THE ECONOMIC IMPACTS OF CLEAN POWER DISCUSSION OF ARKOLAKIS AND WALSH (2024)

Neil R. Mehrotra

Federal Reserve Bank of Minneapolis

The views expressed here are the views of the author and do not necessarily represent the views of the Federal Reserve Bank of Minneapolis or the Federal Reserve System

Brookings Papers on Economic Activity September 26, 2024

SUMMARY AND DISCUSSION OUTLINE

Summary of Arkolakis and Walsh:

- Fall in battery and solar costs drive 20-80% reductions in wholesale electricity prices
- Lower electricity prices raise wages by 2-3% nationwide and may significantly raise TFP growth

Main comment: Electricity price declines likely to be more modest:

- 1. Technology cost assumptions
- 2. System v. levelized cost of electricity
- 3. Recent electricity price trends

ENERGY SYSTEMS MODELING INDICATE MODEST PRICE DECLINES

- ▶ Wholesale prices decline by 2040 is 15%, by 2050 is 22%
- Arkolakis and Walsh estimate decline of 37% by 2040

CAPITAL AND LEVELIZED COST EXPECTED TO FALL SHARPLY

	\$/KW			% change	3	
	2023	2040	2050	2040	2050	
Natural gas	1522	1309	1206	-14	-21	
Solar PV	1611	825	683	-49	-58	
Solar PV + 4 hour battery	2590	1400	1154	-46	-55	

Capital cost

Capacity

	L	factor				
	\$/MWh			% change f		
	2023	2040	2050	2040	2050	
Natural gas	44	41	40	-6	-10	0.66
Solar PV	43	23	20	-47	-55	0.33
Solar PV + 4 hour battery	93	55	47	-41	-49	0.33 / 0.16

$$P_{i}^{k} = \sum_{t=1}^{T} \frac{P_{i}^{e} \theta_{i} - \phi_{i} - F_{i} \theta_{i}}{\left(1 + r\right)^{t}}$$
$$\Rightarrow P_{i}^{e} = F_{i} + \theta_{i}^{-1} \left(\phi_{i} + P_{i}^{k} C\left(r\right)\right)$$

SYSTEM COST OF ELECTRICITY

SOLAR SCENARIO

System cost = LCOE

SOLAR SCENARIO

$$P_{NG}^{k} = \sum_{t=1}^{T} \frac{P_{e}\tilde{\theta}_{NG} - \phi_{i} - F_{NG}\tilde{\theta}_{NG}}{(1+r)^{t}}$$

System cost of electricity

NATURAL GAS SCENARIO

SYSTEM COST AS WEIGHTED AVERAGE

NATURAL GAS SCENARIO

 $P_e = \omega_{NG} P_{e,NG} + (1 - \omega_{NG}) P_{e,solar}$

• ω_{NG} is the share of electricity generation from natural gas

System cost with storage

NATURAL GAS SCENARIO

$$\sum_{i} P_i^k \mathbf{K}_i = \sum_{i} \sum_{t=1}^{T} \frac{\left(P_e \tilde{\boldsymbol{\theta}}_i - \boldsymbol{\phi}_i - F_i \tilde{\boldsymbol{\theta}}_i\right) \mathbf{K}_i}{\left(1 + r\right)^t}$$

System cost \neq LCOE

REALISTIC SCENARIO

System $\text{cost} \neq \text{LCOE}$

REALISTIC SCENARIO

System $cost \neq LCOE$

REALISTIC SCENARIO

Solar + storage + natural gas

TECHNOLOGY COSTS NOT DECISIVE FOR ELECTRICITY PRICES

		Level	% change		
	1999-03	2004-08	2019-23	20-year	15-year
Electricity cost					
Residential cost (2023 cents/KWh)	13.9	14.8	15.5	12	5
Industry cost (2023 cents/KWh)	7.9	8.9	8.1	3	-9
PPI: electricity to industry (2023 = 100)	89	92	95	7	3
PPI: electricity to commerce $(2023 = 100)$	75	82	95	27	16
Fuel cost					
Coal (2023 \$/MMBtu)	2.04	2.45	2.35	15	-4
Natural gas (2023 \$/MMBtu)	6.37	10.87	3.78	-41	-65
Capital cost					
10-year Treasury rate	5.1	4.3	2.3	-55	-47
Price index for turbines (2017 = 100)	112	105	98	-12	-7
Price index for electric power structures $(2017 = 100)$	89	101	94	6	-6

- Real electricity prices have generally risen in past 15-20 years
- Increase in electricity prices despite large decreases in cost of natural gas, interest rates and equipment cost

TAKING STOCK

- Arkolakis and Walsh (2024) solar and battery cost assumptions optimistic but comparable to energy systems inputs
- Systemwide electricity costs can differ markedly from levelized cost estimates
 - Ensuring adequate dispatchable capacity remains challenging with renewables and battery storage
 - True irrespective of a zero emissions target
- Electricity prices have risen recently despite markedly lower fuel and capital costs
- Wholesale price reductions likely, but more modest (10-20% range)

MACROECONOMIC IMPACTS

- Wages gains modest due to low share of electricity in aggregate production:
 - Aggregate production: $F(K, E, N) = K^{\alpha} E^{\eta} N^{1-\alpha-\eta}$
 - With an electricity share of 1.1%, 20-80% electricity price decline implies 0.4-1.5% rise in wages
- Conditional on price declines, are welfare gains understated?
 - ▶ Direct household consumption is more than 1/3 of electricity use
 - Spatial reallocation of industry within the US and from rest-of-world may be significant
 - Potential productivity growth impact dwarf the wage impacts