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Abstract 

Fiscal stress poses a recurring challenge to local governments in the United States, often 

threatening the provision of essential public services. Traditional early warning models based on 

linear assumptions may struggle to capture the complex and nonlinear nature of fiscal stress. In 

this study, we assess whether machine learning (ML) techniques can improve the out-of-sample 

prediction of fiscal stress in local governments, using a comprehensive dataset covering economic, 

social, fiscal, demographic, geographic, and environmental variables for over 900 localities in New 

York from 2013 to 2022. Comparing the predictive performance of traditional logistic regression 

with several ML models—including random forests, gradient boosting, and neural networks—we 

find that ML methods significantly outperform traditional approaches in both accuracy and 

robustness. Our findings offer important implications for designing more effective early warning 

systems to assist fiscally distressed localities. 
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Evidence for Practice 

▪ Machine learning models significantly outperform traditional regression-based approaches 

in predicting fiscal stress among local governments. 

▪ Key predictors of fiscal distress include lagged deficits, unemployment, and housing 

vacancy—factors that reflect both financial and socioeconomic conditions. 

▪ State fiscal monitoring systems can improve early detection and responsiveness by 

incorporating machine learning into existing oversight frameworks. 

▪ Advanced analytics offer public managers a more adaptive, accurate, and scalable approach 

to anticipating and addressing local fiscal crises. 
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INTRODUCTION 

Fiscal stress is a recurring challenge for local governments in the United States, with serious 

implications for public service delivery and community well-being. From declining tax revenues 

and mounting service demands to debt burdens and unfunded liabilities, local governments often 

find themselves in precarious financial positions. Between 2001 and 2017, at least 123 local 

governments filed for bankruptcy in the U.S. (Murphy & Cook, 2018), with the most notable case 

being the City of Detroit’s Chapter 9 bankruptcy in 2013—the largest municipal bankruptcy in 

U.S. history. These high-profile cases underscore the urgent need for tools that can anticipate fiscal 

stress before they escalate into full-blown crises. 

Governments and researchers alike have long sought to build early warning systems (EWS) 

to detect fiscal distress in advance (Pew Foundation, 2016; Justice and Scorsone, 2012; Justice et 

al. 2019). Traditional models—primarily linear regression-based approaches and the signal 

detection method—have been the mainstay of these efforts. While these models have offered 

useful insights, they often rest on restrictive assumptions about linearity, independence, and 

limited interaction among predictors. As a result, they may fall short in capturing the complex, 

dynamic, and nonlinear factors that often underlie local fiscal crises (Moreno Badia et al., 2022; 

Hellwig, 2021).  

In response to rising fiscal uncertainty, many U.S. states have developed their own fiscal 

monitoring systems to track local government financial health and flag jurisdictions at risk of 

distress (Pew Foundation, 2016; Nahmurina, 2024). Examples include New York’s Fiscal Stress 

Monitoring System (FSMS), as well as similar initiatives in Michigan, Ohio, Pennsylvania, and 

New Jersey. These systems typically rely on threshold-based indicators and traditional statistical 
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models. While valuable, such approaches may overlook early warning signs or fail to adapt to 

changing conditions—highlighting the need for more flexible, data-driven tools. 

          In recent years, machine learning (ML) has emerged as a promising alternative for predictive 

analytics in the public sector. ML techniques can process large volumes of data from 

heterogeneous sources, detect intricate patterns and interactions among variables, and optimize 

model performance through regularization and cross-validation. These capabilities are particularly 

advantageous when the predictors of fiscal stress span a wide range of economic, social, political, 

demographic, and environmental domains (Moreno Badia et al., 2022; Hellwig, 2021). Despite 

this potential, the application of ML in forecasting local government fiscal stress—particularly 

within the United States—remains underexplored. To the best of our knowledge, no existing study 

has systematically compared traditional econometric models and ML algorithms in predicting local 

fiscal stress using real-world administrative data from U.S. municipalities. 

This study addresses this gap by assessing whether and how machine learning methods can 

improve the prediction of fiscal stress in local governments. Our research questions: How do ML 

algorithms compare to traditional econometric models in predicting local fiscal stress? What are 

the most important predictors of fiscal stress across fiscal, economic, social, and environmental 

domains? Specifically, we examine the out-of-sample predictive performance of both traditional 

econometric models and a suite of ML algorithms—including random forests, gradient boosting 

machines, extremely randomized trees, artificial neural networks, and support vector machines—

using data from 988 local governments in New York State between 2013 and 2022. We leverage 

a unique collaboration with the Office of the State Comptroller (OSC), which has maintained the 

FSMS since 2013. Our dataset integrates a rich array of fiscal, socio-economic, demographic, 

political, geographic, and environmental indicators at the municipal level. 
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This study contributes to literature in several meaningful ways. First, it introduces a novel 

application of machine learning to the prediction of local government fiscal stress in the U.S.—a 

context where these tools have seen limited use despite their growing popularity in private finance 

and national-level forecasting. Second, it provides a rigorous, empirical comparison of machine 

learning models and traditional econometric approaches using real-world administrative data. This 

comparison is critical for informing both the scholarly debate over methodological advancements 

and the practical question of how governments can improve their predictive tools. Third, the study 

generates policy-relevant insights by identifying the most important predictors of fiscal stress and 

demonstrating how data-driven modeling can enhance existing early warning systems. As more 

states implement or revise their fiscal monitoring systems, these findings offer a roadmap for how 

advanced analytics can be embedded into public financial oversight. 

        The rest of the paper proceeds as follows. Section 2 reviews the relevant literature on fiscal 

stress prediction and the emerging role of machine learning in public sector forecasting. Section 3 

presents our data and modeling approach. Section 4 compares the predictive performance of 

traditional and machine learning models and identifies the most important predictors of fiscal stress. 

Section 5 discusses the implications of our findings for research and practice. Section 6 concludes 

with a summary of contributions, limitations, and directions for future research. 

 

 

 

REVIEW OF RELEVANT LITERATURE  

Traditional Approaches to Predicting Fiscal Stress 

Scholars have long sought to develop early warning systems to detect fiscal stress before 

it escalates into crisis. Two dominant approaches in the literature are the signal approach and 

traditional linear regression models. The signal approach, introduced by Kaminsky et al. (1998), 



 

 

6 

6 

monitors a set of economic or financial indicators and triggers an alert when any indicator exceeds 

a predefined threshold. This method has been widely used in the context of sovereign financial 

crises due to its simplicity and intuitive appeal. 

The second dominant approach is based on traditional econometric models, including logit, 

probit, and ordinary least squares (OLS) regression. These models estimate the likelihood of fiscal 

crises based on historical data and are frequently used in the prediction of sovereign defaults 

(Fioramanti, 2008; Sarlin, 2014). Linear regression models offer quantitative assessments of fiscal 

risk by estimating the conditional probability of crisis events given certain predictor values. 

While these methods provide useful insights, they have notable limitations. Their reliance 

on linear assumptions and additive relationships constrains their ability to capture the complex, 

nonlinear, and interactive dynamics often inherent in fiscal systems. Furthermore, these models 

often underperform in out-of-sample prediction tasks, due to overfitting and limited 

generalizability (Demyanyk & Hasan, 2009; Hellwig, 2021). As fiscal environments become 

increasingly data-rich and multifaceted, traditional models struggle to incorporate large volumes 

of heterogeneous predictors, thereby limiting their effectiveness in real-world early warning 

systems (Liu et al., 2021; Antulov-Fantulin et al., 2021). 

The Rise of Machine Learning in Fiscal Prediction 

Machine learning (ML) techniques have gained significant traction as powerful alternatives 

to traditional econometric models in the prediction of financial crises, including fiscal stress. 

Unlike linear models, ML algorithms can process high-dimensional data, uncover complex and 

nonlinear relationships, and adaptively improve their predictions through iterative learning. These 

strengths are especially valuable in fiscal contexts where multiple economic, social, political, and 

environmental factors may interact in unpredictable ways. 
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A growing number of studies document the superior performance of ML models in fiscal 

and financial forecasting. For example, Belly et al. (2023) show that XGBoost outperforms 

Bayesian Model Averaging in capturing sovereign risk dynamics across the Euro area. Arakelian 

et al. (2019) demonstrate that regression trees and random forests provide more accurate 

predictions than OLS fixed effects models, particularly in the presence of macroeconomic shocks 

and market contagion. Similarly, artificial neural networks and recurrent neural networks 

(RNNs)—including LSTM and GRU architectures—excel at modeling temporal dependencies in 

financial systems, improving the accuracy of crisis forecasts (Fioramanti, 2008; Tölö, 2020). 

Another key strength of ML lies in its ability to incorporate a broader and more diverse set 

of indicators. While traditional models tend to rely on a narrow set of financial or fiscal ratios, ML 

approaches have successfully included macroeconomic variables, institutional characteristics, 

market indicators, and even textual data. For instance, Bluwstein et al. (2023) highlight the 

predictive value of credit growth and yield curves, while Chen et al. (2023) use natural language 

processing to analyze textual data from financial reports and media sources, reducing false 

positives and negatives in crisis prediction. Other studies emphasize the importance of inflation, 

net foreign assets (Liu et al., 2022), fiscal rules compliance (Baret et al., 2024), and public external 

debt (De Marchi & Moro, 2023) as key predictors. 

Despite these advantages, applying ML in fiscal forecasting also presents methodological 

and practical challenges. A major concern is model interpretability. Ensemble models like random 

forests and gradient boosting, as well as deep learning techniques, often function as "black boxes," 

making it difficult for policymakers to understand or justify their outputs (Tölö, 2020). To address 

this, researchers increasingly use model-agnostic interpretability tools such as SHAP values to 

evaluate feature importance and enhance model transparency (Liu et al., 2021). Moreover, 
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integrating domain knowledge with ML outputs—such as those from public budgeting or financial 

oversight—can make insights more actionable (Piermarini et al., 2023). Another technical 

challenge is overfitting, where models learn patterns specific to the training data but fail to 

generalize. Regularization techniques, cross-validation, and ensemble averaging help address this 

risk (Jarmulska, 2022). Additionally, model performance is sensitive to algorithm selection and 

hyperparameter tuning. As Bluwstein et al. (2023) note, different ML models capture interactions 

and nonlinearities in distinct ways, making systematic experimentation essential for optimizing 

predictive accuracy. 

Research Gaps in the Current Literature 

While machine learning has gained momentum in the study of sovereign debt crises and 

macro-financial instability, its application to local government fiscal stress—particularly in the 

United States—is strikingly limited. Most empirical research in this domain focuses on national 

or cross-country contexts (e.g., Hellwig, 2021; Claessens & Kose, 2013), where institutional 

structures and fiscal rules differ substantially from those governing U.S. municipalities. 

Some recent studies have extended ML approaches to the subnational level outside the U.S. 

For instance, Antulov-Fantulin et al. (2021) employ gradient boosting machines to assess fiscal 

stress in Italian municipalities, highlighting the role of non-financial indicators such as geographic 

and demographic characteristics. Gallardo Del Angel (2019) applies artificial neural networks to 

Mexican local governments, finding that operational expenditures have a greater influence on 

deficits than capital investment. These studies demonstrate the value of applying ML tools to local 

fiscal contexts—but they remain internationally focused. 

 To the best of our knowledge, there is no published study that systematically applies 

machine learning models to predict fiscal stress among U.S. local governments. This gap is critical, 
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given the financial autonomy, institutional diversity, and legal constraints that characterize 

American municipalities. Moreover, local governments in the U.S. are often on the frontlines of 

service provision and revenue generation, making them especially vulnerable to fiscal instability 

and in need of reliable early warning systems. Our study aims to fill this gap by comparing the 

predictive performance of traditional econometric models and multiple ML algorithms in 

forecasting fiscal stress across over 900 localities in New York State from 2013 to 2022. In doing 

so, we contribute to both the methodological literature on fiscal forecasting and the practical field 

of local government financial management. 

 

METHODOLOGY 

Study Area and Data Sources 

To examine the potential of machine learning (ML) techniques in predicting fiscal stress in 

local governments, this study focuses on the State of New York (Figure 1). New York is an ideal 

case for analysis due to its fiscal diversity, institutional heterogeneity, and the availability of 

comprehensive financial and demographic data. The unit of analysis is the municipality, defined 

as a general-purpose local government with substantial administrative and fiscal autonomy (Office 

of the New York State Comptroller, 2025). 

         Under this definition, New York State contains four primary forms of municipalities: 

counties, cities (including the five boroughs of New York City), towns, and villages—totaling 

1,584 general-purpose local governments. However, for analytical clarity and to avoid overlapping 

jurisdictions, we exclude counties (which operate at a higher tier) and villages (which are typically 

nested within towns). Our final sample includes only cities (N = 60) and towns (N = 928), yielding 

a study population of 988 municipalities. This approach ensures comparability across units of 

government that perform similar service functions and operate with independent fiscal authority. 
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Towns and cities were chosen due to their relative data completeness, autonomy, and importance 

in local public service delivery. 

        Table 1 provides summary statistics on key demographic and socioeconomic characteristics 

for the top 10 cities and towns by population size. These variables serve as contextual inputs for 

the machine learning models and as controls in robustness checks. 

Figure 1 Cities and Towns in the State of New York 
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Table 1 Selected Demographic and Socio-Economic Indicators of the Top 10 Cities and Towns in New York State 

 

Name Population Median 

Household 

Income 

Unemployment 

Rate 

(%) 

Name Population Median 

Household 

Income 

Unemployment 

Rate 

(%) 

City Town 

Buffalo 276,688 $46,184 7.0 Hempstead 789,763 $132,468 5.1 

Rochester 210,992 $44,156 8.5 Brookhaven 487,162 $114,845 5.2 

Yonkers 209,780 $78,208 6.6 Islip 339,123 $122,726 4.2 

Syracuse 146,134 $43,584 8.6 Oyster Bay 299,958 $152,952 4.4 

Albany 99,692 $54,736 8.0 North Hempstead 236,573 $148,263 3.8 

New Rochelle 80,828 $100,542 7.0 Babylon 217,830 $115,992 5.2 

Mount Vernon 72,817 $75,511 8.0 Huntington 203,808 $153,782 4.9 

Schenectady 68,476 $54,650 9.4 Ramapo 148,558 $80,955 6.8 

Utica 64,728 $48,212 7.0 Amherst 129,577 $87,280 3.6 

White Plains 59,421 $109,551 5.4 Smithtown 116,157 $147,104 3.9 

Note: Data was retrieved from US Census American Community Survey 5-year estimate (2018-2022).  
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We obtained detailed financial records for local governments from Open Book New York 

(2025), a comprehensive public database maintained by the Office of the New York State 

Comptroller. The dataset includes itemized records of expenditures, revenues, balance sheets, and 

outstanding debt for cities and towns, covering a ten-year period from 2013 to 2022. These data 

serve as the foundation for constructing annual fiscal indicators used in the machine learning 

models. 

To account for environmental and socioeconomic factors, we integrated data from the 

American Community Survey (ACS), administered by the U.S. Census Bureau (2025). The ACS 

provides a rich set of demographic, economic, and social characteristics at the municipal level, 

allowing us to control for exogenous community-level influences on fiscal outcomes. Detailed 

descriptions of each independent variable are provided in the following section. 

Recognizing the impact of major external shocks—such as the COVID-19 pandemic and 

Hurricane Ida—on local government finances, we also included measures of federally declared 

disasters. These data were obtained from OpenFEMA, the open data platform of the Federal 

Emergency Management Agency (US FEMA, 2024). Disaster declarations are used to construct 

binary or intensity-adjusted variables to capture the influence of natural and public health 

emergencies on fiscal stress. 
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Variables and Measures 

Dependent Variable: Predicting Outcomes 

There is limited consensus in the literature on a single best measure of fiscal stress for local 

governments. Both objective indicators (e.g., budget deficits, debt burdens) and subjective 

assessments (e.g., credit ratings, expert surveys) have been employed, though each faces 

challenges related to measurement error, comparability, and data availability.  

Given the focus of this study on early warning and predictive modeling, we selected budget 

deficit as the primary outcome variable. Budget deficits are widely used in fiscal stress studies and 

offer a clear, observable metric for identifying early fiscal imbalance. Two versions of the 

dependent variable were constructed based on this measure.   

       For each municipality i in year t, the budget deficit ratio 𝐵𝐷𝑖𝑡 is defined as follows: 

𝐵𝑢𝑑𝑔𝑒𝑡 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 𝑅𝑎𝑡𝑖𝑜(𝐵𝐷)𝑖,𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (𝑇𝑅)𝑖,𝑡 − 𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 (𝑇𝐸)𝑖,𝑡

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑖,𝑡
 (1) 

In addition to the continuous budget deficit ratio, we created a binary fiscal stress indicator 

to facilitate classification modeling. A municipality is coded as fiscally stressed (1) if its deficit 

exceeds a pre-defined threshold, and not stressed (0) otherwise. We use a +3% (0.03) threshold as 

the baseline, consistent with regulatory benchmarks and prior studies, while also testing alternative 

thresholds (ranging from 2% to 10%) for robustness.  

Figure 2 displays the distribution of fiscal deficits across municipalities in selected years, 

illustrating temporal variation and the proportion exceeding key deficit ceilings. As shown in 

Figure 2, a positive budget deficit ratio (shown in red) indicates a real fiscal deficit. A negative 

budget deficit ratio (shown in green) indicates a real fiscal surplus. 
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Figure 2 Visualization of Fiscal Deficit in New York Municipalities: 2013, 2017, 2020, and 

2022 

 

2013                                                                                          2017 
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Predicting Variables and Measures 

This study utilizes a comprehensive set of indicators to predict fiscal stress, grouped into 

four domains: financial, socioeconomic, demographic, and housing. Detailed definitions, sources, 

and descriptions of each variable are provided in Table A1 of Appendix I. While most variables 

are drawn directly from public data sources without further transformation, the financial indicators 

are constructed following standard practices in the fiscal health literature. 

In the financial domain, we include 21 indicators that capture the core components of 

municipal fiscal operations—revenues, expenditures, fund balances, and debt—reflecting the 

central role these dimensions play in shaping local government financial stability (Luitel & Tosun, 

2014; Sohl et al., 2009; Stone et al., 2015; Skidmore & Scorsone, 2011; Gorina et al., 2018). 

• Revenue indicators include transfer revenues, federal and state aid, sales tax, and property 

tax, each expressed as a proportion of total revenue. 

• Expenditure indicators reflect the allocation of municipal spending across key functions 

such as personnel, economic development, disaster response, policing, and 

transportation—measured as shares of total expenditure. 

• Fund balance indicators include the ratios of total fund balance and cash reserves to total 

expenditure, serving as proxies for fiscal reserves and liquidity. 

• Debt-related indicators comprise nine measures, including debt service as a percentage 

of total revenue, total bond issuance and anticipated bond note issuance (and their ratios to 

total expenditure), as well as bond repayments and anticipated note repayments (and their 

respective ratios to total revenue). 
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The finalized set of financial predictors and their calculation formulas are summarized 

in Table 2. Collectively, these indicators provide a multidimensional view of municipal fiscal 

operations and form the foundation for building robust, data-driven models to forecast fiscal stress 

Table 2 Financial Predicting Indicators and Authors’ Calculation 

 

Indicators Authors' Calculation 

Revenue Variables   

TRANSFER_REVENUE TransRev/TR 

AID_REVENUE FSAidRev/TR 

SALES_REVENUE AssetSaleRev/TR 

SALES_TAX_REVENUE SalesUseRev/TR 

PROPERTY_TAX_REVENUE PropTaxRev/TR 

Expenditure Variables  

ECON_DEV_EXP_RATIO EconDevExp/TE 

PERSONNEL_REV_RATIO PerExp/TR 

DISASTER_EXP_RATIO DisasterExp/TE 

POLICE_EXP_RATIO PolExp/TE 

TRANSPORT_EXP_RATIO TransportExp/TE 

Fund Balance Variables   

FUND_BALANCE_EXP_RATIO TotFundBal/TE 

CASH_EXP_RATIO TotCash/TE 

Debt Variables  

DEBT_REV_RATIO DebtServExp/TR 

BOND_ISSUE IssuedBnd 

BOND_PAID PaidBnd 

BOND_ANTICIPATION_ISSUE BANIssued 

BOND_ANTICIPATION_PAID BANPaid 

BOND_ISSUE_EXP_RATIO BndIssuedCY/TE 

BOND_ANT_NOTE_ISSUE_EXP_RATIO BANIssuedCY/TE 

BOND_PAID_REV_RATIO BndPaidCY/TR 

BOND_ANT_NOTE_PAID_REV_RATIO BANPaidCY/TR 

 

Note: Abbreviations appearing in the financial indicator calculations are defined in Table 1 of the 

Appendix. 
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As part of the demographic domain, we include 11 indicators to capture population 

composition and dynamics. Prior research suggests that demographic shifts—particularly 

population aging—can reduce income and sales tax revenue per capita (Felix & Watkins, 2013), 

increase public expenditure and debt burdens (Hondroyiannis & Papapetrou, 2000), and thereby 

contribute to heightened fiscal stress. Accordingly, one key indicator is the percentage of the 

population aged 65 and over. Additional demographic variables include total population, sex ratio, 

average household size, percentage of the population over age 18, percentage aged 25 and over 

with at least a high school diploma, disability rate, percentage of households with minors, and the 

proportions of African American and Hispanic residents. 

To assess broader socioeconomic conditions, we incorporate 10 indicators reflecting 

income distribution, employment structure, and economic vulnerability. Edinak (2021) finds that 

shifts in employment—especially the decline in low-skilled labor—can influence household 

consumption and, in turn, local sales tax revenues. Reflecting this dynamic, we include the 

percentage of jobs in the service, managerial, and public sectors. Additional variables include 

the Gini index, median household income, unemployment rate, public assistance receipt, poverty 

rate, uninsured population rate, and the number of federally declared disasters. 

Last, the housing domain comprises five indicators that capture housing market 

characteristics and their fiscal implications. Prior studies have shown that housing prices (Alm, 

Buschman, & Sjoquist, 2011) and foreclosure activity (Alm, Buschman, & Sjoquist, 2014) 

significantly affect local property tax bases. We include median home value as a proxy for housing 

price levels. Two affordability measures—gross rent and selected monthly owner costs as 

percentages of household income—capture housing cost burdens. Additionally, we include 
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the percentage of vacant housing units and renter-occupied units to reflect broader housing stock 

conditions. 

Methods 

This section outlines the methodological framework of the study, including the datasets 

used, preprocessing procedures, model architecture, and the strategies employed for both 

prediction and interpretation. The study adopts a dual-framework approach that distinguishes 

between two modeling objectives: (1) an explanatory model and (2) a predictive (early warning) 

model. 

The explanatory model is designed to identify and interpret the contemporaneous 

relationships between fiscal stress and its potential determinants within the same fiscal year. This 

approach enables the investigation of structural and contextual factors that are associated with 

fiscal outcomes at a given point in time.   In contrast, the predictive model functions as an early 

warning system, leveraging lagged independent variables to forecast future fiscal stress events. By 

using past information to anticipate future outcomes, this model is better suited for informing 

proactive fiscal management and risk mitigation strategies. 

This dual-modeling structure, illustrated in Figure 3, allows for a comprehensive analysis 

that serves both diagnostic and prognostic purposes. It enables a direct comparison of model 

performance (e.g., predictive accuracy) and the relative importance of fiscal, demographic, and 

socioeconomic indicators across different temporal frameworks. Through this design, the study 

bridges the gap between explanation and prediction in the context of local government fiscal health. 
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Figure 3. Analytical Framework: Structure of Explanatory and Predictive Models for 

Identifying Municipal Budget Deficits 

         

The explanatory models utilize pooled panel data from 988 cities and towns in New York 

State, covering the period from 2013 to 2022. Fiscal indicators and outcomes were measured 

contemporaneously to assess their direct associations. We applied Ordinary Least Squares (OLS) 

regression to estimate the budget deficit ratio and used logistic regression to classify municipalities 

into binary fiscal stress categories—defined as having a budget deficit ratio exceeding 3%. These 

traditional econometric techniques are widely adopted in fiscal distress research due to their 

transparency, ease of interpretation, and well-established statistical properties (Ashraf, Félix, & 

Serrasqueiro, 2019). To enhance model robustness and mitigate overfitting and multicollinearity, 

we incorporated regularized linear models, including Ridge regression and the Least Absolute 
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Shrinkage and Selection Operator (LASSO). Ridge regression introduces an L2-norm penalty to 

shrink coefficients, while LASSO applies an L1-norm penalty to promote coefficient sparsity and 

perform variable selection. 

The objective of the explanatory modeling phase was twofold: (1) to evaluate the predictive 

performance of traditional econometric methods and (2) to identify key fiscal, socioeconomic, and 

demographic indicators associated with budget deficits. Initially, OLS, Ridge, and LASSO models 

were compared using standard performance metrics. OLS results served as a benchmark for 

identifying statistically significant predictors. For classification, logistic regression assigned 

municipalities a value of “1” if their budget deficit ratios exceeded 3%, and “0” otherwise. To test 

model sensitivity, the deficit threshold was varied across levels (0%, 2%, 4%, 6%, 8%, and 10%). 

For predictive modeling, we adopted an autoregressive framework, using predictors from 

years t–2 and t–1 to forecast fiscal stress in year t. This approach incorporated lagged fiscal 

indicators, including a municipality’s deficit status in the preceding two years, to account for fiscal 

persistence and temporal dynamics.  

To capture nonlinear relationships and complex interactions, we applied four machine 

learning (ML) algorithms: 

1. Random Forests – An ensemble method that averages predictions from multiple decision 

trees built via bootstrap aggregation to reduce variance. 

2. Extremely Randomized Trees (Extra-Trees) – A variant of Random Forests that 

introduces randomized split thresholds to further reduce variance and improve 

computational efficiency. 

3. Gradient Boosting Machines (GBMs) – A sequential learning algorithm that combines 

weak learners to correct residual errors iteratively. 
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4. Artificial Neural Networks (ANNs) – Deep learning models that capture nonlinear 

interactions through multi-layer weight adjustments and backpropagation. 

These models were selected based on prior evidence demonstrating their superior 

performance in fiscal forecasting tasks compared to linear models, particularly due to their 

ability to model high-order interactions and nonlinearity (Jarmulska, 2021). All ML models were 

trained and tuned using cross-validation, emphasizing out-of-sample predictive accuracy. 

Although machine learning models offer improved predictive performance, they often 

function as “black boxes” with limited interpretability (Lipton, 2018). To address this limitation, 

we employed model-agnostic interpretation tools, particularly SHAP (Shapley Additive 

Explanations) values and dependence plots, to explain individual predictor contributions and 

improve model transparency. 

 

Data Preprocessing 

Following model specification, a key challenge involved preparing the dataset for robust 

and reliable analysis. To address common data quality issues—including missing values, variable 

scaling, distributional skewness, and class imbalance—we applied a systematic series of 

preprocessing techniques. 

First, missing values in predictor variables were imputed using column means, ensuring 

the full dataset could be retained for analysis. Next, all predictors were standardized using z-score 

transformation, producing variables with a mean of zero and a standard deviation of one. 

Standardization is especially important for models sensitive to feature magnitudes, such 

as regularized regressions and neural networks. 
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To address skewness in the budget deficit outcome variable, we applied the Yeo–Johnson 

power transformation, a flexible alternative to Box–Cox that accommodates both zero and negative 

values. The Yeo–Johnson transformation is defined as follows: 

 

This transformation normalized the distribution of fiscal deficits, improving model fit and meeting 

assumptions of linearity and homoscedasticity for regression analysis. 

After transformation and scaling, the dataset was randomly partitioned into training (80%) 

and testing (20%) subsets. The training data were used for model estimation and cross-validation, 

while the testing data provided an independent benchmark for evaluating out-of-sample predictive 

performance. 

A significant issue identified during preprocessing was class imbalance: only about 20% 

of municipalities recorded a budget deficit ratio above the threshold, posing challenges for 

supervised learning. To mitigate this, we tested three resampling strategies: 

1. Class Weighting (CW): Adjusts the model’s loss function by assigning higher penalties 

to misclassified minority-class observations. This method preserves the original data 

distribution while enhancing model sensitivity to rare events. 

2. Random Over-Sampling Examples (ROSE): Balances the dataset by duplicating 

minority-class cases. While simple and effective, this method risks overfitting due to 

repeated data points. 
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3. Synthetic Minority Over-Sampling Technique (SMOTE): Synthesizes new examples 

by interpolating existing minority-class observations, introducing diverse and plausible 

patterns that improve the model’s ability to detect fiscal stress. 

Each resampling method was evaluated during the exploratory modeling phase 

using logistic regression performance metrics (e.g., F1-score, AUROC). The most effective 

strategy was then applied consistently within the predictive modeling framework, ensuring a 

balanced and reliable classification of fiscally distressed municipalities. 

EMPIRICAL RESULTS 

This section presents the key empirical findings. The analysis proceeds in four stages: 

1. Descriptive Comparisons: We begin by reporting results from independent samples t-

tests to examine statistically significant differences in key indicators between 

municipalities with budget deficit ratios exceeding 3% and those at or below this threshold. 

2. Exploratory Modeling: Next, we present findings from the exploratory modeling phase, 

where three resampling strategies—Class Weighting, ROSE, and SMOTE—are compared 

to determine the most effective method for addressing class imbalance in binary 

classification. 

3. Predictive Model Evaluation: We then evaluate the performance of machine learning 

models using multiple metrics, including predictive accuracy, Precision–Recall Curves 

(PRC), and Receiver Operating Characteristic (ROC) curves. These metrics offer 

complementary perspectives on each model’s ability to detect fiscal stress, particularly in 

the context of imbalanced data. 
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4. Model Interpretation: Finally, we interpret the predictive model outputs using SHAP 

(Shapley Additive Explanations) values and dependence plots. These tools enable us to 

assess the relative importance of individual predictors and visualize their marginal effects 

on the likelihood of fiscal distress. 

Together, these results provide robust evidence on the feasibility and interpretability of using 

machine learning to predict local government fiscal stress and highlight key indicators driving 

fiscal vulnerability. 

Descriptive Comparisons: Independent Samples T-tests 

As presented in Table 3, independent samples t-tests were conducted to examine 

differences in key fiscal indicators between two groups of municipalities: those with budget 

deficits greater than 3% and those with deficits at or below this threshold. The analysis focused on 

expenditure and revenue variables, as well as fund balance, cash holdings, and deficit levels. 

The results indicate statistically significant differences across several fiscal dimensions. 

Municipalities experiencing higher budget deficits (>3%) exhibited significantly greater total 

expenditures (p = 0.006), sales revenue (p < 0.001), property tax revenue (p = 0.014), disaster-

related spending (p = 0.020), fund balance (p < 0.001), and cash holdings (p < 0.001) compared to 

their counterparts with lower deficits. These patterns suggest that higher-deficit municipalities tend 

to have more intense financial activity, potentially driven by greater service demands, external 

shocks, or reliance on specific revenue sources. 

In contrast, no statistically significant differences were observed in other fiscal variables, 

including transfer revenue, aid revenue, sales tax revenue, personnel expenditures, economic 

development spending, police and transportation expenditures, or debt service. These non-
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significant results may imply that such variables are less sensitive to immediate deficit conditions 

or that their effects are mediated through other financial mechanisms. 

         Overall, these descriptive comparisons provide an initial empirical foundation for identifying 

fiscal patterns associated with municipal stress and inform the subsequent modeling analysis.
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Table 3 Independent Samples T-Test Comparing Fiscal Variables by Operating Deficit Level 

  

Variable Budget 

Deficit 

Ratio >3% 

Budget 

Deficit Ratio 

S.D. >3% 

Budget 

Deficit 

Ratio<=3% 

Budget 

Deficit Ratio 

SD <=0.03 

Difference_of

_ 

Means 

p_value 

TOTAL_EXPENDITURE 15,055,532.3

2 

55,446,615.0

7 

20,074,013.5

9 

119,199,440.2

0 

-5,018,481.27 0.006(**) 

TRANSFER_REVENUE 1,877,449.14 10,640,633.4

1 

2,036,590.82 11,543,323.75 -159,141.68 0.54 

AID_REVENUE 2,064,067.90 11,304,592.0

8 

2,212,134.71 12,180,507.75 -148,066.81 0.591 

SALES_REVENUE 425,014.63 2,877,555.10 1,398,016.96 8,763,634.18 -973,002.33 <0.001(***

) 

SALES_TAX_REVENUE 1,631,493.83 7,549,595.81 1,716,530.65 7,834,426.19 -85,036.82 0.641 

PROPERTY_TAX_REVENUE 4,884,252.32 17,449,466.6

9 

5,952,607.61 20,072,727.86 -1,068,355.30 0.014(**) 

PERSONNEL_EXPENDITURE 2,634,979.65 11,928,273.5

1 

2,808,152.90 11,989,595.80 -173,173.25 0.544 

ECONOMIC_DEV_EXPENDITUR

E 

213,185.92 1,393,502.58 187,186.85 1,267,231.34 25,999.07 0.426 

DISASTER_EXPENDITURE 114,573.30 610,497.93 152,049.08 847,802.77 -37,475.77 0.02(**) 

POLICE_EXPENDITURE 1,305,103.98 6,326,130.56 1,313,000.62 6,413,207.02 -7,896.64 0.959 

TRANSPORTATION_EXPENDITU

RE 

2,097,707.61 5,254,362.48 2,117,189.40 5,595,814.27 -19,481.80 0.879 

FUND_BALANCE 3,781,187.97 20,628,656.4

2 

7,143,405.91 26,119,391.91 -3,362,217.94 <0.001(***

) 

CASH 6,784,111.23 20,397,102.4

5 

9,178,631.50 38,450,830.07 -2,430,520.26 <0.001(***

) 

DEBT_SERVICE 1,155,733.37 5,466,912.64 1,348,005.29 7,459,563.89 -192,271.92 0.18 

OP_DEFICIT 0.157 0.257 -0.086 0.096 0.24 <0.001(***

) 
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Note: >3% indicates budget deficit ratios are greater than 3%, ≤0.03 indicates budget deficit ratios are less than or equal to 3%.SD 

represents standard deviations. 

***p < 0.01, **p < 0.05, *p < 0.1 
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The Exploratory Modeling 

During the exploratory modeling phase, we applied three linear regression approaches—

Ordinary Least Squares (OLS), Lasso, and Ridge regression—to predict municipal budget deficits 

using contemporaneous data. These models were implemented without any resampling techniques 

to establish baseline performance under standard assumptions. 

As shown in Table 4, the OLS model achieved a test-set prediction accuracy of 54.2%, 

serving as the benchmark. The Lasso model, with a regularization parameter λ=0.02, slightly 

outperformed OLS with an accuracy of 54.8%, while the Ridge model, using α=0.01, yielded a 

comparable accuracy of 54.4%.  Overall, model performance across the three approaches was 

closely aligned, with only marginal differences in predictive accuracy. The Lasso model’s slight 

edge reflects its capacity for variable selection, which may offer additional interpretive value in 

identifying key fiscal predictors. 

These initial results suggest that while traditional regression techniques provide a 

reasonable baseline, more complex models—especially those designed to capture nonlinearity and 

interactions—may be necessary to achieve substantial gains in predictive performance. This 

finding motivated the subsequent application of machine learning techniques within the predictive 

modeling framework. 
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Table 4 Train and Test Accuracy Across OLS, Lasso, and Ridge regression Models 

  
Train Accuracy Test Accuracy 

OLS 0.562 0.542 

Lasso (λ=0.02) 0.563 0.548 

Ridge (α=0.01) 0.558 0.544 
   

 

 

Table 5 reports the significant predictors identified by the Ordinary Least Squares 

(OLS) model for estimating budget deficits within the same fiscal year. The results show that 

indicators across all four domains—financial, socioeconomic, demographic, and housing—

contributed to the model, though financial variables exhibited the strongest predictive influence. 

Among financial indicators, the fund balance to total expenditure ratio emerged as a 

particularly powerful predictor. A one-unit increase in this ratio was associated with a 19.01 

percentage point reduction in the probability of incurring a budget deficit, controlling for all other 

variables (p < 0.001). This finding underscores the importance of reserve levels in buffering fiscal 

stress.  Additionally, disaster exposure, captured by the number of FEMA-declared disasters, 

significantly increased fiscal risk. Each additional disaster declaration was associated with a 2.17 

percentage point increase in the likelihood of a deficit, holding other factors constant (p = 0.011). 

This highlights the fiscal strain imposed by natural or public health emergencies on local 

governments.  

The differentiated effects across indicator categories emphasize the value of incorporating 

multidimensional data in fiscal forecasting. Financial resilience and exposure to external shocks 

appear to play especially salient roles in driving contemporaneous budget outcomes. 
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Table 5 OLS Model Results: Significant Variables Predicting Municipal Budget Deficits 

 

Variables Coefficient    SD t     P>|t|  

PCT_RENTAL                    0.0322 0.016 -2.046 0.041 

MED_HVALUE                    -0.0546 0.021 2.55 0.011 

PCT_SMOCAPI                   0.0387 0.011 -3.537 <0.001 

MED_HHINCOME                  -0.0505 0.024 -2.141 0.032 

PCT_HSGRAD                    -0.0353 0.014 -2.532 0.011 

FEMA Count                     0.0217 0.009 -2.553 0.011 

TRANSFER_REV_RATIO            0.0708 0.009 7.763 <0.001 

AID_REV_RATIO                 -0.0562 0.01 -5.403 <0.001 

SALE_REV_RATIO                -0.0962 0.015 -6.594 <0.001 

PERSONNEL_REV_RATIO           0.1289 0.013 10.11 <0.001 

POLICE_EXP_RATIO              -0.117 0.013 -9.341 <0.001 

FUND_BALANCE_EXP_RATIO        -0.1901 0.015 -

12.297 

<0.001 

CASH_EXP_RATIO                -0.1478 0.015 -9.933 <0.001 

BOND_ANTICIPATION_PAID        -0.0234 0.009 -2.59 0.01 

BOND_ISSUE_EXP_RATIO          -0.3625 0.015 -

23.934 

<0.001 

BOND_ANT_NOTE_ISSUE_EXP_RATIO 0.3199 0.01 33.56 <0.001 

BOND_PAID_REV_RATIO           0.1367 0.013 10.544 <0.001 

BOND_ANT_NOTE_PAID_REV_RATIO  -0.1447 0.012 -

11.791 

<0.001 

No. Observations: 6474 
   

F-statistic:  183.1 
   

Log-Likelihood:   -6516.3 
   

   

 

 

 

      

Table 6 presents the results of the logistic regression model, which was used to predict 

the likelihood of a municipality experiencing a budget deficit ratio exceeding 3%—coded as 1—

versus a deficit at or below that threshold—coded as 0. The model achieved a pseudo-R-squared 

of 72.4% on the training dataset and an accuracy of 72.3% on the test dataset, indicating strong 

and consistent predictive performance. 
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Compared to the continuous regression models examined earlier, the logistic model 

demonstrated substantially higher accuracy, outperforming the best-performing linear model 

(Lasso), which did not incorporate a categorical outcome threshold. This suggests that modeling 

fiscal distress as a binary classification problem may yield more effective results when the goal is 

early warning or regulatory monitoring. 

Interestingly, the set of significant predictors differed somewhat between the OLS and 

logistic models. Some variables that were significant in the OLS model—such as the percentage 

of households that rent—were not statistically significant in the logistic specification. Conversely, 

new variables emerged as important in the logistic model; for example, the percentage of the 

civilian noninstitutionalized population with disabilities was statistically significant only in the 

logistic regression. 

These variations suggest that different modeling strategies may capture distinct dimensions 

of fiscal stress and underscore the importance of model selection and specification in applied fiscal 

analysis. 
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Table 6 Logistic Model Results: Significant Variables Predicting Municipal Budget Deficit 

(3% Baseline Threshold) 

 

Variables Coefficient    SD t     P>|t|   

PCT_DISABILITY                0.0854 0.04 -2.132 0.033 

TRANSFER_REV_RATIO            0.2055 0.03 6.826 0 

SALE_REV_RATIO                -0.2898 0.055 -5.272 0 

SALES_TAX_REV_RATIO           -0.0965 0.043 -2.256 0.024 

PERSONNEL_REV_RATIO           0.2751 0.042 6.621 0 

POLICE_EXP_RATIO              -0.1582 0.041 -3.867 0 

TRANSPORT_EXP_RATIO           0.1653 0.049 3.377 0.001 

FUND_BALANCE_EXP_RATIO        -0.392 0.056 -6.971 0 

DEBT_REV_RATIO                0.0968 0.046 2.124 0.034 

BOND_ANTICIPATION_PAID        -0.1524 0.058 -2.639 0.008 

BOND_ISSUE_EXP_RATIO          0.1184 0.065 1.826 0.068 

BOND_ANT_NOTE_ISSUE_EXP_RATIO 0.9888 0.061 16.175 0 

BOND_ANT_NOTE_PAID_REV_RATIO  -0.1949 0.057 -3.444 0.001 

No. Observations: 6474 
   

F-statistic:  201.1 
   

Log-Likelihood:  -3959.8 
   

 

 

To further assess the robustness of the logistic regression model, we conducted a sensitivity 

analysis examining how prediction accuracy varied across different deficit thresholds. As expected, 

model performance improved as the classification threshold increased. When the threshold was set 

just below 0%, the prediction accuracy was 68.1%, whereas accuracy rose steadily to 81.3% when 

the threshold reached 10%. This pattern indicates that the model is increasingly effective at 

identifying municipalities experiencing more severe budget deficits, as larger fiscal imbalances 

present clearer signals for classification. These findings suggest that while the model performs 

adequately under baseline conditions, its predictive strength is particularly robust in detecting 

extreme cases of fiscal stress. 
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As shown in Table 7, we further evaluated model performance under three commonly used 

metrics: area under the precision-recall curve (PRC-AUC), area under the receiver operating 

characteristic curve (ROC-AUC), and classification accuracy. Among the resampling strategies 

tested, the Synthetic Minority Over-sampling Technique (SMOTE) demonstrated the best overall 

performance, achieving a PRC-AUC of 0.636 and an accuracy of 81.7%. These results underscore 

SMOTE’s superior capacity to improve detection of the minority class—municipalities 

experiencing fiscal stress—while maintaining strong overall accuracy. 

While the ROSE method marginally outperformed SMOTE in ROC-AUC (0.819 vs. 

0.818), this difference was negligible relative to SMOTE’s clear advantages in precision-recall and 

balanced performance. In contrast, the class weighting (CW) method underperformed across all 

evaluation metrics, with a notably low PRC-AUC of 0.590, indicating limited effectiveness in 

identifying fiscally distressed municipalities within an imbalanced dataset. 

These findings reinforce the importance of addressing class imbalance in fiscal forecasting 

and support the use of advanced oversampling techniques—particularly SMOTE—as a best 

practice in early warning model design. 

Table 7 Comparison of Model Performance Using Different Resampling Methods 

 

Datasets PRC-AUC ROC-AUC Accuracy  

CW 0.590 0.804 0.737 

ROSE 0.631 0.819 0.799 

SMOTE 0.636 0.818 0.817 
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          Further supporting these findings, Figures 4 and 5 present the Receiver Operating 

Characteristic (ROC) and Precision–Recall (PRC) curves, respectively. As shown in Figure 4, all 

three resampling methods performed above the diagonal baseline, confirming the overall 

predictive validity of the logistic regression models. Both SMOTE and ROSE exhibited superior 

performance compared to Class Weighting (CW), particularly at lower false positive rates, where 

accurate detection of true positives is most critical. Figure 5 emphasizes performance on 

the minority class (municipalities with a budget deficit ratio exceeding 3%). It further illustrates 

these distinctions. While SMOTE and ROSE maintained higher precision across a broad range of 

recall values, CW consistently underperformed, failing to capture patterns associated with fiscal 

distress in imbalanced conditions. 

       Taken together, these visual diagnostics reinforce the earlier quantitative 

results. SMOTE offers the most reliable and effective approach for identifying municipalities at 

elevated risk of fiscal stress. Its ability to preserve precision while expanding recall makes it 

particularly suitable for early warning systems that prioritize accurate classification of rare but 

critical fiscal events.  Considering these results, SMOTE was selected as the preferred resampling 

strategy for the subsequent predictive modeling phase. 
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Figure 4 ROC Curve Comparison of Resampling Methods 

 
Figure 5 PRC Curve Comparison of Resampling Methods 
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Predictive Model Evaluation 

As shown in Table 8, Extremely Randomized Trees and Random Forest consistently 

outperformed all other algorithms across the evaluated metrics. The Extremely Randomized Trees 

model demonstrated the strongest overall performance, achieving a PRC-AUC of 0.491, ROC-

AUC of 0.865, and accuracy of 82.5%. Its ability to enhance variance reduction through 

randomized split thresholds likely contributed to its superior classification capacity, especially in 

identifying fiscally stressed municipalities. 

The Random Forest algorithm closely followed, with a PRC-AUC of 0.448, ROC-AUC of 

0.842, and accuracy of 79.4%. This confirms the robustness of ensemble tree-based methods in 

handling complex, high-dimensional fiscal datasets. 

The Neural Network also performed competitively, particularly in ROC-AUC (0.846) and 

accuracy (0.788). However, its lower PRC-AUC of 0.403 reflects reduced sensitivity to the 

minority class—an important limitation for early warning applications targeting fiscal distress. 

Gradient Boosting displayed modest improvements over logistic regression but remained 

suboptimal relative to other models. Meanwhile, Logistic Regression, serving as the traditional 

benchmark, exhibited the weakest performance, with a PRC-AUC of 0.283, ROC-AUC of 0.714, 

and accuracy of 70.4%, indicating limited ability to discriminate budget deficit cases within an 

imbalanced dataset. 
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Table 8 Performance Comparison of Predictive Models 

 

ML algorithms PRC ROC Accuracy 

  
Logistics 0.111 0.642 0.665 

Gradient Boosting 0.283 0.714 0.704 

Neural Network 0.403 0.846 0.788 

Random Forest 0.448 0.842 0.794 

Extremely Randomized Trees 0.491 0.865 0.825 

 

 

 

           These results underscore the value of machine learning algorithms—particularly Extremely 

Randomized Trees—in improving predictive accuracy, especially in imbalanced classification 

contexts. While logistic regression assumes linearity and limited interactions, machine learning 

techniques effectively model complex, nonlinear relationships, and variable interactions, 

enhancing their ability to detect high-risk municipalities before deficits escalate. 

         The ROC curve, presented in Figure 6, further reinforces the comparative performance of 

the predictive models. The Extremely Randomized Trees model consistently outperformed all 

others across the full spectrum of false-positive rates, with its curve closely approaching the upper-

left corner of the plot—a hallmark of strong classification accuracy and high true-positive rates. 

This dominant performance highlights the model’s robustness in distinguishing fiscally distressed 

municipalities from those in stable condition. 

       The Random Forest model also demonstrated strong performance, though slightly below that 

of the Extremely Randomized Trees. The Neural Network model showed competitive results, 

maintaining a relatively high true-positive rate across a wide range of thresholds. In contrast, 

the Logistic Regression and Gradient Boosting models exhibited noticeably weaker performance. 

Their ROC curves remained closer to the diagonal baseline, indicating limited discriminatory 
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power and a higher likelihood of misclassification—particularly in the context of identifying 

minority-class (deficit-prone) municipalities. 

          These visual findings corroborate the quantitative metrics presented in Table 8, reinforcing 

the conclusion that ensemble tree-based models—especially Extremely Randomized Trees—offer 

the most effective approach for predicting fiscal stress in local governments. 

 

Figure 6 ROC Curve Comparison of Predictive Models 

 
 

            Based on the results presented above, Extremely Randomized Trees emerged as the most 

accurate and robust model for detecting municipalities at risk of budget deficits. Its superior 

performance across evaluation metrics—particularly in PRC-AUC—underscores its effectiveness 



 

 

39 

39 

in handling class imbalance and enhancing predictive sensitivity. With this model identified as 

optimal for forecasting fiscal stress, the following section interprets its predictions using SHAP 

(Shapley Additive Explanations) values to improve model transparency and policy relevance. 

      Figure 7 displays the most influential predictors, ranked by their mean absolute SHAP values, 

which quantify each variable’s average marginal contribution to the predicted probability of a 

budget deficit. The horizontal axis represents the SHAP value, with values to the right indicating 

a positive influence (i.e., increased likelihood of a budget deficit) and values to the left indicating 

a negative influence (i.e., reduced likelihood of a budget deficit). 

         Each row corresponds to a specific feature, while each dot represents a SHAP value for an 

individual observation. The color gradient reflects the magnitude of the original feature values—

red indicating higher values and blue indicating lower values—allowing for a nuanced 

interpretation of how predictor magnitudes affect outcomes. Among all predictors, 

OP_DEFICIT_YEARx1 (the municipality’s budget deficit status in the previous year) stands out 

as the most influential. Higher values (in red) are strongly associated with increased predicted risk 

of future budget deficits, highlighting the persistence of fiscal stress over time. Additionally, bond-

related indicators—particularly BOND_ANT_NOTE_ISSUE_EXP_RATIO_YEARx1 and 

BOND_ISSUE_EXP_RATIO_YEARx1—emerge as highly influential, suggesting that debt 

issuance activity is a critical signal of fiscal vulnerability. These SHAP-based insights not only 

validate key predictors identified in earlier regression models but also offer an interpretable 

pathway for policymakers to identify high-risk fiscal behavior and prioritize intervention. 
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Figure 7 Top 20 Predictors Ranked by SHAP Values 

 

 
 

 

Note: In the variable names used throughout the analysis, the suffix _x0 refers to data from 

the prediction year, _x1corresponds to data from one year prior, and _x2 denotes data from two 

years prior to the prediction year. 
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          Socioeconomic variables such as MED_HHINCOME_YEARx2 and housing variables like 

MED_HVALUE x1 significantly influenced model predictions, highlighting the interplay of 

financial, socioeconomic, and housing factors in shaping municipal budget deficits. The 

appearance of indicators across multiple years (e.g., suffixes _x1 and _x2) further underscores the 

relevance of temporal dynamics and lagged effects in accurately forecasting fiscal stress. 

          To visualize the marginal effects of key predictors, Dependence Plots were generated for 

the top ten SHAP-ranked features. Figures 9 through 11 illustrate three representative variables: 

the unemployment rate (t –2), median household income (t–2), and budget deficit ratio (t –1). In 

each plot, SHAP values are shown on the vertical axis, representing the feature’s impact on the 

predicted deficit probability, while the horizontal axis reflects the original feature values. The color 

gradient—ranging from blue (lower values) to red (higher values)—offers additional insight into 

how the magnitude of each variable relates to model outcomes. 

      Figure 8 reveals a positive relationship between the unemployment rate and the likelihood of 

a deficit, particularly when unemployment exceeds 5%, signaling heightened fiscal risk under 

deteriorating labor market conditions. Figure 9 shows a negative correlation between median 

household income and deficit probability, with municipalities below approximately $80,000 in 

income facing greater fiscal vulnerability. Figure 10 demonstrates a strong positive association 

between prior-year budget deficits (OP_DEFICIT_YEARx1) and current-year fiscal stress, 

underscoring the persistence of structural deficits over time. These visualizations reinforce the 

SHAP summary findings and provide interpretable, policy-relevant insights into how financial and 

contextual indicators jointly drive fiscal stress at the local level. 
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Figure 8 Dependence Plot for Unemployment Rate-2 

 

 
Figure 9 Dependence Plot for Median Household Income Year-2 
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 Figure 10 Dependence Plot for Deficit % Year-1 

 

 
 

        Collectively, the SHAP values and dependence plots provide a powerful solution to the “black 

box” challenge commonly associated with machine learning algorithms. By quantifying and 

visualizing the importance, magnitude, and direction of each predictor’s influence on model 

outcomes, these tools substantially enhance interpretability. Beyond improving transparency, this 

analysis reaffirms the significance of key predictors while offering granular, observation-level 

explanations of their contributions to predicted fiscal distress. Such insights not only validate the 

predictive model but also support informed, data-driven decision-making in local government 

fiscal management. 
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DISCUSSION 

This study assessed whether machine learning (ML) techniques can enhance the prediction 

of fiscal stress in local governments relative to traditional econometric models. Drawing on a panel 

dataset of 988 cities and towns in New York State from 2013 to 2022, we compared the predictive 

performance of several ML algorithms—including random forests, gradient boosting machines, 

and extremely randomized trees—against conventional approaches such as logistic regression, 

LASSO, and ridge regression. Our findings demonstrate that non-linear, ensemble-based ML 

models substantially outperform traditional methods in both predictive accuracy and model 

robustness. 

A key insight from this study is the capacity of ML algorithms to capture complex, 

nonlinear interactions among fiscal, socioeconomic, demographic, and environmental variables. 

Models such as extremely randomized trees and random forests not only yielded higher 

classification performance, but also demonstrated greater resilience to challenges like class 

imbalance and multicollinearity. These advantages confirm that fiscal stress is often driven by 

multifaceted and interdependent factors that are inadequately captured by linear models. 

Variable importance analyses reinforced the predictive significance of both fiscal and 

contextual factors. In particular, lagged budget deficits emerged as the most powerful predictors, 

underscoring the temporal persistence of fiscal distress. Socioeconomic indicators such as 

unemployment rate, population dynamics, and median housing value rates also played critical roles 

in identifying vulnerable municipalities. These results suggest that integrating broader structural 

and community-level variables into fiscal monitoring systems can yield more effective early 

warning capabilities than frameworks based solely on financial ratios or fund balance thresholds. 

 



 

 

45 

45 

These findings are especially relevant considering increasing efforts by U.S. states to 

develop and enhance local fiscal early warning systems. Over the past decade, states including 

New York, Michigan, Ohio, Pennsylvania, and New Jersey have implemented formal fiscal 

oversight programs aimed at identifying distressed municipalities and averting fiscal crises. While 

these programs have improved oversight capacity, they frequently rely on rule-based thresholds or 

linear regression models, which may be limited in predictive scope. Our results suggest that ML-

based approaches can serve as a next-generation complement, offering higher accuracy, greater 

adaptability, and the capacity to detect non-obvious risk patterns. 

From a usability perspective, concerns about ML model transparency must be addressed to 

ensure their adoption by public finance practitioners. Although ensemble and neural network 

models are often viewed as “black boxes,” we show that tools such as SHAP values and 

dependence plots can provide actionable, interpretable insights. These interpretive tools link model 

predictions to specific risk indicators, giving decision-makers clearer insight into why certain 

municipalities are identified as areas of concern. 

Methodologically, this study also illustrates the feasibility of implementing ML approaches 

in practical oversight contexts. Through careful data preprocessing—including missing value 

imputation, normalization, and resampling techniques such as SMOTE and class weighting—we 

demonstrate that real-world administrative data, despite its imperfections, can be successfully 

prepared for advanced modeling. The resulting workflow is replicable and scalable, offering a 

practical framework for other jurisdictions seeking to modernize their fiscal risk monitoring 

systems. 

        In sum, this research offers timely and practical guidance for state governments, oversight 

agencies, and public financial management professionals. As more states seek to refine or expand 
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their fiscal monitoring systems, machine learning models provide a compelling upgrade to 

traditional frameworks. These models enable earlier detection of fiscal risk, more targeted 

intervention, and greater equity in the allocation of oversight resources. By incorporating a richer 

array of indicators and adjusting dynamically to evolving fiscal conditions, ML-enhanced systems 

can support a shift from reactive crisis management to proactive risk mitigation. Such a shift holds 

the potential to strengthen local government resilience, reduce the frequency of fiscal emergencies, 

and foster more sustainable, data-driven public financial management practices. 

CONCLUSION 

This study investigates the potential of machine learning (ML) models to enhance the prediction 

of fiscal stress in local governments, using data from 988 cities and towns in New York State 

spanning the years 2013 to 2022. By comparing a suite of ML algorithms—including random 

forests, gradient boosting machines, extremely randomized trees, neural networks, and support 

vector machines—against traditional econometric models such as logistic regression, LASSO, and 

ridge regression, we find that ML approaches significantly outperform conventional methods in 

terms of both predictive accuracy and model robustness. 

         The research makes three key contributions. First, from a methodological perspective, it 

introduces and validates the use of machine learning techniques in the context of local fiscal stress 

prediction—a domain historically dominated by linear regression approaches. Ensemble-based 

ML models, in particular, demonstrate the capacity to detect nonlinear interactions and complex 

risk patterns that traditional models may overlook, thereby expanding the analytical toolkit 

available to public finance researchers and practitioners. 
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           Second, the study provides a substantive empirical contribution by leveraging a rich, 

multidimensional dataset that includes fiscal, demographic, economic, housing, and environmental 

indicators at the municipal level. This comprehensive data structure enables a more holistic 

analysis of fiscal stress, identifying dynamic and interrelated predictors such as lagged deficits, 

unemployment rates, and housing vacancy levels that jointly shape local fiscal outcomes. 

            Third, the findings offer direct policy relevance for states seeking to strengthen their local 

fiscal monitoring frameworks. As a growing number of U.S. states—including New York, 

Michigan, Ohio, and Pennsylvania—implement or refine early warning systems to detect fiscal 

distress, this study demonstrates that ML-based tools can significantly improve the timeliness, 

precision, and adaptability of these systems. By incorporating such models, oversight agencies and 

policymakers can better identify at-risk municipalities, allocate resources more efficiently, and 

intervene proactively to prevent crises. 

         Despite these contributions, the study has several limitations. The focus on New York 

State—while justified by its rich fiscal oversight infrastructure—limits the generalizability of 

findings to other institutional and policy contexts. Additionally, although interpretability methods 

such as SHAP values and dependence plots were employed, some ML models—especially deep 

neural networks—remain inherently opaque. Future research should explore more advanced 

explainable AI techniques and evaluate how predictive tools can be institutionalized within routine 

public financial management processes. 

        Several promising directions for future inquiry emerge. Expanding the scope to include cross-

state comparative analyses would provide broader generalizability and allow for the assessment of 

model transferability across institutional settings. Incorporating higher-frequency or real-time data 

could improve the timeliness of predictions. Finally, combining predictive analytics with causal 
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inference approaches could help not only forecast fiscal distress but also uncover its underlying 

drivers—offering evidence to design more targeted and effective policy interventions. 

        In an era of growing fiscal uncertainty, public sector decision-makers need forecasting tools 

that are not only accurate but also adaptive, interpretable, and actionable. This study shows that 

machine learning provides a powerful, yet underutilized, resource for enhancing fiscal foresight. 

By embedding ML techniques into state-level fiscal monitoring systems, governments can take a 

critical step toward building smarter, more resilient, and data-informed frameworks for public 

financial oversight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

49 

49 

REFERENCES 

Alm, James, Robert D. Buschman, and David L. Sjoquist. "Foreclosures and Local Government 

Revenues from the Property Tax: The Case of Georgia School Districts." Regional Science and 

Urban Economics 46 (May 2014): 1–11. https://doi.org/10.1016/j.regsciurbeco.2014.01.007. 

Alm, James, Robert D. Buschman, and David L. Sjoquist. "Rethinking Local Government 

Reliance on the Property Tax." Regional Science and Urban Economics 41, no. 4 (2011): 320–

331. https://doi.org/10.1016/j.regsciurbeco.2011.03.006. 

Ashraf, S., G. S. Félix, and Z. Serrasqueiro. "Do Traditional Financial Distress Prediction Models 

Predict the Early Warning Signs of Financial Distress?" Journal of Risk and Financial 

Management 12, no. 2 (2019): 55. https://doi.org/10.3390/jrfm12020055. 

Baret, Kevin, Anne Barbier-Gauchard, and Theofanis Papadimitriou. "Forecasting Stability and 

Growth Pact Compliance Using Machine Learning." The World Economy 47, no. 1 (2023): 188–

216. https://doi.org/10.1111/twec.13518. 

Belly, Guillaume, Lukas Boeckelmann, Carlos Mario Caicedo Graciano, Andrea Di Iorio, 

Kleopatra Istrefi, Vasilios Siakoulis, and Agnès Stalla-Bourdillon. "Forecasting Sovereign Risk in 

the Euro Area via Machine Learning." Journal of Forecasting 42, no. 4 (2023): 657–

684. https://doi.org/10.1002/for.2938. 

Breiman, Leo. "Random Forests." Machine Learning 45, no. 1 (2001): 5–

32. https://doi.org/10.1023/A:1010933404324. 

Chen, Mingjie, Matthew DeHaven, Herbert Kitschelt, Seung Jin Lee, and Michael J. Sicilian. 

"Identifying Financial Crises Using Machine Learning on Textual Data." International Finance 

Discussion Papers No. 1374, Board of Governors of the Federal Reserve System, 

2023. https://doi.org/10.17016/IFDP.2023.1374. 

De Marchi, Riccardo, and Andrea Moro. "Forecasting Fiscal Crises in Emerging Markets and 

Low-Income Countries with Machine Learning Models." Bank of Italy Temi di Discussione 

(Working Papers) No. 1405 (2023). https://doi.org/10.32057/0.TD.2022.1405. 

Demyanyk, Yuliya, and Iftekhar Hasan. "Financial Crises and Bank Failures: A Review of 

Prediction Methods." Federal Reserve Bank of Cleveland Working Paper No. 09-04 

(2009). https://doi.org/10.26509/frbc-wp-200904. 

Edinak, E. A., and A. A. Shirov. "Assessment of the Relationship between the Qualification 

Structure of Employment and Household Consumption Using Input–Output Tables." Studies on 

Russian Economic Development 32, no. 6 (2021): 593–

602. https://doi.org/10.1134/S1075700721060046. 

Felix, Alison, and Kate Watkins. "The Impact of an Aging U.S. Population on State Tax 

Revenues." Accessed April 26, 2025. https://www.kansascityfed.org. 



 

 

50 

50 

Fioramanti, Marco. "Predicting Sovereign Debt Crises Using Artificial Neural Networks: A 

Comparative Approach." Journal of Financial Stability 4, no. 2 (2008): 149–

164. https://doi.org/10.1016/j.jfs.2008.01.001. 

Friedman, Jerome H. "Greedy Function Approximation: A Gradient Boosting Machine." The 

Annals of Statistics 29, no. 5 (2001): 1189–1232. https://doi.org/10.1214/aos/1013203451. 

Geurts, Pierre, Damien Ernst, and Louis Wehenkel. "Extremely Randomized Trees." Machine 

Learning 63, no. 1 (2006): 3–42. https://doi.org/10.1007/s10994-006-6226-1. 

Gorina, Evgenia, Craig Maher, and Marc Joffe. "Local Fiscal Distress: Measurement and 

Prediction." Public Budgeting & Finance 38, no. 1 (2018): 72–

94. https://doi.org/10.1111/pbaf.12165. 

Hellwig, Kristina. "Predicting Fiscal Crises: A Machine Learning Approach." IMF Working 

Paper No. WP/21/150 (2021). https://doi.org/10.5089/9781513573843.001. 

Hondroyiannis, George, and Evangelia Papapetrou. "Do Demographic Changes Affect Fiscal 

Developments?" Public Finance Review 28, no. 5 (2000): 468–

488. https://doi.org/10.1177/109114210002800505. 

Holopainen, Marko, and Peter Sarlin. "Toward Robust Early-Warning Models: A Horse Race, 

Ensembles, and Model Uncertainty." Bank of Finland Research Discussion Papers 6 (2015): 1–

48. 

Hosmer, David W., Stanley Lemeshow, and Rodney X. Sturdivant. Applied Logistic 

Regression. 3rd ed. Hoboken, NJ: Wiley, 2013. https://doi.org/10.1002/9781118548387. 

Justice, Jonathan B., and Eric A. Scorsone. "Measuring and Predicting Local Government Fiscal 

Stress: Theory and Practice." In Handbook of Local Government Fiscal Health, edited by Helisse 

Levine, Jonathan B. Justice, and Eric A. Scorsone, 43–74. Burlington, MA: Jones & Bartlett, 2012. 

Justice, Jonathan B., Melanie Fudge, Helisse Levine, D’Leslie Bird, and Muhammad Naveed 

Iftikhar. "Using Fiscal Indicator Systems to Predict Municipal Bankruptcies." In The Palgrave 

Handbook of Government Budget Forecasting, 275–302. Palgrave Macmillan, 2019. 

Leiser, Stephanie, and Sarah Mills. "Local Government Fiscal Health: Comparing Self-

Assessments to Conventional Measures." Public Budgeting & Finance 39, no. 3 (2019): 75–

96. https://doi.org/10.1111/pbaf.12226. 

Lipton, Zachary C. "The Mythos of Model Interpretability." Communications of the ACM 61, no. 

10 (2018): 36–43. https://doi.org/10.1145/3233231. 

Liu, Lanbiao, Chen Chen, and Bo Wang. "Predicting Financial Crises with Machine Learning 

Methods." Journal of Forecasting 41, no. 5 (2021): 871–910. https://doi.org/10.1002/for.2840. 



 

 

51 

51 

Luitel, Hari Sharan, and Mehmet Serkan Tosun. "A Reexamination of State Fiscal Health and 

Amnesty Enactment." International Tax and Public Finance 21, no. 5 (2014): 874–

893. https://doi.org/10.1007/s10797-013-9278-8. 

Office of the New York State Comptroller. "Local Government | Office of the New York State 

Comptroller." Accessed March 4, 2025. https://www.osc.ny.gov/local-government. 

"Open Book New York | Office of the New York State Comptroller." Accessed March 4, 

2025. https://www.osc.ny.gov/open-book-new-york. 

Piermarini, Davide, Antonio Maria Sudoso, and Vittorio Piccialli. "Predicting Municipalities in 

Financial Distress: A Machine Learning Approach Enhanced by Domain 

Expertise." arXiv (2023). https://arxiv.org/abs/2302.05780. 

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning Representations by 

Back-Propagating Errors." Nature 323, no. 6088 (1986): 533–

536. https://doi.org/10.1038/323533a0. 

Sarlin, Peter. "Neuro-Genetic Predictions of the Global Financial Crisis." Neural Computing & 

Applications 24, no. 3–4 (2014): 663–673. https://doi.org/10.1007/s00521-012-1281-y. 

Sarlin, Peter. "On Policymakers’ Loss Functions and the Evaluation of Early Warning 

Systems." Economics Letters 124, no. 3 (2014): 500–

504. https://doi.org/10.1016/j.econlet.2014.07.017. 

Skidmore, Mark, and Eric Scorsone. "Causes and Consequences of Fiscal Stress in Michigan 

Cities." Regional Science and Urban Economics 41, no. 4 (2011): 360–

371. https://doi.org/10.1016/j.regsciurbeco.2011.02.007. 

Sohl, Shannon, Michael T. Peddle, Kurt Thurmaier, Curtis H. Wood, and Gregory Kuhn. 

"Measuring the Financial Position of Municipalities: Numbers Do Not Speak for 

Themselves." Public Budgeting & Finance 29, no. 3 (2009): 74–

96. https://doi.org/10.1111/j.1540-5850.2009.00937.x. 

Stone, Samuel B., Akheil Singla, James Comeaux, and Charlotte Kirschner. "A Comparison of 

Financial Indicators: The Case of Detroit." Public Budgeting & Finance 35, no. 4 (2015): 90–

111. https://doi.org/10.1111/pbaf.12079. 

Tölö, Eero. "Predicting Systemic Financial Crises with Recurrent Neural Networks." Journal of 

Financial Stability 49 (2020): 100746. https://doi.org/10.1016/j.jfs.2020.100746. 

UCLA Institute for Digital Research and Education. "Logit Regression | R Data Analysis 

Examples." Accessed April 16, 2025. https://stats.oarc.ucla.edu/r/dae/logit-regression/. 

 

 



 

 

52 

52 

APPENDIX 

APPENDIX I Definitions of Variables and Indicators, abbreviations, and Data Sources 

Variable Category and Name 

 

Abbreviation 

 

Definition 

 

Data 

Source 

 

Financial Variables    

Open Book 

New York 

Total Revenues TR The total amount of income received by a municipality from all sources during a fiscal 

year 
 

Transfer Revenue TransRev Total amount of revenue received through transfers, including intergovernmental aid 

and financial grants 
 

Federal and State Aid Revenue FSAidRev Total amount of revenues derived from Federal and State Aid  

Sales of Assets Revenue AssetSaleRev Total amount of revenue generated from the sale of goods, services, or other taxable 

activities 
 

Sales and Use Tax Revenue SalesUseTaxRev Total amount of revenue derived from sales and use taxes of tangible personal property 

and/or the consumption of goods and/or services 
 

Property Tax Revenues PropTaxRev Total amount of revenue generated from real property taxes and assessments  

Total Expenditures TE The total amount of money spent by a municipality on all functions during a fiscal year  

Economic Development 

Expenditure 

EconDevExp Total amount of expenditures for economic development 
 

Disaster Expenditure DisasterExp Total amount of expenditures related to preparedness and response to natural disasters 

and emergency 
 

Police Expenditure PolExp Total amount of expenditures for police services, sheriff, traffic control, etc.  

Transportation Expenditure TransportExp Total amount of expenditures for highway and transportation services  

Personnel Expenditure PerExp Total amount of expenditure on personnel services and employee benefits  

Total Fund Balance TotFundBal The cumulative difference between the government’s total assets and total liabilities at 

the end of a fiscal period 
 

Total Cash Balance TotCash Total amount of liquid assets available to a government  

Debt Service Expenditure DebtServExp Total amount of expenditures for debt service  

Bond Issued IssuedBnd The total value of bonds issued by the entity to raise funds for public projects or services  

Bond Paid PaidBnd The amount of outstanding bonds that have been repaid, reducing overall debt 

obligations. 
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Bond Issued during the Current 

Year 

BndIssuedCY The total value of bonds issued within the current fiscal year 
 

Bond Paid during the Current Year BndPaidCY The amount of outstanding bonds that have been repaid within the current fiscal year  

Bond Anticipation Notes issued BANIssued The total value of short-term borrowing through bond anticipation notes  

Bond Anticipation Notes paid BANPaid The amount of bond anticipation notes that have been repaid  

Bond Anticipation Notes issued 

during the current year 

BANIssuedCY The total value of bond anticipation notes issued withing the current fiscal year 
 

Bond Anticipation Notes paid 

during the current year 

 

BANPaidCY The amount of bond anticipation notes that have been repaid within the current fiscal 

year  

Socioeconomic Variables  

 

  
ACS Census 

IND_GINI IND_GINI Gini Index  

Unemployment Rate PCT_UNEMPLO

YED 

The percentage of the population that is unemployed within the jurisdiction 
 

Service Sector Employment rate PCT_SERVICEJ

OB 

The percentage of jobs that are in the service sector within the jurisdiction 
 

High-Skilled Occupation 

Employment Rate 

PCT_MANAGEJ

OB 

The percentage of the labor force employed in management, business, science, and arts-

related occupations within the jurisdiction 
 

Public Sector Employment Rate PCT_PUBLICJO

B 

The percentage of the labor force employed in public administration within the 

jurisdiction 
 

Median Household Income MED_HHINCO

ME 

The median household income (in U.S. dollars) within the jurisdiction 
 

Public Assistance Recipients PCT_PUBLICAS

ST 

The percentage of households receiving income from public assistance programs 
 

Poverty Rate PCT_POVERTY The percentage of individuals whose household or personal income falls below the 

official poverty threshold 
 

Uninsured Population Rate PCT_NOHEALT

HINS 

The percentage of the civilian noninstitutionalized population without health insurance 

coverage 
 

FEMA Disaster Declarations 

 

FEMAcount The total number of FEMA disaster declarations within the jurisdiction 
 

Demographic Variables   ACS Census 
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Sex Ratio RATIO_SEX The number of male residents per 100 female residents  

Total Population TOT_POP The total population estimated by the U.S. Census Bureau within the jurisdiction  

Adult Population (18+) PCT_OVER18 The percentage of the population aged 18 years or older  

Senior Population (65+) PCT_OVER65 The percentage of the population aged 65 years or older  

Households with Minors PCT_HHMINOR The percentage of households that have at least one resident under the age of 18  

Average Household Size AVG_HHSIZE The average number of individuals residing in a single household  

High School Graduation Rate 

(25+) 

PCT_HSGRAD The percentage of individuals aged 25 and over who have completed high school or an 

equivalent qualification 
 

Veteran Population PCT_VETERAN The percentage of individuals aged 18 and older who have served in the U.S. military  

Disability Rate PCT_DISABILIT

Y 

The percentage of the civilian non-institutionalized population with a disability 
 

Black Population Percentage PCT_BLACK The percentage of the population that identifies as Black or African American.  

Hispanic Population Percentage PCT_HISPANIC The percentage of the population that identifies as Hispanic or Latino  

    

Housing Variables    ACS Census 

 

Vacancy Rate PCT_VACANT The percentage of housing units that are unoccupied  

Renter-Occupied Housing  PCT_RENTAL The percentage of housing units that are occupied by renters  

Median Home Value MED_HVALUE The median value of owner-occupied housing units  

GRAPI PCT_GRAPI GRAPI (Gross Rent as a Percentage of Household Income)  

SMOCAPI PCT_SMOCAPI SMOCAPI (Selected Monthly Owner Costs as a Percentage of Household Income)  



 

 

55 

55 

APPENDIX II: Machine Learning Models for Fiscal Stress Prediction 

 

A. Logistic Regression (Baseline Model) 

 
Figure A1: Example logistic regression curve fitted to data, showing how the probability of 

an outcome (e.g., passing an exam) increases with a predictor (hours studying) in an S-shaped 

manner. 

 

Logistic regression is a generalized linear model commonly employed for binary classification 

tasks and is extensively utilized as a baseline method in econometric analyses of fiscal distress 

(Hosmer, Lemeshow, & Sturdivant, 2013). Specifically, logistic regression models the log-odds 

of the occurrence of fiscal stress (coded as 1) through a linear combination of predictor variables. 

The linear predictors are then transformed via the logistic function (sigmoid), mapping outputs 

into predicted probabilities ranging from 0 to 1. Model parameters are generally estimated using 

maximum likelihood estimation, ensuring that the predicted probabilities closely reflect observed 

binary outcomes. In the present study, logistic regression serves as an essential baseline model, 

leveraging lagged fiscal indicators to predict the likelihood of fiscal stress occurrence in 

subsequent periods. Despite its interpretability and simplicity, logistic regression may 

inadequately capture complex nonlinear relationships inherent in real-world data. This limitation 

often motivates the integration of more sophisticated and flexible machine learning algorithms to 

enhance predictive performance. 

 

 

 

 

B. Gradient Boosting (Ensemble Tree Model) 
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Figure A2: Schematic of gradient boosting, where decision trees (weak learners) are added 

sequentially. Each new tree is trained on the residuals (errors) of the previous ensemble, and 

the final prediction is the aggregated output of all trees. 

 

Gradient boosting is an ensemble learning method that iteratively builds a predictive model by 

sequentially adding weak learners, typically shallow decision trees, aimed at correcting residual 

errors from previous iterations (Friedman, 2001). Unlike bagging methods, boosting focuses on 

bias reduction: each tree fits on the pseudo-residuals (the remaining prediction errors) of the 

current model, effectively performing a gradient descent optimization in function space. Over 

many iterations, the ensemble of trees converges to a strong predictive model that can capture 

complex nonlinear patterns. In our study, we employ gradient boosting to predict fiscal stress by 

training an ensemble of trees on lagged fiscal features, where each successive tree improves the 

prediction of stress by addressing the shortcomings (residual errors) of the prior trees. This method 

allows optimization of an arbitrary differentiable loss function (we use a classification loss for 

fiscal stress) and often achieves higher accuracy than single models or bagged trees. 

Gradient boosting produces an ensemble model (commonly known as gradient boosted trees) by 

iteratively fitting new trees to the residuals of the model. 

C. Artificial Neural Network (ANN) 
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Figure A3: Topology of a simple Artificial Neural Network with an input layer, one hidden 

layer, and an output layer. Each circle represents a neuron, and connections (not shown) 

carry weighted signals forward. 

 

An artificial neural network is a layered computational model inspired by biological neurons, 

capable of approximating complex nonlinear functions. The network consists of interconnected 

units called neurons arranged in an input layer, one or more hidden layers, and an output layer. 

Each neuron receives inputs (either raw features or outputs from previous layers), computes a 

weighted sum, applies a nonlinear activation function, and passes the result to the next layer. This 

layered structure enables ANNs to learn high-level feature representations. The learning principle 

of an ANN is error backpropagation: during training, the network’s output is compared to the true 

outcome, and the error is propagated backward through the layers to adjust the connection weights 

via gradient-based optimization (Rumelhart, Hinton, and Williams 1986). Over many iterations 

(epochs), the network “learns” weight values that minimize the prediction error on the training 

data. In our study, we utilize a feed-forward ANN to predict fiscal stress, using past fiscal and 

socio-economic variables as inputs. The network’s hidden layer allows it to capture nonlinear 

interactions between predictors (e.g., trends in revenues and expenditure) that might signal 

impending fiscal stress. We trained the ANN on historical data (with fiscal stress labels) and used 

a validation process to tune its complexity and prevent overfitting. 

Artificial neural networks consist of layers of interconnected “neurons” that apply weighted sums 

and activation functions to learn complex mappings. They are trained via supervised learning, 

iteratively adjusting weights to minimize a loss function using techniques like backpropagation 

(Rumelhart, Hinton, and Williams 1986). This enables ANNs to model nonlinear relationships that 

simpler models might miss. 

 

 

 

D. Random Forest (Ensemble Tree Model) 

 

 

 
Figure A4: Example of a random forest classification process with four decision trees. Each 

tree votes on whether a sample is “Cancer” or “Non-cancer” (illustrative task), and the 

majority vote determines the final classification. 
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Random forests, introduced by Breiman (2001), an ensemble learning method that aggregates a 

large number of decision trees to improve predictive accuracy and robustness. Each individual 

decision tree in the forest is trained on a bootstrap sample of the data (random sampling with 

replacement) and typically using a random subset of features at each split. This randomization 

ensures the trees are de-correlated, so that their errors are largely independent. For classification 

tasks, a random forest outputs the class that is the majority vote among the predictions of all 

constituent trees; for regression, it outputs the average of their predictions. By averaging many 

deep trees, random forests achieve a strong balance of variance reduction (through averaging) 

while maintaining low bias, thus mitigating the overfitting that a single complex tree might 

exhibit. In our application, we train a random forest on lagged financial indicators (e.g., fund 

balances, debt ratios, revenue trends) to predict future fiscal stress. Each tree provides a “vote” 

(stress or no stress), and the ensemble’s majority vote yields the final prediction. The random 

forest also allows us to measure variable importance, helping to identify which fiscal indicators 

are the strongest predictors of distress. 

 

 

 

 

E. Extremely Randomized Trees (Extra Trees) 

 
Figure A5: Illustration of an ensemble of decision trees (comparable to a random forest). 

Extra Trees uses the entire dataset for each tree and selects split points extremely randomly 

(e.g., random thresholds for “Mutation” features in this illustrative example) instead of the 

best splits. 

 

 

Extremely randomized trees (Extra Trees), proposed by Geurts, Ernst, and Wehenkel (2006), 

extend the random forest methodology by incorporating additional randomization during the tree-

building process. Like a random forest, an Extra Trees model constructs many decision trees and 

combines them by averaging or majority voting. However, Extra Trees differ in two keyways: (1) 

No Bootstrapping: each tree is trained on the full training sample rather than a bootstrap resample. 

(2) Random Splits: when growing a tree, split thresholds are chosen at random for each candidate 
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feature (within that feature’s range) instead of computing the optimal split point; among these 

random splits, the best one is then selected to split the node. These differences mean that Extra 

Trees typically produce even more diverse trees, reducing variance at the cost of a slight increase 

in bias. In the context of our study, we use the Extra Trees classifier on the same feature set (lagged 

fiscal data) to predict fiscal stress. The model trains multiple extremely randomized decision trees 

on all the data, where each tree’s structure is highly random. The final prediction is obtained by 

aggregating the predictions of all these trees. We found that this additional randomness can 

improve generalization, and indeed Extra Trees achieved strong predictive performance in our 

fiscal stress experiments. 

 


