 1.33 0.00
Average forward number of daisy chains 1.18 0.00
Chain length * average backward number of daisy chains 1.00 0.00
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Variable LightGBM Random Forest

Chain Length * forward number of daisy chains 0.97 0.00
Chain Length * forward number of daisy chains 0.84 0.01
Number of reversals (1 day) 0.76 0.00
Bank qualified 0.63 0.00
Chain Length * backward number of daisy chains 0.62 0.00
WA Month FE 0.53 0.00
Is a reversal within 1 day 0.40 0.00
WA State FE 0.35 0.00
Insured 0.34 0.00
Taxable 0.33 0.00
General obligation 0.33 0.00
Unrated 0.10 0.00
Junk 0.08 0.00
Medium 0.07 0.00
Reversal 7 day 0.06 0.00
Small 0.03 0.00
Large 0.01 0.00
Chain length * average eigenvector centrality in the chain 0.00 0.01
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