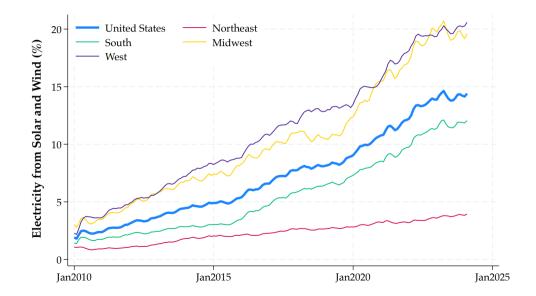
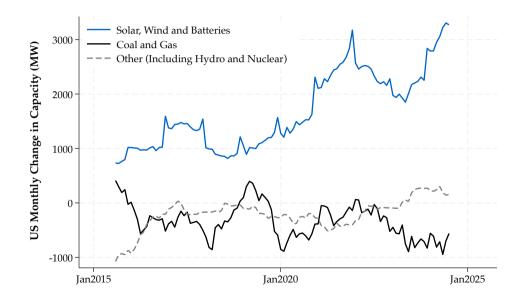
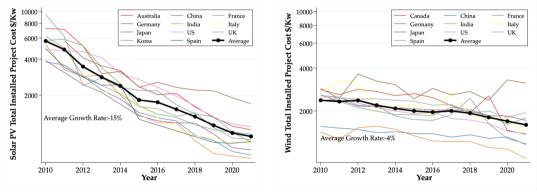
The Economic Impacts of Clean Power


Costas Arkolakis Conor Walsh

Yale


Columbia

Brookings Papers on Economic Activity September 2024


Renewable energy has been increasing rapidly in the US

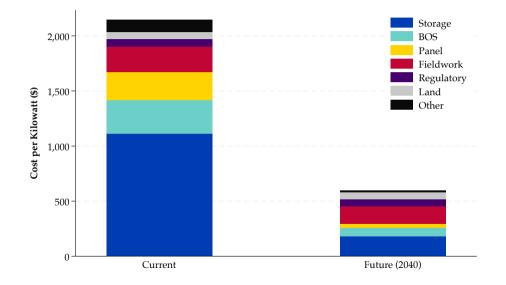
Flows into new generation are now dominated by solar and wind

Part of a worldwide shift driven by rapid cost declines

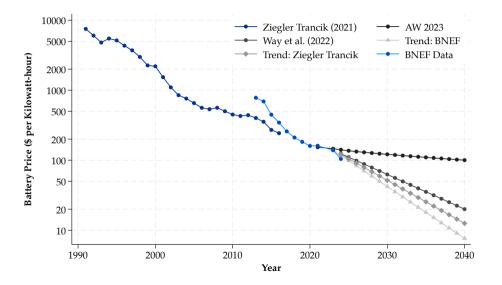
Solar Project Costs

Wind Project Costs

Our paper has three parts. We:


- Our paper has three parts. We:
 - ① Use capital cost projections to develop electricity *price bounds* at the local level

- Our paper has three parts. We:
 - ① Use capital cost projections to develop electricity *price bounds* at the local level
 - 2 Use bounds in a class of spatial general equilibrium models to esimate impact on local wages


- Our paper has three parts. We:
 - ① Use capital cost projections to develop electricity *price bounds* at the local level
 - 2 Use bounds in a class of spatial general equilibrium models to esimate impact on local wages
 - **3** Use a long-term growth model to model how renewables shift aggregate innovation

- Our paper has three parts. We:
 - **1** Use capital cost projections to develop electricity price bounds at the local level
 - 2 Use bounds in a class of spatial general equilibrium models to esimate impact on local wages
 - **3** Use a long-term growth model to model how renewables shift aggregate innovation
- Our purpose is to ask "What if", and take technological trends seriously

Projected costs of firmed solar fall significantly by 2040

Batteries in particular have fallen in price, expected to get cheaper

Use capital cost to develop local price bound

▷ In 2040, a project being installed at all in cost Q_ℓ expects average revenues to cover this cost:

$$egin{aligned} \mathcal{Q}_\ell &= \sum_{t=1}^T \mathcal{R}_{0
ightarrow t}^{-1} heta_\ell \mathcal{P}_{\ell t}^\mathcal{E} (1-\delta)^t \end{aligned}$$

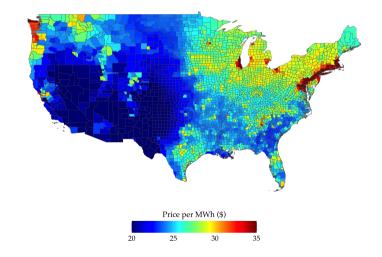
- ▷ Renewables have zero fuel cost, receive $\theta_{\ell} p_{\ell t}^{\mathcal{E}}$ in electricity revenue
- ▶ Potential output θ_{ℓ} varies significantly across space
- ▷ Won't hold with equality everywhere (e.g. urban areas), so $p_{\ell_t}^{\mathcal{E}}$ an **upper bound**

Use capital cost to develop local price bound

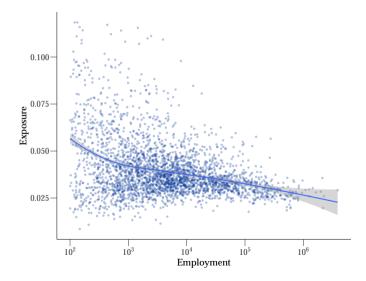
▷ In 2040, a project being installed at all in cost Q_{ℓ} expects average revenues to cover this cost:

$$oldsymbol{Q}_\ell = \sum_{t=1}^T R_{0
ightarrow t}^{-1} heta_\ell p_{\ell t}^{\mathcal{E}} (1-\delta)^t$$

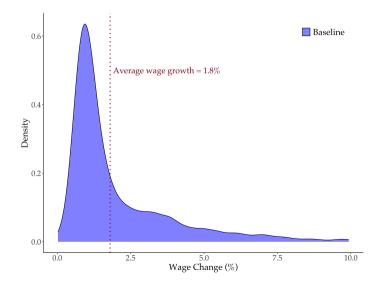
- ▷ Renewables have zero fuel cost, receive $\theta_{\ell} p_{\ell t}^{\mathcal{E}}$ in electricity revenue
- ▶ Potential output θ_{ℓ} varies significantly across space
- ▷ Won't hold with equality everywhere (e.g. urban areas), so $p_{\ell_t}^{\mathcal{E}}$ an **upper bound**

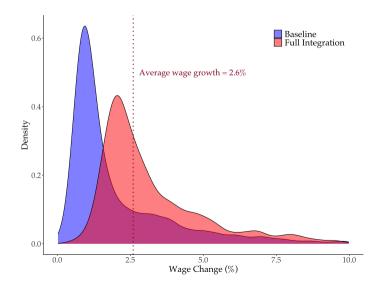

Use capital cost to develop local price bound

▷ In 2040, a project being installed at all in cost Q_ℓ expects average revenues to cover this cost:

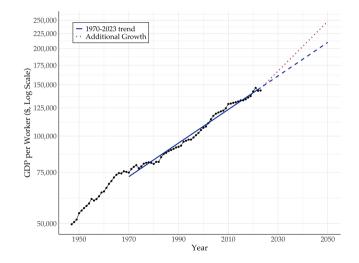

$$egin{aligned} \mathcal{Q}_\ell &= \sum_{t=1}^T \mathcal{R}_{0
ightarrow t}^{-1} heta_\ell oldsymbol{p}_{\ell t}^{\mathcal{E}} (1-\delta)^t \end{aligned}$$

- ▷ Renewables have zero fuel cost, receive $\theta_{\ell} p_{\ell t}^{\mathcal{E}}$ in electricity revenue
- ▶ Potential output θ_{ℓ} varies significantly across space
- ▷ Won't hold with equality everywhere (e.g. urban areas), so $p_{\ell_t}^{\mathcal{E}}$ an **upper bound**

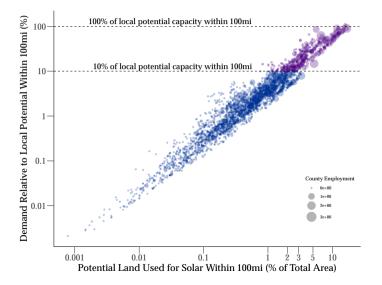

Wholesale price bounds are low and spatially heterogeneous


Local wage responses vary depending on local industrial structure

Local wage responses vary depending on local industrial structure

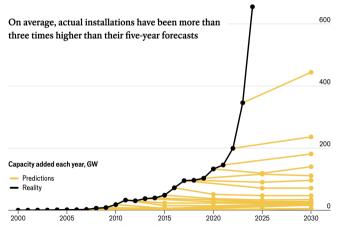


Building out the grid could significantly raise the benefits



Appendix

Shifting to renewables could stop the "resource drag" on growth



Is unconstrained local entry a reasonable assumption?

A long history of underestimation

↓ EASY PV how solar outgrew expectations

Installations for 2024 are an estimate from BloombergNEF for direct current solar capacity Sources: IEA; Energy Institute; BloombergNEF