The Emergence of a Uniform Business Cycle in the United States: Evidence from New Claims-Based Unemployment Data

Andrew Fieldhouse David Munro Christoffer Koch Sean Howard
Mays Business School Middlebury College Empirical Research Partners
Texas A&M University

BPEA Spring 2024 Conference
March 29, 2024

The views expressed in this paper are the views of the authors only and do not necessarily reflect the views of the Federal Reserve Bank of Dallas, the Federal Reserve System, or the International Monetary Fund, its Executive Board, or its Management.
Motivation: Limited Data Availability

Macroeconomists are increasingly leveraging panel datasets and regional heterogeneity to identify economic relationships

- Nakamura and Steinsson (2014); Chodorow-Reich (2019); Hazell, Herreño, Nakamura, and Steinsson (2022); Glandon et al. (2023)
Motivation: Limited Data Availability

Macroeconomists are increasingly leveraging panel datasets and regional heterogeneity to identify economic relationships

- Nakamura and Steinsson (2014); Chodorow-Reich (2019); Hazell, Herreño, Nakamura, and Steinsson (2022); Glandon et al. (2023)

Regrettably, official monthly unemployment data for U.S. states only go back to 1976, a major impediment to state-level work
Motivation: Limited Data Availability

Macroeconomists are increasingly leveraging panel datasets and regional heterogeneity to identify economic relationships.

- Nakamura and Steinsson (2014); Chodorow-Reich (2019); Hazell, Herreño, Nakamura, and Steinsson (2022); Glandon et al. (2023)

Regrettably, official monthly unemployment data for U.S. states only go back to 1976, a major impediment to state-level work.

Data limitations → lots of related work starts in the late 1970s.

- Blanchard and Katz (1992); Owyang, Piger, and Wall (2005); Crone and Clayton-Matthews (2005); Dao, Furceri, and Loungani (2017); Tasci and Zevanove (2019)
Contribution #1: Historical Data Availability

We digitize monthly state unemployment claims back to 1947 from a series of government publications.
Contribution #1: Historical Data Availability

We digitize monthly state unemployment claims back to 1947 from a series of government publications.

Using this data, we construct claims-based unemployment rates, which we show are highly correlated with official measures.

- Monthly data: Jan 1947–Dec 2023, for 50 states, DC, US
- Nearly three additional decades of monthly state-level data, spanning the first six post-war recessions (1948–49 to 1973–75)
Contribution #1: Historical Data Availability

We digitize monthly state unemployment claims back to 1947 from a series of government publications.

Using this data, we construct claims-based unemployment rates, which we show are highly correlated with official measures.

- Monthly data: Jan 1947–Dec 2023, for 50 states, DC, US
- Nearly three additional decades of monthly state-level data, spanning the first six post-war recessions (1948–49 to 1973–75)

Our preliminary dataset is publicly available on BPEA’s website.

- Claims-based unemployment rates
- Digitized unemployment insurance claims
Contribution #2: Emergence of Uniform Business Cycle

We study the evolution of state unemployment fluctuations around U.S. recessions, labor market adjustments to shocks
Contribution #2: Emergence of Uniform Business Cycle

We study the evolution of state unemployment fluctuations around U.S. recessions, labor market adjustments to shocks

We document the following:

1. a trend decrease in the dispersion of relative unemployment rates and relative employment growth across states
Contribution #2: Emergence of Uniform Business Cycle

We study the evolution of state unemployment fluctuations around U.S. recessions, labor market adjustments to shocks

We document the following:

1. a trend decrease in the dispersion of relative unemployment rates and relative employment growth across states

2. a convergence across states in both the speed and degree to which unemployment recovers after recessions
We study the evolution of state unemployment fluctuations around U.S. recessions, labor market adjustments to shocks

We document the following:

1. a trend decrease in the dispersion of relative unemployment rates and relative employment growth across states

2. a convergence across states in both the speed and degree to which unemployment recovers after recessions

3. a stark attenuation of relative population responses to state-specific demand shocks, whereas relative employment and unemployment responses are more stable
Contribution #2: Emergence of Uniform Business Cycle

We study the evolution of state unemployment fluctuations around U.S. recessions, labor market adjustments to shocks

We document the following:

1. a trend decrease in the dispersion of relative unemployment rates and relative employment growth across states

2. a convergence across states in both the speed and degree to which unemployment recovers after recessions

3. a stark attenuation of relative population responses to state-specific demand shocks, whereas relative employment and unemployment responses are more stable

Evidence points to the emergence of a U.S. business cycle experienced more uniformly across states since the late 1950s
Claims-based Unemployment Rates
Claims-Based Unemployment Rates

We first digitize monthly state-level data on Initial Claims (IC) and Continued Claims (CC) from various government reports.

- We digitize ~36,000 monthly observations back to 1946, merge with public unemployment claims data available for 1971+.
Claims-Based Unemployment Rates

We first digitize monthly state-level data on Initial Claims (IC) and Continued Claims (CC) from various government reports.

- We digitize ~36,000 monthly observations back to 1946, merge with public unemployment claims data available for 1971+

Our claims-based unemployment rate for state i in month t is computed as

$$UR_{i,t}^{Claims} = \frac{IC_{i,t} + CC_{i,t}}{NP_{i,t} + IC_{i,t} + CC_{i,t}}$$

- Average weekly $IC_{i,t} + CC_{i,t}$ is our proxy for U (similar to IUR)
- We use nonfarm payroll employment ($NP_{i,t}$) as measure of E (only monthly state-level employment data back to 1940s)
Claims-Based Unemployment Rate: Ohio

Graph showing the official unemployment rate, claims-based unemployment rate, and insured unemployment rate for Ohio over time, compared to the U.S. claims-based unemployment rate.
Conceptual Differences and Robustness Checks

There are conceptual differences between our series, the official unemployment rate, and insured unemployment rate.

Related robustness checks:

- Backdated U.S. insured unemployment rate data to 1940s
- Detrend series, analyze cyclical vs. trend components
- Study out-of-sample fit with “unemployment rate” snapshots for larger states (constructed from March CPS supplement)
- Analyze nonfarm payroll vs. total employment (for U.S.)
- Digitize covered employment data, study UI coverage expansions
- Analyze claims per capita by Census region

Largely skipping over this for a 15 minute presentation...
Comparison of Cyclical Unemployment (HP-filtered)

- U.S. Insured Unemployment Rate
- U.S. Claims-Based Unemployment Rate
EMERGENCE OF A UNIFORM BUSINESS CYCLE ACROSS U.S. STATES
Convergence in Relative Claims-Based Unemployment

Relative Employment Growth
Hall and Kudlyak (2020) document that recoveries in the U.S. unemployment rate were faster in 1940s–50s, then slowed
Unemployment Recovery Rates and Recession Dates

Hall and Kudlyak (2020) document that recoveries in the U.S. unemployment rate were faster in 1940s–50s, then slowed.

Following Hall and Kudlyak (2020) we compute the pace of recovery as mean decline in log unemployment over recovery:

\[
\text{Recovery Pace} = -12 \cdot (\log UR_0 - \log UR_T) / T
\]
Unemployment Recovery Rates and Recession Dates

Hall and Kudlyak (2020) document that recoveries in the U.S. unemployment rate were faster in 1940s–50s, then slowed.

Following Hall and Kudlyak (2020) we compute the pace of recovery as mean decline in log unemployment over recovery:

\[
\text{Recovery Pace} = -12 \cdot (\log UR_0 - \log UR_T)/T
\]

This requires business cycle dates for the start of recovery (0) and end of recovery (T) for each expansion.

- We adopt the unemployment-based recession dating algorithm of Dupraz, Nakamura, and Steinsson (2023).
Unemployment Recovery Rates and Recession Dates

Hall and Kudlyak (2020) document that recoveries in the U.S. unemployment rate were faster in 1940s–50s, then slowed.

Following Hall and Kudlyak (2020) we compute the pace of recovery as mean decline in log unemployment over recovery:

\[\text{Recovery Pace} = -12 \cdot (\log UR_0 - \log UR_T)/T \]

This requires business cycle dates for the start of recovery (0) and end of recovery (T) for each expansion.

- We adopt the unemployment-based recession dating algorithm of Dupraz, Nakamura, and Steinsson (2023)
- We calculate recession dates for the U.S. and all 50 states
Labor Market Adjustments to Local Shocks

We estimate relative employment/unemployment/population responses to relative Bartik (1991) shocks in LP-IV framework:

$$\Delta Y_{i,t+h} = \alpha_i + \gamma_t + \beta_{h rimix_{i,t}} + \varphi_h(L)Z_{i,t-1} + \varepsilon_{i,t+h}$$

Labor Market Adjustments to Local Shocks

We estimate relative employment/unemployment/population responses to relative Bartik (1991) shocks in LP-IV framework:

$$\Delta Y_{i,t+h} = \alpha_i + \gamma_t + \beta_{h rimix} x_{i,t} + \varphi_h(L) Z_{i,t-1} + \varepsilon_{i,t+h}$$

Main takeaways:

- Migration used to be an important margin, but we find a negligible population response since the mid-1980s
Labor Market Adjustments to Local Shocks

We estimate relative employment/unemployment/population responses to relative Bartik (1991) shocks in LP-IV framework:

$$\Delta Y_{i,t+h} = \alpha_i + \gamma_t + \beta_h rimix_{i,t} + \varphi_h(L)Z_{i,t-1} + \varepsilon_{i,t+h}$$

Main takeaways:

- Migration used to be an important margin, but we find a negligible population response since the mid-1980s
- Less attenuation in relative employment, unemployment
Labor Market Adjustments to Local Shocks

We estimate relative employment/unemployment/population responses to relative Bartik (1991) shocks in LP-IV framework:

$$\Delta Y_{i,t+h} = \alpha_i + \gamma_t + \beta_h rimix_{i,t} + \varphi_h(L)Z_{i,t-1} + \varepsilon_{i,t+h}$$

Main takeaways:

- Migration used to be an important margin, but we find a negligible population response since the mid-1980s
- Less attenuation in relative employment, unemployment
- Larger (above-average) shocks are driving all the action, but these are fewer and relatively smaller in recent decades
Concluding Thoughts
Concluding Thoughts

- We digitize state-level unemployment claims data back to 1940s, construct monthly claims-based unemployment rates
Concluding Thoughts

- We digitize state-level unemployment claims data back to 1940s, construct monthly claims-based unemployment rates.
- Using our data, we document the emergence of a U.S. business cycle experienced more uniformly across states.
Concluding Thoughts

- We digitize state-level unemployment claims data back to 1940s, construct monthly claims-based unemployment rates.
- Using our data, we document the emergence of a U.S. business cycle experienced more uniformly across states.
- States’ increasingly common experience in recessions and recoveries helps explain why interstate migration is bearing less of the adjustment following local demand shocks.
Concluding Thoughts

- We digitize state-level unemployment claims data back to 1940s, construct monthly claims-based unemployment rates.

- Using our data, we document the emergence of a U.S. business cycle experienced more uniformly across states.

- States’ increasingly common experience in recessions and recoveries helps explain why interstate migration is bearing less of the adjustment following local demand shocks.

- We take a stab at why state economies converged when they did: convergence in industrial composition seems key.
Concluding Thoughts

- We digitize state-level unemployment claims data back to 1940s, construct monthly claims-based unemployment rates.

- Using our data, we document the emergence of a U.S. business cycle experienced more uniformly across states.

- States’ increasingly common experience in recessions and recoveries helps explain why interstate migration is bearing less of the adjustment following local demand shocks.

- We take a stab at why state economies converged when they did: convergence in industrial composition seems key.

- We hope our historical dataset proves useful for a wide range of empirical work using state-level panel data.
Appendix Slides
Claims-Based Unemployment Rate: National
Comparison of Cyclical Unemployment (HP-filtered)

- U.S. Unemployment Rate
- U.S. Claims-Based Unemployment Rate

Percentage Points

-10 to 10

Year:
- 1950
- 1960
- 1970
- 1980
- 1990
- 2000
- 2010
- 2020
U.S. Claims-Based Unemployment Rate: CPS vs. CES
Covered Employment / Nonfarm Payroll Employment
Federally Induced UI Coverage Expansions

1954-55: The “Act to extend and improve the unemployment compensation program” (PL 83-767) lowered the firm size threshold for FUTA tax base/eligibility to 4+ more employees (down from 8+)

1972–73: The Employment Security Amendments of 1970 (PL 91-373) compelled states to expand UI coverage to state hospitals and universities

1977-88: The Unemployment Compensation Amendments of 1976 (PL 94-566) compelled states to expand UI coverage to state/local government employees and nonprofit schools

These policy changes were largely motivated by improving and shoring up UI financing, not cyclical responses to unemployment...
State-level Max Benefit Duration
Long-Term Unemployment Share
Unemployment Claims by Census Regions
Alt. Claims-Based Unemployment Rate: IC Only
Claims-Based Unemployment Rates: Fitted Model

In addition to the “raw” claims-based URs, we also conduct a fitting exercise on state-level unemployment rates. From 1976 onwards we fit the following statistical model:

\[
UR_{i,t}^{\text{Official}} = \beta_{0,i} + \beta_{1,i}(UR_{i,t}^{\text{Claims}} - UR_{US,t}^{\text{Claims}}) + \beta_{2,i} UR_{US,t}^{\text{Official}} + \varepsilon_{i,t}
\]

where

- \(UR_{i,t}^{\text{Official}}\) is BLS’s official unemployment rate for state \(i\)
- \(UR_{US,t}^{\text{Official}}\) is BLS’s national unemployment rate
- \(UR_{i,t}^{\text{Claims}} - UR_{US,t}^{\text{Claims}}\) is the difference between our state and national claims based unemployment rates

We use these fitted models to backcast fitted CBUR for 1948–75
Fitted Claims-Based Unemployment Rates
Relative Employment Growth
Recession Dating: DNS Algorithm

Gist: identifying local minima and maxima of the unemployment rate, ignoring low frequency variation in the unemployment rate

- Let \(u_t \) be a candidate for a cycle peak \((cp) \)
- If \(u_{t+h} > u_{cp} \) in all subsequent months until \(u_{t+h+1} > u_{cp} + X \), confirm \(cp \)
- If \(u_{t+h} < u_{cp} \), new candidate for \(cp \)
- After identifying a \(cp \), proceed analogously to identify the next cycle trough \((ct) \)...

Setting \(X = 1.5 \) identifies unemployment-based peak/troughs similar to those identified by NBER
Recovery Pace: National Recoveries

Recovery Pace

- Claims-Based Unemployment Rate
- Official Unemployment Rate
- Hall and Kudlyak (2020) Recovery Rates

Recovery Cycle

- 1949
- 1954
- 1958
- 1961
- 1970
- 1975
- 1982
- 1992
- 2003
- 2009
- 2020
Cumulative Change in CBUR Relative to Peak

1949

log change in CBUR from trough date

months from trough date
Cumulative Change in CBUR Relative to Peak...
Cumulative Change in CBUR Relative to Peak
Cumulative Change in CBUR Relative to Peak...
Convergence in Degree of Unemployment Recoveries
Recession Dating: State-level Recessions vs. NBER

Share of States in Recession

- NBER Recessions
- Share of Recession States

Graph showing the share of states in recession over time.
Impulse Response of Relative Population

Sample: 1950-1985

Years

Percentage Points

0 1 2 3 4 5 6 7 8 9 10 11 12
Impulse Response of Relative Population...

Sample: 1986-2019

Percentage Points

Years

Sample: 1986-2019
Impulse Response of Relative Employment

Sample: 1950-1985
Convergence in Industrial Composition Across States

Avg. Sum of Squared Differences in State Industry Shares

- Weighted Average
- Raw Average
Recovery Pace by State Manufacturing Share

(a) 1948–1958 Recoveries

1961–2020 Recoveries