
67

ANDREW ATKESON
University of California, Los Angeles

STEPHEN KISSLER
University of Colorado, Boulder

The Impact of Vaccines and Behavior  
on US Cumulative Deaths  

from COVID-19

ABSTRACT     We estimate that the combination of changes in behavior to slow 
the spread of COVID-19 and the delivery of vaccines to a substantial majority  
of the American population by mid-2021 saved close to 800,000 American  
lives relative to what would have occurred had vaccines not been developed. 
We argue that the duration and magnitude of this behavioral response—and 
thus its overall success in delaying infections—came as a surprise, relative to 
both our historical experience with pandemic influenza and to model-based 
projections based on that experience. Thus, we take from our experience with 
COVID-19 over the past four years the important public health lesson that 
behavior change can be a powerful force for slowing the spread of a dangerous 
infectious respiratory disease for a long time. At the same time, these behav-
ioral changes to slow the spread of COVID-19 came at a tremendous eco-
nomic, social, and human cost. To avoid similar pain from mitigation in the 
next pandemic, we argue that we need to make investments now not only in 
vaccine development, but also in data infrastructure so that we can precisely 
target behavior-oriented mitigation efforts to minimize their economic and 
social impacts in the next pandemic.
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Starting in March 2020, the American public undertook massive changes 
in behavior in response to the threat from COVID-19.1 These behav-

ioral changes arose partly in response to public mandates and partly as a 
spontaneous private reaction to this new disease threat. These public and 
private disease mitigation efforts succeeded in slowing the transmission of 
SARS-CoV-2 to a remarkable extent through 2020 and well into 2021, by 
which time effective vaccines had been developed and delivered to much 
of the American population.

As a result of these mitigation efforts, a large majority of Americans 
were able to get vaccinated for COVID-19 before experiencing their first 
infection. We document this using nationwide serology data, which lets us 
estimate the cumulative number of infections and vaccinations over time. 
Population-level data on vaccine efficacy indicate that this success in deliv-
ering vaccines to many Americans prior to their first SARS-CoV-2 infec-
tion substantially reduced the infection fatality rate (IFR) these Americans 
suffered when they did contract COVID-19.

In this paper, we use these observations, together with a structural 
epidemiological model, to argue that the combined success in slowing 
SARS-CoV-2 transmission through behavior change and the widespread 
delivery of vaccines saved close to 800,000 American lives.

We argue that relative to historical experience with pandemic influenza 
and modeling based on this experience, this public health success was a 
surprise. As of March 2020, it was not at all clear that it would be possible 
to slow the spread of SARS-CoV-2 long enough to develop vaccines and 
deliver them to the American population in time to save lives. We see the 
success of behavior-based mitigation of SARS-CoV-2 transmission as one 
of the most important public health lessons of this pandemic—it is, in fact, 
possible to slow the spread of a dangerous respiratory disease for quite a 
long time.

But, at the same time, these mitigation efforts came at a tremendous eco-
nomic, social, and human cost. To avoid similar pain from mitigation in 
the next pandemic, we argue that we need to make investments now not  
only in vaccine development, but also in data infrastructure so that we can 
precisely target mitigation efforts to minimize the economic and social 
impacts of mitigation with the next pathogen. One might think of these 
investments in data infrastructure as similar in spirit to the huge investments 

1.  In what follows, we use the term “COVID-19” to refer to the disease caused by the 
SARS-CoV-2 virus.
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made in the infrastructure to gather economic data after World War II to 
better guide economic policy. For population-level infectious disease miti-
gation policies to be effective at low economic and social cost, they need to 
be guided by detailed real-time epidemiological, demographic, and behav-
ioral data, which are only available in a crisis if one is prepared in advance 
to gather such data.

I.  Our Estimate of Lives Saved

We estimate that behavioral mitigation and vaccination together saved close 
to 800,000 American lives between February 15, 2020 and February 15,  
2024. This estimate is based on three data sources: serology data capturing 
immunity derived from SARS-CoV-2 infection and COVID-19 vaccination 
in the American population, data on the dynamics of COVID-19-associated 
deaths, and linked vaccine and COVID-19 mortality data from thirty US 
states. We describe the construction and interpretation of these data in 
section II.

Our estimate rests on two central premises. First, due to the immune 
evasion capabilities of SARS-CoV-2, the overwhelming majority of 
Americans would have become infected with SARS-CoV-2 by February 
2024 under any realistic vaccination and behavioral mitigation scenario. 
Second, the health risk of a person’s first infection, when unvaccinated, is 
vastly higher than one’s risk after having been vaccinated or previously 
infected. Thus, the benefit of behavioral mitigation and vaccination came 
principally from vaccinating individuals before their first SARS-CoV-2 
infection. The serology data indicate that slightly more than two-thirds 
of the US population were vaccinated prior to their first infection with 
SARS-CoV-2; it is this group that principally contributes to our estimate 
of lives saved.

In support of these premises, an estimated 94 percent of Americans 
had been infected with SARS-CoV-2 by late 2022, despite the behavioral 
mitigation and vaccine uptake in the preceding years (Klaassen and others  
2023). Population-level data on COVID-19 mortality for those who had 
been vaccinated versus those who had not been vaccinated gathered from 
thirty US states with linked mortality and vaccine data are consistent with 
the view that COVID-19 was extremely dangerous for those who contracted 
it for the first time without protection from vaccines. For those contracting 
COVID-19 after vaccination or prior infection, the disease is much less 
dangerous.
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Based on these premises, we construct both a back-of-the-envelope cal-
culation of the lives saved by mitigating behavior and vaccines and an 
estimate from a structural epidemiological model that considers behavior, 
decline in the COVID-19 IFR over time, and waning immunity against 
both reinfection and severe disease. The back-of-the-envelope calculation, 
which conjectures that the 68 percent of Americans that managed to get 
vaccinated prior to their first SARS-CoV-2 infection would have suffered 
an IFR four times higher had they not been vaccinated, leads us to an esti-
mate of 845,000 lives saved.

We develop a full structural model to delve a bit deeper into this calcu-
lation and set ourselves up for conducting counterfactual exercises. The 
model combines a fairly detailed epidemiological description of the various  
variants of SARS-CoV-2 that have appeared over the past four years with a 
simple model of how mitigating behavior reacts to the rise and fall of daily 
deaths from the disease as well as parameters governing the administra-
tion of vaccines.2 We argue that this model fits both the dynamics of the 
data on COVID-19 deaths and the dynamics of the serology data on infec-
tions and vaccinations quite well. Our model’s implications for cumulative 
COVID-19 deaths from February 15, 2020 through February 15, 2024 are 
shown in the first row of table 1.

We simulate the model with vaccines turned off to arrive at a counter
factual prediction for the dynamics of COVID-19 deaths in the absence of 
vaccines, with results for cumulative mortality in this counterfactual reported 
in line 2 of table 1. The use of the full structural model with its added detail 
delivers our preferred estimate of just under 800,000 lives saved as the dif-
ference between cumulative deaths reported on line 2 and line 1.

We then draw out four lessons for future pandemics from these data and 
our counterfactual modeling exercises.

Table 1.  Model-Implied Cumulative COVID-19 Deaths

Baseline and alternative scenarios

Baseline behavior and vaccines 1,180,000
Baseline behavior, no vaccines 1,979,000
No mitigation with vaccines 3,345,000

Source: Authors’ calculations.

2.  We have presented versions of this model in earlier work, including Atkeson (2021a, 
2021b, 2023b).
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I.A.  Lesson 1

First, we argue that it was the combination of mitigating behavior and 
vaccines together that saved lives.

To illustrate this point, we conduct two counterfactual model simula-
tions. We simulate our model with its baseline specification of mitigating 
behavior but without vaccines. Without vaccines, behavior alone would 
have postponed infections, but in the end, nearly everyone would have 
been infected and subject to a high IFR from that first infection.

We then simulate our model with vaccines distributed starting at the end 
of December 2020 but with no mitigating behavior before that time. We 
report our model-implied cumulative death toll for this scenario in the third 
row of table 1. In this counterfactual simulation, we see that, without a 
behavioral response, vaccines would have come too late to save lives. Our  
model implies that cumulative COVID-19 deaths would also have been sub-
stantially higher in this scenario without mitigation because our serology  
and deaths data imply that COVID-19 was substantially more dangerous  
in 2020 than in 2021, and most infections in this scenario would have 
occurred in 2020.

One might be tempted to use this scenario of an unmitigated epidemic as 
a benchmark against which to argue that the combination of vaccines and 
behavior together saved over 2 million lives. We argue that such a compar-
ison would be an overstatement as it seems highly implausible that there 
would be no private efforts to avoid transmission even in the absence 
of any public mitigation policies. The model simulation of an unmitigated 
epidemic has the daily death toll peaking at over 60,000 deaths per day. 
It seems highly likely that people would have reacted on their own to 
such an outcome even in the absence of any public policies toward the 
epidemic.

I.B.  Lesson 2

This success of delaying infections for many months through changes 
in behavior was a surprise relative to historical experience and modeling of 
pandemic influenza.

We take as the strongest piece of evidence in favor of this claim the 
conclusion of Ferguson and others (2006), a prominent study of mitigation 
options for a pandemic influenza in the United States, regarding the timing  
of administration of vaccines that these vaccines would have “almost  
no effect” (451) if started after 120 days after the first worldwide case 
because at this time horizon, they would be too late to save lives. Clearly, 
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mitigation of COVID-19 bought us many more than 120 days for vaccines 
to have a significant impact on COVID-19 cumulative mortality.

I.C.  Lesson 3

To a remarkable extent, this strong behavioral response to COVID-19 
through 2020 and 2021 was universal across all fifty states.

Certainly, there are significant differences in cumulative mortality from 
COVID-19 across states, but we argue that the outcomes across US states 
have much more in common than any of them (except New York City) 
have with the predicted impact of an unmitigated epidemic. We take these 
common dynamics of COVID-19 across states as strong evidence of the 
importance of an endogenous behavioral reaction to current disease inci-
dence as predicted by many economic models.3

And yet, this observation leads us to our fourth lesson.

I.D.  Lesson 4

It is unclear what behavioral reaction to expect in response to the next 
epidemic.

Epidemiologists have noted the impact of changes in behavior on the 
dynamics of prior epidemics, particularly in attenuating the initial phase 
of exponential growth of infections predicted by simple epidemiological 
models.4 But figuring out how to predict the quantitative impact of such 
changes in behavior and how private behavior will respond to public health 
measures has proved an unsolved challenge.5

We see any successful theory of behavior as having to confront a wide 
range of data across different epidemics. For example, as noted above, the 
success of public and private changes in behavior in slowing the spread of 
COVID-19 came as a surprise relative to historical experience. And yet 
New York City suffered a terrible first wave of deaths from COVID-19  
early in the pandemic largely due to a delayed reaction to the disease despite 
clear warnings from the Italian experience a few weeks earlier. Somehow 
the evidence of COVID-19 deaths in New York City seemed to have a 
much bigger impact on behavior elsewhere in the United States than did the 
European experience despite objective evidence that air travel links were 
likely to spread the disease across the globe.

3.  See, for example Atkeson (2021b), Gans (2022), and Atkeson, Kopecky, and Zha (2024) 
and the papers cited therein.

4.  See, for example, Chowell and others (2016) and Eksin, Paarporn, and Weitz (2019).
5.  See, for example, Ferguson (2007) and Funk and others (2015).



ATKESON and KISSLER	 73

Of particular concern is the question of how our collective experience 
with COVID-19 over the past four years will influence behavioral responses 
to the next pandemic for perhaps a generation or more.

The remainder of our paper is organized as follows. In section II, we 
review the data used in our study. In section III, we summarize the main 
features of our structural epidemiological model. In section IV, we present 
our main results and the four main lessons we take away from these results. 
In section V, we lay out more specifically the types of investments in data 
infrastructure that we believe would be useful in preparing to do more tar-
geted mitigation in the next pandemic. Finally, in section VI, we conclude.

In section A of the online appendix, we compare the implications of 
our model to other estimates of lives saved in the literature. In section B 
of the online appendix, we look more closely at the cross-section of out-
comes for COVID-19 cases, vaccinations, and deaths across US states. We 
use our model to argue that the range of outcomes observed are consistent 
with plausible variation either in the strength of the behavioral reaction or 
in state-specific structural factors having an impact on transmission rates. 
Disentangling the importance of these factors as well as state-level varia-
tion in IFRs is something we leave for future research. In section C of the 
online appendix, we give a full description of our model and its parameters.

II.  Serology and Mortality Data

In this section, we review the serology data and the data on mortality from 
COVID-19 that we use in choosing parameters for our model and con-
structing our estimate of the impact of behavior and vaccines on cumula-
tive mortality from this disease.

II.A.  Serology Data

The serology data we use are drawn from two surveys.
As described in Jones and others (2021), the Centers for Disease 

Control and Prevention (CDC) measured SARS-CoV-2 seroprevalence 
(the population-level prevalence of immune markers in the blood) from  
2020–2022 by testing for antibodies against two distinct viral antigens 
in samples from blood donors. One of these antibody types (against type  
S antigen) is generated in response to either a prior infection or vaccina-
tion. The other antibody type (against type N antigen) is generated only 
in response to prior infection. Thus, with some caveats, the pair of posi-
tive or negative results for each sample allows one to measure whether the  
individual making the blood donation had been previously infected (with 
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or without vaccination), vaccinated without prior infection, or neither 
vaccinated nor previously infected.6 We refer to this survey as the Blood 
Donor Survey.7

As described in Bajema and others (2021), serology data were also 
collected from samples from commercial blood testing labs. These data 
measure only whether the person giving the sample had previously been 
infected. We refer to this as the Commercial Lab Survey.8

We note that these serology surveys were drawn from different conve-
nience samples—one a sample of blood donors and the other a sample of 
those having blood drawn as part of their medical checkups or care. We 
check for consistency of the measure of those infected across these two 
sources. Unfortunately, no serology data from a sample designed to be rep-
resentative of the population are available.

In figure 1, we show the results of the Blood Donor and Commercial 
Lab serology surveys at the national level for the overall population. The 
crosses show estimates from the Blood Donor Survey of the cumulative 
percentage of the population that had experienced infection by the survey 
date (showing a response to the N antigen). The dots show estimates from 
the Commercial Lab Survey of the cumulative percentage of the popula-
tion that had experienced infection by the survey date. We see that the 
two serology surveys give consistent estimates for the percentage of the 
population infected at least through the first Omicron wave in early 2022.

The circles in figure 1 show estimates from the Blood Donor Survey 
of combined seroprevalence. That is, it adds to the percentage showing 
a response of the N antigen, the percentage of those showing a response 
to the S antigen but not the N antigen. This additional group is presumed 
to be vaccinated but not yet infected; these circles show the sum of those 
with measurable antibodies from infection (whether or not they also have 

6.  Such caveats include waning immunity, which can cause a previously infected or vacci-
nated person to test negative on one or both of the antigen tests, and heterogeneity in the immune 
response, in which a person can mount an abnormally low immune response to the N antigen 
despite being infected. See also Ong and others (2021).

7.  CDC, “2020–2021 Nationwide Blood Donor Seroprevalence Survey Infection- 
Induced Seroprevalence Estimates,” https://data.cdc.gov/Laboratory-Surveillance/2020-2021- 
Nationwide-Blood-Donor-Seroprevalence-Su/mtc3-kq6r/about_data; “2022–2023 Nationwide  
Blood Donor Seroprevalence Survey Combined Infection- and Vaccination-Induced Sero
prevalence Estimates,” https://data.cdc.gov/Laboratory-Surveillance/2022-2023-Nationwide- 
Blood-Donor-Seroprevalence-Su/ar8q-3jhn/about_data.

8.  CDC, “Nationwide Commercial Laboratory Seroprevalence Survey,” https://data.
cdc.gov/Laboratory-Surveillance/Nationwide-Commercial-Laboratory-Seroprevalence-Su/
d2tw-32xv/about_data.

https://data.cdc.gov/Laboratory-Surveillance/2020-2021-Nationwide-Blood-Donor-Seroprevalence-Su/mtc3-kq6r/about_data
https://data.cdc.gov/Laboratory-Surveillance/2020-2021-Nationwide-Blood-Donor-Seroprevalence-Su/mtc3-kq6r/about_data
https://data.cdc.gov/Laboratory-Surveillance/2022-2023-Nationwide-Blood-Donor-Seroprevalence-Su/ar8q-3jhn/about_data
https://data.cdc.gov/Laboratory-Surveillance/2022-2023-Nationwide-Blood-Donor-Seroprevalence-Su/ar8q-3jhn/about_data
https://data.cdc.gov/Laboratory-Surveillance/Nationwide-Commercial-Laboratory-Seroprevalence-Su/d2tw-32xv/about_data
https://data.cdc.gov/Laboratory-Surveillance/Nationwide-Commercial-Laboratory-Seroprevalence-Su/d2tw-32xv/about_data
https://data.cdc.gov/Laboratory-Surveillance/Nationwide-Commercial-Laboratory-Seroprevalence-Su/d2tw-32xv/about_data
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been vaccinated) and those with antibodies from vaccination but not from 
infection.

Several features of these serology survey data stand out. First, we see 
that the estimated cumulative percentage of the population infected as of 
January 2021 was quite low—well below 20 percent for the overall popu
lation. That is, efforts to slow the spread of SARS-CoV-2 through 2020 
appear to have succeeded.

We see from the gap between the circles and the crosses/dots that the 
rapid deployment of vaccines succeeded in vaccinating a large portion of 
the population prior to first infection by the late summer of 2021. Consis-
tent with this rapid deployment of vaccines in the first half of 2021, we see 
slow growth in the estimate of cumulative infections between January 2021 
and July 2021. From the start of 2021 through the summer of that year, the 
combination of behavior and vaccinations appeared to be on a path of 
ending the epidemic.
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(Blood Donor Survey)

Seroprevalence from infection
 (Blood Donor Survey)
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(Commercial Lab Survey)

Source: CDC.

Figure 1.  National-Level Results of the Blood Donor and Commercial Lab Serology 
Surveys for the Overall Population
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Unfortunately, due to the combination of new variants (Delta and Omicron)  
and waning of the immunity provided by vaccines and prior infection, in  
the fall of 2021, we see infections continue to rise, particularly so in 2022. 
Given that variants of Omicron have continued to show the ability to infect 
those who had previously been vaccinated (and reinfect those with prior 
infections), it is likely that by early 2024, an overwhelming majority of 
the population has experienced a COVID-19 infection. Considerations of 
herd immunity that were prominently discussed early in the pandemic have 
turned out ex post not to be relevant due to a combination of immune eva-
sion by new variants and waning immunity.

II.B.  Mortality Data

We now turn to our data on mortality from COVID-19. We draw these 
data from the CDC’s COVID Data Tracker website.9 This data set counts 
deaths from COVID-19 at both the national and state levels, with deaths for 
New York City broken out separately.

Figure 2 shows cumulative and weekly COVID-19 deaths at a daily rate 
for the United States from February 2020 to February 2024 in panels A 
and B, respectively. The mortality data are shown as dotted lines. The out-
comes predicted by our baseline model simulation are shown as solid lines.

As shown in this figure, the COVID-19 epidemic in the United States 
has played out in a series of waves, particularly over the first two years 
of the epidemic. While these waves garnered considerable attention at the 
time, what we find most striking about this pattern is that, from very early 
on in the epidemic, cumulative COVID-19 deaths grew roughly linearly. 
This linear growth of cumulative deaths is clearly faster in the first two 
years of the epidemic (from February 2020 through February 2022) than in 
the second two years of the epidemic.

Why do we find the linear growth of cumulative COVID-19 deaths over 
the past four years striking? What is missing in figure 2 is any substan-
tial initial period of exponential growth of cumulative deaths as would 
be predicted by standard epidemiological models for a novel pathogen. 
To our minds, this observation of linear growth in cumulative deaths sus-
tained over a four-year period is one of the most remarkable features of the 
COVID-19 epidemic in contrast with historical experience with influenza 

9.  The data can be downloaded from CDC, “Provisional COVID-19 Death Counts, Rates, 
and Percent of Total Deaths, by Jurisdiction of Residence,” https://data.cdc.gov/NCHS/
Provisional-COVID-19-death-counts-rates-and-percen/mpx5-t7tu/about_data.

https://data.cdc.gov/NCHS/Provisional-COVID-19-death-counts-rates-and-percen/mpx5-t7tu/about_data
https://data.cdc.gov/NCHS/Provisional-COVID-19-death-counts-rates-and-percen/mpx5-t7tu/about_data
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Source: CDC COVID Data Tracker and authors’ calculations.
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and the predictions of many epidemiological models. In our model, this 
outcome is attributed to the strength of the public and private behavioral 
responses to mitigate transmission of SARS-CoV-2.

II.C.  Implied Infection Fatality Rates (IFRs)

Note that these serology and deaths data together imply that the IFR for 
COVID-19 declined over the course of 2020 and 2021 and then again with 
Omicron. In particular, the Blood Donor and Commercial Lab Surveys 
give identical estimates that 11.5 percent of the US population had been 
infected by December 2020. The cumulative COVID-19 death toll by the 
end of 2020 was close to 390,000. Given a US population of 332 million, 
this would imply an overall IFR close to 1 percent.

Looking at the same numbers prior to the first big Omicron wave, in 
November 2021, the Blood Donor Survey estimated that 27.8 percent of 
the population had been infected and the Commercial Lab Survey esti-
mated that 31.6 percent of the population had been infected, while the 
CDC estimates that just over 800,000 Americans had died of COVID-19 
by the end of November 2021, implying that close to 61 million Americans  
were infected with SARS-CoV-2 between January 1 and November 2021 
(if we take 30 percent infection-induced seroprevalence as our estimate 
for November 2021). These numbers imply an IFR closer to 0.66 percent  
over the course of 2021 prior to Omicron. The equivalent numbers after 
the first large Omicron wave show a substantial further decline in the 
implied IFR. We use these estimates as a guide for parameterizing the IFR 
in our model.

II.D.  Mortality by Vaccine Status

We make use of population-level data on the realized COVID-19 mor-
tality rates of the vaccinated and unvaccinated. As discussed in Jia and 
others (2023), thirty states of the United States integrated their vaccine 
databases with their reporting of mortality data. Thus, for these states, on 
a weekly basis, one can measure the number of COVID-19-related deaths 
among those who had received the two doses of the primary series of vac-
cines at least fourteen days before death and COVID-19-related deaths 
among those who had not received these primary vaccines. The CDC also 
estimates the number of people in these states in these two groups, and thus 
one can construct a weekly COVID-19 mortality rate for the vaccinated 
and unvaccinated populations.

In panel A of figure 3, we show data on the weekly age-adjusted 
COVID-19 mortality rates for those with two doses of a primary vaccine 
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Source: CDC.

Panel A: Age-adjusted death rates per 100,000 population by vaccination status
× 10–4

Panel B: The ratio of mortality rates in panel A
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(from the first half of 2021) at least fourteen days prior to death (dashed 
line) and those without this protection from vaccines (solid line).10 The 
dates given on the x axis are the year and week number used in the CDC’s 
Morbidity and Mortality Weekly Report (MMWR). We see in this figure that 
the weekly mortality rate for the unvaccinated was much higher than for  
the vaccinated in 2021. After the first big Omicron wave, the weekly 
COVID-19 mortality rate for the unvaccinated falls to meet the low mor-
tality rate for the vaccinated.

In panel B of figure 3, we show the ratio of these two mortality rates. 
We see in the panels of this figure that vaccination reduced the COVID-19  
mortality rate on the order of 85 percent until the first Omicron wave. 
After that first Omicron wave, we see that the difference in mortality rates 
by vaccination status was much smaller. We conjecture, based on the 
serology data, that this outcome arose as the majority of the unvaccinated 
had come to have the protection of a prior SARS-CoV-2 infection. Thus, 
the mortality rates for the unvaccinated fell to a level much closer to that 
for the vaccinated as both groups were largely protected after this first 
Omicron wave.

II.E.  Waning Immunity and the Long Tail of COVID-19 Deaths

With the emergence of Omicron variants, we have seen that both vac-
cines and prior infection provide only temporary protection against new 
infections. As a result, the prevalence of SARS-CoV-2 infections has 
remained high over the past two years despite the fact that by the end of 
the first quarter of 2022, the overwhelming majority of the US population 
had already been vaccinated or experienced a prior SARS-CoV-2 infection 
or both.

This outcome is a result of two factors. One is that the protection offered 
by vaccines and prior infection against reinfection wanes over time. The 
other is that the continual evolution of the virus allows new versions of it 
to evade immune defenses. After two years of Omicron and three years of 
experience with mRNA vaccines, it is clear that both processes are at work 
with COVID-19, but their relative importance is difficult to disentangle.11

10.  We use the data available at CDC, “Rates of COVID-19 Cases or Deaths by Age Group 
and Vaccination Status and Booster Dose,” https://data.cdc.gov/Public-Health-Surveillance/
Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm/about_data.

11.  See, for example, Jung and others (2024).

https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm/about_data
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm/about_data
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III.  Summary Description of the Model

We now present our structural model of the impact of behavior and vaccines 
on cumulative mortality from COVID-19 in the United States over the 
period from February 15, 2020 to February 15, 2024. This model extends 
that in Atkeson (2023b). A full description of this model is given in the 
online appendix that accompanies this paper.

III.A.  Purpose and Fit of the Model

Recall that our estimate of the impact of behavior and vaccines on cumu-
lative COVID-19 mortality is based primarily on an accounting of the 
number of Americans who were able to get vaccinated prior to their first 
SARS-CoV-2 infection, and to a lesser degree on an estimate of the benefits 
of delaying infections due to a decline over time in the IFR of COVID-19.  
We see this model as a formal accounting device to account for the 
dynamics of the COVID-19 infection fatality ratio implied by the serology 
data and the transition of the epidemic toward an endemic steady state.

Thus, while we do not formally estimate the parameters of this model, 
we do evaluate it as an accounting device on the basis of its fit to the dynam-
ics of SARS-CoV-2 infections and COVID-19 vaccinations at the national 
level as measured by the serology data in figure 1 as well as the dynamics 
of deaths from COVID-19 at the national level as shown in figure 2.

We show the model fit to the serology data in figure 4. Panel A compares 
the model estimate of the fraction of the population with protection from 
severe disease due to prior infection, taking into account waning immunity 
as described below (this fraction can be either vaccinated or not), to the 
serology data on the fraction of the population showing antibodies from 
prior infection.

Panel B of figure 4 compares the model estimate of the fraction of the 
population showing antibodies from vaccination but not prior infection, 
again taking into account waning immunity as described below, to the 
serology data on the fraction of the population showing antibodies from 
vaccination but not prior infection.

In this figure, we see that the fit of the model with its baseline param-
eters to the dynamics of infections, vaccinations, and deaths is quite good.

We then use this model to assess several counterfactuals to estimate the 
impact of behavior and vaccines on cumulative mortality from COVID-19 
in the United States over the past four years. It is here that the structure 
of the model is harder to assess as we do not observe these counterfactual 
outcomes in the data. As we describe the model, we aim to describe what 
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Source: CDC and authors’ calculations.
Note: In panel B, the model-implied percentage vaccinated equals to V(t)/0.75 where V(t) is the portion 

of the population with effective protection after vaccination in the model.
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features of the data that we do observe allow us to identify the key param-
eters driving our model’s implications for these counterfactuals. In particu-
lar, we focus on describing why we have some confidence in our choices 
for the parameters governing the nature and strength of the behavioral 
response in the model.

III.B.  Model Structure

The model is a susceptible-exposed-infectious-hospitalized-resistant-
susceptible (SEIHRS) model with waning immunity and introduction of 
the Alpha, Delta, and Omicron variants as the epidemic progresses. This 
model extends the workhorse susceptible-infectious-recovered (SIR) epi-
demiological model in several dimensions. We explain the reasons for 
these extensions after reviewing some basic epidemiological concepts.

To begin, a standard SIR model of an epidemic views the population 
at any point in time as being divided into three categories: susceptible to 
infection S(t), currently infected and capable of spreading the disease I(t), 
and resistant to the disease R(t) either from natural immunity (including 
that induced by prior infection) or from vaccination.

This distribution of characteristics across the population is assumed to 
evolve over time as follows. Those that are currently infectious, I(t), are 
assumed to stop being infectious at rate γ per unit time. A fraction η of 
those who stop being infectious do so because they die. We thus refer to η 
as the IFR.

Those currently infectious encounter other agents in the population at 
random and transmit their disease to those agents met at a rate β(t) per unit 
time. We refer to β(t) as the transmission rate. We allow the transmission 
rate to depend on factors inherent to the pathogen and the environmental 
location as indicated by a parameter β− as well as time-dependent factors 
such as seasonality and behavioral responses.

Since the expected length of time that an infectious agent is expected to 
be in this state is 1/γ, the average number of agents that an infectious person  
will transmit their disease to is given by β(t)/γ. Since only fraction S(t) of 
those agents are actually susceptible to the disease, the expected number 
of new infections caused by a single infectious agent is given by what is 
called the effective reproduction number:

R eff t` j=
c

b t` j
S t` j.
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Note that the average length of time that an infectious agent remains 
infectious (here 1/γ) in this model also corresponds to the average length 
of time between one individual becoming infectious and subsequent infec-
tions caused by that individual. This length of time is referred to as the 
generation interval.

The effective reproduction number is related to the SIR model implied 
growth rate of the fraction of the population that is infectious by

I t` j
Io t` j
= R eff t` j- 1b lc

where İ(t) denotes the derivative of infections with respect to time.
We note two points from this formula. First, we see that the question 

of whether the epidemic—in terms of I(t)—is growing or shrinking over 
time is determined by whether the effective reproduction number is above 
or below one.

Second, the speed of growth of infections per unit time is determined 
both by the effective reproduction number and the generation interval. 
Thus, to match data on the growth rate of infections (or deaths) per unit 
time, one must take a stand on these two parameters. In our model, we hold 
the generation interval fixed across variants and aim to match the dynamics 
of weekly deaths in the data with differences in inherent transmissibility of 
different variants, a seasonal influence on transmissibility, and a behavioral 
response to the current level of deaths.

We now explain the dimensions in which we extend this simple model 
and why we do so. We then review our choices for parameter values, with 
a focus on the generation interval, IFRs, transmission rates, and the impact 
of behavior on these transmission rates.

We add compartments to the simple SIR model as follows. We add both 
an exposed state E and the hospitalized state H. Agents in the exposed 
state have contracted the disease but are not yet infectious. This is a common  
modification of the SIR framework. Inclusion of this state enriches the 
dynamics of initial growth of the epidemic. We describe below the purpose 
of the hospitalized state H. We also add a vaccinated state V to count those 
who have been vaccinated prior to their first SARS-CoV-2 infection. In 
terms of protection against infection and severe disease, this state is equiv-
alent to the R state counting those with immunity from prior infection.

To allow for different SARS-CoV-2 variants to have different transmis-
sion rates and different IFRs, the compartments E and I are further broken 
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down by variant i, where i indexes the original variant, and the Alpha, 
Delta, and Omicron variants.

The rate at which agents leave the Ei compartment for both the normal 
and more transmissible variants is σ and the rate at which agents leave the Ii 
compartments for all variants is γ. We also include compartments Ei and 
Ii corresponding to those experiencing breakthrough Omicron infections.  
These individuals are modeled as having immunity to previous variants but 
not to Omicron. The purpose of these additional states is to allow the IFR 
for breakthrough infections to differ from that of other infections.

With these assumptions, the mean generation time for the model is then 
1/σ + 1/γ. We set this generation time in line with estimates from the CDC.12 
As mentioned above, this generation time sets the time scale of the epidemic 
implied by the model.

III.C.  The Model of Behavior and Disease Transmission

We use an ad hoc model of the impact of behavior on transmission rates. 
Specifically, the reduced form for the behavioral response of the transmis-
sion rate to the level of daily deaths is given by

b i t` j= b– i exp -l t` j
dt

dD t` j
+ } t` j

J

L

K
KK

N

P

O
OO

where the parameters 
–
βı control the inherent transmissibility of the origi-

nal and subsequent variants of SARS-CoV-2, the parameter ψ(t) is used 
to introduce seasonality in transmission, and κ(t) is the semi-elasticity of 
transmission with respect to the level of daily deaths. Thus, public and 
private behavior having an impact on transmission is assumed to respond 
only to the current level of daily deaths.

Five comments regarding this model of behavior are in order.
First, we have assumed that behavior reacts to the current level of daily 

deaths. As described in Atkeson (2021b), this form of behavior serves to 
regulate the effective reproduction number and drive it down to one in the 
initial phase of the epidemic and then keep it close to one for the remain-
ing course of the epidemic. More specifically, such behavior regulates 
the model-implied growth rate of cumulative deaths to remain roughly 

12.  See CDC, “COVID-19 Pandemic Planning Scenarios,” https://archive.cdc.gov/www_
cdc_gov/coronavirus/2019-ncov/hcp/planning-scenarios.html. On that web page, the CDC 
notes a mean time of approximately six days between symptom onset in one person to symptom 
onset in another person infected by that individual.

https://archive.cdc.gov/www_cdc_gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://archive.cdc.gov/www_cdc_gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
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constant over time. We argue throughout this paper that this outcome of 
roughly linear growth of cumulative COVID-19 deaths is one of the most 
striking features of the data on COVID-19 deaths, not only in the United 
States but around much of the world. While this outcome might be pre-
dicted by economic theory, it is not universally observed across epidemics. 
For example, as we discuss in the online appendix, mitigating behavior  
seems to have taken a different and more persistent form in the recent 
mpox epidemic. Thus, it is not clear that behavior will take the same form 
in the next epidemic.

Our second comment concerns the role of the dual assumptions that 
behavior responds to the daily death rate and not the level of infections 
and that, due to the presence of the H compartment, daily deaths are essen-
tially a distributed lag of past levels of I(t). As discussed in the appendix 
of Atkeson (2021b), these assumptions appear to be remarkably successful 
in allowing the model to match the size of the waves of COVID-19 deaths 
with each new variant over the past four years. Models in which behavior 
reacts to the level of infections directly or that do not include this lag have 
difficulties in matching the size of these waves as, in these cases, behavior 
is too successful at keeping the effective reproduction number close to one. 
That is, mitigating behavior reacts so quickly to changes in the level of 
infections that waves are cut off.13

Third, we see the introduction of new variants as exogenous shocks to 
transmission rates that allow us to identify the strength and timing of the 
behavioral response of the model. We thus take the observation that the 
model can match the size and shape of the waves of deaths associated with 
the introduction of the Alpha, Delta, and Omicron variants as validation 
of the parameter choices governing the behavioral response in the model, 
including the delay induced by the H compartment. Moreover, we take 
from the Omicron wave in which new infections spiked much higher than 
in previous waves and much higher than deaths did as validation of the 
assumption that behavior responds to deaths and not infections.

Fourth, the waves of COVID-19 deaths appear to have a seasonal 
pattern, with summertime lows, which we match with our seasonal factor 
ψ(t) chosen to follow a sine wave.

Fifth, ideally, one would want to build a model in which agents are fully 
rational and make decisions about their mitigation behavior, particularly 
for understanding behavioral responses in the counterfactuals that we 

13.  On this point, see Droste and Stock (2021) and Atkeson, Kopecky, and Zha (2021).
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consider. To build such a model, however, one must take a stand on what 
agents believe about the risks that they face from the disease, and this can 
be hard to do in real time. Moreover, it might also be difficult to incorporate 
the delayed responses of behavior that appear to be critical in reproducing 
the dynamics of the epidemic that we have observed. We leave these chal-
lenges to future research.

Fitting this model to the data has been an ongoing project starting with a 
first version in Atkeson (2021a). The goal has been to explore whether one 
could account for the dynamics of the COVID-19 epidemic with a simple 
model with a stable formulation of behavior. To that end, in previous work 
and in this model, we find that the strength of the response of public and 
private behavior having an impact on transmission to the level of daily 
deaths as indexed by κ(t) appears to have relaxed in the late fall of 2020 
and remained consistent since then. Specifically, we choose an initially  
high value of κ(t) for the period February 15, 2020 until November 2020, 
and then κ(t) declines to a new level equal to 35 percent of its initial value. 
We refer to this apparent relaxation of behavior in the face of the level 
of daily COVID-19 deaths as “fatigue.” We find that this onetime change 
in behavior in our model is required for the model to match the height of 
the waves of COVID-19 in late 2020 and beyond.14 This formulation of 
behavior was chosen early on in this modeling process starting with the 
first version of this model in February 2021 and has been kept constant since 
that time.

III.D.  Key Parameters

We set the IFRs for the SARS-CoV-2 variants prior to Omicron to be a 
declining function of time. As discussed above, the serology data estimates 
for the percentage of the population infected as of the end of 2020 and the 
data on cumulative deaths at that time imply an IFR of 1 percent for 2020.

We use that value for the IFR for 2020. The corresponding IFR implied 
by the serology and deaths data for 2021 for the period prior to Omicron 
is 0.5 percent.

To match the big jump in infections with the first Omicron wave with 
an increase in deaths that is modest in comparison to what would have 
happened if Omicron was as deadly as prior variants, we use a lower IFR 
of 0.15 percent for those infected with Omicron out of the S compartment. 
We also allow Omicron to infect those in the R compartment (those with 

14.  Andersson and others (2021) and De Gaetano and others (2023) argue that the impend-
ing arrival of effective vaccines may have caused such a relaxation of behavior.



88	 Brookings Papers on Economic Activity, Spring 2024

protection from prior infection or vaccination) with a very low IFR. We 
refer to such infections as breakthrough infections.

Having chosen these parameters, we choose the parameters for inherent 
transmissibility 

–
βı to match the dynamics of the waves of deaths associated 

with each of them. As described in the online appendix, these parameters 
imply a relative transmissibility across variants indexed by the ratio of 
these parameters that is in line with established estimates.

In modeling the transmissibility of Omicron, one must set two  
parameters—the constant 

–
βı reflecting its inherent transmissibility and a  

parameter governing the probability that a vaccinated or recovered indi
vidual suffers a breakthrough infection. These two parameters combine to  
give Omicron a growth advantage over Delta. There is considerable uncer-
tainty regarding the relative importance of these two parameters. We choose 
them to match data from South Africa that Omicron had a growth advan-
tage of a factor of three relative to Delta in a population with 85 percent 
protected by prior immunity as well as our serology and deaths data in that 
first Omicron wave.15 We find that our model’s implications for the first 
wave of Omicron deaths are largely invariant to the particular choice of  

–
βı 

for Omicron. What does vary as this parameter is varied (and the prob-
ability of a breakthrough infection modified to keep the growth advantage 
of Omicron over Delta at three times) is the size of the wave of initial 
Omicron infections. We have chosen a pair of parameters to match this 
growth advantage for Omicron and this wave of infections as indicated in 
the serology data.

To model the impact of vaccines, we set the rate at which susceptible 
agents are moved from the S compartment directly to the V compartment 
equal to λ(t) = 0.0065 starting on January 1, 2021, and zero before that 
date. Vaccines are administered at this rate for the first 185 days of 2021. 
The rate of vaccination then drops to λ(t) = 0.0065/5 until the end of 2022 
and then λ(t) is set to zero after that. In the model, the V compartment is 
equivalent to the R compartment and is simply used to count vaccinations 
prior to infection.

In our model, agents in compartment V(t) enjoy full protection from 
infection by the Alpha and Delta variants and substantial protection against 
death from Omicron in the same way as agents with prior infection (in the 
R compartment). Thus, we regard the number of agents in this compartment 

15.  See, for example, Raquel Viana, Sikhulile Moyo, Daniel G. Amoako, Houriiyah Tegally, 
Cathrine Scheepers, Christian L. Althaus, and others, “Rapid Epidemic Expansion of the SARS-
CoV-2 Omicron Variant in Southern Africa,” Nature 603 (2022): 679–86.
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as representing the population that is both vaccinated prior to a first SARS-
CoV-2 infection and that gained protection from that vaccination. To model 
that vaccines are not 100 percent effective, we assume that the portion 
of those who arrive in the V compartment is 75 percent of the total vac-
cinated. Thus, when we compare the model implications for V(t) to the 
measures from the serology data on those vaccinated but not infected in 
figure 4, we plot V(t)/0.75 as a measure of the total population vaccinated.

We assume that agents flow out of the V and R compartments back to 
the S compartment and thus become susceptible again to severe disease 
at a rate corresponding to expected duration of protection against severe 
disease of three years. Because Omicron can also infect those in the R 
and V compartments with breakthrough infections (but with a much lower 
IFR), our model allows protection against reinfection to wane much faster 
than protection against severe disease. It is this second process that largely 
accounts in the model for the long tail of COVID-19 deaths that we see 
over the past two years. Both estimates for the speed of waning are subject 
to considerable uncertainty.

IV.  Main Model Results: Four Lessons

We now use the model to conduct counterfactual experiments to explore the 
impact of behavior and vaccines on cumulative mortality from COVID-19  
in the United States over the past four years. We focus on drawing four 
lessons from the model.

IV.A.  Lesson 1: Behavior and Vaccines Together

As discussed above, we show our model’s baseline implications for 
the dynamics of COVID-19 deaths, infections, and vaccinations in fig-
ures 2 and 4. We show the model’s baseline implications for cumulative 
COVID-19 mortality over the four-year period from February 15, 2020 
to February 15, 2024 in the first row of table 1 above.

We show the model implications for COVID-19 deaths with the baseline 
parameters governing behavior but with no vaccines in figure 5 and in the 
second row of table 1. As indicated in the second row of table 1, the model 
implies that absent vaccines, the cumulative death toll over the past four 
years would have been 1,979,000. That is, our model implies that, given 
baseline behavior, vaccines saved 799,000 lives. We take this as the head-
line result of this paper.

We see in figure 5 that most of these additional deaths would have 
occurred in 2021. After the first big Omicron wave in early 2022, the model 
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Source: CDC COVID Data Tracker and authors’ calculations.
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implications for COVID-19 deaths with and without vaccines are nearly 
the same. This is because, in the absence of vaccines, the model implies 
that close to 95 percent of the population would have experienced their 
first SARS-CoV-2 infection by the end of that first Omicron wave and thus 
the level of population protection against severe disease after that point 
would have been similar with or without vaccines. This prediction of our 
model for the dynamics of infections in the absence of vaccines is shown 
in figure 6.

In our model, we assume that vaccination reduced the IFR from first 
infection with SARS-CoV-2 in 2021 from 0.005 to 0.0013 (or 25 percent of 
the IFR for the naive unvaccinated).16 Thus, to understand our counterfactual 

16.  Recall that we assume that 25 percent of those who receive a vaccine do not end up with 
protection, while the other 75 percent gain complete protection until either their immunity wanes 
or they suffer a breakthrough infection with Omicron.

Source: CDC and authors’ calculations.
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estimate of the COVID-19 death toll in the absence of vaccines, imagine 
that this 68 percent of the population had instead been infected without the 
protection of vaccines and had, as a result, suffered the full IFR of 0.005 
rather than 0.0013. Had this occurred, the counterfactual death toll from 
COVID-19 in the absence of vaccines would have been 847,000 higher 
than the baseline with vaccines.17 Our full model delivers a slightly lower 
estimate of lives saved due to the arrival of Omicron in late 2021, which 
had a lower IFR than prior variants, and the assumption that the protection 
against severe disease offered by vaccines (and prior infection) wanes over 
time. But one can clearly see from this calculation the simple logic under-
lying our estimate of the impact of behavior and vaccines on cumulative 
mortality from COVID-19 in the United States.

These blood serology data highlight how important the interaction of  
behavior change and vaccine development and deployment were in saving 
lives. Had SARS-CoV-2 swept through the US population in an unmitigated 
epidemic, it is likely that the overwhelming majority of the US population 
would have been infected by early fall of 2020, leaving much less room for 
people to benefit from being vaccinated prior to their first infection.

We illustrate this point by simulating the model with the behavioral 
parameter κ(t) = 0. As shown in figure 7, in this simulation, the vast majority  
of the US population gets infected by the late summer of 2020.18 We report 
the implied cumulative death toll in the third row of table 1. Here we see an 
extraordinary model-implied death toll, consistent with an IFR of 1 percent 
applied to nearly the entire US population in 2020 together with subsequent 
deaths in later years due to waning immunity.

Clearly, any estimate of lives saved depends on the assumed counter-
factual. What impact should this have on our thinking about the next pan-
demic? From an ex ante perspective as of March 2020, the premises on 
which our ex post estimation is based would have been hard to predict. 
Was it going to be possible to delay transmission for the time required to 
develop and deliver effective vaccines? If vaccines had taken much longer 
to arrive or had offered less protection against severe disease, would the 
whole exercise of slowing transmission have been a wasted effort?

17.  The calculation is 0.68 × 0.75 × 0.005 × 332,000,000 where the last term is the US 
population.

18.  Our results for the cumulative mortality of an unmitigated epidemic during 2020 are 
worse than those in Ferguson and others (2020) in part because our estimate of the basic repro-
duction number of the original variant is higher (we assume 3 while they assumed 2.5) and thus 
an unmitigated epidemic infects more of the population and in part because our estimated IFR at 
the start of the epidemic is slightly higher (1 percent versus 0.9 percent).
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Source: CDC COVID Data Tracker and authors’ calculations.
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Based on these simulations comparing the death toll with baseline behav-
ior and no vaccines to that with no mitigating behavior, we argue, in short, 
no—as such, mitigation efforts would have still helped to reduce strain on a 
severely overburdened health care system and bought critical time to learn 
how to better care for patients with severe disease even in the absence of 
vaccines. Such considerations are important to bear in mind when consid-
ering which behavioral interventions should be adopted. Without behav-
ioral responses to the epidemic, an unmitigated epidemic would have been 
much more severe than even our counterfactual with behavior but without 
vaccines.

IV.B. � Lesson 2: Strength and Duration of the Behavioral Response 
Was a Surprise

We argue now that the success in slowing the spread of COVID-19  
during 2020 and 2021 evident in the serology data came as a surprise rela-
tive to both historical experience with pandemic influenza and model-based 
estimates of the impact of mitigation measures on transmission based on 
that historical evidence.

In many ways, pandemic influenza was the closest historical and epi-
demiological parallel to the COVID-19 epidemic. Both diseases are fast-
moving respiratory diseases with potentially high IFRs. The case of the 
1918–1919 “Spanish Flu” epidemic was viewed as particularly relevant, 
but the epidemics of 1957, 1968, and 2009 also served as examples.

The risk of a new pandemic influenza has been viewed as a substantial 
threat for a long time. See, for example, the disease and economic scenar-
ios laid out by the President’s Council of Economic Advisers in September 
2019 (CEA 2019), which foresaw the potential for hundreds of thousands 
of deaths and trillions of dollars of economic disruption from a pandemic 
influenza.

In response to this threat from pandemic influenza, epidemiologists have  
invested considerable effort into studying historical experiences and model
ing the impact of various mitigation options on influenza transmission.19

19.  For examples of studies of transmission during the 1918–1919 pandemic influenza, see 
Mills, Robins, and Lipsitch (2004), Fraser and others (2011), and Eggo, Cauchemez, and Fer-
guson (2011). For studies of the impact of mitigation on transmission during the 1918–1919 
pandemic influenza, see, for example, Bootsma and Ferguson (2007), Hatchett, Mecher, and 
Lipsitch (2007), Correia, Luck, and Verner (2022), and Velde (2022).
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Of particular interest in this regard is figure 1 in Hollingsworth and others  
(2011), which shows the duration (in weeks) and effectiveness (in terms 
of percentage reduction in transmission rates) of historical interventions to 
slow the spread of the 1918–1919 influenza and SARS-CoV-1. That figure 
estimates that interventions in the 1918–1919 influenza pandemic reduced 
transmission rates by less than 50 percent in all cases and much less than 
that amount in many cases. Moreover, these interventions were sustained 
for less than fifteen weeks. As shown in that figure, mitigation efforts for 
SARS-CoV-1 were estimated to be much more effective, but these were also 
sustained for less than fifteen weeks. In comparison, with COVID-19, we 
see from the serology data that efforts to slow disease spread substantially 
had an impact for many months through late 2021.

Prominent studies of the possibilities for using public health interven-
tions to contain a new influenza strain at its source include Longini and 
others (2005) and Ferguson and others (2005). Prominent modeling studies 
of the use of broader public health measures, including school closures and 
social distancing, to slow the spread of a pandemic influenza that broke 
through efforts to contain it at the source include Ferguson and others 
(2006) and Germann and others (2006). Universally, these studies predict 
short periods of very rapid spread of disease even in the modeled presence 
of intense public health efforts to slow disease spread so that available flu 
vaccines can be administered.

Particularly telling in this regard is the caption of figure 4 in Ferguson 
and others (2006, 451) that notes, regarding the timing of administration 
of vaccines, these vaccines would have “almost no effect” if started after 
120 days after the first worldwide case.20 This conclusion is clearly too 
pessimistic about the possibility of controlling the spread of a respiratory 
pathogen through behavioral mitigation, as COVID-19 vaccines still had 
a major benefit despite arriving more than a year after the first worldwide 
case. The COVID-19 pandemic fundamentally changed our conception of 
what is possible with respect to behavioral mitigation.

This contrast between the anticipated and observed impact of behavioral 
change on slowing the transmission of COVID-19 is even more remark-
able given that the original strain of SARS-CoV-2 was more contagious 
than a pandemic influenza strain was expected to be, had the ability to 
spread prior to the onset (or in the absence) of symptoms, and ultimately 

20.  See also figure 2 in Germann and others (2006).
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generated new variants with substantially increased transmissibility. The 
cards were stacked against us, even relative to the modeled scenarios for 
pandemic influenza that served as our basis for our earliest understanding 
of SARS-CoV-2.21

To see this point, consider the scenarios for pandemic influenza expected 
by modelers as laid out in Meltzer and others (2015). Table 1 in that paper 
lays out the range of scenarios for transmissibility and clinical severity of 
potential new pandemic influenzas typically considered, and figure 1 in that 
paper places historical pandemics in this space of transmissibility and 
clinical severity. The original strain of SARS-CoV-2 had higher trans-
missibility than the worst-case scenario and was near to the worst-case 
scenario in terms of its clinical severity.

The fact that SARS-CoV-2 could be transmitted prior to showing symp-
toms made epidemiologists (including ourselves) pessimistic that its spread 
could be effectively controlled. As described in Fraser and others (2004, 
6146), “the success of . . . control measures is determined as much by 
the proportion of transmission occurring prior to the onset of overt clinical 
symptoms (or via asymptomatic infection) as the inherent transmissibility  
of the etiological agent (measured by the reproductive number R0).” Like-
wise, early in the COVID-19 epidemic, Hellewell and others (2020) pointed 
to the pre- and asymptomatic transmission of COVID-19 as a reason to be 
pessimistic about our ability to contain its spread.

These features of COVID-19, together with the hazy prospects as of 
March 2020 for developing an effective vaccine in time to be useful, meant 
that despite all the planning for a pandemic influenza the set of actionable 
targeted mitigation policies available to slow the spread of COVID-19 in a 
cost-effective manner was very small. In fact, in an early and highly cited 
article from March 9, 2020, giving broad outlines of options for mitigating 
the coming pandemic, Anderson and others (2020, 934, emphasis added) 
remarked that “it is easy to suggest a 60 percent reduction in transmission 
will do it or quarantining within 1 day from symptom onset will control 
transmission, but it is unclear what communication strategies or social dis-
tancing actions individuals and governments must put in place to achieve 
these desired outcomes.”

We argue that one of the main lessons of our experience with COVID-19  
is there are far greater possibilities for slowing transmission of a deadly 
respiratory virus than previously thought. Given that new knowledge, we 

21.  See, for example, Davies and others (2020).
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should work urgently to determine how to achieve similar behavioral miti-
gation in the next pandemic but at far lower cost.

IV.C.  Lesson 3: Behavior and State-Level Outcomes

There has been great interest in comparing the impact of COVID-19  
across states of the United States in the press and in some academic work.22 
Certainly the outcomes for cumulative mortality for COVID-19 vary widely 
across the states of the United States. What accounts for these differ-
ences? We address this question in greater detail in section B of our online 
appendix.

Here we make the argument that, relative to the historical and modeling 
benchmarks for pandemic influenza discussed above, residents of all fifty 
states made surprisingly strong and lasting efforts to slow the spread of 
SARS-CoV-2 so that vaccines came in time to save a considerable number 
of lives.

To illustrate this point, in online appendix figure B.6, taken from 
Chitwood and others (2022), we show the dynamics of the effective repro-
duction number for SARS-CoV-2 for each of the fifty states of the United 
States. In this figure, we observe that behavior in all fifty states changed 
rapidly and dramatically so as to drive the effective reproduction number  
of COVID-19 in the state down to one very early on in the epidemic. More-
over, this behavior was sufficiently sustained to keep this effective repro-
duction number close to one throughout 2020. Atkeson, Kopecky, and 
Zha (2024) find similar results for both US states and many countries.

As we have discussed above, if the effective reproduction number of a 
disease remains close to one, then the growth rate of current infections is 
close to zero. Equivalently, the growth rate of cumulative infections and 
deaths is then roughly constant. This is precisely the dynamics we observe 
in cumulative COVID-19 mortality at the state level.

To illustrate this point, in online appendix figure B.7, we show the 
dynamics of cumulative COVID-19 deaths as an age-adjusted death rate per 
100,000 of the population for selected states. In the left panel of this figure,  
we show the dynamics of cumulative COVID-19 deaths for California, 
Florida, New York (excluding New York City), and Texas. We see that 
New York State had a very rapid growth of cumulative deaths in the initial 
phase of the pandemic and then settled into a lower growth rate. Texas had 

22.  See, for example, Barro (2022), Bollyky and others (2023), and Kerpen, Moore, and 
Mulligan (2022).
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a high growth rate of cumulative deaths throughout the first two years of 
the pandemic. Given the rhetoric surrounding this topic, we find it striking 
how similar the age-adjusted outcomes for COVID-19 deaths have been 
for California and Florida over the past four years.

In the right panel of online appendix figure B.7, we show the dynamics of 
cumulative COVID-19 deaths as an age-adjusted death rate per 100,000 of  
the population for New York City and seven other states representing 
extreme high and low mortality outcomes across states. With the exception 
of New York City, we see largely linear growth in cumulative deaths over 
the first two years of the COVID-19 epidemic for all of these locations. As 
evident in the figure, New York City suffered exceptionally rapid initial 
growth of cumulative COVID-19 deaths in the first wave of the epidemic, 
likely due to the surprise introduction of a large number of hidden cases 
from Europe in early 2020.

For further evidence of this commonality of responses across US states, 
in online appendix figure B.8, we show estimates from the Commercial Lab 
and Blood Donor serology surveys of cumulative infections and combined 
seroprevalence for the fifty states of the United States. While these surveys 
show considerable variation in the estimated percentage infected across 
states, we see in this figure that all of the states followed similar dynamics 
of slow growth in infections in the first two years of the pandemic and rapid 
deployment of vaccines in the first half of 2021.23 We discuss these state-
level serology data in greater detail in online appendix section B.

Based on this evidence, we argue that the most important feature of 
the outcomes across US states (and even countries around the world) is 
how much they have in common relative to outcomes that were expected 
given prior epidemiological modeling of and past experiences with pan-
demic influenza. To a large extent, residents of every state in the United 
States outside of New York City reacted very strongly to COVID-19 very 
early on and took significant actions to slow its spread all through 2020 and 
2021. We regard the observation that this could be done and done nearly 
universally across different states of the United States, as a great surprise.

To expand further on this point, observe that the model-based forecast 
in Ferguson and others (2020) for peak deaths with unmitigated spread 
of COVID-19 was over sixteen deaths per day per 100,000 population 
(implying over 50,000 deaths per day in the United States as a whole) with 

23.  Chitwood and others (2022) argue that the serology data underestimate the true portion 
of the population ever infected for a variety of reasons. This paper presents alternative estimates 
of the state-level portion of the population infected through 2020 in its figure 7.
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75 percent of the population being infected by late summer of 2020. This 
forecast was not out of line with what was experienced in locations that 
did little to mitigate the spread of SARS-CoV-2. For example, we note 
that seroprevalence studies in Manaus, Brazil indicated an attack rate of 
75 percent in the first wave of the pandemic (Buss and others 2021). We 
see nothing like this rapid spread of COVID-19 in the serology data across 
US states.

In March and April 2020, New York City experienced the worst wave of 
COVID-19 cases and mortality of anywhere in the United States over the 
past four years. Its peak weekly mortality rate was sixty per 100,000 popu-
lation (less than ten per 100,000 per day)—in the range of one-half that 
predicted in Ferguson and others (2020) for peak deaths with unmitigated 
spread. Seroprevalence estimates for New York City indicate up to 20 per-
cent of that population of 8 million people was infected in the first wave in 
the spring of 2020 (Stadlbauer and others 2021).

We illustrate the extent to which the first wave of COVID-19 deaths in 
New York City was an outlier in online appendix figure B.9. In that figure, 
we show the dynamics of weekly COVID-19 deaths for the fifty states at 
an age-adjusted rate per 100,000 of population. As is clear from the figure, 
the first wave of COVID-19 deaths in New York City was much larger than  
any other wave experienced in any state in the United States. That is, the 
response to flatten the curve and dramatically slow the transmission of 
COVID-19 was universal across the fifty states of the United States.

We now turn to our fourth lesson regarding the prospects for a similar 
behavioral response next time.

IV.D.  Lesson 4: Unclear If Behavior Will Be the Same Next Time

From our perspective, the success of this sustained and fairly uniform 
behavioral response to slow transmission for this length of time to allow 
for the deployment of vaccines and improved medical care is perhaps the 
biggest surprise of the COVID-19 pandemic. Clearly, a strategy of slowing 
transmission for eight to fifteen months as needed to develop and deliver 
an effective vaccine is based on the premise that people can be persuaded 
to go along with that plan. To an extent that seems well outside historical  
experience with pandemic influenza and predictions based on that his-
torical experience, Americans did go along with that plan, with or without 
mandates from state governments.

Many economists, one of us included, have argued ex post that this pat-
tern of adjusting behavior to keep the growth rate of new infections and 
deaths relatively close to zero, observed nearly universally in the United 
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States and across many countries, is precisely the response that economic 
theory would predict.24

But this argument then raises the puzzle of why did we not see a quan-
titatively similar response to pandemic influenzas, in particular the 1918 
Spanish Flu? And comparison of these different outcomes for pandemic 
influenza and COVID-19 raises the question of which behavioral response 
should we expect to see in the next pandemic? Will it be a short, sharp 
wave as for COVID-19 in New York City in March and April 2020 and in 
most cities for which we have data from 1918? Or will it be a long, drawn-
out affair as for COVID-19 in the rest of the United States? The answer to 
this question will have a big impact on the range of mitigation strategies 
available in the face of the next pandemic and is a great challenge in epide-
miological modeling (Funk and others 2015).

The world has already experienced an outbreak of another emerging 
pathogen. Starting in May 2022, mpox, formerly known as monkeypox, 
began to spread rapidly primarily through sexual contact between men, 
with this spread being particularly alarming since it showed up in a large 
number of countries in a short period of time. Mpox is an example of a 
known pathogen endemic to a relatively small area (in West Africa) sud-
denly spreading rapidly well outside that region.

Simple examination of the exponential growth of cases in the United 
States between May and August 2022 indicated that this disease had the 
potential to spread quite broadly, at least within a subset of the US popula-
tion. Instead, the number of cases began to die out rapidly in late August, 
and new cases in the United States have been held at a low level throughout 
2023. What explains this path of this epidemic? It appears that through 
a combination of a sustained change in private sexual behavior and the  
targeted application of vaccines, it was possible to dramatically reduce the 
number of cumulative cases relative to what would be predicted for an 
unmitigated epidemic. In other words, the behavioral response to mpox 
appears to be a remarkable success.

Zhang and others (2024) quantify the impact of behavior and vaccines 
on the spread of mpox with an epidemiological model using data on the 
mpox outbreak in the United Kingdom, which exhibited an epidemic 
curve similar to that in the United States. These authors argue that changes 

24.  See Atkeson (2021b, 2023a) and Atkeson, Kopecky, and Zha (2024). See Gans (2022) 
for a broader survey of the economics papers on this topic.
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in behavior and vaccination together played an important role in shaping 
this epidemic.

We find it interesting to note, however, that their accounting of the impact 
of behavior and vaccines on the trajectory of this epidemic is quite different 
from our accounting of the impact of these factors on the trajectory of the 
COVID-19 epidemic. In particular, they find that the response of behavior 
(in terms of men reducing the number of their sexual partners) was strong 
and persistent enough to drive the effective reproduction number of mpox 
below one on a sufficiently sustained basis to drive the number of new 
cases to a very low level. This never happened with COVID-19. They then 
estimate that the use of pre-exposure vaccines for susceptible men limited 
the threat of resurgence.

The estimated combined impact of these interventions was then very 
substantial in limiting the size of the outbreak: the United Kingdom had 
3,250 observed cases over the study period relative to an estimated final 
size of an uncontrolled epidemic of 169,400 cases. We see these estimates, 
together with the discussion in Daskalakis, Romanik, and Jha (2024), as 
driving home the message that targeted interventions in combination with 
vaccination can have a powerful impact on outcomes of an epidemic.

Another factor to consider going forward is the extent to which our 
experience with COVID-19 will shape reactions to new epidemics going 
forward for decades to come. Will the public be more skeptical of public 
health warnings about new pathogens? Or will our collective experience 
with significant mortality from an infectious disease outbreak lead us to 
take future threats more seriously? Addressing such questions seems of 
first-order importance for research going forward.

V.  What Is Needed to Make Mitigation Less Painful Next Time?

The behavioral mitigation measures undertaken during the COVID-19 pan-
demic helped to save many thousands of lives, but they came at a high 
social and economic cost. Uncertainty about key features of COVID-19 
and about the human behaviors that had an impact on its spread forced 
us to take stronger, more widespread, and longer-lasting behavioral miti-
gation measures than might have been necessary in a more information-
rich setting. Likewise, individuals largely lacked the tools they needed 
to make informed assessments about their risk of becoming infected or 
transmitting disease. For example, widespread and cheaply available 
diagnostic tests—along with clear guidance on how to report and interpret 
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them—could have helped alleviate the need for general physical distancing 
measures like school and workplace closures that lasted for many months 
into the pandemic.25

The next pandemic may look very different from COVID-19, but it 
will nevertheless be critical to find ways to rapidly reduce our uncertainty 
about the pathogen’s characteristics and the human behaviors that underlie 
its spread, and likewise to rapidly develop and deploy the tools that will 
empower individuals to make informed behavioral choices. This will require 
developing off-the-shelf research protocols for learning about transmission 
routes, the natural history of infection, and the dynamics of immunity for an 
emerging pathogen soon after it is first detected. In the meantime, we must 
also invest in ongoing data collection efforts to provide baseline measure-
ments against which data on an emerging infectious disease can be mean-
ingfully compared. A detailed discussion of the steps needed to effectively 
prepare for the next pandemic is provided by Lipsitch and others (2023). 
Here, we outline a few key considerations.

V.A.  Assessing Transmission Routes

When an emerging outbreak is detected, a critical first task is to deter-
mine the pathogen’s routes of transmission. Beyond the most basic infor-
mation on transmission route (e.g., sexual versus vector-borne versus 
respiratory, and [if respiratory] droplet versus aerosol versus fomite), it  
is also important to identify the venues and behaviors that are most con-
ducive to spread. For example, it became evident early in the COVID-19  
pandemic that outdoor transmission was far less common than indoor 
transmission (Bulfone and others 2021) and that singing was a particularly 
high-risk activity (Hamner and others 2020). Preapproved study designs, 
backed with funding for rapid deployment, would help to more rapidly 
clarify how and where the bulk of transmission occurs in the event of an 
emerging outbreak.

To place these studies in the proper context, we also require detailed 
studies on interpersonal contact patterns, both at baseline and as they 
evolve over the course of an outbreak, much like the CoMix study did in 
the context of COVID-19 (Gimma and others 2022). Such studies recruit 
representative cohorts and ask questions about their behaviors (e.g., con-
versational or sexual contacts) that may be relevant to the spread of disease. 
Mobility data—gathered, for example, using mobile phones—can also be 
useful (Buckee and others 2020), though such data must be interpreted with 

25.  See, for example, the discussion in Atkeson and others (2020).
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care since the owners of mobile devices or the users of a given app may not 
be representative of the broader population (Wesolowski and others 2016). 
Data access and privacy issues should also be proactively addressed well 
in advance of a public health crisis.

Detailed contact tracing data can be useful for determining the level 
of risk associated with various types of contact. For respiratory infec-
tions, household transmission studies like the Office for National Statistics 
(ONS) Coronavirus (COVID-19) Infection Survey in the United Kingdom 
(Pouwels and others 2021) can be helpful for assessing the level of risk 
associated with close contact. For sexually transmitted infections, partner-
ship surveys can serve the same purpose.26 The value of such studies can 
be greatly enhanced by collecting pathogen genomic information, allowing 
researchers to distinguish direct within-household (or within-partnership) 
transmission from new introductions from the community.

The production and distribution of nonpharmaceutical interventions 
(NPIs) should be rapidly scaled up in the event of an emerging outbreak. In 
the early stages of an outbreak, plausible effectiveness should be enough 
to justify the use of sufficiently low-impact NPIs—for example, plausible 
effectiveness would justify the widespread use of masks against the early 
spread of SARS-CoV-2 or condoms to prevent transmission of mpox, even 
in the absence of direct studies assessing the efficacy of those interventions 
for those specific pathogens. In tandem, the effectiveness of these NPIs 
should be continuously monitored so that their use can be founded on more 
direct, pathogen-specific evidence or, if no effectiveness is found, their use 
can be phased out.

V.B.  Describing the Course of Infection

Once infection occurs, it is critical to understand the risk of various 
health outcomes. Key statistics like the IFR are subject to bias that can 
affect early estimates in both directions: early in an epidemic, the most 
severe cases are the ones that are most likely to be detected, thus skewing 
the IFR upward; yet, if the epidemic is spreading rapidly, a simple divi-
sion of mortality by cumulative prevalence can skew the IFR downward, 
since recently infected individuals have not yet had time for their cases 
to worsen. This underscores the need for principled studies to track the 
range, timing, and probability of potential health outcomes in an emerging 
epidemic. An understanding of the IFR and related risks of various health 
outcomes helps to set the appropriate level of behavioral response.

26.  For example, Ueda and others (2020).
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Similarly, it is important to rapidly assess how a person’s infectiousness 
varies over time. Again, household or partnership studies can be helpful, 
especially when coupled with frequent, quantitative diagnostic testing (e.g., 
RT-qPCR tests to assess pathogen load) and detailed symptom reporting.  
A critical piece of information to gather early in an epidemic is how the  
timing of symptoms relates to infectiousness, as this relationship plays a 
major role in determining how difficult it is to ultimately control a patho-
gen’s spread (Fraser and others 2004). If infectiousness precedes symptoms, 
the need to develop and deploy rapid diagnostic tests becomes paramount.

V.C.  Tracking Incidence and Immunity

Public health response in the United States is largely coordinated at 
the state level, which poses major challenges for data sharing and stan-
dardization. The need for improved data collection, standardization, and 
dissemination is a major focus area of the new Center for Forecasting and 
Outbreak Analytics (CFA) based at the CDC. The CFA has taken many 
cues from the National Weather Service (George and others 2019), and 
indeed a digital infrastructure for providing information on current epi-
demiological conditions and a near-term forecast would go a long way 
toward informing more targeted behavioral responses in the event of 
another public health crisis.

Alongside information on disease incidence, well-designed serological 
studies can be invaluable both for reconstructing what has happened after 
an outbreak ends (as we have tried to do in this report) and for informing on 
the dynamics of immunity. It is important to conduct ongoing serological 
studies so that proper baselines can be set, especially because serological 
tests can cross-react.27 Serological studies can inform on the duration of 
immunity to infection, thus helping individuals to calibrate their behavior 
to better match their risk of infection.

VI.  Conclusion

The behavioral response to COVID-19 in 2020–2022 was highly—and 
unexpectedly—effective in reducing cumulative COVID-19-related mor-
tality in the United States. We estimate that the combination of behavior-
ally driven transmission reduction and vaccination resulted in roughly 
800,000 lives saved during that time period, in line with other estimates. 

27.  For example, serological tests for SARS-CoV-1 can turn positive based on exposure to 
a related common coronavirus; see Patrick and others (2006).
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Critically, we see that both of these factors—a strong behavioral response 
and the relatively fast development of an effective vaccine—were needed to 
yield a substantial reduction in mortality. Had a vaccine not been developed 
or had behavior not changed, we anticipate that much of the US population 
would have received their first immunological exposure to SARS-CoV-2 
from infection rather than vaccination, and thus the total mortality from the 
pandemic would have been much higher.

We had three main goals in writing this report: (1) we sought to pro-
vide an evidence-based estimate of the value of behavior change during 
the COVID-19 pandemic in terms of reduced mortality; (2) we sought to 
describe a straightforward modeling framework that can be adapted to 
assess counterfactual scenarios for COVID-19 and for infectious diseases 
more generally; and (3) we sought to discuss the lessons of the COVID-19 
pandemic from three hypothetical perspectives: the ex ante perspective of 
a public health planner in March 2020, with knowledge of basic parameters 
of the virus but no certainty about its future evolution; the ex post perspec-
tive, where we are today, performing an assessment of how we actually 
performed given our knowledge of how the pandemic actually unfolded; 
and the perspective of future public health planners, who will be respon-
sible for responding to new, possibly very different, emerging infectious 
diseases. We now discuss each of these goals in turn.

There are many ways to estimate lives saved during the COVID-19 pan-
demic, some relying on sophisticated models of transmission and immuno-
logical dynamics. We pursue a simpler tack, estimating the total mortality 
in the scenarios with no behavioral change prior to rollout of a vaccine in 
January 2021 and with behavior change but no vaccine. Based on serology 
data, we estimate that less than 20 percent of the US population—and a 
substantially smaller fraction of individuals over age 65—had been infected 
with SARS-CoV-2 before the introduction of vaccines. Yet other areas of the 
world that experienced an impact early on, before an effective behavioral 
response could be mounted, saw estimated attack rates of up to 75 percent 
within a short few months, which also aligns with epidemiological models  
for an unmitigated epidemic with transmissibility similar to the ancestral 
strains of SARS-CoV-2. As such, we can attribute a mortality reduction in 
the roughly 55 percent of the population who were able to be vaccinated 
prior to their first infection to the transmission-reducing behavioral response. 
Had a successful vaccine not been developed, however, it is unclear whether 
behavioral response would have had a substantial impact on cumulative 
mortality through the present day, since immune evasion and increasingly 
contagious variants of the virus have rendered herd immunity moot.



106	 Brookings Papers on Economic Activity, Spring 2024

By introducing a modeling framework, we were able to compare more 
nuanced counterfactual scenarios and to better separate the impact of 
behavior from that of vaccination. The framework we discuss here is com-
pletely standard, perhaps with the exception of the form of the behavior 
term, which reduces the transmissibility parameter βj proportionally to an 
exponentially decaying function of a parameter κj that captures the strength 
of the behavioral response relative to some disease metric (e.g., total infec-
tions or the rate of increase in mortality). It is possible to compare many 
counterfactual scenarios using this framework, but the main takeaway is 
that behavioral transmission reduction and vaccination have a powerful 
positive synergy, where the timing of both is paramount—that is, early 
behavior change, coupled with the rapid development of an effective vac-
cine, can pay dividends in reduced mortality.

The ex ante perspective of the public health planner in March 2020 is 
one lacking in many critical details about the pandemic’s ultimate course, 
and yet it is perhaps the most informative perspective to consider when 
assessing the best course of action in future pandemics. Early modeling 
work during the COVID-19 pandemic, including our own, anticipated that 
SARS-CoV-2 would become endemic (Kissler and others 2020; Shaman 
and Galanti 2020; Murray and Piot 2021) but failed to anticipate both the 
ratcheting transmissibility of the virus with successive variants and the rel-
atively swift development of an effective vaccine. The ex post perspective 
is useful for determining what we might have done differently, but this has 
limited application for future pandemics.

Instead, rather than thinking about what we should have done differently 
in hindsight from a management perspective and doing that going forward, 
we should instead ask what types of information we would have wanted 
during the early days of the pandemic to make more informed, ex post–like 
decisions and determine how best to put mechanisms in place now to col-
lect that data. For example, key elements of the natural history of infec-
tion and the route of infection—such as the frequency of asymptomatic 
infections, the role of presymptomatic transmission, and the importance 
of aerosols in transmission—were unclear for far longer than they should 
have been.

Developing protocols for rapidly identifying cases, charting their course, 
and determining likely routes of transmission through prospective house-
hold and contact surveys, like the ONS Coronavirus Infection Survey in 
the United Kingdom (Pouwels and others 2021) and the European CoMix 
Survey (Gimma and others 2022), are critical for future pandemics. Like-
wise, it is clear that behavior can change spontaneously in response to a 
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perceived infectious threat. It is less important to have an exact model for 
how behavior changes in response to threat than it is to have a robust frame-
work for measuring the relevant changes in behavior when they actually 
happen. This will require a robust survey-taking machinery to be rapidly 
deployed in the event of an emerging pathogen. Such work may be aug-
mented by the development of secure contact tracing technologies, like 
the ones developed for contact notification during the COVID-19 pan-
demic. Regardless, we must avoid the trap of “fighting the last pandemic,” 
recognizing that while another coronavirus pandemic could occur within 
our lifetimes, there are many other threats that should be carefully thought 
through and incorporated into the data-collecting mechanisms discussed 
here. That said, the experience with mpox, and the fact that behavioral 
mitigation measures during the COVID-19 pandemic strongly suppressed 
the spread of various other pathogens (Koutsakos and others 2021), sug-
gests that behavioral mitigation can be an important tool for addressing a 
wide range of infectious disease threats.

Our findings are limited by a substantial degree of uncertainty in the 
actual number of infections that occurred during the pandemic and a lack 
of reliable data capturing the dynamics of behavioral change during the 
pandemic. Regarding the lack of behavioral data, it is unclear even what 
an ideal data set would look like, given that we do not have a solid grasp 
on what types of interactions are necessary and sufficient for the trans-
mission of a respiratory pathogen.28 Conversational encounters are often 
used as a proxy, but the precise dynamics of interpersonal transmission in 
real settings remain poorly understood. The models we use are intention-
ally simplified and so gloss over much important variation in baseline 
risk factors, population structure, and viral attributes that can, and do, 
have a major impact on transmission patterns. Our goal here is to provide  
a scaffold to guide thinking about behavior-modulated disease trans-
mission, rather than to faithfully recapitulate the dynamics of a particular 
outbreak—though we note that, under reasonable assumptions, a fairly 
faithful recapitulation of those dynamics is possible with a model like the 
one presented here.
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28.  See, for example, Ferretti and others (2023).
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Comments and Discussion

COMMENT BY
THOMAS PHILIPPON    Atkeson and Kissler provide an important 
analysis of how vaccines and behavioral changes saved lives during the 
COVID-19 epidemic. They estimate that the vaccines and associated behav-
ioral responses saved 800,000 lives compared to a counterfactual with no 
vaccine.

This is a large effect. The lives saved represent approximately 0.25 percent 
of the US population. As a comparison, the H1N1 epidemic of 1918–1919  
killed about 0.65 percent of the US population.

A key result of the paper is that there is a strong complementarity between  
vaccines and behavioral responses. Without any change in behavior, the 
death toll would have been close to 1 percent of the population, in large 
part because many people would have become infected before vaccines 
became available. By contrast, Atkeson and Kissler estimate that roughly 
two-thirds of the population got vaccinated before their first infection and 
that vaccines were very efficient, lowering fatality by a factor of five at the 
peak of the epidemic in 2021.

THE ROLE OF VACCINES  Atkeson and Kissler use granular data to docu-
ment some key facts and develop a structural epidemiological model to 
interpret the facts and compute counterfactuals.

Their data come from three sources: serology data to keep track of 
immunity following infections and vaccinations; deaths associated with 
COVID-19 over time and across regions; and data linking vaccines and 
mortality from thirty US states.

The first key estimate is vaccines saved about 800,000 lives, as can be 
seen from the difference between the first and second lines of table 1 in the 
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paper. It contains the estimates from the structural model, but a simple 
back-of-the-envelope calculation is also possible. The serology data sug-
gest that essentially everyone has been infected at least once by now, but 
that 68 percent of the population received a vaccine before their first infec-
tion. The US population in 2020 was around 330 million, and the authors 
estimate that 1.2 million people have died from COVID-19.

The infection fatality rate (IFR) changes a lot over time for a variety of 
reasons: new variants, better treatments, vaccines, and so on. In 2020, the 
virus infected 11.5 percent of the population and killed 390,000 people, 
which implies an IFR around 1  percent. In 2021, the IFR decreased to 
0.66 percent. After 2021, it was around 0.2 percent. Vaccines reduced the 
IFR by a factor of more than five during 2021 but much less afterward.

Atkeson and Kissler capture these changes in several ways. In the pre-
Omicron period, they assume that the IFR falls over time, starting from a 
high value of 1 percent in early 2020 and eventually decreasing to 0.5 per-
cent, as indicated by the serology data. When the first wave of Omicron 
arrives with its large increase in infections but a smaller increase in deaths, 
the implied IFR decreases further to 0.15 percent.1

In the authors’ baseline calibration, the average IFR over the sample 
period is then 0.5 percent for the “naive unvaccinated” and 0.13 percent for 
vaccinated people. A rough estimate of lives saved is then the difference in 
IFR applied to the population that was vaccinated before the first infection: 
(0.5% − 0.13%) × 0.68 × 330 million = 830,000. This is in the ballpark of 
the more precise estimate from the structural model.

THE “SURPRISINGLY” LARGE IMPACT OF BEHAVIORAL CHANGES   The second 
key takeaway from the serology survey data is that mitigation played a 
crucial role during 2020. By January 2021, less than 20 percent of the  
population had been infected. By contrast, model simulations predict that 
essentially the entire population would have been infected without a behav-
ioral response. Together with the 1 percent IFR discussed earlier, this would 
have led to more than 3 million deaths.

The large role of behavioral changes provides a strong motivation for the 
development of the structural model. The structural model allows Atkeson  
and Kissler to study counterfactual experiments that would otherwise be 
unknowable.

The model is quite advanced and granular. It features waning immu-
nity and takes into account the appearance of variants (Alpha, Delta, and 

1.  The 0.15 percent applies to susceptible agents (S). The authors also allow break-
through infections from Omicron (in the R population) but with a very low IFR.
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Omicron). A standard susceptible-infectious-recovered (SIR) model splits 
the population into three groups: susceptible, infectious, and resistant. The 
authors add two more groups: exposed but not yet infectious (E) and hos-
pitalized (H). They also account for people who are vaccinated prior to 
their first infection. The E and I groups are indexed by the variant of the 
virus, and the R group is subject to (rare) breakthrough infections from 
the Omicron variant.

With this model Atkeson and Kissler obtain reliable estimates of the 
likely death rates under alternative scenarios. They then argue convinc-
ingly that the behavioral response was much stronger and longer lasting 
than in previous epidemics.

Should we then call it a surprise? I suppose it all depends on the rel-
evant information set. A surprise is, by definition, the difference between 
an outcome and its expectation based on the prior information set. If we 
take as our information set the average strength and duration of behavioral 
responses in previous epidemics, as illustrated by the surveys published 
before the pandemic, then we must agree with the authors.

I would argue, however, that one should include both the existence of 
the internet and of the welfare state in our information set. Jones, Philippon, 
and Venkateswaran (2021) show that the possibility to work and shop 
remotely had a large impact on COVID-19 mitigation and saved approxi-
mately 200,000 lives. These options did not exist in the past, but they were 
(at least partly) predictable.

Similarly, the 1918 influenza occurred before the expansion of the 
welfare state. For many households, not working to slow down the spread 
of the virus would have meant extreme hardship. The $5 trillion fiscal 
response (Romer 2021) would have been simply unimaginable at the time. 
The social insurance and public health components of the fiscal response 
to COVID-19 afforded households the possibility to reduce in-person labor 
supply, even though the rest of the spending was arguably superfluous 
(Romer 2021).

PREPARING AGAINST FUTURE CRISES  Atkeson and Kissler argue that, to pre-
pare for the next epidemic, we must improve data collection and analytics. 
We must determine the pathogen’s transmission routes and keep track of 
incidence and immunity.

I fully agree with these points, but I would add several nonpharmaceutical  
interventions to the list. A striking feature of the COVID-19 epidemic is its 
unequal impact across groups and locations. As is well known, the virus 
was ten times more dangerous for old people than for young people. Simi-
larly, Jones, Philippon, and Venkateswaran (2021) show that the risk of 
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infection varied by a factor of five across occupations. Finally, we see from 
the current paper that outcomes also differed by a factor of five across 
states: in terms of fatality rates, New Hampshire and Vermont look like 
Denmark, while Arizona and Mississippi look like Russia.

These large differences across demographic groups, occupations, and 
locations imply that we can reduce the severity of future pandemics with 
targeted interventions. An obvious one is to improve options for remote 
work and schooling, starting with universally available broadband internet. 
While some tasks cannot be done remotely, the large differences in exposures  
across occupations suggest that significant improvements are possible. 
Similarly, regarding schooling, while we know that in-person teaching is  
preferable, it seems likely that some form of remote learning will be needed 
in future crises, and it is therefore important to ensure equal access to com-
puters and reliable internet connections for all students.

Differences across locations are harder to interpret since they reflect 
differences in preferences as well as governance choices for given prefer-
ences. The scale of differences in fatality rates, however, suggests that dif-
ferences in preferences are unlikely to account for all the variation that we 
observe across states. Learning and emulating best practices can therefore 
improve the policy trade-off between mitigation, individual freedoms, and 
economic damages.
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COMMENT BY
COADY WING    The COVID-19 pandemic upended life in the United 
States. People changed their behaviors to mitigate the risk of infection and 
mortality. Governments imposed new regulations designed to encourage 
further reductions in the transmission of the virus and to promote vaccine 
take-up once the vaccine became available. By now, there is a large body 
of literature in social and health sciences that documents these behavioral 
responses and tries to evaluate the intended and unintended consequences 
of various policy initiatives (Gupta and others 2021b; Autor and others 
2022; Chetty, Friedman, and Stepner 2024).
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In their paper, Atkeson and Kissler evaluate the high-level effect of the 
pandemic response on the level and time series dynamics of COVID-19 
mortality. They use a structural epidemiological model to decompose the 
way that mortality is determined by transmission-related behaviors, vac-
cine take-up, and shifts in transmissibility and virulence of the virus. This 
is a compartmental model in which a population of susceptible people tran-
sitions through a collection of health states. Transitions are governed by 
model parameters that define—at each point in time—the viral transmis-
sion rate, the duration of infectiousness, the take-up and effectiveness of 
the vaccine, and the infection fatality rate. The parameters of the model 
are not estimated from the data. In some cases, the authors draw on epide-
miological studies to guide the choice of parameters that represent infec-
tion fatality rates of different strains. But for the most part, Atkeson and 
Kissler choose parameterizations that seem plausible, most likely using 
some amount of trial and error. The main evidence that the chosen param-
eters are sensible is that the model does an excellent job of reproducing the 
observed time series of COVID-19 mortality in the United States. It also 
fits the time series estimates of the cumulative share of the population that 
had been infected by COVID-19 based on convenience samples from the 
Blood Donor Survey and Commercial Lab Survey.

Treating the model as correct, Atkeson and Kissler examine counter
factual scenarios to measure the role of specific mechanisms in causing 
mortality. For example, in one scenario, behavioral changes are maintained 
but the vaccine never arrives. In another simulation, people do not engage in  
major behavioral changes, but the vaccine becomes available on schedule. 
In both cases, they use the model to compute the number of COVID-19 
deaths that would have occurred if the parameters of the model are correct 
but certain events played out differently. The simulations suggest that the 
combination of behavioral changes and the eventual availability of the vac-
cine led to substantial reductions in mortality. Without behavioral changes, 
the vaccine would have arrived too late to matter. Without the vaccine, the 
behavioral changes would mostly have reallocated deaths over time. One 
way to see it is that behavioral changes that mitigate transmission early in 
the pandemic increase the marginal health benefits of vaccines later in the 
pandemic. Behavior and vaccines are complements in an aggregate health 
production function.

In my discussion, I focus on three main topics. First, I try to provide an 
intuitive account of the type of model that Atkeson and Kissler use in their 
analysis and to point out some of the key assumptions involved in such 
models. Second, I discuss some of the ways we might judge the credibility 
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of structural epidemiological models and suggest some ideas for incorpo-
rating quasi-experimental study designs. Third, I shift focus to questions 
about the behavioral determinants of vaccine take-up with particular atten-
tion to take-up coming out of the COVID-19 pandemic. I present some 
early research examining the way that vaccine take-up may be undermined 
by breakthrough infections.

STRUCTURAL EPIDEMIOLOGICAL MODELS  The most famous model of an  
epidemic is the susceptible-infectious-recovered (SIR) model, which was 
developed by Kermack and McKendrick (1927). Figure 1 is a visual repre-
sentation of a basic SIR model. In this setup, the whole population starts out 
susceptible to the disease except for a single index patient who is infected. 
The people in the susceptible and infectious compartments mix at random. 
When an infectious person and a susceptible person come into contact, the 
susceptible person is infected at rate β. Infected people recover and leave 
the infectious compartment according to the recovery rate, γ. The infection 
mortality rate is ζ.

The share of the population in each compartment at a given point in time 
is determined by these transmission, recovery, and mortality parameters. 
In a setting where the whole population is susceptible, an infected person 

generates R =
c

b
, new infections. When R < 1, the disease dies out over 

time. When R > 1, there is an exponential outbreak in the number of new 
infections.

Real-world conditions are more complicated than the simple model 
implies. For example, the population of susceptible and infectious people 
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Figure 1.  The Classic SIR Model
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might be structured so that some people have higher mixing rates than 
others, violating the random mixing assumption of the basic model. The 
basic SIR model is not capable of representing epidemics that exhibit 
repeated waves of infections and in which the properties of the pathogen 
itself might change over time. And—of course—economists often point 
out that the simple SIR framework does not allow for people who change 
their behaviors in response to prevailing epidemiological conditions, new 
public policies, or expectations about future technologies such as vaccines 
or cures.

The contemporary literature has elaborated and complexified the basic 
SIR model to make it more realistic. A visual representation of Atkeson 
and Kissler’s model would look something like figure 2. The first thing 
to notice is that there are many more compartments. At a high level, the 
model is organized around six main states: susceptible, exposed, infectious, 
hospitalized, resistant, and dead. But the exposed and infectious compart-
ments are subdivided further by the viral strain—there is a box each for 
the original ancestral strain as well as the Alpha, Delta, and Omicron viral 
variants. Each of the strains has a different transmission rate and infection 
mortality rate. The resistant compartment includes space for people who 
have recovered from an actual infection and for people who have been 
vaccinated. The flow of people through the compartments is no longer in a 
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single direction. Immunity from infection may wane over time, creating a 
flow of people from the resistant to the susceptible. Vaccinated people may 
experience breakthrough infections.

Simulating the model involves specifying the timing of certain shocks 
to the system. Some pathways open up at particular calendar times because 
a new viral strain emerges. The parameters governing transmission and 
mortality change over time too. Taken together, the model simulations 
involve a schedule of epidemiological shocks (new viral variants), tech-
nology shocks (vaccine availability), seasonality, behavioral relationships 
(transmission-mortality elasticity), and structural changes in behavioral 
relationships (fatigue).

To get a feel for how the model works, it helps to consider the block of 
the model that shapes the transmission rate at a point in time. In Atkeson 
and Kissler’s model, the transmission rate at a point in time follows a 
seasonal component and a behavioral component in which the transmis-
sion rate responds to the number of daily deaths. The idea is that when 
death rates get high, people change behavior to reduce infection risk. After 
a time, fatigue sets in and the responsiveness of transmission to fatalities 
shrinks. Formally, the transmission relationship in the model is:

bj t` j= b– j # exp -l t` j
dt

dD t` j
+ } t` j

R

T

S
S
S

V

X

W
W
W.

In this expression, β̄j is the inherent transmissibility of viral strain j, ψ(t) 

is the effect of the season on transmission, 
dt

dD t` j
 is the level of daily deaths, 

and κ(t) is the semi-elasticity of transmission with respect to deaths. In 
practice, the seasonal function ψ(t) is a cosine wave parameterized to match  
fall-winter versus spring-summer patterns. For the original COVID-19 strain, 
the authors set β̄j = 1.2. To represent the behavioral component of trans
mission, they set the baseline semi-elasticity to be κ̄ = 250,000. To incor-
porate the idea of behavioral fatigue, they smoothly shrink the behavioral 
response down to .35 × κ̄ by late November 2020. Once a set of parameters 
has been chosen, Atkeson and Kissler run their model, pushing an initial 
population through the various compartments and keeping track of how 
many people are dead, infectious, and vaccinated at each point in time.

IDENTIFICATION PROBLEMS AND EPIDEMIOLOGICAL MODELS  Constructing 
epidemiological models is challenging for some of the same reasons that 
constructing macroeconomic models is challenging. The parameters of the 
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model are hard to cleanly identify because the variation generated during 
real-world outbreaks is not randomized across places, time periods, and 
people. And the outcomes realized during an epidemic seem very contin-
gent on a high-dimensional set of conditions and constraints. This makes it 
hard to accumulate knowledge across different settings or to discriminate 
between one hypothesized model and another.

How should we judge the credibility of Atkeson and Kissler’s model? 
One natural strategy is to compare the outputs of the model with observed 
outcomes from the real world. That is the approach that Atkeson and Kissler 
take. Figures 2 and 4 from their paper show a tight correspondence between  
COVID-19 mortality and infections as generated by the model and the actual  
time series data on COVID-19 mortality and COVID-19 infections. Com-
paring the model-predicted mortality and infection series with their real-
world counterparts is essentially the same idea macroeconomists use when 
they form judgments based on how well a specific model is able to match 
moments observed in the real world.

Although the close fit shown in Atkeson and Kissler’s figures 2 and 4  
is impressive, a fundamental question is whether this collection of com-
partments and parameters is really a good representation of the process 
that generated those deaths and infections. Are there other combinations 
of parameters and compartments that might also fit the data very well but 
could generate quite different counterfactual simulations? To what extent 
is the good fit of the model akin to a regression that fits the data well in 
sample but performs badly at out-of-sample forecasts?

The model makes strong assumptions about the mechanism and even the 
specific numerical values of key causal parameters. The payoff from these 
kinds of assumptions is substantial: you can use the model to simulate the 
pandemic under alternative conditions, which is just the type of thing you 
need to do to study alternative policy options. But the credibility of the 
counterfactual simulations depends on the plausibility of the underlying 
modeling choices. For example, is κ̄ = 250,000 a plausible value for the 
behavioral response to mortality in the early pandemic? Does this choice 
undershoot the degree to which transmission responded to mortality? It 
seems hard to decide something like this through intuition.

One idea is to combine the structural epidemiological methods with 
research strategies that are common in empirical microeconomics, which 
focus on identifying causal effects using plausibly exogenous variation. 
Nakamura and Steinsson (2018) discuss identification problems in macro-
economics, pointing out that macroeconomists often judge the credibility 
of specific models by their ability to match moments observed in the real 
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world. Often the moments used in this type of work are simple aggregate 
means and variances. But Nakamura and Steinsson (2018) highlight that 
more recent research involves efforts to match identified moments. Identi-
fied moments are causal effects identified using the methods popular in 
empirical microeconomics: regression discontinuity designs, difference-
in-differences designs, or instrumental variable designs. Taking advan-
tage of identified moments to judge the performance of a more complex 
structural model or to pin down the value of a class of parameters from  
a structural model is a strategy that may be useful for future work on 
epidemiological models.

To take one very small step in this direction, we could compare estimates  
from Atkeson and Kissler’s model with identified moments from related 
quasi-experimental studies. For example, Gupta and others (2021a) use 
a generalized difference-in-differences regression to make reduced-form 
estimates of the effects of the early vaccination campaign on cumulative 
COVID-19 mortality over the first five months of the vaccination campaign.  
Their estimates come from quasi-likelihood Poisson regression models 
with the following basic form:

Mst = exp dkVst-k + as + btk=0f4
/9 C+ est .

In the regression, Mst is the cumulative number of COVID-19 deaths 
per 100 adults in state s as of week t, and Vst is the cumulative number  
of doses administered per 100 adults in state s by week t. The model 
includes state and week fixed effects and is intended to measure the effects 
of the vaccine rollout by exploiting variation in the speed of vaccine dis-
tribution across states. The estimated parameters from this two-way fixed 
effects specification are used to estimate the counterfactual cumulative 
COVID-19 mortality rate in the absence of the vaccination campaign. The 
results imply that by the second week of May in 2021 the vaccination cam-
paign had already averted about 139,393 COVID-19 deaths. How do 
these reduced-form estimates line up with the simulations from Atkeson  
and Kissler’s model? The numbers underlying the left panel of their 
figure 5 imply that by the second week of May the vaccination campaign 
had averted 126,664 COVID-19 deaths. This is well inside the confidence 
interval of the estimate by Gupta and others (2021a), perhaps suggest-
ing that Atkeson and Kissler’s model fares pretty well at matching an 
identified moment that is a bit more removed from the analysis than the 
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mortality time series itself.1 Atkeson and Kissler’s model-based estimates 
extend beyond the first few months of the campaign, and they suggest that 
the impact of the vaccination campaign continued to grow over the course 
of 2021 and then diminished in 2022. The model-based estimates imply 
that most of the additional deaths that would have occurred in the absence 
of the vaccine would have happened by the end of 2021. This is because 
without the vaccine nearly everyone would have been infected during the 
Omicron wave in early 2022.

Atkeson and Kissler are surely correct that people respond to epide-
miological conditions and the availability of vaccines. And public policies 
designed to control an epidemic are premised on the idea that behavior is 
both malleable and an important determinant of the path of the epidemic. 
Their model provides an excellent example of how to integrate these policy  
relevant relationships into an epidemiological model. But these models 
would be more compelling if there were more quasi-experimental studies  
trying to pin down the specific ways that people respond to changing 
conditions and how those changes affect downstream population health 
outcomes. In particular, economists could be useful by developing the iden-
tification strategies and data sources needed to estimate things like: (a) the 
causal effect of mortality on disease transmission (behavioral responses); 
(b) the causal determinants of vaccine take-up and behavioral fatigue; and 
(c) the role of differentiated contact patterns on disease outcomes.

VACCINE TAKE-UP  One of the main lessons that Atkeson and Kissler draw 
from their analysis is that behavioral adaptations that reduced transmission 
rates during the first year of the pandemic allowed the COVID-19 vaccine 
to substantially reduce overall mortality from COVID-19. Specifically, in 
simulations where they keep the behavioral parameters fixed but never 
turn on the availability and take-up of the vaccine, there would have been 
almost 800,000 additional COVID-19 deaths.

The implications of the model are quite encouraging in certain ways. 
They suggest that it is possible to use behavioral modifications to sup-
press a pandemic long enough to develop and distribute a vaccine soon 
enough for the vaccine to actually save lives. At the same time, as Atkeson 
and Kissler are careful to point out, there is a lot of historical contingency 
involved in this analysis. If the highly transmissible Omicron variant had 

1.  Not that removed, of course: the two-way fixed effects regression in Gupta and others 
(2021a) is based on state x week-level mortality data. Atkeson and Kissler are working with 
a national mortality time series rather than a state x week panel.
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arrived sooner, then the vaccine likely would not have saved many lives: by 
the time the vaccine arrived, it would have been too late. On the other hand, 
if the variant had not appeared or had appeared even later, then the vaccine 
would have had even more of an impact. Governments have little influence 
on the appearance and characteristics of new viral strains and so the strat-
egy of behavior-induced transmission reduction followed by vaccination 
is somewhat inherently risky. However, the distribution and take-up of the 
vaccine itself is something that may deserve more attention.

In particular, it would make sense for economists to develop a better 
understanding of the determinants of vaccine take-up both during an epi-
demic and during regular conditions. Neoclassical economics suggests 
that vaccine take-up may be too low from a social welfare point of view 
because vaccines may produce positive externalities. Acton and others 
(2022) studied college vaccine mandates and found some evidence that 
mandates led to lower rates of COVID-19 spread in nearby communities. 
Freedman and others (2023) use linked micro data on COVID-19 tests, 
vaccinations, and health care records to study vaccine spillovers in middle 
schools and households with children in Indiana. They find little evidence 
of spillovers in schools, but they do find vaccine spillovers in households. 
Since households might plausibly internalize these vaccine spillovers, it is 
not obvious that free-riding on positive externalities is a major determinant 
of low vaccine take-up.

Another explanation for low vaccine take-up is that people’s assess-
ment of the private net benefits of the vaccine is somewhat lower than 
expected. Recent work by Carlin and others (2022) used discrete choice 
survey experiments to measure people’s willingness to pay to be vacci-
nated for COVID-19 during early 2021. They found that median willing-
ness to pay was around $50. Back-of-the-envelope calculations based on 
estimates of the value of statistical life from other contexts imply people 
should have been willing to pay around $2,700 to be vaccinated, given 
the mortality effects of the vaccine and prevailing caseloads. Thus, people 
seem to undervalue the COVID-19 vaccine. This could be one explanation 
for relatively low vaccine take-up in the United States. People might under-
value vaccines for many different reasons, including concerns about the 
safety of the vaccine or the perceived costs of vaccine side effects, needle 
aversion, or the political symbolism of the vaccine.

Another possibility is that people’s demand for a vaccine is partly derived 
from their own experience of the vaccine and the underlying illness. For 
example, Jin and Koch (2021) study the relationship between influenza 
vaccination and influenza infection at the individual level over time. They 
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find that contracting influenza in one year affects people’s take-up of the 
vaccine in future years, suggesting that people learn from suffering. How-
ever, they also find that what people learn depends on their vaccination 
history. People who were unvaccinated and infected in the baseline year 
are more likely to be vaccinated in the future. But this learning-induced 
demand for the vaccine is offset for people who were vaccinated and expe-
rienced a breakthrough infection. One interpretation is that breakthrough 
infections undermine people’s assessment of the usefulness of a preven-
tive vaccine. This is almost certainly the wrong conclusion for people to 
draw: breakthrough infections can and do occur even when the vaccine is 
effective. Nevertheless, this type of misguided behavioral response is not 
difficult to understand.

LEARNING BY SUFFERING IN INDIANA  A similar dynamic may hold for the 
COVID-19 vaccine as people make choices about boosters and vaccine 
take-up in nonepidemic conditions. To shed some light on the issue, I used 
linked administrative data from Indiana to study the relationship between 
vaccine take-up and prior vaccination and COVID-19 infection experi
ences. There are three main data sources: (1) Indiana COVID-19 vacci
nation registry; (2) Indiana COVID-19 lab test registry; and (3) Indiana 
Network for Patient Care (INPC) research database. INPC is a database of 
electronic medical records contributed by most of the hospitals and clinics  
in Indiana. I constructed a study sample of people who had at least one 
health care encounter in the INPC system between 2018 and 2019. Then 
I linked these individual records with COVID-19 vaccination records and 
COVID-19 lab tests and test results from 2020 to 2022.

With the data in hand, I estimate simple cross-sectional regressions with 
the following form:

Vax i2022 = a 0 + a 1Vax i2021 + a 2Covid i
2021 + a 3 Vax i2021 #Covid i

2021` j
+ Xib + ei .

In the regression, Vaxi
2022 is a binary variable indicating whether person i  

received the COVID-19 vaccine in 2022. Vaxi
2021 indicates whether the 

person was vaccinated in 2021, and Covidi
2021 indicates whether the person 

had a lab-confirmed COVID-19 infection in 2021. Xi is a covariate vector 
that adjusts for gender, race, and age fixed effects. I fit an overall regression 
to the full sample as well as separate regressions for younger, middle aged, 
and older people. The estimated regression coefficeints in table 1 show that  
the 2022 vaccination rate is much lower than the vaccination rate during 
the main pandemic. The take-up rate in 2022 was about 12 percent among 
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Table 1.  Regressions of COVID-19 Vaccine Take-Up on Prior Season COVID-19 
Infection and Vaccination

Age 18–39 Age 40–64 Age 65+

Intercept −0.011*** 0.008*** 0.033***
(0.002) (0.001) (0.001)

2021 infection 0.015*** 0.023*** 0.024***
(0.001) (0.001) (0.001)

2021 vaccine 0.167*** 0.119*** 0.089***
(0.001) (0.001) (0.001)

2021 infection × 2021 vaccine −0.017*** −0.012*** −0.013***
(0.002) (0.002) (0.002)

N 820,124 1,107,246 876,854
R2 0.06 0.04 0.03
Mean of outcome 0.061 0.091 0.118

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
Source: Author’s calculations.
Note: The regressions adjust for gender-, race-, and age-fixed effects. Standard errors are estimated using 

a heteroskedasticity robust variance matrix.

people over age 65, 9 percent among middle-aged adults age 40–64, and 
6 percent among younger adults age 18–39.

Vaccination in 2022 was much higher among people who were vac-
cinated in 2021, suggesting preferences for the vaccine in the past are a 
strong predictor of vaccination in subsequent seasons. The coefficient on 
the prior COVID-19 infection indicator is also positive and quite large. 
Among those age 40–64 and age 65 and older who did not get vaccinated 
in 2021, the 2022 vaccination rate was about 2.4 percentage points higher 
among people who contracted COVID-19 in 2021 than among people 
who did not contract COVID-19. This learning by suffering effect is a bit 
smaller—only 1.5 percentage points—among younger adults age 18–39. 
However, the coefficient on the interaction term is negative, suggesting 
that experiencing a breakthrough infection offsets the learning by suffering 
effect perhaps because it undermines confidence in the vaccine. For middle- 
aged and older adults, the breakthrough effect offsets the learning by suf-
fering effect by about 50 percent. For younger adults the breakthrough effect 
offsets the learning by suffering effect by over 100  percent, completely 
undoing any induced demand from prior infection.

This analysis suggests that the dynamics of individual COVID-19 vac-
cination exhibit some of the same patterns reported by Jin and Koch (2021) 
for influenza. In particular, take-up of the vaccine is partly determined by 
firsthand experience of the disease, and breakthrough infections seem to 
reduce subsequent demand for the vaccine. This type of response to health 
shocks seems undesirable from a public health point of view. It would 
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probably be better if people did not lower their opinion of the efficacy of 
the vaccine on the basis of their own recent health experiences. But it is not 
at all hard to understand how a breakthrough infection might be a salient 
event that does motivate behavioral changes. Understanding how people 
interpret and change their behavior in response to salient health events in 
their own lives or in the lives of other people in their family may be an 
important way to develop more realistic models of epidemics.
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GENERAL DISCUSSION    James Stock noted an important contribution 
of the paper is a fairly simple model given the complexity of the task. On 
the interaction of behavior and vaccination, Stock reflected on the impor-
tance of waiting: first, and rather obvious, it gives you time to get the vac-
cine; second, given the high fatality rate in the first wave, those who took 
self-protective measures and waited and then became infected during later 
waves were better off. Stock further pointed to the notable result in 
figure 10 of the paper’s conference draft, which shows the convergence of 
the effective reproduction number to one for every state, despite significant 
state differences in political views and COVID-19-related interventions.1 
This, he argued, points to the extensive self-protection measures taken by 
individuals across all states. Finally, Stock underscored the importance of 
continued work in this area, including better data collection, to better pre-
pare us for similar events in the future.

Speaking to the cross-state variation in COVID-19 incidence, Louise 
Sheiner agreed with the authors’ emphasis on the importance of behavior 
in explaining these differences. She argued that politicization was a major 
contributor, pointing to data that show that the variation in the labor force 
participation rate, unemployment, and consumption can be explained by 
political affiliation—the share of the state population that voted for Joe 
Biden. The same goes for state variation in vaccination rates. Sheiner con-
cluded that this underscores people’s attitudes as the primary driver of dif-
ferences, rather than state lockdowns and other mandates during this time.

On the behavioral response, Carol Graham suggested that the authors 
further explore the great variation within states in vaccination rates—that 
observed between counties. Looking at the standard deviation within states, 
for example, would be useful in trying to better understand the outcome 
that seems to show there is convergence across states in the aggregate.

Stefanie Stantcheva asked the authors whether they had explicitly taken 
the multidose nature of the COVID-19 vaccine into account in their model, 
and if not, how such dynamics may alter the findings. Stantcheva then 
raised the role of trust in government as a salient issue to consider when 
contemplating future responses to a pandemic.

Tying together issues of data collection and trust in public officials, 
Steven Davis argued that there is a need to make data both transparent and 
credible to avoid politicization. Davis then turned to discuss the economic 

1.  This figure is included as figure B.6 in the online appendix of the paper’s final version 
published in this BPEA volume.
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resilience value of working from home. In his paper with Barrero and Bloom, 
survey results where respondents were asked if their internet connectivity  
affected their ability to work productively when working from home showed 
that while 75 percent said their internet connection was perfectly adequate, 
the other 25 percent reported that their productivity was negatively affected 
by the poor quality of their internet connection.2 The paper estimates that 
subpar internet connectivity lowered US labor productivity by 3 percent  
in the period from May 2020 to April 2021. Davis also suggested that 
people may also be more willing to undertake voluntary efforts to slow the 
transmission of a virus if they can productively work from home, further 
underscoring the increased economic resilience that widespread access to 
high-quality internet would provide.

Kenneth Rogoff wondered how the model from the paper could be used 
to learn more about the economic cost of different choices. He observed 
that the learning losses for students during COVID-19 were stunning. What 
kind of information can we gather to help us better, and more quickly, 
determine what the right mitigation efforts are while we wait for a vaccine 
the next time around?

Maurice Obstfeld appreciated the contribution of the authors’ work 
in successfully pinning down the role that delay played in the spread of 
COVID-19, particularly in the current politicized environment. However, 
Obstfeld worried that the next pandemic could be very different and called  
for better preparedness in general. We were lucky this time, Obstfeld rea-
soned, that mRNA technology was available, speeding up the rollout of 
vaccinations notably. He added that future pandemics are likely to be just 
as politicized, raising issues such as what the optimal approach to school 
closures would be if younger demographics were more vulnerable, as was 
the case with the 1918 influenza epidemic. Obstfeld brought up previous 
efforts, including two panels in 2021 (the Independent Panel for Pandemic 
Preparedness and Response and the High-Level Independent Panel) focused 
on funding and global cooperation on pandemic surveillance and response, 
as well as a book by Bill Gates, How to Prevent the Next Pandemic, on 
the topic. But he noted that few of the recommendations had been imple-
mented since, and he cautioned that international attention to this issue had 
dwindled significantly with access to antivirals and the slowing fatality of 

2.  Jose Maria Barrero, Nicholas Bloom, and Steven J. Davis, “Internet Access and Its 
Implications for Productivity, Inequality, and Resilience,” In Rebuilding the Post-Pandemic 
Economy, edited by Melissa S. Kearney and Amy Ganz (Washington: Aspen Institute Press, 
2021). https://www.economicstrategygroup.org/publication/barrero-bloom-davis/.

https://www.economicstrategygroup.org/publication/barrero-bloom-davis/
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COVID-19. Obstfeld stressed the need for funding and international coop-
eration to continue the work, including surveillance of animal reservoirs 
and thinking about what types of vaccines may be necessary depending on 
specific viruses of future pandemics.

Andrew Atkeson recalled how economists had sprung into action at the 
onset of the pandemic, thinking about sectoral-level interventions and test-
ing, among other things. He firmly believed that it was not for lack of 
ideas that things did not happen. He pointed out the sometimes lackluster 
response of the public health sector and epidemiologists to the ideas of 
economists during this time. Atkeson stated that, just like the military, we 
need to plan for all types of contingencies and be ready with a response no 
matter the circumstances, noting that the willingness to spend given the 
economic cost in these situations is very high.

To Obstfeld’s point, Şebnem Kalemli-Özcan agreed that the next pan-
demic could be very different but said there are still lessons to be drawn 
from COVID-19. She called for better financial targeting of funds in  
general. Kalemli-Özcan acknowledged that while mandated lockdowns 
may be a second-best option, relying on behavioral responses to mitigate 
the spread of a virus may not be feasible—especially in countries where 
a greater share of the labor force is informal. She suggested that to make 
lockdowns more efficient and financially sustainable, funds should be tar-
geted to specific sectors: in the case of COVID-19, contact-intensive sec-
tors. She further highlighted some of her own work on the topic and agreed 
that more data collection was needed.3

Stan Veuger cautioned that some of the policy suggestions in the paper 
might be difficult to implement. Mandating testing, he believed, would likely  
face opposition in the United States as well as in Western Europe. On data 
collection, Veuger was skeptical of the role the Centers for Disease Control 
and Prevention (CDC) would be able to play. He pointed to the absence of a 
US-wide representative survey of COVID-19 incidence despite a significant 
amount of additional funding to CDC during the pandemic.4

3.  Cem Çakmaklı, Selva Demiralp, Şebnem Kalemli-Özcan, Sevcan Yeşiltaş, and 
Muhammed A. Yıldırım, “The Economic Case for Global Vaccinations: An Epidemiological 
Model with International Production Networks,” working paper 28395 (Cambridge, Mass.: 
National Bureau of Economic Research, 2024).

4.  Congressional Research Service, US Public Health Service: COVID-19 Supplemental 
Appropriations in the 116th Congress (Washington: Author, 2021), https://crsreports.congress. 
gov/product/pdf/R/R46711/3; and American Rescue Plan Act of 2021 (P.L. 117-2): Public 
Health, Medical Supply Chain, Health Services, and Related Provisions (Washington: Author, 
2021), https://crsreports.congress.gov/product/pdf/R/R46834.

https://crsreports.congress.gov/product/pdf/R/R46711/3
https://crsreports.congress.gov/product/pdf/R/R46711/3
https://crsreports.congress.gov/product/pdf/R/R46834
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Atkeson said that they had purposefully tried to stay clear of the politics 
but agreed that we may not want federal mandates. He argued that we prob-
ably ought to accept the different decisions of democratically elected state 
officials, some of whom, during the COVID-19 pandemic, chose to accept 
higher death rates in their states.

Laurence Ball asked how events might have transpired if things had 
been a lot better than they were. How many fewer deaths could there have 
been had we pursued the optimal policy? Atkeson responded by suggest-
ing that in the absence of vaccines being made available earlier, there was 
probably not much we could have done better.

Tristan Reed asked about the external validity of the authors’ findings 
for developing countries, saying that most of the delay in vaccine delivery 
to developing countries during the pandemic could be attributed to them 
ordering later.5 This may seem highly irrational at first, Reed conceded, and 
justifying not buying a vaccine seems to suggest a very low statistical value 
of life. However, Reed explained, the authors point to results in the paper 
that could suggest that in the absence of work-from-home technology,  
purchasing a vaccine is not worth it anymore after 120 days. He pondered 
whether when developing countries today are asked to financially con-
tribute toward being able to purchase vaccines on day zero of a future pan-
demic and interest is muted, it reflects their belief that they do not have 
work-from-home technology.

On the low uptake of vaccines in emerging markets and its interaction 
with the need for better data, Raghuram Rajan talked about the specific 
case of India. He explained that India severely undercounted the deaths 
resulting from COVID-19. Initially, there were false stories spread about 
natural immunity against COVID-19 in India. Rajan said that the actual 
number of fatalities was suppressed, as the initial miscalculations would 
have negatively reflected on the capability of the public health system in 
each state. The second COVID-19 wave hit India hard because of the lack 
of immunization. In the official statistics, death rates in India are low, but 
taking undercounting into account raises the death toll significantly. In con-
clusion, Rajan said that this highlights the dangers of working with poor 
data and the policies made based on such data.

Hoyt Bleakley expressed his preference for adding standard tools of  
public economics: weighing marginal cost versus marginal benefit, including 

5.  Ruchir Agarwal and Tristan Reed, “Financing Vaccine Equity: Funding for Day-Zero 
of the Next Pandemic,” Oxford Review of Economic Policy 38, no. 4 (2022): 833–50.
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external cost and benefits. He agreed with the discussants’ point that the 
benefits of getting vaccinated are largely internal, even though measuring 
the external benefits would be key for the design of a subsidy. Bleakley 
suggested using the model to measure not just the externality on the next 
person who could get infected, but also on the social and private incentives 
to delay infection before a vaccine becomes available. He also suggested 
looking at a much faster transmission rate in the authors’ model, which 
would resemble that of Omicron at the onset of the pandemic, to see how 
that would alter the effect described in the paper.

Gerald Cohen noted that the discussion on the current paper and the 
paper by Stantcheva on inflation (also included in this BPEA volume) both 
focused on information available to the public: the current paper on the 
extent to which the public understood the propagation mechanisms for dis-
ease transmission during COVID-19 and Stantcheva’s paper on whether 
the public are able to think correctly about inflation in general. Cohen 
suggested that economists should think about the importance of how to 
optimize people’s information about the benefits of vaccines or private 
efforts of mitigation versus the benefits of the public better understanding 
inflation.

Speaking to the monetary losses during COVID-19, Robert Hall observed 
that a great number of workers were on temporary layoff around April 
2020, and that output losses were large.6 This came with a partially off-
setting increase in leisure. He noted that there was no material decline in 
consumption. How do we put prices on these developments? Hall proposed 
that we carefully consider these different pieces to the puzzle in trying to 
measure the net loss of well-being from COVID-19.

6.  According to Bureau of Labor Statistics (BLS), the number of unemployed people 
on temporary layoff reached 18 million in April 2020. BLS, “Temporary Layoffs Remain 
High following Unprecedented Surge in Early 2020,” February 10, 2021, https://www.bls.
gov/opub/ted/2021/temporary-layoffs-remain-high-following-unprecedented-surge-in-early- 
2020.htm.

https://www.bls.gov/opub/ted/2021/temporary-layoffs-remain-high-following-unprecedented-surge-in-early-2020.htm
https://www.bls.gov/opub/ted/2021/temporary-layoffs-remain-high-following-unprecedented-surge-in-early-2020.htm
https://www.bls.gov/opub/ted/2021/temporary-layoffs-remain-high-following-unprecedented-surge-in-early-2020.htm
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A Comparison to Other Estimates in the Literature
We have taken an approach of estimating the impact of behavior and vaccinations
on cumulative COVID mortality based on an estimate of the fraction of the
U.S. population that were vaccinated before they were first infected with COVID
derived from serology data, an estimate of the fraction of those individuals who
would have been infected with COVID absent vaccines based on an estimate of the
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final size of the COVID epidemic, and an estimate of the difference between the
infection fatality rate for those first infected by COVID before being vaccinated
and those first infected by COVID after being vaccinated.

A.1 Key Sources of Uncertainty Regarding our Estimate of
Lives Saved

Our estimate of lives saved is subject to uncertainty due to uncertainty in each of
the numbers entering this calculation.

Our model may lead to an overestimate of lives saved because blood serology
data may undercount infections prior to vaccination or overstate the protection
offered by vaccination either because it is not representative of the entire population
or because of waning antibodies or both. See, for example, Chitwood et al. (2022).
See Eales et al. (2023) for alternative estimates of the evolution of the infection
fatality rate from SARS-COV-2 using data from England. We do not consider this
concern as having a significant impact on our estimate of lives saved by vaccines.
In particular, Atkeson (2023) conducts a similar exercise estimating the impact of
vaccines on lives saved using an estimate of cumulative infections over the course
of 2020 closer to that in Chitwood et al. (2022) and arrives at an estimate of lives
saved close to 750,000, not far from the updated estimate in this paper.

Our model may lead to an underestimate of lives saved because old people got
vaccinated early and did more to avoid getting infected early. In Figure A.1 we
show serology data from the Blood Donor and Commercial Lab surveys for the
overall population in the left panel (reproducing Figure 1 from the main text) and
the population 65 years old and older in the left panel. By comparing the two
panels, we see that infections spread more slowly through this older population in
2020 and 2021 and that vaccinations were deployed more rapidly in this population
in early 2021 than was the case for the general population.

Absent vaccines, this elderly population would have likely become infected, and
once infected they would have died at a rate higher than our assumed infection
fatality rate. To illustrate this point, we see in the serology data shown in Figure
A.1 that for those over 65 years of age, 80% had been vaccinated before they were
infected as of July 2021. In Figure A.2, we see that those over 65 years of age
were slower to get infected than the general population consistently across states.
Clearly, given the high infection fatality rate of COVID-19 for the elderly, the
counterfactual of a much higher infection rate among this age group would imply
a very high death toll and thus a much larger estimate of lives saved.

We note that some argued for an approach to COVID mitigation based on
focused protection of the elderly. See “The Great Barrington Declaration" at
https://gbdeclaration.org/. The serology data both at the national level
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Figure A.1: Combined Seroprevalence from Blood Donor Surveys in blue and
Seroprevalence from Infection (Blood Donor Survey in red, Commercial Lab Survey
in Yellow). Left Panel: Overall Population. Right Panel: Population 65 and over

shown in Figure 1 in the main text and at the state level discussed below are
consistent with the view that those over 65 did manage to get infected at a
substantially slower rate than the general population. Would this greater mitigation
by the elderly have made a difference for overall mortality absent vaccines? Given
the arrival of the Delta and Omicron variants, we think not. It is unclear whether
this success in avoiding infection by the elderly would have been more than temporary
absent the development of vaccines. Of course, our statement here is based on the
benefit of our ex-post knowledge of the emergence of these highly transmissible
variants. Perhaps focused protection might have greater effect in the context of
a different disease. Importantly, focused protection is most effective when overall
infection rates are kept low, as targeted protection of just a single group – like the
elderly in the context of COVID-19 – would likely fail in the absence of substantial
mitigation efforts in the rest of the population as well.

A.2 Alternative Estimation Approaches

There are a number of alternative approaches to estimating the impact of vaccination
on COVID mortality available in the literature that we review here.

Jia et al. (2023) apply an interesting methodology to construct an estimate of
a different measure of the impact of vaccines on COVID mortality. They aim to
measure the marginal impact on mortality if vaccination (here corresponding to
the first two shots in the primary series) had happened faster or had been pushed
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Figure A.2: Scatter plot of Blood Donor serology data on percent of those over
65 infected by state in the first quarter of 2022 vs. overall percent infected in
the same survey. These data show that the elderly consistently avoided infection
relative to the general population across states

further than it actually was. They focus on the time period from the end of May
2021 (when vaccination was well underway) and the beginning of September of
2022.

Their estimate of this marginal impact is based on the use of two data inputs.
The first data input is a count of weekly COVID deaths by vaccination status
over the study time period. That is, it consists of a weekly count of the number
of COVID deaths among those who had not received their primary series of
vaccinations 14 days prior to death and those that had received those vaccinations.
These counts of COVID deaths by vaccination status are stratified by age and are
available for 30 U.S. states that integrated their state-level vaccine records with
their reporting of vital records statistics reported to the CDC. The second data
input is a measure of the size of the vaccinated and unvaccinated populations in
these 30 states derived from their state-level vaccine records.

These counts of COVID deaths by vaccination status can be combined with
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measures of the size of the vaccinated and unvaccinated populations to estimate
the weekly COVID population mortality rate by age and vaccination status. We
reproduce the results from this calculation by Jia et al. (2023) reported in their
figure S3 here in Figure A.3. The associated weekly measures of the population by
vaccination status in these age groups used to derive the COVID mortality rates
shown in Figure A.3 are reported by Jia et al. (2023) in their figure S2 reproduced
here in Figure A.4

Figure A.3: Weekly Mortality by Vaccine Status and Age May 2021 to Sept 2022
from Jia et al. (2023) figure S3. Mortality rates for the unvaccinated are shown in
red. Those for the vaccinated in blue.

Jia et al. (2023) construct an estimate of additional lives saved had vaccination
been extended to the entire population by constructing a counterfactual estimate
of the number of COVID deaths that would have occurred had everyone been
vaccinated by the end of May 2021. To construct this counterfactual COVID death
toll, they apply the weekly COVID mortality rate for the vaccinated population
shown in Figure A.3 to the unvaccinated population shown in Figure A.4. The
difference between the observed death toll in the unvaccinated population and
this counterfactual death toll is their estimate of additional lives saved. Using this
methodology, they find that, had the entire population received the primary round
of two shots by the end of May 2021, an additional 232,000 lives could have been
saved.1

1Zhong et al. (2023) conduct a related analysis of the mortality impact of marginal increases
in the rate of vaccination on COVID mortality over the period January 2021 through April
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Figure A.4: Population by Vaccine Status and Age May 2021 to Sept 2022 from
Jia et al. (2023) figure S2, The number of unvaccinated people in each age category
is shown in red and the number of vaccinated in blue.

We note several striking features of these data shown in Figures A.3 and A.4.
First, in Figure A.4 we see that the administration of vaccines in 2021 covered

a large portion of the population by the late summer of 2021, with this level of
coverage being particularly high for the elderly population. Thus, these administrative
data on vaccination are consistent with the serology data we discussed above.
These observations of high levels of vaccine coverage by late summer of 2021 are
also consistent with the hypothesis that the marginal impact on COVID mortality
of raising vaccination coverage from observed levels to 100% of the population
is significantly smaller than the impact on COVID mortality of raising vaccine
coverage from 0% to observed levels that we aim to estimate.

Second, in Figure A.3, we see that the weekly COVID mortality rate for the
unvaccinated was much higher than that for the vaccinated in the Delta and first
Omicron waves in the fall of 2021 and early 2022. We see this evidence as consistent
with the hypotheses that a first infection with COVID Delta or Omicron was quite
dangerous for the unvaccinated and that vaccines provided considerable protection
against severe disease during those episodes.

2022. They report that increasing vaccination coverage to 85% of the adult population over this
time period would have saved an additional 178,000 lives and increasing it to 100% of the adult
population would have saved 319,000 lives. Again these estimates are of the benefit of increasing
vaccination rates above those actually achieved. We focus on estimating the impact of achieved
vaccination rates.
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Table 1: Model Implied Cumulative COVID Deaths:
Alternative Scenarios For Comparison with Other Estimates

Baseline behavior and vaccines 1,180,000
Baseline behavior and faster vaccines 904,000

Baseline behavior and vaccines through Sep 15 2021 659,000
Baseline behavior no vaccines through Sep 15 2021 1,107,000

We note in Figure A.3, the COVID mortality rate for the unvaccinated falls
markedly even for the elderly after late March or early April of 2022. We see this
decline in the mortality rate for the unvaccinated as consistent with the hypothesis
that, after the first Omicron wave, the large majority of the unvaccinated population
had likely already been exposed to COVID and hence had some protection from
severe disease due to that prior infection. Note that this hypothesis is also consistent
with the finding in Barro (2022) from cross-state regressions that the impact of
vaccination rates on subsequent COVID mortality appears to decline substantially
after the first COVID wave.

In our model, and in the data, the pace of vaccinations slows considerably in
the second half of 2021. One might ask, as do Jia et al. (2023), how many lives
might have been saved if the initially rapid pace of administering vaccines had
been continued through the second half of 2021 and continued through into 2024.

We show our model results for this scenario in the first row of Table 1. Here we
find that with continued rapid vaccination, the cumulative death toll would have
been 907,000 over the four year duration of the epidemic. In comparison with
our baseline death toll of 1,180,000, this counterfactual simulation suggests that
more rapid vaccination continuing through the fall of 2021 would have saved an
additional 273,000 lives.

As shown in Figure A.5, nearly all of this benefit is realized from the model’s
implication that more rapid vaccination would have very much reduced the wave
of deaths associated with the Delta variant in the fall of 2021 and would have
substantially mitigated the initial waves of deaths associated with the Omicron
variant in early 2022. Continued rapid vaccination after early 2022 would have
had a much smaller marginal impact on the model implied COVID death toll. We
see these findings as in line with the results of Jia et al. (2023).

Steele, Couture, and et al (2022) develop an estimate of the impact of vaccines
on COVID mortality over the time period December 2020 to September 2021 based
on an alternative approach to calculating this impact. Their approach is based on
an estimate of flows of new potential infections over the study time period. That
is, they develop a structural model of the epidemic similar to an SIR model and
attempt to estimate the rate per unit time at which infected individuals would
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Figure A.5: Model baseline behavior with faster vaccines. Left Panel: Cumulative
COVID deaths in blue and data in red. Right Panel: Weekly COVID deaths in
blue and data in red

have transmitted their infection to vaccinated individuals had those individuals
not been vaccinated together with the associated COVID deaths that would have
followed those counterfactual infections.2 They arrive at an estimate of 235,000
lives saved from December 2020 to September 2021.

This estimate is substantially lower than our estimate primarily because the
estimation methodology is different. In particular, if we apply an incremental IFR
of 0.05% to their estimate of 235,000 lives saved, we see that this corresponds
to an estimate of 47 million additional infections in their counterfactual without
vaccines over the period from December 2020 to September 2021, equal to 14% of
the U.S. population. What their estimate leaves out relative to ours is an estimate
of the additional infections and deaths that would have occurred as the COVID
epidemic continued after September 2021 in the counterfactual without vaccines.
It is these additional infections and deaths that we aim to count by incorporating
an estimate of the final size of the epidemic in our estimation procedure.

To draw a comparison between our model results and those in Steele, Couture,
and et al (2022), we simulate our model with baseline behavior with and without
vaccines through September 15, 2021. We report these results in the third and
fourth rows of Table 1. In this table, we see that we obtain an estimate that
vaccines saved 448,000 lives through that date. Note, in our counterfactual,
vaccines averted substantially more infections during this time period than estimated
in Steele, Couture, and et al (2022).

The Commonwealth Fund has produced a series of estimates of lives saved by
2The model is based on one used to estimate the impact of vaccines on seasonal influenza

here Tokars et al. (2018). See also Jones, Khader, and Branch-Elliman (2022) for an editorial
commentary on this article.
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vaccines.3 The authors of these estimates use an agent-based model based on the
model in their earlier paper Moghadas et al. (2021).

They report an estimate that, through March 2022, “Without vaccinations,
there would have been an estimated 66 million additional COVID infections”. That
corresponds to an estimate that an additional 20% of the U.S. population would
have been infected absent vaccines. This is an underestimate of counterfactual
infections relative to our calculation of averted infections prior to Omicron based
on a simple count of those vaccinated before infected as implied by the serology
data together with our estimate of the final size of the COVID epidemic.

They then report an estimate of 2,265,222 deaths averted. This estimate of
deaths averted seems very high in light of their estimate of infections averted.
Using their estimate of infections averted, this estimate of deaths averted implies
that those 66 million additional infections would have had an infection fatality
rate of 3.4%. It is unclear what evidence this estimate of the incremental infection
fatality rate is based on.

B What Drove Differences in State Level Outcomes?
In this section, we examine State level outcomes for cumulative mortality from
COVID-19 in greater detail.

To start, we make the argument that, relative to the historical and modeling
benchmarks for pandemic influenza discussed above, residents of all 50 states made
surprisingly strong and lasting efforts to slow the spread of COVID-19 so that
vaccines came in time to save a considerable number of lives. To illustrate this
point, in Figure B.6, taken from Chitwood et al. (2022),we show the dynamics of
the effective reproduction number for COVID-19 for each of the 50 states of the
United States during 2020. In this figure, we observe that behavior in all 50 states
changed rapidly and dramatically so as to drive the effective reproduction number
of COVID-19 in the state down to one very early on in the epidemic. Moreover,
this behavior was sustained so as to keep this effective reproduction number close
to one throughout 2020. Atkeson, Kopecky, and Zha (2023) find similar results for
both U.S. States and many countries.

As we have discussed above, if the effective reproduction number of a disease
remains close to one, then the growth rate of current infections is close to zero.

3See, for example, https://www.commonwealthfund.org/blog/2022/
impact-us-covid-19-vaccination-efforts-march-update. This estimate
is an update of a previous estimate from December of 2021at https:
//www.commonwealthfund.org/publications/issue-briefs/2021/dec/
us-covid-19-vaccination-program-one-year-how-many-deaths-and. That estimate
was for 36 million infections averted and 1.1 million lives saved, again implying an incremental
IFR over 3%.
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Figure B.6: Dynamics of the Effective Reproduction Number by State. This is
Figure 4 from Chitwood et al. (2022). Rt estimates for each US state from March
1, 2020 to January 1, 2021. Background colors indicate whetherRt is substantially
greater than 1 (red), close to 1 (white), or substantially less than 1 (blue). Grey
line indicates Rt = 1. Shaded areas represent 95% credible intervals.

Equivalently, the growth rate of cumulative infections and deaths is then roughly
constant. This is precisely the dynamics we observe in cumulative COVID-19
mortality at the state level. In Figure B.7, we show the dynamics of cumulative
COVID-19 deaths as an age-adjusted death rate per 100K of the population for
selected states. In the left panel of this figure, we show the dynamics of cumulative
COVID-19 deaths for California, Florida, New York (excluding New York City),
and Texas. We see that New York had a very rapid growth of cumulative deaths
in the initial phase of the epidemic, and then settled in to a lower growth rate.
Texas had a high growth rate of cumulative deaths throughout the first two years
of the epidemic. Given the rhetoric surrounding this topic, we find it striking how
similar the age-adjusted outcomes for COVID-19 deaths have been for California
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and Florida over the past four years.
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Figure B.7: Dynamics of Cumulative COVID Deaths by State Rate per 100K
population age-adjusted. Left Panel: Four big states Right Panel: High and Low
Outcomes

In the right panel of Figure B.7, we show the dynamics of cumulative COVID-
19 deaths as an age-adjusted death rate per 100K of the population for New York
City and seven other states representing extreme high and low mortality outcomes
across states. With the exception of New York City, we see largely linear growth in
cumulative deaths over the first two years of the COVID-19 epidemic for all of these
locations. As evident in the figure, New York City suffered exceptionally rapid
initial growth of cumulative COVID-19 deaths in the first wave of the epidemic,
likely due to the surprise introduction of a large number of hidden cases from
Europe in early 2020.

For futher evidence of this commonality of responses across U.S. states, in
Figure B.8, we show estimates from the Commercial Lab and Blood Donor serology
surveys of cumulative infections (in red) and combined seroprevalence (in black)
for the 50 states of the United States. While these surveys show considerable
variation in the estimated percent infected across states, we see in this figure that
all of the states followed similar dynamics of slow growth in infections in the first
two years of the epidemic and rapid deployment of vaccines in the first half of
2021.4

4Chitwood et al. (2022) argues that the serology data underestimates the true portion of the
population ever infected for a variety of reasons. This paper presents alternative estimates of
the state-level portion of the population infected through 2020 in its Figure 7.
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Figure B.8: Dynamics of Blood Serology Estimates of Cumulative Infections (red)
and Combined Vaccinated and/or Infected (black). Left Panel: Commercial Lab
Survey Right Panel: Blood Donor Surveys

Based on this evidence, we argue that the most important feature of the
outcomes across U.S. states (and even countries around the world) is how much
they have in common relative to outcomes that were expected given prior epidemiological
modeling of and past experiences with pandemic influenza. To a large extent,
residents of every state in the United States outside of New York City reacted
very strongly to COVID-19 very early on and took significant actions to slow its
spread all through 2020 and 2021. We regard the observation that this could be
done, and done nearly universally across different states of the U.S., as a great
surprise.

To expand further on this point, observe that the model-based forecast in
Ferguson and et al (2020) for peak deaths with unmitigated spread of COVID-19
was over 16 deaths per day per 100K population (implying over 50,000 deaths per
day in the U.S. as a whole) with 75% of the population being infected by late
summer of 2020. This forecast was not out of line with what was experienced
in locations that did little to mitigate the spread of SARS-CoV-2. For example,
we note that seroprevalence studies in Manaus, Brazil indicated an attack rate of
75% in their first wave of the pandemic.5 We see nothing like this rapid spread of

5See Buss et al. (2021).
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COVID-19 in the serology data across U.S. states.
In March and April of 2020, New York City experienced the worst wave of

COVID-19 infections and mortality of anywhere in the U.S. over the past four
years. Its peak weekly mortality rate was 60 per 100K population (less than 10
per 100K per day) — in the range of one half that predicted in Ferguson and et al
(2020) for peak deaths with unmitigated spread. Seroprevalence estimates for New
York City indicate up 20% of that population of 8 million people was infected in
the first wave in Spring of 2020.6
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Figure B.9: Dynamics of Weekly COVID Deaths by State Rate per 100K
population age-adjusted. Red: New York City Blue: United States

We illustrate the extent to which the first wave of COVID-19 deaths in New
York City was an outlier in Figure B.9. In that figure, we show the dynamics of
weekly COVID-19 deaths for the 50 states at an age-adjusted rate per 100K of
population in gray. We show these dynamics for New York City in red and for the

6See Stadlbauer, Tan, and et al (2021).
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United States overall in blue. As is clear from the figure, the first wave of COVID-
19 deaths in New York City was much larger than any other wave experienced
in any state in the United States. That is, the response to flatten the curve and
dramatically slow the transmission of COVID-19 was universal across the 50 states
of the United States.

As we have discussed above, there has been great interest in comparing the
impact of COVID-19 across states of the U.S. in the press and in some academic
work. We have argued that, in terms of broad strokes, the dynamics of the COVID-
19 epidemic have more in common across states than would be expected from
historical experience or projections from pandemic influenza models. We now
examine the cross-section outcomes across states and argue that these outcomes
are consistent with reasonable variation in either structural factors impacting
virus transmissibility that might vary across states (such as weather, density, etc.)
and/or reasonable variation in the strength of the behavioral response across states.

B.1 Cross-State Cumulative COVIDMortality and Infections

We start with a review of cross-state outcomes for cumulative deaths shown in
Figure B.10. The different linear growth rates of cumulative COVID deaths across
states of the United States, sustained over time, led to significant differences in
cumulative outcomes through the first two years of the epidemic.

In the left panel of Figure B.10, we show cumulative deaths by state from the
beginning of the epidemic through April 4, 2022 as an age-adjusted rate per 100K
of population. This dispersion in cumulative COVID death rates is quite wide.
In the right panel of Figure B.10, we show the cumulative deaths by state for the
period April 4, 2022 through December 30, 2023 on the same scale. Here we see
that the growth in cumulative deaths over the past two years has been much slower
and more uniform across states than during the first two years.

In Figure B.11 we show results for seroprevalence measured in the Blood Donor
Survey from the first quarter of 2022 (at the end of the first big Omicron wave)
broken down at the state level. In the left panel of this figure, we see that
there is considerable dispersion in the measure of the cumulative percentage of
the population infected across states by the end of the first big Omicron wave,
with some locations showing only 25-30% of the population infected and others
showing roughly 70% of the population infected. In the right panel of this figure,
we see, in contrast, that the population in nearly all states had achieved a high
level of combined protection from either prior infection or vaccines by the end of
the first Omicron wave.7

7Klaassen et al. (2023) Figures 1, 2 and 3 present alternative estimates of the portion of
the population at the state level with effective protection from severe disease from either prior
infection or vaccination over the course of 2021. These estimates are also consistent with the
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Age Adjusted COVID Cumulative Death Rate on 4/2/2022
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Age Adjusted COVID Cumulative Death Rate between 4/2/2022 and 12/30/2023

0 50 100 150 200 250 300 350 400

Age Adjusted COVID Death Rate per 100K

Alabama
Alaska

Arizona
Arkansas
California
Colorado

Connecticut
Delaware

District of Columbia
Florida

Georgia
Hawaii
Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Mississippi

Missouri
Montana

Nebraska
Nevada

New Hampshire
New Jersey

New Mexico
New York

New York City
North Carolina
North Dakota

Ohio
Oklahoma

Oregon
Pennsylvania
Puerto Rico

Rhode Island
South Carolina

South Dakota
Tennessee

Texas
United States

Utah
Vermont
Virginia

Washington
West Virginia

Wisconsin
Wyoming

Figure B.10: Cumulative COVID Deaths by State Rate per 100K population age-
adjusted. Left Panel: January 2020 - April 2, 2022 Right Panel: April 2, 2020 -
December 30, 2023

At a mechanical level, the different outcomes for cumulative deaths across
states through the first quarter of 2022 shown in the left panel of Figure B.10 are
largely accounted for by differences in cumulative infections in the serology data
with moderate variation in the implied infection fatality rates across states. Thus,
it appears that the serology data are giving a meaningful measure of cumulative
infections.

We illustrate this point in Figure B.12. The left panel of that figure shows a
scatter plot of the state-level measure of the cumulative percent of the population
infected from the Blood Donor Survey in the first quarter of 2022 on the x-axis
and state-level cumulative COVID mortality at an age-adjusted rate per 100K
population as of April 4, 2022 on the y-axis. The red line in that figure is a
regression line with the intercept set to zero. The slope of that line is consistent
with an estimated cumulative infection fatality rate very close to 0.5% based on
the cross-state variation in measured infections and deaths by the end of the first
quarter of 2022.

The right panel of that figure shows the implied cumulative infection fatality
rate at the state level obtained by taking the ratio of the state-level cumulative
COVID age-adjusted mortality rate as a percentage of the population and the
state-level measure of the cumulative percentage of the population infected as of
the 2022 Q1 Blood Donor Survey. (Note that this variation in state-level infection

view that the population across U.S. states had attained high levels of protection from severe
disease by the end of 2021.
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Combined Seroprevalence 2022 Q1
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Figure B.11: Left Panel: State-level measures of percent infected in Blood Donor
Serology Survey First Quarter 2022
Right Panel: State-level measures of Combined seroprevalence in Blood Donor
Serology Survey First Quarter 2022

fatality rates can be both real and due to errors in measurement.) From these
figures, we argue that the serology data provide a meaningful measure of the
progress of the COVID epidemic at the state level.

After the first large Omicron wave in early 2022, the impact of further increases
in measures of infections from serology data on further COVID deaths gets much
weaker, consistent with the view that vaccination prior to a first infection with
COVID protected substantially against COVID mortality from Omicron. In fact,
after the first quarter of 2022, the differences in infection rates across states fell
dramatically as Omicron managed to infect the vaccinated at a high rate.

In Figure B.13, we show a scatter plot of the state-level measures of the portion
of the population previously infected from the 2022 Q1 Blood Donor Survey and
the same measure at the state-level from the 2022 Q4 Blood Donor Survey. In
that figure, we see that the percentage of the population infected at the state level
in the first quarter of 2022 ranged from a low of roughly 25% to a high of roughly
70%. By the end of 2022, this dispersion in the percentage of the population
infected shrank considerably, with the low end in particular now over 60%.

We thus conclude that this relationship between cumulative infections and
deaths breaks down after the first big Omicron wave. Over the past two years,
the incremental growth of cumulative deaths has been uniformly much smaller
across U.S. states despite huge and differential growth in infections measured
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Figure B.12: Left Panel: Scatter plot of state-level cumulative COVID mortality
as of April 2, 2022 vs. percent infected in Blood Donor Serology Survey First
Quarter 2022 Right Panel: State level Infection Fatality Rates implied by these
serology and deaths data.

in the serology data over the course of the remainder of 2022. We argue that
these observations of relatively uniform outcomes over the past two years are best
accounted for by the observation that by the end of the first quarter of 2022,
nearly everyone had been vaccinated or infected or both so that the mortality
impact of further infections has been much reduced and now depends largely on
the biologically determined speed with which the protection against severe disease
offered by vaccination or prior infection wanes or fails due to immune evasion by
new variants.

B.2 Moderate Differences in Behavior and Transmissibility
Can Account for These Cross-State Outcomes

We now use our model to consider the range of variation in the strength of
behavior and of structural factors impacting transmission required to account for
this dispersion in outcomes for COVID-19 mortality across states.

We first simulate our model with all baseline parameters except that we consider
the strength of behavior as indexed by κ(t) to be either twice its baseline value
(strong behavior) or half its baseline value (weak behavior). Results are reported in
the first two rows of Table 2, with the predicted dynamics of COVID deaths shown
in Figure B.14. We see in this figure that in both cases, the model produces the
linear growth of cumulative deaths seen in the state level data, just with different
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Figure B.13: Scatter plot of Blood Donor serology data on percent infected by
state in the fourth quarter of 2022 vs. percent infected by state in the first quarter
of 2022

slopes. This variation in behavior also produces a wide range of mortality outcomes
when cumulated over time.

We then simulate our model with all baseline parameters except that we
consider the transmission constants β̄i to be either 1.5 times or 0.66 times their
baseline values, corresponding to faster or slower transmission.8 Results are reported
in the first two rows of Table 2, with the predicted dynamics of COVID deaths
shown in Figure B.15.

What is to be learned from this dispersion in infection and mortality outcomes
across U.S. states? To what extent did specific actions or policies or patterns of
private behavior account for these different outcomes across states? Or inherent
differences in infection fatality rates? These questions are hard to answer given all
of the confounding factors that also influenced infection and mortality outcomes

8See Ives and Bozzuto (2021) and Sy, White, and Nichols (2021) for estimates of the range of
variation in COVID transmission rates across regions of the U.S.
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Table 2: Model Implied Cumulative COVID Deaths:
Alternative Scenarios Capturing Cross-State Outcomes

Weaker behavior (0.5× κt), baseline transmission, with vaccines 1,581,000
Stronger behavior (2× κt), baseline transmission, with vaccines 863,000
Faster transmission (1.5× β̄i), baseline behavior, with vaccines 1,558,000
Slower transmission (0.66× β̄i), baseline behavior, with vaccines 764,000

across states. In particular, it is difficult to assess to what extent it was ex-ante
differences in structural factors such as density or weather across states states that
might have led to faster or slower transmission or differences in public and private
behavior that caused the different growth rates of infections and deaths observed
across states.

We do not attempt such an analysis in this paper. Moreover, we argue that the
universally strong behavioral response in all 50 states is the most striking feature
of the state level data.
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Figure B.14: Model with strong and weak behavioral response Left Panel: Strong
behavior Cumulative COVID deaths in blue and data in red. Right Panel: Weak
behavior Cumulative COVID deaths in blue and data in red

C Model Appendix
This appendix presents the model and parameters used in this paper. This model is
an update of the model presented in the appendix to “Behavior and the Dynamics
of Epidemics" by Andrew Atkeson for the Brookings Panel on Economic Activity
Spring 2021 and in “The Impact of Behavior and Vaccines on U.S. Cumulative
Deaths from COVID-19" by Andrew Atkeson available as NBER Working Paper
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Figure B.15: Model with fast and slow transmission Left Panel: Fast Transmission
Cumulative COVID deaths in blue and data in red. Right Panel: Slow
Transmission Cumulative COVID deaths in blue and data in red

31525. This model is based closely on that presented in “A Parsimonious Behavioral
SEIR Model of the 2020 COVID Epidemic in the United States and United
Kingdom" which is available as NBER working paper 28434 and as Federal Reserve
Bank of Minneapolis Staff Report 619. This appendix discusses the model extended
to include vaccines and the potential for waning immunity, as well as the arrival
of the Delta and Omicron variants. It is applied to the United States.

This appendix has three parts. In section C.1, we present the equations of
the model. We also compare the structure of this model with that of a simpler
behavioral SIRD model as analyzed in Atkeson, Kopecky, and Zha (2021)9 and
Droste and Stock (2021)10 .

In section C.2, we discuss the values of the parameters and the rationale behind
the choice of these parameters. The model is fit to US data on daily deaths
from COVID as well as the serology estimates of the cumulative portion of the
population infected and vaccinated prior to infection. Several parameters are set
to match recommendations from the Center for Disease Control for modeling of
COVID-19.

A full version of the MATLAB codes to run this model are posted with the
final paper.

9Atkeson, Kopecky, and Zha “Behavior and the Transmission of COVID-19"
forthcoming, American Economic Review Papers and Proceedings with the longer
version available here https://www.minneapolisfed.org/research/staff-reports/
behavior-and-the-transmission-of-covid19

10Droste and Stock “Adapting to the COVID-19 Pandemic" (2021) American Economic Review
Papers and Proceedings
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C.1 Model

The model is as follows.
The SEIHR model extends the SIR model by adding both the exposed state E

and the hospitalized state H. In this version of the model the total population N is
given by the sum of susceptible agents in state S, exposed in state E, infected in I,
hospitalized in H, recovered in R, and dead in D. We do not consider population
growth in the model.

The compartments E and I are further broken down by variant i, where i
indexes the original variant, and the Alpha, Delta, and Omicron variants. The
rate at which agents leave the Ei compartmenst for both the normal and more
transmissible variants is σ and the rate at which agents leave the Ii compartments
for all variants is γ. We also include compartments Ei and Ii corresponding to those
experiencing breakthrough Omicron infections. These individuals are modeled as
having immunity to previous variants but not to Omicron. The mean generation
time for the model is then 1/σ + 1/γ. As discussed below, the choice of these
parameters is guided by CDC recommendations for these disease parameters.

As agents leave the Ii compartment, fraction ηi go into the hospitalized compartment
H and 1 − ηi transition directly to the recovered compartment Ri. The rate at
which agents leave the H compartment is ζ. We assume that all agents leaving the
H compartment die. Thus, the overall infection fatality rate for variants is given
by ηi and the mean time in the H compartment corresponding to illness and delays
in reporting deaths is 1/ζ. Note that with these assumptions, it is not appropriate
to compare the model’s predictions for hospitalizations to data. Instead, this H
compartment simply serves to introduce a delay between infection and death.

Those who recover from an infection with the original variant or the Alpha or
Delta variants flow into compartment R and are immune from a second infection
with these variants. This immunity wanes at rate ξ. They are also susceptible to
breakthrough infections with Omicron as discussed below. There is a compartment
V introduced to count those who have protection from vaccination prior to a first
infection with COVID. Agents flow into this compartment from the compartment
S as they are vaccinated and flow out with waning immunity (at rate ξ) and
breakthrough infections from Omicron. There is a separate recovered compartment
RO for those recovered from an infection with Omicron. This is introduced to allow
for faster waning immunity from an Omicron infection at rate ξo.

To introduce breakthrough infections for the Omicron variant, We assume
that those infected with Omicron transmit their infection to those in the removed
compartment R (those recovered from an infection with a prior variant) and the
vaccinated prior to first infection compartment V at a fraction νO of the rate
at which they transmit their infection to those in the susceptible compartment
S. The infection fatality rate from Omicron for those with no prior infection
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or vaccination is ηO while that for those infected with Omicron but with prior
immunity (i.e. coming out of the R or V compartments) is ηOR. We include
separate compartments for those exposed to and infected with Omicron depending
on whether they came out of the S compartment or the R compartment to allow
for these separate infection fatality rates. We assume that those infected with
Omicron who do not die transit to a separate compartment removed compartment
RO indicating immunity from prior infection with Omicron. We assume that this
protection against a second Omicron infection and serious disease wanes at the
rate ξ0.

The transmission rate of the original variant is denoted by β(t). Those for
the new variants are denoted by βi(t). New variants are introduced by setting
Ēi(t) = 1/population in the equations below for several days around a specified
date ti and equal to zero otherwise. This allows for a discrete jump from zero
exposed to particular variant to a positive number. The window of days for this
introduction needs to be chosen so that the differential equation solver (which
samples on discrete dates) picks up the introduction of the variant.

The dynamics of the model are given by

dS(t)

dt
= −

(
β(t)I(t) +

∑
i=A,D

βi(t)Ii(t) + βO(IO(t) + IOO(t))

)
S(t)−

λ(t)S(t) + ξ(R(t) + V (t)) + ξORO(t)

Here the original variant is denoted without a subscript, i = A,D refers to
Alpha and Delta, i = O refers to Omicron, and IOO(t) refers to those with a
breakthrough Omicron infection. The parameter λ(t) is the vaccination rate. The
inflows ξ(R(t) + V (t)) are ξORO(t) are due to waning immunity. Note that these
individuals are also susceptible to severe disease and death in a manner equivalent
to a completely naive individual.

The outflows from the S compartment are distributed as follows.

dE(t)

dt
= β(t)I(t)S(t)− σE(t)

For i = A,D
dEi(t)

dt
= βi(t)Ii(t)S(t)− σEi(t) + Ēi(t)

For i = O

dEO(t)

dt
= βOνO(IO(t) + IOO(t))(R(t) + V (t))− σEO(t) + ĒO(t)

Here the terms Ēi(t) are used to introduce agents infected with new variants on
particular dates. In the code, these terms are zero except for a window of several
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days in which the new variant is introduced with this term equal to 1/332,000,000
in this two-day time window. For i = OO representing breakthrough Omicron
infections we have

dEOO(t)

dt
= βO(t)(IO(t) + IOO(t))νO(R(t) + V (t))− σEOR(t)

Outflows from the exposed states move to corresponding infectious states as follows

dI(t)

dt
= σE(t)− γI(t),

For i = A,D,O,OO
dIi(t)

dt
= σEi(t)− γIi(t)

Infection leads to hospitalization (and death) as follows. Infection fatality rates
are denoted by ηi.

dH(t)

dt
= η(t)γ(I(t) +

∑
i=A,D

Ii(t)) + ηOγIO + ηOOγIOO − ζH(t)

The infection fatality rate for the original, Alpha, and Delta variants, denoted
by η(t) is allowed to vary by time to reflect the apparent decline in the infection
fatality rate from 2020 to 2021 implied by the serology data. The infection fatality
rates for an initial infection with Omicron ηO and a breakthrough infection with
Omicron ηOO are assumed to be constant over time.

Deaths are recorded as agents flow out of the H compartment

dD(t)

dt
= ζH(t)

Those who do not die from their infection with the original, Alpha, or Delta
variants flow direclty into the recovered compartment

dR(t)

dt
= (1− η)γ(I(t) +

∑
i=A,D

Ii(t))− βOνO(IO(t) + IOO(t))R(t)− ξR(t)

Note the two outflows from this compartment are due to breakthrough infections
with Omicron and waning immunity.

dRO(t)

dt
= (1− ηO)γIO + (1− ηOO)γIOO − ξORO(t)

All those who do not die of Omicron flow into the recovered from Omicron compartment.
The evolution of those vaccinated prior to their first COVID infection is given by

dV (t)

dt
= λ(t)S(t)− βO(t)(IO(t) + IOO(t))νOV (t)− ξV (t)
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To measure cumulative first infections (corresponding to the serology data) we
introduce a compartment CI(t) that evolves as follows

dCI(t)

dt
=

(
β(t)I(t) +

∑
i=A,D

βi(t)Ii(t)

)
+

βO (IO(t) + IOO(t)))S(t) + βO(t)(IO(t) + IOO(t))νOV (t)− ξCI(t)

The reduced-form for the behavioral response of the transmission rate to the
level of daily deaths is given by

β(t) = β̄ exp(−κ(t)
dD(t)

dt
+ ψ(t)) (1)

and for variants
βi(t) = β̄i exp(−κ(t)

dD(t)

dt
+ ψ(t))

where the parameters β̄ and β̄i control the baseline transmissibility of the original
and subsequent variants of COVID, the parameter ψ(t) is used to introduce seasonality
in transmission, and κ(t) is the semi-elasticity of transmission with respect to the
level of daily deaths. Note that the relative transmissibility of each variant for any
level of daily deaths and point in the seasonal cycle is given by β̄i/β̄.

To model seasonality in the transmission of the virus, we set

ψ(t) = seasonalsize ∗ (cos((t+ seasonalposition) ∗ 2π/365)− 1)/2

where seasonalsize controls the magnitude of the seasonal fluctuations in transmissibility
holding behavior fixed and seasonalposition controls the location of the seasonal
peak in transmission. Note that t is indexed to t = 0 on February 15, 2020.

To model the change in κ(t), I set

κ(t) = κ̄ ∗ (1− normcdf(t, fatiguemean, fatiguesig))+

fatiguesize ∗ κ̄ ∗ normcdf(t, fatiguemean, fatiguesig)

where κ̄ sets the initial semi-elasticity of transmission with respect to daily deaths,
fatiguesize sets the percentage reduction in this semi-elasticity in the long run,
normcdf is the normal CDF, fatiguemean sets the date at which the transition
in κ(t) from its initial to new long run level is halfway complete, and fatiguesig
sets the speed with which that transition occurs.

Initial conditions for all simulations are E(0) > 0 , Ei(0) = I(0) = Ii(0) =
R(0) = RO(0) = V (0) = H(0) = D(0) = CI(0) = 0, S(0) = 1 − E(0). For the
United States, E(0) = 33 on February 15, 2020 out of a population of 332 million.
The model is simulated for four years after its starting date.
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C.2 Parameters

In this section we discuss the choice of parameters of the model.
The four variants of COVID-19 considered in the model are the original variant,

and the Alpha, Delta, and Omicron Variants. We assume that for all four variants,
the rate at which agents flow from exposed (E) to infectious (I) compartments
is given by σ = 0.425 and the rate at which they flow out of the infectious
compartment is γ = 0.4. The parameter σ corresponds to an expected time
before an exposed agent becomes infectious of 2.35 days and the parameter γ
corresponds to an expected time for which an infected individual is infectious
of 2.5 days. The generation time is defined as the average time between which
one infected individual shows symptoms and a person infected by that individual
shows symptoms. These two parameters together imply an average generation
time of 1/σ + 1/γ = 4.85 days.11 As mentioned above, this generation time sets
the time-scale of the epidemic implied by the model.

The rate at which agents flow out of the hospitalized compartment is ζ =
1/30, corresponding to a mean time between infection and reported death of 30
days. The rates at which immunity wanes (so agents from from the R or RO
compartments back to the S compartment) are set at ξ = ξO = 1/(3 × 365)
corresponding to a mean time in these compartments (and thus with protection
from severe disease) of three years.

The baseline transmission rates βi for the four variants are given by β̄ = 3γ for
the original variant, β̄A = 4γ for Alpha, β̄D = 8γ for Delta, and β̄O = 15.3γ. The
scalar in front of γ corresponds in the model to the basic reproduction number
for each variant. Omicron is also assumed to breakthrough to infect those in
the R compartment. The parameter νO governing the rate of these breakthrough
infections is set to 1/10.

The infection fatality rate for the original variant is set to η(t) = 0.01 from
February 15 through mid December 2020. After that time, the infection fatality
rate for the original variant, Alpha, and Delta is η(t) = 0.05. This pattern of
declining IFRs is required to simultaneously match the estimates of cumulative
COVID deaths and COVID infections from the serology data. The infection
fatality rate for someone infected with Omicron out of the S compartment (and
thus either with no prior infection or vaccination or whose protection against severe
disease has waned) is ηO(t) = 0.0015 corresponding to 30% of the IFR of the
Delta variant that it displaced. This infection fatality rate declines gradually
through 2022 and 2023. The infection fatality rate for breakthrough infections
with Omicron is set at ηOO = 2.25 × 10−5 or 1.5% of that of first infections with

11See https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html. On
that webpage, the CDC notes a mean time of approximately six days between symptom onset
in one person to symptom onset in another person infected by that individual.
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Omicron.
The Alpha variant is introduced on November 30, 2020. The Delta variant is

introduced on April 25, 2021. The Omicron variant is introduced on November
13, 2021

Note that our parameter choices for variant transmissibility β̄i and infection
fatality rates are chosen to match the time patterns of growth rates of infections
(from the serology data) and deaths. As is standard for models of this kind, a
number of additional parameters impact the model implications for growth rates of
infections and deaths, including the parameters σ and γ impacting the generation
interval and the parameter νO governing the probability of breakthrough infections.
Further work is required to reconcile these parameters and our model specification
with other data measuring the timing and speed of the emergence of new variants
measured with testing data. The model implications for the prevalence of each
variant at each moment in time is given by the vector of Ii(t).

The initial semi-elasticity of transmission with respect to daily deaths (measured
as a fraction of the population) for the United States is κ̄ = 250000. To model
the onset of pandemic fatigue in the United States, We set fatiguesize = 0.375
and fatiguemean = 285 and fatiguesig = 15. These parameters imply that κ(t)
falls from its original value of κ̄ to 35% of that value in mid to late November of
2020. This behavioral parameter then remains constant for the remainder of the
simulation.

To model seasonality of transmission in the United States, we set seasonalsize =
0.35 (line 74) and seasonalposition = 20 (line 77). This seasonal variation in the
parameter ψ(t) leads to variation over time in the basic reproduction number of
the virus as discussed in the Spring 2021 version of this paper.

To model the impact of vaccines, we set λ(t) = 0.0065 starting on January 1,
2021 and zero before that date. Vaccines are administered at this rate for the first
185 days of 2021. The rate of vaccination then drops to λ(t) = 0.0065/5 until
the end of 2022 and then λ(t) is set to zero after that. In our model, agents in
compartment V (t) enjoy full protection from infection by the Alpha and Delta
variants and substantial protection against death from Omicron. Thus, we regard
the number of agents in this compartment as representing the population that is
both vaccinated prior to a first COVID infection and that gained protection from
that vaccination. We assume that this is 75% of the total vaccinated. Thus, when
we compare the model implications for V (t) to the measures from the serology
data on those vaccinated but not infected, we plot V (t)/0.75 as a measure of the
total population vaccinated.
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