The Impact of Vaccines and Behavior on US Cumulative Deaths from COVID-19

Andrew Atkeson
UCLA Economics

Stephen Kissler
University of Colorado Computer Science

BPEA, March 2024
Impact of Behavior and Vaccines on COVID Deaths

- Mitigating behavior and vaccines saved $\approx 800,000$ American lives

- Mechanism: $\approx 68\%$ of Americans got vaccinated before first infection
 - First COVID infection much less dangerous after vaccination
 - Back of the envelope estimate of lives saved
 - Full structural model of epidemic with behavior and vaccines

- Data for Estimate
 - Serology data on timing of infections and vaccinations
 - 30 states: COVID-19 deaths data by vaccination status
• Serology data: Blood Donor and Commercial Lab Surveys
• red and yellow – cumulative percent ever infected
• blue – cumulative percent infected plus vaccinated without infection
Key Facts from Serology Data

- Few infections in 2020 and early 2021
- By July 2021, 68% of Americans got vaccinated prior to first infection
- Almost all of us have been infected by now
COVID much less deadly if vaccinated prior to first infection

- 30 States: linked vaccine and mortality data
- Weekly COVID death rates for vaccinated and unvaccinated
- 2021 was very dangerous for the unvaccinated
- Rates converge after first Omicron wave as no one left naive
68% of Americans vaccinated prior to first infection

They would have gotten infected without protection of vaccines

Higher IFR without vaccines implies 845,000 additional COVID deaths
Model Fit to COVID Deaths, Infections, and Vaccinations
Four Lessons From COVID-19

1. Both behavior and vaccines needed to save lives
 ▶ Behavior alone delays deaths
 ▶ Vaccines come too late without mitigation

2. Success in delaying infections 2020-21 a surprise
 ▶ Relative to “Spanish” Flu
 ▶ Ferguson et. al. 2006 – modeling pandemic influenza
 “After first 120 days” vaccines too late to save lives
 ▶ Long-term mitigation is possible

3. Behavioral response had a lot in common across U.S. States
 ▶ $R_{eff}(t) \to 1$ fast in all states
 ▶ No state had a a big wave like New York City
 ▶ All states had slow spread in 2020 and fast vaccines in 2021

4. Both behavior and the purpose of mitigation will be different next time
What Information Infrastructure Do We Need?

- With COVID-19 we were “flying blind”

- Assessing Transmission Routes
 - What activities/venues contribute most to transmission?
 - Real-time monitoring of relevant behaviors and transmission

- The Course of Infection
 - When is one infectious?
 - Who is at what risk of mortality or morbidity?
 - What treatments/vaccines are available?

- Tracking Incidence and Immunity
 - U.S.: fragmented data infrastructure
 - Systematic serological studies
Two Questions Going Forward

● For Public Health
 ▶ What public health impact can we have with targeted mitigation measures?
 ▶ What resources do we need to implement such measures?

● For Economists
 ▶ What economic and social benefits can be gained from targeted mitigation measures?
 ▶ How much should we spend to be able to implement such measures?