Working Paper

Data sales and data dilution

Ernst Liu, Song Ma, and Laura Veldkamp

July 2023
DATA SALES AND DATA DILUTION*

Ernest Liu† Song Ma‡ Laura Veldkamp§
Princeton & NBER Yale & NBER Columbia & NBER

July 13, 2023

Abstract

The market power of data sellers is a topic of concern for policymakers. While most data sellers have a monopoly for their data set, they also cannot commit not to sell data to other customers. We find that limited commitment, combined with the fact that data’s strategic value declines in the number of users, makes data sellers behave more competitively. Monopolist data sellers do not have much monopoly power, but data subscription sellers do. While subscriptions allow firms to credibly commit to restrict their supply of data, they also incentivize firms to invest in higher-quality data. Using evidence from online data markets to quantify the model, we find that data subscriptions are better for consumers. While subscriptions benefit firms and consumers, financially constrained firms tend to front-load their revenue by selling data. Regulation to eliminate data market power may backfire, because without rents, the incentive to invest in high-quality data disappears.

*We thank the Brookings Institution for financial support of this project, Christopher Tonetti for discussing our paper and Anton Korinek for helpful comments.
†ernestliu@princeton.edu
‡song.ma@yale.edu
§lv2405@columbia.edu
One of the largest concerns that economists and policy makers have about the new, AI-driven digital economy is about the market power of firms that sell data. The fact that data has a large fixed cost component and is free to replicate suggests the emergence of natural monopolies. However, little is known about how this market functions and prices data. We document characteristics of data markets relevant to exploiting market power and explore the power of data monopolists theoretically.

It is not obvious how to identify market power in a market where every seller has a monopoly over their data set and where the marginal cost of producing additional data copies is zero. Therefore, our empirical exploration of data markets needs to be guided by theory. We build a dynamic model of a monopolist data seller with two key features: Information that others know generates value and sellers cannot commit not to sell more data in the future. These are realistic features of a data market. The first, commonly called the “strategic substitutability” of information (S. J. Grossman and J. E. Stiglitz 1980), arises in many settings where users of data choose quantities and market clearing determines the price. The second assumption, a classic commitment friction, is particularly relevant in data markets where one could easily transform data to make it non-identical, but functionally equivalent.

Our model teaches us that, even a data monopolist may have limited power to extract rent from their customers when the data seller cannot commit to a price schedule. The reason is that a data seller competes with its future self. If a data seller cannot commit to sell the data to a firm’s competition, the firm’s willingness to pay for the data declines. This force keeps data prices low. In this type of environment, we should worry less about the excessive profits of data monopolies and worry more about whether data is under-provided. Since we observe that many firms sell data subscriptions, rather than data ownership, we add that feature to our model. We find that subscriptions for data allow a firm to re-capture much of its lost revenue from the lack of commitment.

To understand the prevalence and force of monopoly power, the theory directs us to look at data sales models. Specifically, we should look for the prevalence of data sales versus data subscriptions. Therefore, the way in which data is sold becomes the centerpiece of our empirical analysis.

But if data subscriptions allow firms to capture more surplus from consumers, why don’t all firms sell data subscriptions? We use the model to identify three features of a firm that make subscriptions less attractive to the data seller: financial frictions, a small market and high data depreciation. We use our data to test these predictions, in order to validate the model.

To measure activity in data markets, we hand-collect a novel data set from Datarade, one of the
largest online data marketplaces that connects buyers and sellers of data. The evidence about the geographic, industry and data type coverage of this market place paints a nuanced picture of the way in which data is traded. Across over 3,600 data products, we find that 46% offer an option to buy the data for a one-time fee. However, over 90% offer a subscription or usage-based payment system. These fractions do not sum to one because many sellers offer multiple purchasing options. This finding suggests that at least half of all data providers have significant abilities to extract rents.

To test the predictions of our model, we need to merge the data marketplace evidence with company-level characteristics. Some of these data sellers are publicly-listed companies. But many are private. We use a variety of data sources – Crunchbase, Pitchbook, Compustat, CRSP and Edgar 10-K filings – to fill in characteristics of the data sellers and the markets in which they sell their data.

The model predicts that firms should choose one-time fees if they are financially constrained. If they do not urgently need cash, the subscription model of selling data is typically more profitable because it resolves the commitment problem. But one-time fees bring in more revenue early in the life of the firm. The data confirms this prediction. We find a significant correlation between the way in which it sells its data and the age of the firm, the number of rounds of VC funding it has received and the total amount of that funding. The older, better-funded firms are more likely to extract surplus, through the use of data subscriptions.

The model also predicts that when the market of data buyers is small, there is less scope to erode the value of data with future sales. Therefore, data that pertains to a more specialized group of potential buyers could be sold for a one-time fee, with little loss. The data marketplace evidence also confirms this prediction. We determine the size of the market for data sales by comparing the textual similarity of data descriptions with the universe of firms’ 10-K reports and then determining the industries with the greatest similarities. Then, we compute the number of publicly listed firms in those industries to determine the size of the market for the data. We find that this market size positively predicts data subscriptions and is negatively correlated with data sales.

It is also possible that some settings lend themselves to complementarity in the use of data. In settings like speculative attacks or price-setting, the value of data might rise as others acquire it. In such settings, the data sellers’ lack of commitment will be less costly, because data gains in value when more copies are sold. In contrast, dynamic complementarity, where an investor wants to learn now data that others will acquire later, still decreases the value of data over time.

Finally, one might object that data is not a durable good. It does depreciate. Information becomes stale. The rate of depreciation of data depends on the rate at which the environment changes. We explore the role of data depreciation in Section 3.2.
These results inform ongoing debates about data policy. If even a monopolist data seller has little market power in the market for data because it cannot commit not to compete against itself, then we should craft very different data competition policy than a world where data-owning firms can extract extensive rents. Our results call into question even the idea that market power should be eliminated. Developing useful data and algorithms are like innovation. If we do not provide some monopoly rents, the incentive to provide a high-quality product disappears. It may well make sense to regulate other harms. But monopoly rents alone do not imply an undesirable outcome for consumers.

Related literature Our work builds on the insights of the literature on the dynamic Coase (1972) conjecture. When selling a durable good, a monopolist who lacks commitment not to lower future prices is forced to compete with its future self. As consumers become very patient, such a firm is unable to obtain any rents, despite its monopoly power (Fudenberg and Tirole (1991), Chapter 10).

What we add to this well-known problem is three-fold. First, we connect data to semi-durable goods. Second, we introduce a strategic substitutability between users of data: Data that others have is less valuable. Not only is a firm competing with its own lower prices, as in a standard durable goods problem, it also suffers from its inability to commit not to sell to others. Third, we quantify the strength of this force in data marketplaces.

Externalities also arise in multilateral contracting with a principal’s lack of commitment power in Arnott and Stiglitz (1991, 1993) and Segal (1999). In Brunnermeier and Oehmke (2013), Green and Liu (2021), and DeMarzo and He (2021), the externality is debt dilution among creditors.

While the logic of debt dilution and information leakage have similarities, our mechanism has important differences as well. First, information is non-rival and can be replicated at near zero marginal cost. Second, information depreciates as the state of the world changes and old information becomes less relevant. Finally, information can be sold or licensed as a subscription, in a way that debt cannot.

The data economy literature is more similar in topic, but more different in its tools. Acemoglu et al. (2021) and Bergemann and Bonatti (2022) explore whether static data markets are efficient. Ichihashi (2020) show how firms can use consumer data to price discriminate. Jones and Tonetti (2020), Cong, Xie, and Zhang (2021) and Farboodi and Veldkamp (2022) build models of the data economy, but without market power in data markets. Existing work on the digital economy does explore whether data can be a source of market power (Kirpalani and Philippon 2020). Lambrecht and Tucker (2015) take a strategy perspective on whether data has the necessary features to confer market power. However, none of these consider the dynamic commitment problem of a data seller.
with market power, that we explore and quantify.

1 A Model of a Market for Data Purchases

Our model has two parts. The first part, describing households who purchase goods from producers that can utilize data, is there because we need households with utility functions in order to make welfare statements. This part of the model is constructed to make the willingness to pay for data decreasing in the number of other agents that buy the data. For all the non-welfare results, it would be sufficient to simply assume this relationship directly. The idea that data is a strategic substitute is an old one. It goes back to the work of S. Grossman and J. Stiglitz (1980). Of course, that paper was written about information used to choose portfolios of risky assets. But the idea of strategic substitutability in information acquisition or data purchases holds much more broadly. Hellwig, Kohls, and Veldkamp 2012 show that information is a strategic substitute in most settings where actions are strategic substitutes. Markets where quantities are chosen and prices clear markets are such a setting. If other agents demand more of a good or sell more of a product, that moves prices adversely and makes other less willing to take the same action. While we take strategic substitutability as a payoff primitive in this model, we sketch an oligopolistic goods market in the appendix to show why this form arises.

The second part of the model describes the problem of the data seller who lacks the power to commit not to engage in future data sales. This is where the model’s novel ideas lie. One reason a firm might not be able to commit to restrict its sale of data is that proving the equivalence of two data sets is not easy. The seller could give the data set a different name, create linear combinations of the variables, or even add a small amount of noise to data. Although the information content of the new data set would be nearly equivalent to the original, it might be difficult to enforce a contract prohibiting the sale of identical data.

One might object that most data providers are not true monopolists. In many cases, buyers could obtain substitutable data from another source. However, since we are exploring whether market power might not be as effective as one might think, we start from a setting with an extreme degree of market power and see how much commitment problems remedy that power.

1.1 Model Assumptions

Households and data buyers Time is discrete $t = 0, 1, 2, \ldots, \infty$. There are three types of players: a representative consumers, goods-producing firms, and a monopoly data supplier. The represen-
tative consumer has preferences over a measure-one continuum of goods, indexed by i

$$U = \sum_{t=0}^{\infty} \beta^t u_t, \quad u_t = \int_{0}^{1} \frac{\sigma^{\frac{\sigma-1}{\sigma}}}{{q}_{it}^{-\frac{\sigma-1}{\sigma}}} - p_i q_{it} \, d i,$$ \hspace{1cm} (1.1)$$

where $\sigma > 1$ governs the elasticity of substitution across goods.

There is a measure-2 continuum of goods-producing firms—twice as many firms as goods. Firms choose prices to maximize expected profit. At each date t, two firms are randomly selected to produce each good. This randomness simplifies our exposition by ensuring that firms face uncertainty in whom to compete with in the future. Once matched, two firms produce perfectly substitutable goods and compete as in standard Bertrand price competition.

Goods-producing firms use data to reduce their marginal cost of production. Let n be the measure of firms that have data. A firm without data has a marginal cost of $c = 1$. A firm with data can use the data to optimize its operations and has a marginal cost is $c = 1/z$, where $z > 1$ is the quality of the data.

Data sellers The data supplier is a monopolist who maximizes the expected present discounted value of profits. Data sellers choose data quality z and the number of copies of the data to sell n. At an ex-ante stage, the data producer chooses the data quality z with a one-time, convex fixed cost $F(z)$. We assume that $F(z) = \frac{1}{2} \left(\left(\frac{\sigma-1}{\sigma} \right)^{\sigma-1} - 1 \right)^2 / 2$. The functional form is chosen to simplify expressions. Once produced, the data can be sold to multiple firms with zero marginal cost.

Data sales take place over time. At each date t, the data supplier chooses how many additional copies to sell in that period. Data buyers can generate an infinite stream of profits from the data. But that profit depends on the quality of the data z and on how many firms have acquired the same data n in that period.

Then time moves on to $t + 1$ and the game repeats. Future payoffs are discounted at the rate $\beta \leq 1$. In the limit as $\beta \to 1$, future profits are valued just as highly as current ones. For now, data sellers and buyers share the same discount rate, β, and data does not depreciate. We later relax these assumptions.

1.2 Discussion of Model Assumptions

An important feature of the model is that data purchasers cannot resell data. In reality, most data is sold with a contract that forbids data buyers from selling the purchased data to others. But this stands in contrast to the assumption that data sellers cannot use contracts to commit themselves.

While these assumptions comport with real features of data contracts, they do raise the ques-
tion of why commitment is one-sided. One reason could be that there is one seller and many buyers. If a buyer violates the contract, the seller has a strong incentive to sue. However, if the seller were to commit to sell few copies and violated that contract, each buyer might find it optimal to wait for other buyers to sue. In other words, contract enforcement is costly. Enforcing contractual restrictions on data sellers could be subject to a collective action problem.

1.3 Equilibrium

Equilibrium Definition: At the start of the game, data sellers choose data quality z to maximize the expected present value of their profits, discounted to time-0. Then, in each period t,

1. the data supplier makes take-it-or-leave-it offers to sell data to a chosen number of goods producers;
2. goods producers decide whether to buy the data or not, taking as given the others’ past, current and expected future choices;
3. good producers are randomly matched and choose prices to maximize their one-period profit;
4. households choose their basket of goods to maximize (1.1), taking all prices as given;
5. time moves on to $t + 1$.

Differentiating household utility (1.1) with respect to the quantity of each good and setting that to zero yields a first-order condition, which can be re-arranged in the form of a demand curve, $q_i = p_i^{\sigma}$. This implies that the consumer surplus associated with each variety i is $\frac{\sigma}{\sigma - 1} q_i^{\frac{\sigma-1}{\sigma}} - p_i q_i$.

For each product variety, there are three possible market configurations in each period: 1) both producers have data; 2) one producer has data and the other does not, and 3) neither producer has data. Let n denote the measure of firms that have data in that period. The probability of any firm having data is $n/2$ and the probability that two randomly selected firms have data is $n^2/4$. Similarly, the probability that a single firm does not have data is $(2 - n)/2$. The probability that two randomly matched firms both lack data is $(2 - n)^2/4$. The fraction of varieties for which one firm has data and the other does not is $n(2 - n)/2$.

In cases 1) and 3), the two firms producing the variety have symmetric marginal costs. Symmetric firms that engage in price competition make zero profits.

In case 2), one producer has a lower marginal cost than its competitor. In this case, the firm with data maximizes its profit, $q_i(p_i - c)$, by charging price $p_d = \min\{\frac{\sigma}{\sigma - 1} z, 1\}$. That is, there are two
possible pricing regimes. In one, the firm charges the unconstrained monopolistic price $\sigma_{\sigma-1}/z$. In the other regime, i.e., when the unconstrained monopolistic price is above the competitor’s marginal cost 1, the firm engages in limit pricing and charges the marginal cost of its competitor. As we show later, the functional form imposed on the data supplier’s cost function $F(z)$ for improving data quality ensures that, in equilibrium, $\sigma_{\sigma-1}/z \leq 1$, thereby ensuring that we are always in the monopoly pricing regime, and $p_d = \sigma_{\sigma-1}/z$. We use the subscript d here to denote the price and quantity for a firm that has data when its competitor does not. This implies a markup of $\sigma_{\sigma-1}$. The firm without data sells nothing because its marginal cost of 1 exceeds this price.

Substituting the price p_d into the household demand curve implies that the quantity sold is $q_d = (z^{\sigma-1})^{\sigma}$. This generates revenue for the firm with data of $p_d q_d = (z^{\sigma-1})^{\sigma-1}$. The firm’s profit per dollar sold is $\frac{p_d - c}{p_d} = \frac{1}{\sigma} (z^{\sigma-1})^{\sigma-1}$.

The expected value of data, for one period, is the probability that the buyer’s competitor will be uninformed, times the profit of having data when a competitor does not. We call this one-period expected value $\pi(n; z)$:

$$\pi(n; z) = \frac{1}{\sigma} \left(z^{\sigma-1} \right)^{\sigma-1} (1 - n/2). \quad (1.2)$$

For our subsequent analysis, it is useful to define $x = (z^{\sigma-1})^{\sigma-1}$ as a monotonically transformed measure of data quality, and define $a = 1/\sigma$, $b = a/2$, so that the per-period profit of each goods producer with access to data can be written as

$$\pi(n; x) = x(a - bn). \quad (1.3)$$

Substitutability arises here because the goods producing firm makes zero profit in every case, except that case where it has data and its competitor does not. This is what makes the firm’s expected value of data decline in the number of other firms that also have data. This is surely extreme. But it is a simple way of capturing an externality that is much more prevalent than this specific model mechanism. Appendix B works out a richer equilibrium model of oligopolistic firms that use data to forecast demand, that justifies this substitutability assumption.

The reason for building out the household part of the model, rather than just assuming a π function, is to be able to derive welfare. We return to the welfare calculation in Section 6. For the rest of the model solution, we simply use the fact that the data buyers’ (goods producer’s) profit function π, that is increasing in quality z and decreasing in data sold n, i.e. $\pi_z > 0$, $\pi_n < 0$. The assumption that expected value is decreasing in data sold n captures the strategic substitutability of information. The parameter b governs the strength of the externality. If b is large, then data substitutability is strong. If b is close to zero, the strategic effect disappears.
1.4 Commitment Solution

We first explore a solution where a firm can commit to the quality and quantity of data. It can tell customers exactly how many copies of the data will be sold. The data seller will never sell any more copies of the data than the committed number n. This ability to commit will allow the firm to choose a higher price up front and will maximize the firm’s revenue. After presenting this solution, we compare the price and revenue to the solution when the firm cannot commit.

When the data producer can commit to selling quantity n of data with quality x (recall $x \equiv (z^{\sigma-1})^{\sigma-1}$) at the start and never sell the data again, the firm chooses x and n to maximize its profit. The buyers’ willingness to pay is the present discounted value of their profits, discounted at rate β, which is $\pi(n; x)/(1 - \beta)$. The monopolist seller charges a price equal to this willingness to pay. The sellers profit is this price times quantity n, minus the one-time fixed cost F of producing data of quality x:

$$V = \max_{x,n} n \cdot \frac{\pi(n; x)}{1 - \beta} - F(x). \quad (1.4)$$

Conditioning on data quality x, the value of the data producer is concave in n: selling to more clients n could bring more profits but could also reduces the willingness to pay by each client. There is a Laffer curve that plots the relationship between quantity and revenue; the optimal choice n^* reflects the point at which the Laffer curve is maximized.

The solution to the problem with commitment is that the firm chooses to sell data quantity and quality

$$n^* = a/2b, \quad x^* = 1 + \frac{a^2}{4b(1 - \beta)}.$$

Notice that when data is a stronger strategic substitute (b large), the firm chooses to sell less of it. Given that less data will be sold, the investment in data quality is also lower.

Under the optimal choice, the value obtained by selling data given quality x is

$$xn^*(a - bn^*)/(1 - \beta) = \frac{xa^2}{4b(1 - \beta)}.$$

The value of the data-selling firm, net of the investment cost for data, is

$$V_{\text{commit}} = \frac{a^2}{4b(1 - \beta)} + \frac{1}{2} \left(\frac{a^2}{4b(1 - \beta)} \right)^2.$$

This is the maximum value the data seller can achieve. It will be the benchmark, against which we compare the imperfect commitment solutions. Figure 1 plots the data seller’s revenue, as a function
of the number of copies of the data it sells. If the firm sells zero data copies, it has zero revenue. But if the firm sold \(n = \frac{a}{b} \) copies of the data, it would earn a price of \(x (a - bn) / (1 - \beta) = 0 \) per units. This is also zero revenue. The peak revenue is achieved half way in between these two points at \(n = \frac{a}{2b} \). Since data is sold at date 1 and never again, this is a one-period profit.

![Equilibrium choice of \(n \) that maximizes profit under commitment](image)

Figure 1: Equilibrium choice of \(n \) that maximizes profit under commitment

The formula for the curve is the total profit expression in (1.4), plus the one-time investment cost \(F(x) \).

This relationship between firm revenue and quantity is similar to the idea of a Laffer curve in public finance that describes the relationship between government taxation and government revenue.

1.5 Non-commitment Dynamic Game

Suppose that after the data supplier chooses quality \(x \), it can only credibly commit to sell to a number of clients in within the period but cannot commit not to sell to additional clients in the future.

The problem is that after selling the data to \(n \) firms at time \(t \), the data producer has the incentive to sell to more clients at \(t + 1 \). Doing so reduces the profitability of prior clients. Knowing that future copies will be sold makes prior clients are unwilling to pay the non-commitment price.

While the firm cannot commit to the number of copies of data it sells, it does commit to the quality of the data. The quality is chosen up-front and does not change over time (an assumption we relax later). We set up and solve this game next.

Non-commitment problem At each time \(t \), the data producer solves a recursive problem, with the total number of data copies already sold \(n \) and data quality \(x \) as state variables. The value function represents the seller’s present discounted value of the revenue derived from their data.
The seller is a monopolist. So they can make a take-it-or-leave-it offer to the data buyer for the buyer’s willingness to pay for the data.

The buyer, however, has a willingness to pay that is based on their rational expectation of the seller’s future data sales. The buyer will earn \(\pi(n; x) \) profits from their data in the first period. But will earn only \(\pi(\bar{n}; x) \) dollars of profit the following period, if an additional \(\bar{n} - n \) customers buy the data. Thus, at date \(t \), the buyer’s willingness to pay is \(\sum_{\tau=1}^{\infty} \beta^{t-\tau} \mathbb{E}_t [\pi(n_\tau; x)] \), where \(n_\tau \) is the total purchases of the data, up to and including date \(\tau \). Next, we rewrite this willingness to pay, as a function of the optimal selling strategy of the data seller. We don’t yet know that strategy. We will use a placeholder strategy function \(g \) and then solve for the optimal selling strategy, as a fixed point of the buyers’ and seller’s problem.

Let \(g(n, x) \) denote the data seller’s optimal choice of new total data sales, given that \(n \) firms have already purchased the data. As we show below, the optimal choice depends only on \(n \) and is invariant to the data quality \(x \), so we suppress the argument and simply write \(g(n) \). The number of new clients being sold to is \(g(n) - n \). Let \(g^2(n) \equiv g(g(n)) \), \(g^0(n) = n \) and define \(g^k(n) \) to be the operation \(g \) performed \(k \) times on \(n \). Then \(g^k \) represents how many total copies of the data the data seller will choose to sell \(k \) periods from now, if there are already \(n \) total buyers today. Note that \(n \) is a stock of total past buyers and \(g^k(n) \) is a new stock of buyers. If a firm decided to sell no new copies of data, then this would be represented as \(g^k(n) = n \).

Substituting \(g^{t-1}(n) \) for \(n_\tau \) in the sum above, the buying firms’ total stream of profits from data can be expressed as

\[
\bar{\pi}(n; x) = \sum_{t=1}^{\infty} \beta^{t-1} \mathbb{E} \left[\pi \left(g^{t-1}(n); x \right) | n, x \right] \tag{1.5}
\]

This profit \(\bar{\pi}(n; x) \) incorporates firms’ conditional rational expectations that their ability to extract value from this data will decline over time, given the current state variables \((n, x)\). It anticipates the future path of data sales. This present discounted revenue from data is also the buyer’s willingness to pay for data.

Since the data seller is a monopolist, the revenue-maximizing choice is to charge each firm their willingness to pay for data. Giving this willingness to pay, the data producer, who has already sold \(n \) data copies, chooses to sell \(\bar{n} - n \) additional copies of the data in period \(t \). This choice earns the seller a price of \(\pi(\bar{n}, x) \) earned for each of the \((\bar{n} - n) \) additional copies of the data sold that period. The seller’s optimal choice should maximize this current revenue, plus the discounted present value of future revenue. This choice problem can be written recursively as,

\[
V(n, x) = \max_{\bar{n}} \left\{ (\bar{n} - n) \bar{\pi}(\bar{n}, x) + \beta V(\bar{n}, x) \right\} . \tag{1.6}
\]
Definition 1.1. Given data quality x, a *Markov perfect equilibrium (MPE)* is the pair of functions $\{\bar{\pi}(\cdot; x), g(\cdot)\}$ such that:

1. the goods producers’ willingness to pay for data $\bar{\pi}(n; x)$ is consistent with their rational expectation of the future sequence of data sales, satisfying (1.5);

2. the policy function for the data supplier $g(n)$ solves the problem solves (1.6).

Optimal data sales, without commitment In principle, the dynamic game involving a non-commitment data supplier and a sequence of data buyers (i.e., the goods producer) is difficult to analyze, as the MPE involves a fixed point in the two functions $\{\bar{\pi}(\cdot; x), g(\cdot)\}$. However, under our tractable formulation, the recursive problem of the data supplier (1.6) is quadratic in the state variable n, thereby enabling us to solve for the equilibrium in closed-form.

The solution to this model shows how firm commitment problems result in more data sales, lower prices and reduced profits. Importantly, the solution also tells us where to look for evidence of this commitment problem: declining data prices, over time.

Proposition 1. The data issuance policy function $g(n)$ is characterized by an equilibrium scalar δ:

$$g(n) = n + (1 - \delta)(\frac{a}{b} - n) \quad \text{with} \quad \delta = \frac{1 - \sqrt{1 - \beta}}{\beta}. \tag{1.7}$$

Firms’ willingness to pay is characterized by an equilibrium scalar $\xi \equiv \sqrt{1 - \beta}$

$$\bar{\pi}(n, x) = \xi \pi(n, x) = \frac{(a - bn)}{\sqrt{1 - \beta}} x. \tag{1.8}$$

Given data quality x, the data provider’s value function is

$$V(n, x) = \frac{b\delta}{2\sqrt{1 - \beta}} \left(\frac{a}{b} - n\right)^2 x \tag{1.9}$$

All proofs are in Appendix A.

Interpretation. The Markov perfect equilibrium is captured by the two endogenous variables (δ, ξ), respectively parametrizing the data producer’s and data buyers’ equilibrium strategy.

Note $\bar{n} \equiv \frac{a}{b} = 2$ is the maximum total sales; data is worthless to goods producers when every potential competitor has access to it. Given existing sales n at the beginning of each period, the total sales at the end of each period $g(n)$ is a weighted average between \bar{n} and n. Intuitively, $1 - \delta$ captures how aggressive the data producer sells to new clients. When $\delta = 1$, $g(n) - n = 0$,

meaning the data producer does not sell to new clients. A lower \(\delta \) translates to more aggressive sales.

On the other hand, \(\xi \) scales how firms value data, reflecting their expectation about future data sales. When firms anticipate no future data sales, \(\xi = 1 \), and \(\bar{\pi} (n) = \frac{a - bn}{1 - \beta} \) coincides with the present discounted future flow value under the commitment solution. Absent commitment, firms anticipate future sales and thereby place a proportional discount \(\xi \) on the value of data.

Note that the path of total data issuance is \(g_t (0) = (1 - \delta^t) \frac{a}{b} \), meaning the path of new sales at each time period is

\[
 g_t (0) - g_{t-1} (0) = (1 - \delta) \frac{a}{b} \delta^{t-1}
\]

which decays to zero exponentially at rate \(\delta \equiv \frac{1 - \sqrt{1 - \beta}}{\beta} \).

The path of sales price is \(\bar{p} (g_t (0)) = \frac{\xi (a - bg_t (n))}{1 - \beta} \), where \(\xi \equiv \sqrt{1 - \beta} \), which simplifies to

\[
 \bar{\pi} (g_t (0)) = \frac{a \delta^t}{\sqrt{1 - \beta}}
\]

which also decays to zero exponentially at rate \(\delta \).

Figure 2: Equilibrium paths of data sales, prices and profit, without commitment

Figure 2 shows the equilibrium path without commitment. Specifically, the outermost curve plots \((n - 0) \bar{\pi} (n) \), which is the initial Laffer curve. The red dot reflects the equilibrium choice \(n_1 \) in the first period and the corresponding profit. The second curve shows \((n - n_1) \bar{\pi} (n) \) as a function of \(n \), which is the Laffer curve in the second period, and the red dot on the curve reflects the equilibrium choice \(n_2 \) in the second period and the corresponding profit. The slopes of the dashed lines reflect the sequence of equilibrium willingness to pay \(\bar{\pi} (n_t) \).
Ex-ante stage: Choosing Data Quality

We now solve the data supplier’s ex-ante problem of choosing data quality, noting that the data acquisition cost can be written as

$$F(x) = (x - 1)^2 / 2,$$

where

$$x := \left(\frac{\sigma - 1}{\sigma}\right)^{\sigma - 1}.$$

The maximum utility is

$$\max_x V(0, x) - (x - 1)^2 / 2.$$

Proposition 1 implies that

$$x_{\text{non-commit}} = V(0) + 1 = 1 + \frac{1}{\sigma^2 (1 + \sqrt{1 - \beta - \beta})}.$$

\[\text{(1.10)}\]

1.6 The discount rate and the value of commitment

An important implication of the model is that the value of commitment relates monotonically with the discount rate β. For a given data quality x, the value that the data supplier can extract from goods producers is $V(0, x)$ when lacking commitment; the value is $\pi(n^*, x)/(1 - \beta)$ when the data supplier can commit. Proposition 1 implies that

$$\lim_{\beta \to 0} \frac{V(0, x)}{\pi(n^*, x)/(1 - \beta)} = 1, \quad \lim_{\beta \to 1} \frac{V(0, x)}{\pi(n^*, x)/(1 - \beta)} = 0.$$

That is, relative to the case with commitment power, the value obtained by the data supplier who cannot commit is vanishing as $\beta \to 1$. This is because as the goods producer anticipate future data sales, their willingness to pay relative to the commitment case declines towards zero (i.e., $\frac{\pi(n, x)}{\pi(n, x)} = \xi = \sqrt{1 - \beta} \to 0$ as $\beta \to 1$). Intuitively, low discounting implies that existing data buyers expect more negative externalities arising from future data sales. This expectation causes the data buyer to discount the value of the data by more. The value of data to the goods producers that buy it is lower than in the full-commitment case, because the buyers know that additional future copies will be sold. The non-commitment value of data is the commitment value times $\frac{1}{\sigma^2 (1 + \sqrt{1 - \beta - \beta})}$. In this solution, there are opposing forces from the buyer’s patience and the seller’s patience. We will disentangle those two forces in Section 3.1.

The preceding discussion holds the data quality x constant. It is also useful to consider the ratio of data quality without and with commitment. Let $\chi \equiv x_{\text{non-commit}} / x_{\text{commit}}$. Combining solutions reveals that

$$\chi = \frac{2(\sqrt{1 - \beta} - (1 - \beta))}{\beta}.\quad \text{(2)}$$

To decode this expression, consider two limiting cases. One case is where agents are so impatient that they almost ignore the future ($\beta \to 0$). In this impatient case, the data seller has little incentive to invest in data quality even under commitment ($x_{\text{commit}} = 1$), and the lack of commitment does not penalizes data quality further $\lim_{\beta \to 0} \chi = 1$. The other limiting case is where all agents are so patient, that they hardly discount the future at all ($\beta \to 1$). In this case, the data producer has a strong incentive to investment in data quality,
but the data quality when lacking commitment is vanishing relative to the data quality under commitment: \(\lim_{\beta \to 1} \chi = 0 \). The reason the data seller invests little relative to the commitment case is precisely that, as the patient data buyers anticipate future sales, \(\xi \), their willingness to pay relative to the commitment case, converges to zero.

2 Data Subscriptions

Many data sellers do not charge a one-time fee. Instead, they charge an ongoing fee per period for continuously updated data. A data buyer who does not pay the subscription fee keeps their old data, but loses access to updates. We show that this pricing scheme allows a firm without the ability to commit to achieve revenue closer to the full-commitment outcome. When old data is worth little, the firm can achieve full-commitment revenue. In the section that follows, we will explore why a firm might not choose the subscription model, as the basis of a model testing strategy.

Data Subscription Model As before, a new data buyer in each period \(t \) has marginal cost \(1/z \). What changes is that data can become obsolete. Suppose that goods producers who have previously bought the data, but do not make a new purchase at date \(t \), face a probability \(1 - \alpha \) with which the data become obsolete. The value of obsolete data drops to zero, and the marginal cost of the goods producer goes back to 1. The probabilistic obsolescence retains the tractability of our analysis.

Given data quality choice \(x \), the goods producers’ willingness to pay for data \(\bar{\pi}(n; x) \) is

\[
\bar{\pi}(n; x) = \sum_{t=1}^{\infty} (\alpha \beta)^{t-1} \pi \left(g^{t-1}(n); x \right)
\]

where \(g(n) \) captures the seller’s data issuance policy function and is the solution to the Bellman equation

\[
V(n; x) = \max_{\bar{n}} \left(\bar{n} - \alpha n \right) \bar{\pi}(\bar{n}; x) + \beta V(\bar{n}; x).
\]

This is a model of subscription because the goods producers need to make repeated payments in order to continue to access data. The expected number of periods for which the data stays valid is \(1/(1 - \alpha) \). A higher rate of obsolescence implies a greater frequency that data needs to be renewed.

Proposition 2. In the subscription model characterized by equations (2.1) and (2.2), the data is-
suance policy function \(g(n) \) is characterized by an equilibrium scalar \(\delta \):

\[
g(n) = \frac{2(1 - \alpha \beta)(1 - \alpha \delta)}{(2 - \alpha - \alpha \beta) - \alpha \beta (1 - \alpha + \delta (1 - \alpha \beta))} (1 - \delta) + \delta n, \quad \text{with} \quad \delta = \frac{1 - \sqrt{1 - \alpha^2 \beta}}{\alpha \beta} \tag{2.3}
\]

Firms’ willingness to pay is

\[
\bar{\pi}(\bar{n}; x) = \frac{x}{\sigma} \left(\frac{2 - \alpha - \alpha \beta}{(2 - \alpha - \alpha \beta) - \alpha \beta (1 - \alpha + \delta (1 - \alpha \beta))} - \frac{1}{1 - \alpha \beta \delta} \bar{n}/2 \right) \tag{2.4}
\]

Given data quality \(x \), the data provider’s value function is

\[
V(0) = 2 \frac{x}{\sigma} (1 - \alpha \beta \delta) \left(\frac{2 - \alpha - \alpha \beta}{(2 - \alpha - \alpha \beta) - \alpha \beta (1 - \alpha + \delta (1 - \alpha \beta))} \right)^2 \times \rho (1 - \delta) \left[\frac{1 - \rho}{1 - \beta \delta} + \frac{\delta \rho}{1 - \beta \delta^2} \right] \tag{2.5}
\]

where \(\rho = \frac{1 - \alpha \beta}{\sigma - \alpha - \alpha \beta} \).

A Special Case: Subscription Restores Full Commitment. When the data becomes obsolete after each period \((\alpha = 0)\), the commitment solution is restored.

In this limiting case, subscription is a requirement that a data user pay each period, instead of paying a one-time lump sum for all future usage. Hence the problem of the data producer becomes a repeated static decision of how many users there will be in that period. By removing the dynamic element of the decision, the commitment problem disappears.

As before, a data producer chooses an up-front investment in data quality \(x \), at a cost \(F(x) \). After choosing data quality once, that quality remains fixed. Then, each period, the data producer decides on how many copies of the data to sell \(n \). However, selling data in this case means selling a right to use the data for one period. The number of users \(n \) does not cumulate over time.

The buyer’s value of data is now the one-period profit that it generates. So \(\pi(x; n) \) is the buyer’s willingness to pay for data of quality \(x \) sold to \(n \) buyers.

Each period \(t \), resolving on data quality \(x \), the producer solves \(\max_n n \pi(x; n) \). The optimal number of data copies sold \(n \) is time-invariant. The data quality choice problem can be equivalently formulated as \(\max_x \{ \max_n np(x; n) \} \), which coincides with the data producer’s problem under commitment.

In what follows, we assume \(\alpha = 0 \) when referring to the subscription model. Future results will explore weaker versions of data subscriptions.
3 Testable Predictions of the Model

While the previous section laid out the solution to the data sales and data subscription models, we ultimately want to compare the model with data. This section derives these testable predictions.

3.1 Financial Constraints, Discount Rates and the Choice of Data Sales or Subscription

Clearly, the discount rate or degree of patience plays a crucial role in commitment problems. However, data buyers and sellers may not share the same discount rate. In particular, financial constraints on the part of data sellers may induce them to behave as if they were less patient. When unable to borrow, a firm may value immediate cash flows more highly than later ones. This type of financial constraint might explain why some firms choose the one-time data payment model, instead of a data subscription model. We introduce differential discount rates and explore the optimal data pricing model next.

Next, we consider a models of data sales with and without commitment, and compare them to a market with data subscriptions. Throughout, we maintain the following assumptions: Suppose data producer’s discount rate is \(\gamma \), and buyer’s discount rate is \(\beta \). Suppose \(\pi (n; x) = x (a - bn) \). As before, there is an ex-ante choice of data quality \(x \) with cost \(x^2 / 2 \).

Different buyer and seller discount rates, with commitment Consider the case of data sales, where data buyers pay for their data up front for the right to use it in perpetuity. With commitment, data buyers still value the data the same as before. Once they own the data, they can earn \(\pi (n; x) \), in perpetuity, which means the data seller can charge \(\frac{\pi(n; x)}{1-\beta} \). The data seller’s discount rate \(\gamma \) does not matter for this problem because all the revenue is earned in the first period. The cost of data quality is also incurred in the first period. Just as before, the solution is \(n^* = a / 2b \) copies of the data are sold, at quality level \(x^* = \frac{a^2}{4b(1-\beta)} \).

Different buyer and seller discount rates, without commitment Without commitment, the seller earns revenue gradually, by selling more copies of the data over time. In this problem, the seller’s discount rate is relevant. As before, we solve by backwards induction. Given data quality \(x \), the data seller’s choice for how many data points \(\tilde{n} \) to sell in the current period, given that \(n \) data points were already sold is

\[
V(n) = \max_{\tilde{n}} \{ (\tilde{n} - n) \pi (\tilde{n}; x) + \gamma V(\tilde{n}) \} \tag{3.1}
\]
where the data buyers’ willingness to pay \(\pi (\bar{n}; x) \) is (1.5), which takes the same form as before because the buyers’ discount rate is still \(\beta \).

The solution to this problem has the same characterization as before, except that the data provider sells more or less data each period, depending on his discount rate \(\delta \). Let \(g(n) \) be the \(\bar{n} \) that solves (3.1), given that \(n \) copies of the data were already sold.

Proposition 3. The data issuance policy function \(g(n) \) satisfies \(g(n) = (1 - \delta) \frac{a}{b} + \delta n \) with \(\delta = \frac{1 - \sqrt{1 - \gamma}}{\gamma} \). Firms’ willingness to pay is \(\pi (n; x) = \frac{a - bn}{1 - \beta \delta} \). The data provider’s value function is

\[
V(n; x) = \frac{b \delta}{2(1 - \beta \delta)} \left(\frac{a}{b} - n \right)^2 x.
\]

Setting \(n = 0 \) reveals that the initial value of the data seller, before having sold any data, is \(V(0; x) \). The ex-ante data quality choice maximizes this initial value: \(\max_x xV(0; x) - x^2/2 \). Applying Proposition 3, we learn that this value is \(V(0) = \frac{1}{2(1 + \sqrt{1 - \gamma} - \beta)} \frac{a^2}{b} \). Using this initial value, the first-order condition of this problem reveals that the firm’s optimal choice of data quality is \(x_{\text{non-commit}} = \frac{a^2}{2b(1 - \beta + \sqrt{1 - \gamma})} \). We can then plug that choice back into the firm’s initial value function to find the value of the data to the firm with discount rate \(\delta \):

\[
V_{\text{sales}} = \frac{1}{2} \left(\frac{a^2}{2b(1 - \beta + \sqrt{1 - \gamma})} \right)^2. \tag{3.2}
\]

We learn that patient data sellers (\(\gamma \) close to 1) extract more surplus from selling data. However, selling to a patient buyer with \(\beta \) close to 1 generates even more value.

Discount rates and data sales vs. subscription. One of the key determinants of the pricing model a seller selects for their data is how impatient they are. Later, we interpret financial constraints as a source of data sellers’ impatience. Since a one-time fee delivers revenue up front, it makes sense that an impatient data seller prefers to sell data, rather than adopt a subscription model. We tease out this relationship between patience and subscriptions vs. sales formally, in order to tie the model as closely as possible to the data analysis.

Subscription provides the data producer a payoff stream from the commitment solution \(n_{\text{commit}} \).

This implies that

\[
V_{\text{subscription}} = \max_{n,x} n \left(\frac{a - bn}{1 - \gamma} \right) - F(x) = \frac{1}{2} \left(\frac{a^2}{4b(1 - \gamma)} \right)^2 \tag{3.3}
\]

and \(x^* = \frac{1}{4b(1 - \gamma)} \).
The data producer prefers outright sales over subscription if \(V_{sales} \geq V_{subscription} \), which is true iff \(\beta - \gamma \geq \sqrt{1-\gamma} - (1-\gamma) \).

Figure 3: Data contract choices that maximize seller revenue, without commitment. Lower discount rates mean that there is a stronger preference for early cash flows. Depreciation of old data is \(\omega \leq 1/z \).

Figure 3 illustrates the set of discount rates for buyers and sellers that would result in the choice of a seller to sell the data outright, or to license it with a subscription fee. More patient sellers wait for the subscription revenue because it is higher.

\textbf{H1: Financially constrained data sellers are more likely to sell data, rather than license it.}

\subsection*{3.2 Data Depreciation and Data Sales}

So far, we have characterized data as being like a durable good. At the same time, data loses value over time as well. Next, we consider how data depreciation affects our predictions. Data depreciates for many reasons. First, data may become inaccurate over time due to changes in the environment or context in which the data was collected. For example, data on consumer behavior from five years ago may not be applicable today as consumer preferences may have evolved. Second, data can degrade over time due to corruption of electronic files. Lastly, legal requirements or regulations may require data to be deleted or destroyed after a certain period.
Suppose data quality depreciates exponentially at rate \(\lambda < 1 \). Given initial quality \(x \), the flow payoff to data buyers is

\[
x (a - bn), \lambda x (a - bn), \lambda^2 x (a - bn) \ldots
\]

The equilibrium is therefore isomorphic to one where the players have discount rate \(\beta \lambda \).

If we shrink each player’s rate of time preference by the factor \(\lambda < 1 \), then \(V_{\text{sales}} - V_{\text{subscription}} \) is decreasing in \(\lambda \) iff \(2\gamma - \beta > \gamma(1 - \lambda\gamma)^{-1/2}/2 \). If this condition holds, it means that greater depreciation of data (lower \(\lambda \)) favors data sales, over subscriptions. The condition is likely to hold as long as financial constraints are not too severe (\(\gamma \) reasonably close to \(\beta \)).

H2: Data that depreciates faster is more likely to be sold, instead of licensed.

3.3 Market Size and Data Sales or Subscriptions

The size of a market that a firm might sell to will determine the firm’s initial revenue. In this model, we might think of a large market as one where the goods producers have lots of market power, in other words, a lower \(\sigma \). This market power doesn’t matter directly for the firms’ choice of sales or subscription. But it might affect the choice, through the financial constraint. If we think that a low firm discount factor \(\gamma \) reflects the fact that a firm is financially constrained and needs cash flow earlier, then initial high profits of the firm should relax this constraint and raise \(\gamma \). With less need for early cash flows, the firm would be more likely to choose the data subscription model.

H3: Data that is relevant to a large set of firms is more likely to be licensed, instead of sold.

3.4 The Decline in New Customers and New Revenue

In the data subscription model, the prediction is extreme. The results in Section 2 show that the number of data copies \(n \) is time-invariant. That means that after the first period, there are no new customers. Obviously, that is unrealistic, in part because our model is one with no customer acquisition costs or time. In reality, it would still take time to acquire the optimal number of customers. But after reaching that market size, data subscriptions should stagnate.

When data firms sell data, there are new customers over time, because of the lack of commitment. The maximum total data that a data seller would ever sell is \(a/b \). Proposition 1 tells us that when the number of data copies reaches \(n = a/b \), data becomes worthless to product firms. When \(0 < \delta < 1 \), \(\delta \) regulates how quickly the firm converges to this maximum. When data sellers are patient, \(\beta \) is close to one and therefore \(\delta \) is close to 1. This makes for slow convergence. The patient
data seller sells a little bit of additional data every period. But impatient sellers have β close to zero and δ close to zero. These data sellers sell most of their data quickly and approach a/b data points sold quickly. The value of such data deteriorates rapidly as the market is saturated with this data.

H4: New customers and new revenue should grow more slowly for data firms than for comparable non-data firms.

The decline in price comes from two sources. First, is the classic force from the Coase conjecture that applies more generally to durable goods. When the most eager buyers have already purchased the data, the remaining market has a lower value of data, which makes the optimal price for a seller lower. Second, is the new force, the strategic substitutability of data. Data that others already know typically generates less profit for the user. While one or neither force could be at work for a non-data firm, both forces operate to push prices down over time for a given data set.

Of course, not all data exhibits equal strategic substitutability. Financial data is known to be nearly worthless if it is widely known. Similarly, strategic business data typically offers profits only if that market strategy is not saturated. In contrast, weather data is something everyone can benefit from, to all be better prepared for the day. The difference is not in the type of data, as much as it is the use of that data. If some trader discovered a profitable trading strategy, based on the weather, then this would be less valuable if other acquired weather data and used it for that same purpose. Data has strategic substitutability when the uses of data are to inform actions that themselves exhibit substitutability. The finance data is a strategic substitute because buying risky assets is less profitable when others buy the same assets at the same time. Investors compete with each other. The typical weather forecast is not a strategic substitute because people do not typically compete with each other in the use of an umbrella.

4 Data and Descriptive Statistics

4.1 Data Trading Platform: Datarade

We collect data on the market for data from Datarade (https://datarade.ai/), a global data trading platform that helps companies to discover, compare and connect with data providers across the globe. Datarade is one of the largest data markets, hosting more than 3,000 different data products, provided by more than 2,000 data providers, spanning dozens of major categories.

Datarade provides detailed information on each data product. For each of the products hosted on Datarade, the information page reports key statistics that are useful for our empirical study. Figure A.1 in the Appendix provides an example of the information page. First, they report the
data provider company, which allows us to later merge with company-level information. Second, a menu of data transaction methods is provided, including one-off purchase, licensing (monthly or yearly), and usage-based pricing. Sometimes, the price level is available, though the coverage is limited. Datarade also tags each data product with one or more data categories. There are 527 different data categories which are finely defined. In one example, the product is associated with five different tags: Location Data, Foot Traffic Data, Mobile Location Data, Raw Location Data, Mobility Data.

The description of the data product is extensive (see Figure A.2 for the continued example). It describes, not only the data contents, but also potential use cases. In our example, the data description lists uses such as consumer insights, market intelligence, advertising, and retail analytics. We use these descriptions to map each product to industries that may use it. Figure 4 presents a word
cloud of the descriptions to provide an overview of how data suppliers describe their data.

4.2 Company-level Information on Data Providers

We link data sellers from Datarade to company-level data sets to extract their characteristics. Specifically, we link them to Crunchbase and PitchBook through a fuzzy-matching algorithm. 69% of all the data providers can be matched to a company-level record. Through these company-level data sets, we can determine the geographic location, funding history, survival, and executives’ background, of each data seller.

4.3 Measuring Market Size and Depreciation

To capture data-use patterns across different industries, we obtain data from Compustat, CRSP, and Edgar 10-K filings. We use this information to determine which industries each specific data product is relevant for, the size of the market for the data product, and to impute data depreciation.

Identifying Relevant Industries for Each Data Product First, we use data product descriptions from Datarade and business descriptions (item 1) and Management Discussion and Analysis (MD&A, item 7) from 10-K filing to create a mapping from each product to its relevant industries. In specific, for each data product, we calculate its textual similarities with all the 10-K filings in 2020, and find the top 20 filings with the highest similarity scores. The industry span of these 20 firms, in our perspective, captures the industries that may find the data useful. Let \(J_i \) be the set of SIC industries (at the three-digit SIC level) determined to be relevant to data product \(i \). Each data product can be linked to six to fifteen different industries. Thus the size of set \(J \) ranges from six to fifteen.

Measuring Market Size The market size for a data product is the number of publicly-listed firms in relevant industries. Let \(m_j \) be the number of firms in industry \(j \). Then, for a given data product \(i \), the market size is

\[
MarketSize_i = \sum_{j \in J_i} m_j
\]

(4.1)

Measuring Data Depreciation For each industry, we calculate the rate of data depreciation. Then, the depreciation of a data product is the weighted average of the depreciation rates for the industries relevant to that data (i.e., \(j \in J_i \)).

The idea of measuring data depreciation is to capture the ability for information from the past to predict future business performance. If past information is more predictive of future business...
activities in that industry, we consider that the depreciation of data’s value is low; while if past information is less predictive of future business activities, we consider data in that industry to depreciate fast. Specifically, we calculate the within-industry average R^2 when using lagged ROA to predict the same firm’s ROA in the next period using the following model for each firm i,

$$ROA_{it} = \alpha + \beta ROA_{i,t-1} + \epsilon.$$

(4.2)

Denote the R^2 from this regression as R^2_i, and the industry-level R^2_j is calculated using all firms within the same industry j. Then, for each data product i, we can define stability to be the average R^2 over all related industries for i:

$$Stability_i = \frac{1}{\text{MarketSize}_i} \sum_{j \in J_i} R^2_j.$$

(4.3)

A higher R^2 in this predictive model for returns suggests greater stability and a low data depreciation rate. In contrast, a low R^2 suggests a rapidly-changing environment. This translates into a high depreciation rate of data (see Farboodi and Veldkamp (2022) for a formal mapping between volatility and data depreciation). Therefore, we define $Depreciation_i \equiv 1/\text{Stability}_i$.

Finally, we group industries into 10 deciles based on the R^2 calculated.

4.4 Describing the Data Market

We start by describing the data on the Datarade market – the company locations, types of data they sell and the pricing model they use. Datarade itself is an Germany-based startup, but nearly half of the data providers headquarter in the US. Other popular headquarter locations for data providers are the UK, India, and Germany. Table A.1 in the appendix provides more detail on the geographic locations of the data providers.

Each data product is tagged with four categories, on average. Categories include B2B contact data, company data, or business website data. Categories overlap. The category B2B contact data (and similarly, B2B leads data, B2B marketing data) are the most popular on the platform, consisting of 15% of the sample. Other business intelligence data, such as company data or point of interest data, are also popular. Table 1 details the top ten categories of data products traded on Datarade and their market shares.

This type of data is well-suited to examine the commitment problems described by our model for three reasons. First, these data categories describe types of data that are durable, not ephemeral.

1See https://www.crunchbase.com/organization/datarade.
Table 1: Key Data Categories on the Market for Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Product Count</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2B Contact Data</td>
<td>530</td>
<td>14.39%</td>
</tr>
<tr>
<td>B2B Leads Data</td>
<td>527</td>
<td>14.31%</td>
</tr>
<tr>
<td>B2B Marketing Data</td>
<td>522</td>
<td>14.17%</td>
</tr>
<tr>
<td>Company Data</td>
<td>513</td>
<td>13.93%</td>
</tr>
<tr>
<td>B2B Email Data</td>
<td>457</td>
<td>12.41%</td>
</tr>
<tr>
<td>Firmographic Data</td>
<td>303</td>
<td>8.23%</td>
</tr>
<tr>
<td>B2B Decision Maker Data</td>
<td>302</td>
<td>8.20%</td>
</tr>
<tr>
<td>Global POI Data</td>
<td>268</td>
<td>7.28%</td>
</tr>
<tr>
<td>Point Of Interest POI Data</td>
<td>268</td>
<td>7.28%</td>
</tr>
<tr>
<td>Business Website Data</td>
<td>241</td>
<td>6.54%</td>
</tr>
</tbody>
</table>

Notes. This table presents top data categories on the Datarade platform.

insights. That is important because it suggests that the threat of a seller selling this durable data to others is a relevant problem. Second, these data products are suitable for multiple users (not firm-specific). Finally, they fit the model because future data sales would likely decrease the value of data for earlier buyers. For example, if more competitors obtain the contact list of potential customers, then their ability to profit from contacting that same group of customers diminishes.

4.5 Data Sellers’ Funding / Financial Frictions

A key determinant of whether data sellers offer data subscriptions, with high market power, or one-time fees, with more competitive pricing, is their impatience. We interpret firms’ impatience as deriving from their financial constraints. Therefore, next, we explore the ability of the data sellers on Datarade to access financing.

Out of the 2,458 data sellers on Datarade, we are able to find 1,701 of them in the Crunchbase database, using the fuzzy name matching algorithm. For these matched companies, we observe whether they obtained any funding from venture investors (as of March 2023), the total rounds of investments, and the total amount of investment. For the unmerged companies, we impute the funding variables to be 0. The assumption that data sellers that have never received documented venture funding are unfunded, is one that we verified by hand checking and internet searches.

Table 2 reports the funding status of the Datarade data sellers. 696 companies (23.4%) obtained venture funding from investors, with the average number of funding rounds being 0.96. Conditional on obtaining funding (in the 696 sample), the average number of funding rounds is 3.4. The total funding obtained by a provider is highly skewed, with an average of just over 20 million USD. Our data providers are quite mature—the median age is 12 years old.
Table 2: Financial Information about Data Sellers: Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>count</th>
<th>mean</th>
<th>std</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtained VC Funding (0/1)</td>
<td>2458</td>
<td>0.234</td>
<td>0.423</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No. of Funding Rounds</td>
<td>2458</td>
<td>0.961</td>
<td>2.065</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total Funding (mil. USD)</td>
<td>2458</td>
<td>$22.8m</td>
<td>$29.3m</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Founding Year</td>
<td>1584</td>
<td>2003</td>
<td>26</td>
<td>2001</td>
<td>2011</td>
<td>2015</td>
</tr>
<tr>
<td>Age (as of Mar, 2023)</td>
<td>1584</td>
<td>19.918</td>
<td>25.589</td>
<td>8</td>
<td>12</td>
<td>22</td>
</tr>
</tbody>
</table>

Notes. This table presents summary statistics for the financial information linked to the data providers on the Datarade platform. Source: Crunchbase.

5 Testing Model Predictions: Data Subscriptions and Data Sales

Recall that the main prediction of the theory was that data subscriptions were associated with market power in the data marketplace, whereas one-time sales were likely to yield less revenue for firms. This section measures the extent of data purchases versus subscriptions and provides empirical tests of the theory's prediction. These results do not establish any causal relationships. Instead, these are novel empirical facts that inform us about the potential for market power in data markets. They also support the prediction that firms face trade-offs and will choose data sales in some cases and licensing or subscriptions in others.

Table 3: Summary Statistics of Transactions Models by Products

<table>
<thead>
<tr>
<th>Pricing Model</th>
<th>count</th>
<th>mean</th>
<th>std</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Off-Purchase (0/1)</td>
<td>3683</td>
<td>0.464</td>
<td>0.499</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Monthly Licensing (0/1)</td>
<td>3683</td>
<td>0.277</td>
<td>0.448</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Yearly Licensing (0/1)</td>
<td>3683</td>
<td>0.384</td>
<td>0.487</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Usage-Based (0/1)</td>
<td>3683</td>
<td>0.370</td>
<td>0.483</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes. This table summarizes the transactions models available at the product-level from Datarade.

The main variable in our analysis is the transaction model adopted by each product, which is a measure to capture the trade-offs faced by the provider. We report these information in Table 3. One-off-purchase is the most popular transaction model offered by data products, available for 46% of the products. Yearly licensing is offered for 38% of the products, while monthly licensing is available for 28% of the products. Usage-based pricing is available for 37% of the products. These different models could be simultaneously available for a product. About 60% of the products that offer one-time purchasing also offer yearly licensing.
5.1 Financial Constraints and Data Transaction Model

The first prediction of the model (H1) that we test pertains to the relationship between data sellers’ financial conditions and the type of pricing models they adopt. To do this, we estimate

\[\text{TransactionModel}_i = \alpha + \beta \text{Financing}_i + \epsilon_i. \]

(5.1)

The dependent variables are dummy variables indicating whether the data product offers a certain transaction model (one-off-purchase, licensing, or usage-based). The key explanatory variable Financing takes multiple forms. In one specification, financing measures the total number of rounds of VC financing; in another, it measures the total amount of VC financing obtained by the data provider. In this model and others in this section, we control for fixed effects of provider company age and its primary data category as tagged on Datarade. Standard errors are clustered at the level of data categories to account for correlations of transaction models among similar data products. Our model predicts a negative β coefficient for the one-off-purchase model, and positive β coefficients for licensing and usage-based models.

Table 4: Providers’ Financial Condition and Transaction Models

<table>
<thead>
<tr>
<th>Panel A: Total Funding Rounds and Transaction Model</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Off-Purchase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln(No. of Funding Rounds)</td>
<td>-0.075***</td>
<td>0.092***</td>
<td>0.109***</td>
<td>0.011</td>
</tr>
<tr>
<td>(0.016)</td>
<td>(0.014)</td>
<td>(0.015)</td>
<td>(0.015)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>3,683</td>
<td>3,683</td>
<td>3,683</td>
<td>3,683</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.006</td>
<td>0.012</td>
<td>0.014</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Total Funding Amounts and Transaction Models</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Off-Purchase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln(Total Funding Amt)</td>
<td>-0.003*</td>
<td>0.012***</td>
<td>0.012***</td>
<td>0.005***</td>
</tr>
<tr>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>3,683</td>
<td>3,683</td>
<td>3,683</td>
<td>3,683</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.001</td>
<td>0.023</td>
<td>0.019</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Notes. This table correlates the type of data transaction models available for each data product with the funding status of the providers. Panel A presents the analysis using the logarithm of total funding rounds, and Panel B presents the analysis using the logarithm of the total funding amount received. All specifications control for provider age and primary data category fixed effects. *< 0.1, **< 0.05, ***< 0.01.
Consistent with the model’s predictions, Table 4 shows that more financially constrained firms are more likely to choose data sales. In Panel A, we present the results using the logarithm of number of funding rounds of the provider as the explanatory variable. In column (1)-(3), we find that that number of funding rounds is associated with a lower probability of offering one-off-purchase models but a higher probability of offering licensing, both monthly and yearly. We do not find a statistically meaningful relation between the financing variable and the usage-based transaction model. In terms of economic magnitude, going from a firm with one round of financing to a firm with two rounds, the probability of using the one-off-purchase model goes down by $0.075 \times (\ln 2 - \ln 1) = 5.2$ percentage points (pp), which is a 11.2% from the base rate of 46.4%. Applying a similar calculation to column (2), we find that going from one round of financing to two rounds of financing is associated with 6.4 pp (23.0% from base) increase in the probability of using monthly licensing, and 7.5 pp (19.7% from the base) increase of the probability of using yearly licensing.

In Panel B, we show that the results are robust to the use of the logarithm of total funding amounts as the key explanatory variable. The patterns are consistent with Panel A regarding one-off-purchases and licensing models, while in this case, the total funding amount is also predictive of the adoption of the usage-based model. The economic magnitudes are also sizable. For example, going from no-funding to 1 million funding is associated with a 4.1pp (8.8% from the base) decrease in the probability of using one-off purchases; associated with 16.6 pp (59.9% from the base) increase in the use of monthly licensing, and 16.6pp (43.2% from the base) increase in the use of yearly licensing.

5.2 Data Depreciation

Next, we explore (H2), that data depreciation makes data sales more likely. In our model, data about environments that change quickly (fast-changing finance data vs. slow-moving consumer tastes) is like an environment with a higher discount rate. As Figure 3 shows, data providers may have more commitment power and there is likely less loss from the one-time fee model.

To test this, we again use the transaction model as a proxy for a provider’s commitment power. We use the following model:

$$\text{TransactionModel}_i = \alpha + \beta \text{Depreciation}_i + \epsilon_i. \quad (5.2)$$

In this empirical model, the key explanatory variable is Depreciation_i, which is calculated using the steps outlined in Section 4.3—we map each product to its closely related industries using textual similarities between data product descriptions and public firm 10-K filings, and then calculate
the industry-level R^2 using lagged ROA to predict concurrent ROA. For interpretation purposes, we cut the products into 10 deciles based on the average R^2 in matched industries, lower R^2 is high depreciation.

Table 5: Data Depreciation Rate and Transaction Models

<table>
<thead>
<tr>
<th>(1) One-Off-Purchase</th>
<th>(2) Monthly Licensing</th>
<th>(3) Yearly Licensing</th>
<th>(4) Usage-Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depreciation</td>
<td>0.027*** (0.003)</td>
<td>-0.012*** (0.003)</td>
<td>-0.011*** (0.003)</td>
</tr>
<tr>
<td>Observations</td>
<td>3,667</td>
<td>3,667</td>
<td>3,667</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.025</td>
<td>0.006</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Notes. This table correlates the type of data transaction models available for each data product with the information depreciation rate of connected industries. The equation estimated is (5.1). Depreciation is defined in Section 4.3. All specifications control for provider age and primary data category fixed effects. *< 0.1, **< 0.05, ***< 0.01.

Table 5 shows that the information depreciation rate associated with a data product positively correlates with the use of one-off-purchases, and negatively predicts the use of licensing models. The economic magnitude is sizable. For example, the 0.027 in column (1) suggests that raising the depreciation rate by one decile predicts a 2.7 percentage points higher rate of using one-off-purchase. This increase is 5.8% of the base rate reported in Table 3. Thus, data that depreciates is more likely to be sold with a single transaction, rather than a subscription, which allays fears about data seller market power. The same change is associated with 1.2pp decrease (4.3% from the base) in the probability of using monthly licensing, and 1.1pp (2.9% from the base) decrease in the probability of using yearly licensing.

5.3 Potential Market Size

Next, we explore H3, that a larger market size makes data subscriptions or licensing more likely. In the model, the market size is the potential buyers that may find the data product useful and thus may make a purchase. This potential market size further lowers a data provider’s commitment power and loosens the financial constraint, both of which make a data subscription more profitable than data sales.

\[\text{TransactionModel}_i = \alpha + \beta \text{MarketSize}_i + \epsilon_i. \] (5.3)

The key explanatory variable in this model is MarketSize, which intends to capture the number of potential buyers of a data product. To achieve this goal, we use the total number of public firms
in the connected industries (as defined in Section 4.3). A larger number of connected firms means a greater potential market size. We take a logarithm of the counting variable.

Table 6: Potential Market Size and Transaction Models

<table>
<thead>
<tr>
<th></th>
<th>(1) One-Off-Purchase</th>
<th>(2) Monthly Licensing</th>
<th>(3) Yearly Licensing</th>
<th>(4) Usage-Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Size</td>
<td>-0.015</td>
<td>0.144***</td>
<td>0.182***</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.016)</td>
<td>(0.017)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Observations</td>
<td>3,683</td>
<td>3,683</td>
<td>3,683</td>
<td>3,683</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.000</td>
<td>0.022</td>
<td>0.030</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Notes. This table correlates the type of data transaction models available for each data product with the potential market size of each product. The equation estimated is (5.3). Market size is defined in Section 4.3. All specifications control for provider age and primary data category fixed effects. *< 0.1, **< 0.05, ***< 0.01.

Table 6 shows the relationship between market size and pricing models. We find that market size, though having little correlation with the use of one-off-purchases and usage-based transaction models, strongly correlates the use of licensing model in transactions. The coefficient of 0.144 in column (2) means that a 10% increase in the potential market size is associated with a 1.4 percentage point increase in the likelihood of using monthly licensing. This is a 5.2% increase from the base rate.

This suggests that as the market for data grows, there is likely to be more use of subscriptions, which are more adept at extracting consumer surplus. But these facts also point to more provision of high-quality data.

5.4 Slower Sales Growth

The final prediction of the model, H4, gets to the core of the mechanism. The problem a data seller faces is that they need to restrict new data sales to earn monopoly rents. This need to restrict sales is not a problem faced by most other non-data tech firms in the industry because more technologies do not exhibit strategic substituability. A computer is not less valuable when others buy the same computer. Instead, for most technology products the reverse is true: If everyone purchases and uses Apple products, for example, using non-Apple products becomes less compatible with others and less valuable. Therefore, we test H4 by comparing the growth in customers and revenue of data firms to their non-data counterparts. This comparison allows us to control for industry or business cycle trends.

Table 7 shows that the time trend of searches for data sellers is significantly lower than for
non-data tech firms. As a check on the reasonableness of this measure, we also estimate the time
trend for the venture value of these firms and find that they also increase more slowly than their
non-data-selling counterparts. These predictions support the key strategic substitutability force
present in our model.

Table 7: Time-Series Trend of Data Value and Potential Customers

<table>
<thead>
<tr>
<th></th>
<th>(1) Delta Venture Value</th>
<th>(2) Delta Google Trends Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Provider</td>
<td>-0.526**</td>
<td>-0.066*</td>
</tr>
<tr>
<td></td>
<td>(0.216)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Observation-level</td>
<td>Company-Round</td>
<td>Search Term-YearMonth</td>
</tr>
<tr>
<td>Observations</td>
<td>54,124</td>
<td>19,741</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.024</td>
<td>0.012</td>
</tr>
<tr>
<td>Fixed Effects</td>
<td>Year State</td>
<td>Year-Month</td>
</tr>
</tbody>
</table>

Notes. Delta Venture Value, which captures the percentage change of the current financing round from the previous round. Source: Crunchbase and PitchBook. Delta Google Trends Index is the percentage change in the Google Trends index from 2018 to 2023 for data and non-data tech firms. The model controls for company age fixed effects. *< 0.1, **< 0.05, ***< 0.01.

Column (1) of Table 7 examines the time-series value dynamic of startup companies, comparing
data provider companies with non-data-provider companies in related industries. The data are
at the level of company-financing round, and each observation is a financing round of a startup
company. The data provider companies are data providers on Datarade that can be matched to
Crunchbase and PitchBook. The control sample includes companies in Crunchbase and PitchBook
that are in top 5 industries that data providers operate in. The table reports the β estimate from the
following model,

$$\Delta \text{Venture Value}_{it} = \alpha + \beta \times \text{DataProvider}_i + \theta_{t \times \text{State}} + \epsilon_{it}.$$

The key dependent variable is ΔVenture Value, which captures the percentage change of the current
financing round from the previous round. The key explanatory variable is DataProvider indicating if the company is a data provider. We control for the lag from the previous round to this round, control for year-by-state fixed effects, and cluster standard errors at the year and state levels. The thought experiment is, we are comparing two companies, one is data provider and one is not, that raised funding in the same year-state, with the same gap from the previous round—we see that data providers value growth (Δ) is significantly lower than the comparable companies.

Column (2) examines the time-series change of search popularity captured using Google Trends.
This analysis compares Google Trends index from 2018 to 2023 of two group of terms: data provider-related terms consisting of all data categories that are extracted from Datarade (i.e., “commercial market data,” “business location data”); as control group, we use top breakthrough technologies identified annually by MIT Technology Review during the sample period (i.e., “custom cancer vaccines,” “3-D metal printing,” “online privacy”). For each of these terms, we extract monthly Google Trend index. The table reports the estimated value of β from the following model,

$$\Delta \text{GoogleTrend}_{it} = \alpha + \beta \times \text{DataProvider}_i + \theta_t + \epsilon_{it}. $$

The key dependent variable is $\Delta \text{GoogleTrend}$, which captures the percentage change of the current Google Trends from the previous round. The key explanatory variable is DataProvider indicating if the term is a data provider-related term or a general technology term. We control for year-month fixed effects and cluster standard errors at the same level. In this thought experiment, we are comparing data terms with other technology terms in terms of their monthly change in search popularity, after controlling for granular time trends using year-month fixed effects.

A potential measurement challenge is selection: Most surviving firms grow their sales over time. However, our approach of taking the difference between data and non-data firms should remove this effect. As long as data firms have a similar selection of surviving firms as their non-data counterparts, this effect should disappear in the difference. However, future work is to investigate whether the failure rates are indeed similar.

6 Quantifying the Welfare Losses

Our model is a stylized one. It surely does not contain all the welfare-relevant tradeoffs one would want for a thorough policy analysis. However, some rough quantification of the model can give us an idea of the magnitude of the losses from the mechanism we describe. Our results, while not comprehensive, suggest that the way in which sales models regulate monopoly power can have a quantitatively significant effect on consumer surplus and on welfare.

6.1 Consumer Surplus: Data Sales vs. Data Subscriptions

Data poses a trade-off for consumer surplus. Firms without data do not have monopoly pricing power. Lower prices benefit consumers. However, data makes firms more efficient. Firms without data have higher marginal costs, which get passed on to consumers as well. That trade-off shows up throughout our comparison of data market structures as well. To quantify the trade-off, we first derive expressions for consumer surplus from the model, in the case of data sales and data
licensing.

To compute consumer surplus, we simple substitute in the solutions for the equilibrium price and quantity p_i and q_i for each variety. Recall that each variety has three possible market structures: 1) both firms have data, 2) one has data, the other does not, and 3) neither has data. Then, we multiply each of these surpluses times the fraction of varieties that yield that surplus. This yields a one-period consumer surplus, as a function of data supplier choices n and z. Finally, we substitute in these data producer choices and cumulate up the one-period surpluses to yield total lifetime consumer surplus. Appendix A follows these steps and prove the following result.

Proposition 4. The lifetime consumer surplus, when data is sold is

$$
\sum_{t=0}^{\infty} \beta t u^\text{sale}_t \leq \frac{1}{\sigma - 1} \left[\frac{1 + x - 2 \left(\frac{\sigma}{\sigma-1} \right)^{\sigma-1} x}{1 - \beta \delta^2} + \frac{\left(\frac{\sigma}{\sigma-1} \right)^{\sigma-1} x}{1 - \beta} + \frac{2x \left(1 - \left(\frac{\sigma}{\sigma-1} \right)^{\sigma-1} x \right)}{1 - \beta \delta} \right],
$$

where $\delta = \frac{1 - \sqrt{1 - \gamma}}{\gamma}$, and $x = 1 + \frac{1}{\sqrt{2(1 + \sqrt{1 - \gamma} - \beta)}}$.

The lifetime consumer surplus, when data is licensed as a subscription is

$$
\sum_{t=0}^{\infty} \beta t u^\text{sub}_t \geq \frac{1}{\beta \sigma - 1} \left[\frac{1}{4} \left(1 + \left(\frac{\sigma}{\sigma-1} \right)^{\sigma-1} \hat{x} + 2\hat{x} \right) \right],
$$

where $\hat{x} = 1 + \frac{1}{\sigma} \frac{1}{2(1 - \beta)}$.

In both cases, δ represents the rate at which data sales converge to their lone-run level and x represents the ex-ante data quality choice. It is a monotonic transformation of z.

Even though data sellers can restore their monopoly power using data subscriptions, it is not obvious that this is better for consumers. The two consumer surplus expressions in Proposition 4 are not easily rankable. In some settings, either model could be superior. The reason is that when firms get less profit, they also invest in lower quality data, which also harms consumers.

To see how surplus depends on the model parameters, we choose some values for time preference and elasticity and plot regions where each sales model dominates.

6.2 Calibrating the Model

There are two fundamental parameters of the model, the time preference β and the elasticity of substitution σ. All other variables are choices or functions of these two.

Since there is no aggregate risk in the model, the rate of time preferences should be the inverse of a gross riskless rate $(1 + r)$. The average three-month treasury bill rate since 1954 has been
Figure 5: Do Data Sales or Data Subscriptions Maximize Consumer Surplus?

Notes. The darker region indicates combinations of parameters β and σ for which data sale yields higher consumer surplus, i.e., $\frac{(6.1)}{(6.2)} \geq 1$. σ governs the elasticity of substitution between varieties of goods. Depreciation of old data in subscription/licensing model is $\omega \leq 1/z$.

4.2%.\(^2\) Therefore, we use a rate of time preference of $\beta = 1/(1.042) = 0.96$.

The elasticity of substitution is tougher to estimate. We could use existing estimates of elasticities from the industrial organization literature. However, the substitutability of one data set for another could be quite different from the substitutability of breakfast cereals, video games or ready-mix concrete. Since it is important to get the domain-specific substitutability, we will use our data marketplace data and our model to impute an elasticity value.

Since we have not yet achieved a satisfactory calibration of the elasticity, for now, we show results for a range of elasticities. Future approaches might use goods markups or data seller profits to impute an average elasticity.

However we calibrate the elasticity, the estimate will be undoubtedly rough. We will use this magnitude to calibrate our model, mostly as a proof of concept. At best, this might give us a sense of the order of magnitude our effect might have. Furthermore, we assumed a cost function with no free parameters. One might parameterize the cost function and estimate it to obtain more accurate welfare results. This is an anticipated next step for this project as well.

\(^2\)Source: https://fred.stlouisfed.org/series/TB3MS.
Notes. Welfare is consumer surplus plus producer surplus. Consumer surplus is given by (6.1) for data sales and (6.2) for data licensing or subscriptions. Producer surplus is the value V in (3.2) and (3.3). The elasticity parameter σ is reported on the x axis of the plot. The discount rate is $\beta = 0.96$.

6.3 Welfare results

Finally, we can use the model to answer the policy relevant question about what sorts of data sales are better for consumers. Figure 6 shows that, unless goods are highly elastic, data licensing or subscription is better for consumers than data sales. At first, that might seem surprising. After all, data sellers make less use of their monopoly power. Monopoly power usually creates deadweight loss that makes consumers worse off. So data sales would seem to be better for consumers. However, because data sellers lose most of their rents from data, they have little incentive to invest in data quality. Since higher quality data makes goods firms more efficient, which in turn, makes good cheaper, consumers benefit when more data is sold. Only if goods are highly elastic might data sales be better because, in this case, data producers have little incentive to invest in quality data anyway.

The last question we pose to the model is whether firms’ incentives to choose data sales or data subscriptions aligns with welfare. Figure 3 revealed that firms choose data subscriptions when they are patient, relative to data buyers. Since we interpret patient firms to mean non-financially-constrained firms, this suggests that firms without financial constraints are more likely to make welfare-maximizing choices about their means of selling data. However, in many cases
firms incentives to choose the right data business model will be misaligned with the consumers’ interests. This suggests a role for regulation or subsidies to ensure sufficient data production.

7 Conclusion

Many policy makers are concerned about the market power of data sellers. If most data were sold with a one-time fee and data purchasers are reasonably patient, then market power in data markets should not be regulated for its own sake. The inability of data sellers to commit to sell limited copies of data, combined with the fact that data’s strategic value declines in the number of users, forces competitive pricing. Even if the seller is a monopolist, the inability to restrict future data sales makes the seller compete with its future self in data provision. Of course, with the loss of monopoly power comes a loss of incentive to produce quality data.

Not only is monopoly power not entirely bad, one might consider protecting it. Just like patent laws protect the monopoly power of innovators to encourage innovation, copyright law could be seen as protection for data to encourage the discovery of new, high-quality data sources.

However, data subscription services are a tool for firms to restore monopoly power. While subscriptions restore monopoly power, they also restore an incentive for data sellers to invest in producing high-quality data. Our quantitative analysis of the model teaches us that, on net, subscriptions benefit consumers for all but the most elastically demanded goods.

Market power in data markets depends on the choice of pricing models data sellers choose to implement. We collected data from one of the largest on-line data marketplaces to investigate data sellers’ pricing strategies. We find that, while subscription models are the tool of choice for most firms, finally constrained firms may still choose one-time data sales because it produces more cash flow up-front. Firms selling data with few customers face less cost from adopting one-time fees. Similarly, firms selling data that depreciates rapidly face little effect of future sales. Such firms also choose one-time fees. These findings align with the theory but also give us new insight into the functioning of this rapidly-expanding and politically controversial market.
References

Appendix

A Proofs

Proof of Proposition 1

Proof. First conjecture $\bar{\pi} (n) = \frac{\zeta(a-bn)}{1-\beta}$ and we solve the data producer’s problem.

$$V (n) = \max_n \left\{ (\bar{n} - n) \frac{(a-b\bar{n})}{\sqrt{1-\beta}} + \beta V (\bar{n}) \right\}. $$

FOC $\frac{(a-bg (n))}{\sqrt{1-\beta}} - \frac{(g (n) - n) b}{\sqrt{1-\beta}} + \beta V' (n') = 0$

Envelope $V' (n) = -\frac{(a-bg (n))}{\sqrt{1-\beta}}$

Substitute the envelope condition into the first-order condition:

$$(a - bg (n)) - (g (n) - n) b - \beta [a - bg^2 (n)] = 0$$

Conjecture $a - bg (n) = \delta (a - bn)$, we get

$$(2\delta - 1 - \beta\delta^2) (a - bn) = 0$$

Given $\delta \in (0, 1)$, the solution is $\delta = \frac{1-\sqrt{1-\beta}}{\beta}$.

We now solve for the data buyer firms’ willingness to pay under rational expectation:

$$\bar{\pi} (n) = \sum_{t=1}^{\infty} \beta^{t-1} \left[a - bg^{t-1} (n) \right]$$

$$= \frac{a - bn}{1 - \beta\delta}$$

$$= \frac{1 - \beta}{1 - \beta\delta} \frac{a - bn}{1 - \beta}$$

Substitute $\delta = \frac{1-\sqrt{1-\beta}}{\beta}$, we can simplify $\zeta = \sqrt{1-\beta}$.
Using these solutions, we can solve for the data producer’s value function:

\[
V(n) = \frac{\xi}{1 - \beta} \sum_{t=1}^{\infty} \beta^{t-1} \left(g'(n) - g'^{t-1}(n) \right) (a - bg'(n)) \\
= \frac{\xi}{1 - \beta} \sum_{t=1}^{\infty} \beta^{t-1} \delta^{t-1} (1 - \delta) \left(\frac{a}{b} - n \right) \delta^{t} (a - bn) \\
= \frac{\xi}{1 - \beta} \sum_{t=1}^{\infty} \beta^{t-1} \delta^{2t-2} \delta (1 - \delta) \frac{1}{b} (a - bn)^2 \\
= \frac{\xi \delta (1 - \delta) \frac{1}{b} (a - bn)^2}{(1 - \beta) (1 - \beta\delta^2)} \\
= \frac{\delta (1 - \delta) b (\bar{n} - n)^2}{(1 - \beta\delta) (1 - \beta\delta^2)}
\]

where \(\bar{n} \equiv a/b \). The value at time 0 is

\[
V(0) = \frac{\delta (1 - \delta) a^2 / b}{(1 - \beta\delta) (1 - \beta\delta^2)} \quad (A.1)
\]

\[
= \frac{\delta a^2}{2b \sqrt{1 - \beta}} \quad (A.2)
\]

\[
= \frac{a^2 \sqrt{1 - \beta} - (1 - \beta)}{2b \beta (1 - \beta)} \quad (A.3)
\]

Proof or Proposition 4 In case 1) where both firms have data, the price is the firms’ marginal cost, which is \(1/z \). Since demand is \(q_i = p_{i}^{-\sigma} \), substituting these into consumer utility (1.1) yields a one-period consumer surplus of \(v_1 = z^{\sigma - 1} / (\sigma - 1) \).

In case 2) where firms are asymmetric, the price was \(z\sigma / (\sigma - 1) \), which implies a quantity of \((z\sigma / (\sigma - 1))^{-\sigma} \). Substituting price and quantity into consumer utility (1.1) yields a one-period consumer surplus of \(v_2 = \frac{1}{\sigma - 1} \left(z^{\sigma - 1} / \sigma \right)^{-1} \).

In case 3) where neither firm has data, the price and quantity are both 1. One-period consumer surplus is \(v_3 = 1 / (\sigma - 1) \).

Multiplying each of these three consumer surplus expressions by the fraction of varieties that have each market structure (the probabilities), we can express total consumer surplus as a function of number of copies of data sold \(n_t \) and data quality \(z \):

\[
u_t = \frac{1}{\sigma - 1} \left[\left(\frac{2 - n_t}{2} \right)^2 + \left(\frac{\sigma}{\sigma - 1} \right)^{\sigma - 1} \frac{z n_t^2}{4} + \frac{2n_t (2 - n_t) z}{4} \right]
\]

Of course, the copies of data sold and the data quality are also endogenous choices of the data.
provider. The next step is substitute those in.

Given the equilibrium policy function in (1.7):

\[n_t = (1 - \delta) \frac{a}{\beta} + \delta n_{t-1} \] with \(\frac{a}{\beta} = 2 \), we know

\[\begin{align*}
2 - n_t &= \delta (2 - n_{t-1}) = 2\delta^t \\
(2 - n_t)^2 &= 4\delta^{2t} \\
n_t^2 &= (2 - 2\delta)^2 = 4 + 4\delta^2t - 8\delta^t \\
2n_t(2 - n_t) &= 4 (2 - 2\delta^t) \delta^t = 8\delta^t - 8\delta^{2t}
\end{align*} \]

\[
\sum_{t=0}^{\infty} \beta^t \left(\frac{2 - n_t}{2} \right)^2 = \sum_{t=0}^{\infty} \beta^t \delta^{2t} = \frac{1}{1 - \beta \delta^2}
\]

\[
\sum_{t=0}^{\infty} \beta^t n_t^2 = \frac{1}{1 - \beta} + \frac{1}{1 - \beta \delta^2} - \frac{2}{1 - \beta \delta}
\]

\[
\sum_{t=0}^{\infty} \beta^t \frac{2n_t(2 - n_t)}{4} = \frac{2}{1 - \beta \delta} - \frac{2}{1 - \beta \delta^2}
\]

We can write the consumer’s ex-ante surplus as

\[
\sum_{t=0}^{\infty} \beta^t u_t = \frac{1}{\sigma - 1} \left[\frac{1}{1 - \beta \delta^2} + \left(\frac{\sigma}{\sigma - 1} \right)^{\sigma - 1} x \left(\frac{1}{1 - \beta} + \frac{1}{1 - \beta \delta^2} - \frac{2}{1 - \beta \delta} \right) + x \left(\frac{1}{1 - \beta \delta} - \frac{2}{1 - \beta \delta^2} \right) \right]
\]

\[
= \frac{1}{\sigma - 1} \left[\frac{1 + \left(\frac{\sigma}{\sigma - 1} \right)^{\sigma - 1} x - 2x}{1 - \beta \delta^2} + \left(\frac{\sigma}{\sigma - 1} \right)^{\sigma - 1} x \left(\frac{1}{1 - \beta} - \frac{2}{1 - \beta \delta} \right) + x \frac{2}{1 - \beta \delta} \right] \tag{A.4}
\]

\[
= \frac{1}{\sigma - 1} \left[\frac{1 + x - 2 \left(\frac{\sigma}{\sigma - 1} \right)^{\sigma - 1} x}{1 - \beta \delta^2} + \left(\frac{\sigma}{\sigma - 1} \right)^{\sigma - 1} x \left(1 - \left(\frac{\sigma}{\sigma - 1} \right)^{\sigma - 1} x \right) \right] \tag{A.5}
\]

Under data sales, we have \(\delta = \frac{1 - \sqrt{1 - \gamma}}{\gamma} \), and ex-ante data choice \(x = 1 + \frac{1}{\sigma \frac{1}{2} (1 + \sqrt{1 - \gamma} - \beta)} \). We can compute consumer surplus by substituting \(\delta \) and \(x \) into (A.5).

Under subscription, \(n^* = 1, \) \(x = 1 + \frac{a^2}{4b(1 - \beta)} = 1 + \frac{1}{\sigma \frac{1}{2} (1 - \beta)} \). The consumer surplus per period is

\[
u^*_{\text{sub}} = \frac{1}{\sigma - 1} \left[\frac{1}{4} \left(1 + \left(\frac{\sigma}{\sigma - 1} \right)^{\sigma - 1} x + 2x \right) \right].
\]

The ex-ante consumer surplus is

\[
\sum_{t=0}^{\infty} \beta^t u^*_{\text{sub}} = \frac{1}{1 - \beta \sigma - 1} \left[\frac{1}{4} \left(1 + \left(\frac{\sigma}{\sigma - 1} \right)^{\sigma - 1} x + 2x \right) \right].
\]
B Market Foundations for Data Externality

Strategic substitutability of data arises in many contexts. Here is a simple one where there is imperfect competition and firms use data to forecast uncertain shocks to their profit.

FI R M S There are \(n_F \) firms, indexed by \(i: i \in \{1, 2, \ldots, n_F\} \). Each firm chooses the number of units of each good they want to produce, an \(N \times 1 \) vector \(q_i \), to maximize risk-adjusted profit, where the price of risk is \(\rho_i \).

\[
U_i = E [\pi_i | I_i] - \frac{\rho_i}{2} Var [\pi_i | I_i] - g(\chi_c, \bar{c}_i).
\] (B.1)

This mean-variance objective is consistent with empirical corporate finance evidence on firms’ decisions (Eckbo 2008) and is a second-order approximation to a broader class of firm managers’ utility functions.

Firm production profit \(\pi_i \) depends on quantities of each good, \(q_i \), the market price of each good, \(p \), and the marginal cost of production of that good, \(c_i \):

\[
\pi_i = q_i' (p - c_i).
\] (B.2)

PRO D UCTS A N D A TT R I B U T E S The product space has \(N \) attributes, indexed by \(j \in \{1, 2, \ldots, N\} \). Goods, indexed by \(k \), are combinations of attributes.

Each good \(k \in \{1, 2, \ldots, N\} \) can be represented as an \(N \times 1 \) vector \(a_k \) of weights that good places on each attribute. The \(j \)th entry of vector \(a_k \) describes how much of attribute \(j \) the \(k \)th good requires. This collection of weights describes a good’s location in the product space. Let the collection of \(a_k \)'s for each good \(k \) be an \(N \times N \), full-rank matrix \(A \).

The quantity of attributes that a firm \(i \) produces is a vector \(\bar{q}_i \), with \(j \)th element \(\bar{q}_{ij} \). The attribute vector is the vector of firm \(i \)'s product quantities, \(q_i \), times the inverse attribute matrix \(A^{-1} \):

\[
\bar{q}_i = A^{-1} q_i.
\] (B.3)

The marginal cost of producing a good is \(c_i \). The firm produces each attribute \(j \) at a unit cost of \(\bar{c}_{ij} \). The vector \(\bar{c}_i \) is the \(N \)-by-1 vector of all marginal production costs of firm \(i \) for each attribute. The vector \(c_i = A' \bar{c}_i \) is the vector of firm \(i \)'s marginal cost for each product. The cost of producing a unit of good \(k \) for firm \(i \) is therefore \(c_i = a_k' \bar{c}_i \).

P R I C E Our demand system embodies the idea that goods with similar attributes are partial substitutes for each other. Therefore, the price of good \(i \) can depend on the amount every firm pro-
duces of every good.

The price of each good depends on the attributes of a good. The price of good \(k \) is the units of each attribute \(a_k \) times the price of each attribute \(\tilde{p} \):

\[
p_k = \sum_{j=1}^{N} a_{jk} \tilde{p}_j. \tag{B.4}
\]

Each attribute \(j \) has an average market price that depends on an attribute-specific constant and on the total quantity of that attribute that all firms produce:

\[
\tilde{p}_M^j = \bar{p}_j - \frac{1}{\phi} \sum_{i=1}^{n_F} \tilde{q}_{ij}. \tag{B.5}
\]

Each firm does not receive the market price for its good, but rather has a firm-specific price that depends on a firm-specific demand shock \(b_i \). The demand shock \(b_i \) is a vector with \(j \)th element \(b_{ij} \). This vector is random and unknown to the firm: \(b_i \sim N(0, I) \), which is i.i.d. across firms. The price a firm receives for a unit of attribute \(j \) is thus \(\tilde{p}_j + b_{ij} \). We can express firm \(i \)'s price in vector form as

\[
\hat{p}_i = \left[\tilde{p}_1^M, \tilde{p}_2^M, \ldots, \tilde{p}_N^M \right]^T + b_i. \tag{B.6}
\]

The price a firm receives for a unit of good \(k \) is therefore \(p_k + \sum_{j=1}^{N} a_{jk} b_{ij} \).

INFORMATION Each firm generates \(n_{di} \) data points. Each data point is a signal about the demands for each attribute: \(\tilde{s}_{i,z} = b_i + \tilde{e}_{i,z} \), where \(\tilde{e}_{i,z} \sim N(0, \tilde{\Sigma}_e) \) is an \(N \times 1 \) vector. Signal noises are uncorrelated across attributes and across firms. All firms can observe all the data generated by each firm. Of course, other firms’ data is not relevant for inferring \(b_i \). But this allows firms to know what other firms will do.

Because we are interested in how data affects competition, we will take data (\(n_{di} \) and \(\tilde{\Sigma}_e \)) as given. The question will be what happens to market competition and markups when we exogenously change these data conditions of some or all firms. Section ?? explores what aspects of the results change when data is generated as a by-product of economic transactions.

EQUILIBRIUM

1. Each firm chooses a vector of marginal costs \(\tilde{c}_i \), taking as given other firms’ cost choices.

Since the data realizations are unknown in this ex ante investment stage, the objective is the unconditional expectation of the utility in (B.1).
2. After observing the realized data, each firm updates beliefs with Bayes’ law and then chooses the vector q_i of quantities to maximize conditional expected utility in (B.1), taking as given other firms’ choices.

3. Prices clear the market for each good.

Substitutability Externality of Information To show substitutability, we now want to consider, what happens when one additional firm gets a signal with one unit of precision, about consumer demand? How does that effect the utility of another firm observing that same amount of information?

We start with the optimal production decision of a firm. Define $H_i = \rho_i \text{Var}[b_i | I_i] + \frac{2}{\phi} I_N$.

Using Bayes law to replace the expectation $E[b_i | I_i]$ with the weighted sum of signals $K_i s_i$, with $K_i = \sum b_i (\sum b_i + \sum \epsilon_i) - 1$ yields

$$\tilde{q}_i = H_i \left(\tilde{p} + K_i s_i - \frac{1}{\phi} \sum_{j=1, j \neq i}^{n_f} \tilde{q}_j - \tilde{c}_i \right).$$ (B.7)

We have set the model up so that the only way one firm’s information affects another firm is through the level of production. Notice that the firm’s output is increasing in H_i, which itself in decreasing in conditional variance. Data reduces conditional variance. Thus, data will increase a firm’s expected level of production.

A one unit increase in the precision of data increases conditional precision by one unit. The decrease in conditional variance, the inverse of conditional precision is $-\text{Var}[b_i | I_i]^2$.

The size of this effect of data on the own level of production is $\partial q_i / \partial n_{di} = -\partial E[q_i] / \partial H_i \cdot \partial H_i / \partial \text{Var} \cdot \text{Var}[b_i | I_i]^2$. Since $E[q_i] / \partial H_i > 0$ but $\partial H_i / \partial \text{Var} < 0$, the effect of data on own production is positive. This makes sense because a firm with more data faces less uncertainty and produces more aggressively.

The effect of firm i’s data on firm i' works through the price level. When firm i produces one unit more of attribute j, the price of attribute j falls by $1/\phi$. Thus, $\partial p / \partial n_{di} = -1/\phi \partial q_i / \partial n_{di}$.

Next, we solve for the effect on expected profits. Expected profits can be expressed as:

$$E[q_i' (\tilde{p}_i - \tilde{c}_i)] = E[q_i' (E[\tilde{p}_i | I_i] - \tilde{c}_i)].$$ (B.8)

Notice that the effect of a one unit increase in price of an attribute is an increase of q_i' in profits. Thus, putting these effects together with the chain rule, we find that the marginal effect of an increase in data owned by firm i on firm i’s profit is $\tilde{q}_i' \cdot (1/\phi) \partial q_i / \partial n_{di} < 0$. So one firm’s data...
reduces another firm’s profit.

C Data Appendix

This appendix provides a richer description of our data sets. They give a visual illustration of the data product page, describe the topics the data pertains to, the industry and geographical locations of data providers and the categories of business data.
Figure A.1: Examples of Datarade Product Page

Notes. This is a screenshot of a data product hosted on Datarade, URL address: https://datarade.ai/data-products/lifesight-foot-traffic-data-global-mobile-location-data-2-lifesight.
Description

"We provide high-quality persistent mobility data from our partnered mobile apps & SDKs and this data feed is aggregated from multiple data sources globally and is delivered as a daily feed to an S3 bucket of your choice. All data is collected and anonymized with clear consent and terms of usage."

Mobility/Location data is gathered from location-aware mobile apps using an SDK-based implementation. All users explicitly consent to allow location data sharing using a clear opt-in process for our use cases and are given clear opt-out options. Factori ingests, cleans, validates, and exports all location data signals to ensure only the highest quality of data is made available for analysis.

Record Count: 90 Billion+
Capturing Frequency: Once per Event
Delivering Frequency: Once per Day
Updated: Daily

Mobility Data Reach:
Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings.

Data Export Methodology:
Since we collect data dynamically, we provide the most updated data and insights via a best-suited interval (daily/weekly/monthly/quarterly).

Business Needs:
Consumer Insight:
Gain a comprehensive 360-degree perspective of the customer to spot behavioral changes, analyze trends and predict business outcomes.
Market Intelligence:
Study various market areas, the proximity of points or interests, and the competitive landscape.
Advertising:
Create campaigns and customize your messaging depending on your target audience's online and offline activity.
Retail Analytics
Analyze footfall trends in various locations and gain understanding of customer personas.

Notes. This is a screenshot of a data product hosted on Datarade, URL address: https://datarade.ai/data-products/lifesight-foot-traffic-data-global-mobile-location-data-2-lifesight.
Table A.1: Geographical Locations of Data Providers

<table>
<thead>
<tr>
<th>Headquarter</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>1176</td>
<td>47.84%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>223</td>
<td>9.07%</td>
</tr>
<tr>
<td>India</td>
<td>117</td>
<td>4.76%</td>
</tr>
<tr>
<td>Germany</td>
<td>115</td>
<td>4.68%</td>
</tr>
<tr>
<td>Canada</td>
<td>65</td>
<td>2.64%</td>
</tr>
<tr>
<td>France</td>
<td>54</td>
<td>2.20%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>40</td>
<td>1.63%</td>
</tr>
<tr>
<td>Israel</td>
<td>38</td>
<td>1.55%</td>
</tr>
<tr>
<td>China</td>
<td>34</td>
<td>1.38%</td>
</tr>
<tr>
<td>Australia</td>
<td>33</td>
<td>1.34%</td>
</tr>
<tr>
<td>Other</td>
<td>471</td>
<td>19.16%</td>
</tr>
<tr>
<td>Missing</td>
<td>92</td>
<td>3.74%</td>
</tr>
<tr>
<td>Total</td>
<td>2458</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Notes. This table presents the geographical locations of data providers on the Datarade platform.
The Center on Regulation and Markets at Brookings provides independent, non-partisan research on regulatory policy, applied broadly across microeconomic fields. It creates and promotes independent economic scholarship to inform regulatory policymaking, the regulatory process, and the efficient and equitable functioning of economic markets.

Questions about the research? Email communications@brookings.edu. Be sure to include the title of this paper in your inquiry.