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ABSTRACT
Capping the prices health care providers can collect for out-of-network services is a 
commonly proposed strategy for reducing the in-network prices negotiated by providers 
and insurers. We present a model that implies that an out-of-network cap can greatly reduce 
in-network prices when providers must accept out-of-network patients (i.e., in emergency 
settings) but may be much less effective in other settings. In these other settings, the 
achievable price reductions can be bounded using estimates of how much volume a provider 
retains when it shifts out-of-network—and at what price. We use a large national claims 
database to examine episodes in which hospitals change network status and estimate 
that hospitals that shift out-of-network retain only 12% of their non-emergency in-network 
volume, albeit at prices more than twice as high. Using these estimates to calibrate the 
model-derived bound implies that an out-of-network cap can reduce in-network prices by 
at most 19% in non-emergency settings. This bound suggests that policymakers wishing 
to greatly reduce in-network prices in commercial insurance may need to consider other 
policy tools and that competition from traditional Medicare, not the presence of an out-
of-network cap, may be the main reason that Medicare Advantage plans negotiate lower 
prices than commercial plans.
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One commonly proposed strategy for reducing the prices of health care services is to limit how 

much health care providers can collect for out-of-network care (e.g., Murray 2013; Berenson et al. 

2015; Song 2017; Kane 2019; Chernew, Pany, and Frank 2019; Melnick and Fonkych 2020b). Capping 

out-of-network prices would directly reduce prices paid for out-of-network services, but many argue 

that it could also reduce the prices that providers and insurers negotiate for in-network care (e.g., 

Duffy, Whaley, and White 2020; Chernew, Dafny, and Pany 2020; Prager and Tilipman 2020; 

Berenson and Murray 2022). Similarly, the out-of-network cap that exists in Medicare Advantage—

which limits what providers can collect for out-of-network care to what traditional Medicare would 

pay for that care—is often cited as a major reason that the in-network prices Medicare Advantage plans 

negotiate for most services are similar to traditional Medicare’s prices, even as the same insurers 

negotiate much higher prices in their commercial plans (e.g., Berenson et al. 2015; CBO 2017; MedPAC 

2017; Trish et al. 2017; Maeda and Nelson 2018; Pelech 2020; Murray and Keane 2022). 

The view that an out-of-network cap can markedly reduce in-network prices has an intuitive logic: 

if an insurer knows that it can access a provider’s services at the capped price if network negotiations 

break down, then it can credibly refuse to sign a network agreement at a higher price and leave the 

provider no choice but to agree to a price at or below the cap. This logic is compelling if an insurer’s 

enrollees can access a provider’s services without a network agreement. This is the case for emergency 

care, which hospitals must deliver regardless of patients’ insurance status under federal law. However, 

as emphasized by Fiedler (2020), providers can decline to treat out-of-network patients in non-

emergency situations. Thus, in these settings, an insurer may jeopardize its enrollees’ access to a 

provider’s services if it breaks off negotiations and seeks to rely on the capped price. This, in turn, may 

limit how much leverage an insurer can derive from an out-of-network cap. 

This paper seeks to quantitatively assess how much an out-of-network cap can reduce in-network 

prices in non-emergency settings. To that end, we rely on a model of provider-insurer bargaining under 

an out-of-network cap that is adapted from Fiedler (2020). In the model, network negotiations happen 

in two stages. In the first stage, the insurer and provider announce what actions they will take if 

negotiations break down; namely, the insurer announces what coverage it will offer for out-of-network 
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services, while the provider announces whether it will accept out-of-network patients (if it is permitted 

to make that choice) and at what price. In the second stage, the provider and insurer engage in Nash 

bargaining where the disagreement payoffs reflect the previously announced actions. 

Consistent with the informal logic laid out above, equilibrium outcomes under an out-of-network 

cap depend crucially on whether the provider has the option to turn away out-of-network patients. 

When the provider cannot turn away out-of-network patients, the negotiated in-network price is 

always at or below the cap, essentially because the insurer can always opt to break off negotiations and 

rely on the capped price. By contrast, when a provider can turn away out-of-network patients, the 

provider opts to do so once the cap becomes sufficiently stringent. Past that point, tightening the cap 

has no effect on the parties’ bargaining positions (since no out-of-network care is delivered) and, thus, 

no effect on the negotiated in-network price. Correspondingly, the scope for an out-of-network cap to 

reduce in-network prices is smaller, albeit not zero, since forgoing all out-of-network volume leaves 

the provider in a somewhat worse bargaining position than without an out-of-network cap.   

We use the model to derive an upper bound on how much an out-of-network cap can reduce in-

network prices in settings where providers can turn away out-of-network patients. This upper bound 

depends on two “sufficient statistics”: the share of its volume a provider would retain if it shifted out-

of-network in a world without an out-of-network cap, and the price it would receive on that retained 

volume. The role of these two statistics is intuitive. If a provider expects to retain little volume (or 

receive a low price) if it goes out-of-network in a world without a cap, then the provider can put itself 

in a similar bargaining position in a world with a cap by simply refusing to accept out-of-network 

patients, thereby largely defanging the cap. To supplement this bound, we also derive an exact 

expression for the maximum amount an out-of-network cap can reduce in-network prices; this 

expression depends on the same two statistics but also requires an estimate of how the provider’s 

marginal cost compares to the in-network price plus an additional functional form assumption. 

The extant literature contains little evidence on how volume and prices change when a provider 

leaves an insurer’s network, with the notable exception of one recent study of a decision by a single 

California hospital chain to terminate its contracts with all private insurers (Melnick and Fonkych 
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2020a). This paper aims to help fill this gap by using a large database of health care claims from the 

Health Care Cost Institute that covers the years 2014-2017 to identify episodes where a hospital enters 

or leaves a particular plan’s network and then estimate how volume and prices change around those 

network status changes. 

Our preferred estimates are that a hospital that shifts out-of-network retains only 12% of its non-

emergency in-network volume, while the prices it receives for that care increase to 234% of in-network 

prices, on average. We use these estimates to calibrate the model-derived upper bound on the effect of 

an out-of-network cap, which yields an estimate that an out-of-network cap can reduce in-network 

prices for non-emergency services by at most 19%. Importantly, the maximum achievable reduction 

may be smaller than this. Indeed, when we calibrate the exact expression for the maximum reduction 

in in-network prices achievable using an out-of-network cap that was derived under the stronger 

assumptions described above, we obtain a point estimate of only 13%. Because non-emergency care 

accounts for the majority of health care spending, including about two-thirds of hospital spending 

(Fiedler 2020), these results suggest that there are meaningful limits on how much an out-of-network 

cap can reduce in-network prices, contrary to what analyses that ignore providers’ ability to turn away 

out-of-network patients suggest (Duffy, Whaley, and White 2020; Prager and Tilipman 2020). 

Our approach does not account for the greater administrative and reputational costs hospitals may 

incur when seeking to collect the large patient cost-sharing obligations and “balance bills” commonly 

associated with out-of-network care (Biener et al. 2021; Cooper, Scott Morton, and Shekita 2020; 

Pelech 2020; Song et al. 2020). Thus, our approach may overstate how costly it would be to hospitals 

to forgo out-of-network volume in response to an out-of-network cap and, correspondingly, overstate 

how much an out-of-network cap would reduce in-network prices for non-emergency services. 

On the other hand, it is notable that we find that hospitals that shift out-of-network retain around 

three-quarters of their emergency volume—at prices roughly twice their in-network prices—causing 

total revenues for emergency services to rise markedly. As noted above, collecting payment for out-of-

network care may be burdensome for hospitals, especially in the case of emergency care, so being out-

of-network may not be as attractive with respect to emergency services as these results suggest. 
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Nevertheless, this finding raises the possibility that some of the pricing power hospitals hold with 

respect to emergency services may be “shifted” into the prices that they negotiate for non-emergency 

services (Pope 2019; Melnick and Fonkych 2020a). If this were the case, then our estimates would 

overstate the “true” in-network prices hospitals receive for non-emergency services and, thus, 

understate how much the prices of these services increase when the hospital shifts out-of-network. 

This would lead us to understate how much an out-of-network cap could reduce in-network prices for 

non-emergency services. If shifting occurs, it would also mean that the share of current hospital 

spending traceable to emergency care—and, thus, the share of spending that occurs in settings where 

out-of-network caps can be highly effective—is somewhat higher than it appears. 

Our results have important implications for policymakers. First, our results suggest that while 

there is some scope to reduce the prices that commercial plans pay for in-network services by capping 

out-of-network prices, policymakers wishing to greatly reduce in-network prices may need to consider 

other approaches. These alternative approaches could include directly limiting in-network prices or 

coupling an out-of-network cap with a requirement to accept out-of-network patients. Second, our 

results suggest that the out-of-network cap present in the Medicare Advantage (MA) program is not 

the primary reason that MA plans are able to negotiate prices that are close to traditional Medicare’s 

(and, correspondingly, far below the prices the same insurers negotiate in the commercial market). 

Rather, competition from traditional Medicare may play the leading role in disciplining provider prices 

in MA. This suggests that the prices that MA plans pay providers will begin to rise if traditional 

Medicare’s competitive position becomes sufficiently weak, a plausible scenario in light of the ongoing 

steady decline in traditional Medicare’s market share (Freed et al. 2022). 

The rest of the paper proceeds as follows. We first present the model of provider-insurer 

bargaining under an out-of-network cap that provides the conceptual framework for this paper. Next, 

we describe our data and empirical methodology, after which we present our results. We then use our 

empirical results to calibrate the key expressions derived from the model. We conclude by discussing 

the policy implications of our findings. 
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1 Model 

We begin by describing the model of provider-insurer negotiations under an out-of-network cap 

that motivates the paper’s empirical analyses, which is largely adapted from Fiedler (2020). The model 

features a provider and an insurer that bargain over a network agreement in two stages. In the first 

stage, the insurer and provider announce what actions they will take if negotiations break down; the 

insurer announces what coverage it will offer for out-of-network services, while the provider 

announces whether it will accept out-of-network patients (if it is permitted to make that choice) and 

at what price. In the second stage, a network agreement is reached via Nash bargaining where the 

disagreement payoffs reflect the actions announced in the first stage. The rest of this section first 

provides a detailed description of the model’s primitives, bargaining process, and equilibrium. It then 

shows how the scope for an out-of-network cap to reduce in-network prices in settings where providers 

can turn away out-of-network patients can be related to observable statistics. 

Other recent work has also modeled how regulating out-of-network prices might affect in-network 

prices (Duffy, Whaley, and White 2020; Prager and Tilipman 2020). A key difference between the 

model presented here and the frameworks used in these other analyses is that we allow the provider 

to choose to turn away out-of-network patients.1 As will become clear below, allowing the provider to 

make this choice greatly reduces the scope for an out-of-network cap to reduce in-network prices. 

1.1 Model primitives 

The provider receives a price 𝑝𝑝 ∈ ℝ for its services and makes a choice 𝑎𝑎 ∈ 𝒜𝒜 about whether to 

accept patients (where 𝒜𝒜 = {1} if the provider must accept patients and 𝒜𝒜 = {0,1} otherwise). The 

insurer offers a level of coverage 𝑙𝑙 ∈ [0,1] for the provider’s services. Setting 𝑙𝑙 = 1 corresponds to 

offering the most generous possible coverage, while setting 𝑙𝑙 = 0 corresponds to offering no coverage 

at all. The level of coverage should be understood to encompass both cost-sharing requirements and 

other plan design features that affect utilization, like prior authorization procedures. 

 
1 Our model also explicitly endogenizes the insurer’s choice of what level of out-of-network coverage to offer, which Prager and 
Tilipman (2020) do not and Duffy, Whaley, and White (2020) do only implicitly. This feature of our model tends to increase 
the scope for an out-of-network cap to reduce prices in settings where providers cannot turn away patients. 
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To specify the parties’ payoffs, we follow Gowrisankaran, Nevo, and Town (2015) and assume that 

the insurer has fixed enrollment (normalized to one) but is subject to long-term competitive pressures 

that lead it to act as a good agent for enrollees. Thus, the insurer seeks to maximize the value its 

enrollees receive from the provider’s care, net of the premium required to finance that care. To that 

end, we let 𝑄𝑄(𝑝𝑝, 𝑙𝑙) denote the quantity of the provider’s services that the insurer’s enrollees use when 

the provider’s price is 𝑝𝑝, the insurer’s level of coverage is 𝑙𝑙, and the provider accepts patients; we let 

𝑉𝑉(𝑄𝑄) denote the value the insurer’s enrollees derive from consuming a quantity of services 𝑄𝑄. The 

insurer’s payoff 𝑊𝑊 is then given by 

𝑊𝑊(𝑝𝑝, 𝑙𝑙) ≡ 𝑉𝑉�𝑄𝑄(𝑝𝑝, 𝑙𝑙)� − 𝑝𝑝𝑄𝑄(𝑝𝑝, 𝑙𝑙) 

when the provider accepts patients and zero otherwise. For its part, the provider incurs a marginal 

cost 𝑐𝑐 to deliver each service and seeks to maximize its profits, so its payoff 𝜋𝜋 is given by 

𝜋𝜋(𝑝𝑝, 𝑙𝑙) ≡ 𝑄𝑄(𝑝𝑝, 𝑙𝑙)[𝑝𝑝 − 𝑐𝑐] 

when it chooses to accept patients and zero otherwise. 

To facilitate the subsequent analysis, we make a few largely standard assumptions about these 

primitives. We assume that 𝑉𝑉 is twice differentiable, strictly increasing, and strictly concave, with 

𝑉𝑉(0) = 0. We further assume that 𝑉𝑉′(0) > 𝑐𝑐 and that 𝑉𝑉′(𝑄𝑄) < 𝑐𝑐 for large enough values of 𝑄𝑄. This 

implies that there is a unique “efficient” quantity of care 𝑄𝑄∗ > 0, which satisfies 𝑉𝑉′(𝑄𝑄∗) = 𝑐𝑐. 

We assume that 𝑄𝑄 is twice differentiable, strictly decreasing in 𝑝𝑝 for 𝑙𝑙 < 1 and strictly increasing 

in 𝑙𝑙, with 𝑄𝑄𝑝𝑝(𝑝𝑝, 1) = 0. We assume that the insurer’s level of coverage affects demand for the provider’s 

services enough to ensure that 𝑄𝑄(𝑝𝑝, 0) < 𝑄𝑄∗ < 𝑄𝑄(𝑝𝑝, 1) for any price 𝑝𝑝 ∈ ℝ. Additionally, we assume that 

𝑄𝑄𝑝𝑝𝑝𝑝(𝑝𝑝, 𝑙𝑙) ≥ 0, indicating that greater coverage reduces price sensitivity.  

We also make a more technical assumption, which we label Assumption QC for later reference.  

Assumption QC. For any 𝑝𝑝 ∈ ℝ and 𝑙𝑙 ∈ [0,1], 

𝑑𝑑
𝑑𝑑𝑝𝑝

�𝑉𝑉′�𝑄𝑄(𝑝𝑝, 𝑙𝑙)�� ≡ 𝑉𝑉′′(𝑄𝑄(𝑝𝑝, 𝑙𝑙))𝑄𝑄𝑝𝑝(𝑝𝑝, 𝑙𝑙) ≤ 1, 

with the inequality strict for 𝑙𝑙 > 0. Additionally, for any 𝑝𝑝 ∈ ℝ and  𝑙𝑙 < 1, there exists 𝜖𝜖 > 0 such that 
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𝑑𝑑
𝑑𝑑𝑝𝑝

�−
𝑄𝑄(𝑝𝑝, 𝑙𝑙)
𝑄𝑄𝑝𝑝(𝑝𝑝, 𝑙𝑙)

� < 1 − 𝑉𝑉′′(𝑄𝑄(𝑝𝑝, 𝑙𝑙))𝑄𝑄𝑝𝑝(𝑝𝑝, 𝑙𝑙) − 𝜖𝜖. 

The first part of this assumption requires that the value enrollees place on the marginal service 

rises no more than one-for-one with the price; in essence, this requires a limited degree of consistency 

between enrollees’ demand behavior (captured in 𝑄𝑄) and their underlying valuation of care (captured 

in 𝑉𝑉). The second part of the assumption limits how quickly the price sensitivity of enrollees’ demand 

for care can diminish as the price rises; put another way, it ensures that the demand curve is not “too 

convex.” Together, the two parts of Assumption QC ensure that the parties’ best response functions in 

the bargaining game that we specify below are well-defined and monotonic, which in turn ensures that 

the model has a well-behaved equilibrium. 

1.2 Bargaining process 

The provider and insurer negotiate a network agreement in two stages. 

In the first stage, the two parties simultaneously announce the actions they will take if network 

negotiations subsequently break down. Specifically, the provider announces a decision 𝑎𝑎� ∈ 𝒜𝒜 about 

whether it will accept out-of-network patients and an out-of-network price 𝑝𝑝� ∈ ℝ, with 𝑝𝑝� ≤ �̅�𝑝 when the 

provider is subject to an out-of-network cap of �̅�𝑝. This out-of-network price should be understood to 

reflect what the provider expects to be able to collect for out-of-network care, net of any discounts or 

bad debt, so it may be less than the provider’s “chargemaster” price. The insurer announces the level 

of out-of-network coverage it will provide 𝑙𝑙 ∈ [0,1].  

In the second stage, the parties bargain over a network agreement that specifies an in-network 

price 𝑝𝑝∗ ∈ ℝ and coverage level 𝑙𝑙∗ ∈ [0,1].2 As has become standard in the literature on provider-

insurer bargaining (e.g., Gowrisankaran, Nevo, and Town 2015; Clemens and Gottlieb 2016; Ho and 

Lee 2017; Cooper, Scott Morton, and Shekita 2020), we assume that the outcome of negotiations is 

determined by Nash bargaining, so the negotiated in-network price 𝑝𝑝∗ and coverage level 𝑙𝑙∗ satisfy 

 
2 Technically, the network agreement also specifies whether the provider will accept the insurer’s patients, but it will always 
be in the parties’ mutual interest for the provider to accept patients, so we omit that detail here to streamline notation. 
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(𝑝𝑝∗, 𝑙𝑙∗) = argmax
𝑝𝑝∈ℝ,𝑝𝑝∈[0,1] s.t.

𝑊𝑊(𝑝𝑝,𝑝𝑝)≥𝑊𝑊� ,𝜋𝜋(𝑝𝑝,𝑝𝑝)≥𝜋𝜋�

 �𝑊𝑊(𝑝𝑝, 𝑙𝑙)−𝑊𝑊� �𝜃𝜃  ×  [𝜋𝜋(𝑝𝑝, 𝑙𝑙)− 𝜋𝜋�]1−𝜃𝜃, (1)
 

where 𝑊𝑊� ≡ 𝑎𝑎�𝑊𝑊�𝑝𝑝�, 𝑙𝑙� and 𝜋𝜋� ≡ 𝑎𝑎�𝜋𝜋(𝑝𝑝�, 𝑙𝑙) are “disagreement payoffs” that reflect the actions the parties 

will take if negotiations break down, and 𝜃𝜃 ∈ (0,1) is the insurer’s bargaining weight. 

This structure gives rise to a one-shot non-cooperative game in which the strategies are the 

disagreement actions that the parties announce prior to bargaining (𝑝𝑝�, 𝑙𝑙, and 𝑎𝑎�), and the parties’ 

payoffs are determined by the second-stage Nash bargaining problem specified in equation (1).  

Importantly, this framework assumes that the actions announced in the first stage will actually be 

implemented if negotiations end up breaking down. This assumption may seem unappealing since it 

will often be in the parties’ interest to announce actions that they would prefer to renege on. For 

example, as we show below, the provider can often benefit from announcing that it will turn away the 

insurer’s patients in the absence of a network agreement but prefer to accept those patients if 

negotiations actually break down since they are profitable (for any 𝑝𝑝� > 𝑐𝑐). However, it is natural to 

think that reputational considerations would lead the parties to follow through on their threatened 

actions in practice, and this intuition can be formalized. Indeed, the model considered here is a 

member of the broader class of “Nash bargaining with threats” models due to Nash (1953). Abreu and 

Pearce (2007) show that the Nash bargaining with threats framework can be viewed as the reduced 

form of a rich class of multi-period contract negotiation models in which parties build reputations 

based on their bargaining demands and actions. 

1.3 Equilibrium 

We now characterize the model’s equilibrium. To start, we solve for the outcome of the second-

stage Nash bargaining problem specified in equation (1). Appendix A shows that this problem has a 

unique solution that satisfies two intuitive conditions: 

𝑄𝑄(𝑝𝑝∗, 𝑙𝑙∗) = 𝑄𝑄∗ (2) 

𝑝𝑝∗𝑄𝑄∗ = 𝜃𝜃𝑐𝑐𝑄𝑄∗ + (1 − 𝜃𝜃)𝑉𝑉(𝑄𝑄∗) + 𝜃𝜃𝜋𝜋� − (1− 𝜃𝜃)𝑊𝑊� . (3) 
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Equation (2) says that, regardless of the disagreement payoffs, the parties always agree on a 

combination of a price 𝑝𝑝∗ and coverage terms 𝑙𝑙∗ that result in delivery of the efficient quantity of care 

𝑄𝑄∗.  If this was not the case, then there would be an alternative agreement with higher total surplus, 

which the parties could split between them by suitably adjusting the negotiated price. 

Because the second-stage agreement always results in a quantity 𝑄𝑄∗, the provider will select its 

first-stage actions to maximize the negotiated price, while the insurer will seek to minimize this price. 

Equation (3) shows that the negotiated price is the sum of: a term 𝜃𝜃𝑐𝑐𝑄𝑄∗ + (1− 𝜃𝜃 )𝑉𝑉(𝑄𝑄∗) that is a 

weighted average of the provider’s cost of delivering the efficient quantity of care and the value the 

insurer’s enrollees derive from that care; and a term 𝜃𝜃𝜋𝜋� − (1− 𝜃𝜃)𝑊𝑊�  that depends on the disagreement 

payoffs. Crucially, the form of this second term shows that the provider can secure a higher in-network 

price by either increasing its disagreement payoff 𝜋𝜋�  or reducing the insurer’s disagreement payoff 𝑊𝑊� . 

Similarly, the insurer can secure a lower in-network price by either increasing 𝑊𝑊�  or reducing 𝜋𝜋� . 

We next characterize the equilibrium actions that the provider and insurer will announce in the 

first stage and, in turn, the equilibrium negotiated outcomes. The proposition below summarizes how 

the equilibrium outcomes depend on the presence of an out-of-network cap and whether the provider 

has the option to reject out-of-network patients. A proof is in Appendix B. 

Proposition 1. With no out-of-network cap or a cap �̅�𝑝 ≥ 𝑐𝑐, the model has at least one pure strategy 

Nash equilibrium, and all equilibria have the same in-network price. Furthermore, the equilibrium 

in-network prices and out-of-network actions satisfy the following: 

(i) If there is no cap: the provider always accepts out-of-network patients; the out-of-network 

quantity 𝑄𝑄�nocap ≡ 𝑄𝑄(𝑝𝑝�nocap, 𝑙𝑙nocap) associated with the (unique) equilibrium actions 𝑝𝑝�nocap and 

𝑙𝑙nocap satisfies 𝑄𝑄�nocap < 𝑄𝑄∗; and the in-network price 𝑝𝑝nocap
∗  satisfies 𝑝𝑝nocap

∗ < 𝑝𝑝�nocap. 

(ii) If there is a cap and the provider cannot reject out-of-network patients, the in-network 

price 𝑝𝑝accept
∗  is a differentiable function of �̅�𝑝 that satisfies: 𝑝𝑝accept

∗ (�̅�𝑝) = 𝑝𝑝nocap
∗  for �̅�𝑝 ≥ 𝑝𝑝�nocap; 

(𝑝𝑝accept
∗ )′(�̅�𝑝) > 0 and 𝑝𝑝accept

∗ (�̅�𝑝) < �̅�𝑝 for �̅�𝑝 ∈ (𝑐𝑐, 𝑝𝑝�nocap); and  𝑝𝑝accept
∗ (𝑐𝑐) = 𝑐𝑐. 
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(iii) If there is a cap and the provider can reject out-of-network patients, there is a critical level 

of the out-of-network cap �̅�𝑝reject ∈ (𝑐𝑐, 𝑝𝑝�nocap) such that: 

a. For any �̅�𝑝 > �̅�𝑝reject, the provider does not reject out-of-network patients, and the in-

network price is 𝑝𝑝accept
∗ (�̅�𝑝) 

b. For any �̅�𝑝 ≤ �̅�𝑝reject, the provider rejects out-of-network patients in some equilibria 

and always does when this inequality is strict. The in-network price is 𝑝𝑝accept
∗ (�̅�𝑝reject). 

The proposition says that the model has at least one equilibrium and that this equilibrium is 

effectively unique, in the sense that all equilibria have the same in-network price.3 Parts (i)-(iii) of the 

proposition then state the properties of that (effectively) unique equilibrium for several specific 

scenarios. The equilibrium in-network prices are illustrated schematically in Figure 1. 

 

 

 
3 In fact, the equilibrium is fully unique except when there is an out-of-network cap �̅�𝑝 ≤ �̅�𝑝reject, and the provider has the option 
to turn away out-of-network patients. For �̅�𝑝 < �̅�𝑝reject, the out-of-network price 𝑝𝑝� and coverage terms 𝑙𝑙 are irrelevant to the 
disagreement payoffs, so there are many functionally identical equilibria. In the knife-edge case where �̅�𝑝 = �̅�𝑝reject, the provider 
is indifferent between rejecting and accepting out-of-network patients, so there is one equilibrium in which the provider 
accepts these patients and various other equilibria in which it does not.  
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Part (i) of the proposition says that when there is no out-of-network cap, the provider sets a high 

out-of-network price 𝑝𝑝�nocap, and the insurer responds by offering restrictive coverage that results in an 

out-of-network quantity below the efficient quantity; that is, 𝑄𝑄�nocap < 𝑄𝑄∗. The provider never wishes to 

turn away out-of-network patients because the profit it earns at this price outweighs the value the 

insurer derives from giving its enrollees limited access to the provider’s services. Against the backdrop 

of these threatened out-of-network actions, the parties sign a network agreement that takes a familiar 

form: the provider accepts a price 𝑝𝑝nocap
∗ < 𝑝𝑝�nocap, and, in exchange, the insurer offers more generous 

coverage for the provider’s services that increases the provider’s volume to the efficient quantity 𝑄𝑄∗. 

Part (ii) of the proposition (which corresponds to the gold line in Figure 1) shows that introducing 

an out-of-network cap can change this equilibrium markedly—at least when the provider cannot turn 

away out-of-network patients. Once the level of the out-of-network cap �̅�𝑝 falls below the out-of-

network price without a cap 𝑝𝑝�nocap, the in-network price begins to gradually decline, and it does so fast 

enough to ensure that the in-network price is always strictly below the capped price; that is, 𝑝𝑝accept
∗ (�̅�𝑝) <

�̅�𝑝. In effect, the cap allows the insurer to unilaterally impose an agreement at the capped price by 

breaking off network negotiations, offering relatively generous out-of-network coverage for the 

provider’s services, and directing its enrollees to see the provider on an out-of-network basis. As such, 

the insurer has no reason to agree to an in-network price above the capped price. In fact, the insurer 

is typically able to secure an in-network price below the capped price by offering the provider a 

negotiated agreement that features somewhat more generous coverage for the provider’s services (and 

thus somewhat higher volume) than the provider would receive when out-of-network. 

Part (iii) of the proposition (which corresponds to the dark blue line in Figure 1) shows that 

situation changes if the provider can turn away out-of-network patients. Now, once the cap falls below 

a threshold level �̅�𝑝reject, the provider threatens to turn away the insurer’s enrollees if they seek out-of-

network care. This eliminates the insurer’s ability to facilitate out-of-network access to the provider’s 

services at the capped price and thereby limits how much leverage the insurer can derive from a cap. 

The result is that an out-of-network cap cannot reduce the in-network price below 𝑝𝑝accept
∗ (�̅�𝑝reject). 
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Even in this case, an out-of-network cap can still reduce in-network prices to some degree; that is 

𝑝𝑝accept
∗ ��̅�𝑝reject� < 𝑝𝑝nocap

∗ . This is because delivering no care if the parties fail to reach agreement, rather 

than delivering a small volume of care at a high price, results in smaller disagreement profits for the 

provider (without commensurately reducing the insurer’s disagreement payoff). Thus, the provider 

still ends up in a somewhat weaker bargaining position than it held without cap. Nevertheless, the 

deterioration in its bargaining position (and, thus, the resulting reduction in the in-network price) may 

be smaller—often considerably smaller—than if it could not turn away patients. 

1.4 Maximum price reduction under an out-of-network cap 

The preceding discussion shows that an out-of-network cap can reduce in-network prices by at 

most 𝑝𝑝nocap
∗ − 𝑝𝑝accept

∗ (�̅�𝑝reject) in settings where providers can turn away out-of-network patients. We now 

seek to gauge how large this reduction may be. We first derive a bound on the reduction that is a 

function of two “sufficient statistics.” We then derive an exact expression for the reduction that holds 

under an additional functional form assumption and depends on an additional statistic. 

To begin, we note that when the provider rejects out-of-network patients, 𝜋𝜋� = 𝑊𝑊� = 0 and, thus, 

𝜃𝜃𝜋𝜋� − (1− 𝜃𝜃)𝑊𝑊� = 0. If we let ℎ(𝑄𝑄) ≡ 𝜃𝜃𝑐𝑐𝑄𝑄 + (1− 𝜃𝜃)𝑉𝑉(𝑄𝑄), the weighted average of the costs the provider 

incurs to deliver a quantity of care 𝑄𝑄 and the value the insurer’s enrollees derive from that care, 

equation (3) then implies that the maximum achievable price reduction satisfies 

�𝑝𝑝nocap
∗ − 𝑝𝑝accept

∗ ��̅�𝑝reject��𝑄𝑄∗ = 𝑝𝑝�nocap𝑄𝑄�nocap − ℎ(𝑄𝑄�nocap). (4) 

The first term on the right-hand side of equation (4) reflects the revenue the provider can earn from 

the insurer’s patients if it goes out-of-network; it depends solely on prices and volume, each of which 

can be directly measured in the claims data we use below.  The second term, ℎ(𝑄𝑄�nocap), depends on the 

provider’s marginal cost and enrollees’ valuation of the provider’s services, neither of which is directly 

observable in our data; however, the term as a whole can be related to observable quantities.   

In particular, equation (3) can be rewritten as ℎ(𝑄𝑄∗)− ℎ�𝑄𝑄�nocap� = 𝑝𝑝nocap
∗ 𝑄𝑄∗ −  𝑝𝑝�nocap𝑄𝑄�nocap, which 

implies that the average slope of ℎ on the interval �𝑄𝑄�nocap,𝑄𝑄∗� can be estimated using the difference 
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between the provider’s in- and out-of-network revenue in a world without an out-of-network cap. Since 

ℎ is strictly concave, ℎ(0) = 0, and 𝑄𝑄�nocap ∈ (0,𝑄𝑄∗), it then follows that 

ℎ�𝑄𝑄�nocap� >
ℎ(𝑄𝑄∗)− ℎ�𝑄𝑄�nocap�

𝑄𝑄∗ − 𝑄𝑄�nocap
𝑄𝑄�nocap = �𝑝𝑝nocap

∗ 𝑄𝑄∗ −  𝑝𝑝�nocap𝑄𝑄�nocap� �
𝑄𝑄�nocap 𝑄𝑄∗⁄

1− 𝑄𝑄�nocap 𝑄𝑄∗⁄
� , (5) 

Combining equations (4) and (5) and doing some straightforward algebra then yields the following 

upper bound on the maximum price reduction achievable with an out-of-network cap: 

𝑝𝑝nocap
∗ − 𝑝𝑝accept

∗ ��̅�𝑝reject�
𝑝𝑝nocap
∗���������������

 maximum proportional 
reduction in in-network price

    <    �
𝑄𝑄�nocap 𝑄𝑄∗⁄

1 −𝑄𝑄�nocap 𝑄𝑄∗⁄
�

�����������
out-of-network

volume term

      ⋅  �
𝑝𝑝�nocap 

𝑝𝑝nocap 
∗ − 1�

���������
out-of-network

price term

 . (6)
 

Both terms on the right-hand side of equation (6) have a straightforward intuition behind them. 

The first term depends on the share of its volume the provider can retain if it goes out-of-network in a 

world without an out-of-network cap, 𝑄𝑄�nocap ∕ 𝑄𝑄∗. If this share is small, then the provider can closely 

replicate the out-of-network outcomes that would have occurred without a cap by turning away out-

of-network patients, thereby ensuring that the cap has little effect on negotiated outcomes. By contrast, 

if this share is large, then turning away out-of-network patients may make failing to reach agreement 

much less attractive to the provider than it was in a world without a cap (albeit still more attractive 

than if it allowed the insurer’s enrollees to access its services at the capped price), resulting in a 

meaningfully lower in-network price than in a world without a cap. 

The second term depends on the ratio between the price the provider receives for out-of-network 

services and the in-network price in an environment without an out-of-network cap, 𝑝𝑝�nocap ∕ 𝑝𝑝nocap
∗ . 

Naturally, the higher the out-of-network price the provider can secure in a world without a cap, the 

more being forced to turn away out-of-network patients worsens the provider’s bargaining position 

relative to the world without a cap, and the more a cap can reduce prices. 

A limitation of equation (6) is that it provides only an upper bound on the reduction in prices 

achievable using an out-of-network cap, not a point estimate of the maximum achievable price 

reduction. The tightness of this bound depends on the shape of the function ℎ. If ℎ is strongly concave 

(which will be the case if 𝑉𝑉 is strongly concave), then the bound on ℎ(𝑄𝑄�nocap) in equation (5) will be 
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loose, so the bound on 𝑝𝑝nocap
∗ − 𝑝𝑝accept

∗ ��̅�𝑝reject� in equation (6) will be loose as well. On the other hand, 

as ℎ approaches linearity, the bounds in equations (5) and (6) become tight. 

This discussion implies that obtaining an exact expression for ℎ(𝑄𝑄�nocap) and, in turn, the maximum 

achievable price reduction, requires estimating the concavity of ℎ. That can be done at the cost of 

imposing a functional form on ℎ and requiring an additional statistic for calibration. In particular, it 

was noted above that ℎ(𝑄𝑄∗)− ℎ�𝑄𝑄�nocap�, which corresponds to the average slope of ℎ on [𝑄𝑄�nocap,𝑄𝑄∗], is 

a function of observable quantities. Additionally, ℎ′(𝑄𝑄∗) = 𝑐𝑐 since 𝑉𝑉′(𝑄𝑄∗) = 𝑐𝑐. Thus, given the 

provider’s marginal cost 𝑐𝑐, we can estimate the local (average) concavity of ℎ on the interval [𝑄𝑄�nocap,𝑄𝑄∗]. 

If we also assume that ℎ is a quadratic function, we can extrapolate this local concavity estimate to 

obtain an exact expression for ℎ(𝑄𝑄�nocap) as a function of observable quantities.4 

Appendix C shows that under the assumption that ℎ is quadratic, 

ℎ�𝑄𝑄�nocap� = �𝑝𝑝nocap
∗ 𝑄𝑄∗ − 𝑝𝑝�nocap𝑄𝑄�nocap +

𝜋𝜋nocap
∗ − 𝜋𝜋�nocap

1 − 𝑄𝑄�nocap 𝑄𝑄∗⁄
� �

𝑄𝑄�nocap 𝑄𝑄∗⁄
1− 𝑄𝑄�nocap 𝑄𝑄∗⁄

� , (7) 

where 𝜋𝜋nocap
∗ ≡ 𝑄𝑄∗(𝑝𝑝nocap

∗ − 𝑐𝑐) and 𝜋𝜋�nocap ≡ 𝑄𝑄�nocap(𝑝𝑝�nocap − 𝑐𝑐). Combining equations (7) and (4) then 

implies that the maximum price reduction achievable with an out-of-network cap is given by: 

𝑝𝑝nocap
∗ − 𝑝𝑝accept

∗ ��̅�𝑝reject�
𝑝𝑝nocap
∗ = �

𝑄𝑄�nocap 𝑄𝑄∗⁄
1− 𝑄𝑄�nocap 𝑄𝑄∗⁄

� ⋅

⎣
⎢
⎢
⎡𝑝𝑝�nocap 

𝑝𝑝nocap 
∗ − 1 −

𝜋𝜋nocap
∗

𝑝𝑝nocap
∗ 𝑄𝑄∗ −

𝜋𝜋�nocap
𝑝𝑝nocap
∗ 𝑄𝑄∗

1 − 𝑄𝑄�nocap 𝑄𝑄∗⁄
⎦
⎥
⎥
⎤

. (8) 

The right-hand side of equation (8) is similar to the right-hand side of equation (6), except for the 

addition of a new term that depends on the difference between in- and out-of-network profits. Because 

𝜋𝜋nocap
∗

𝑝𝑝nocap
∗ 𝑄𝑄∗

= 1 − 𝑐𝑐
𝑝𝑝nocap
∗  and 

𝜋𝜋�nocap

𝑝𝑝nocap
∗ 𝑄𝑄∗

= �𝑄𝑄
�nocap

𝑄𝑄∗
� �𝑝𝑝

�nocap

𝑝𝑝nocap
∗ − 𝑐𝑐

𝑝𝑝nocap
∗ �, calibrating these two terms requires knowing  𝑐𝑐 ∕

𝑝𝑝nocap
∗ , the ratio of the provider’s marginal cost to the in-network price without a cap, which did not 

appear in equation (6).  Because providers’ costs are not observable in the claims data we use here, we 

calibrate this ratio using estimates from the literature.  

 
4 Technically, we assume only that ℎ is quadratic on the interval [0,𝑄𝑄∗] since if ℎ were globally quadratic then that would 
contradict our maintained assumption that 𝑉𝑉 is globally strictly increasing. Since we are exclusively interested in the interval 
[0,𝑄𝑄∗], this distinction is irrelevant for our purposes, so we ignore it in what follows to avoid tedious qualifiers. 
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2 Empirical Methods 

We now turn to estimating the statistics needed to calibrate equations (6) and (8).  To do so, we 

examine how hospital volume and prices change during episodes in which a provider transitions from 

being inside an insurer’s network to outside the insurer’s network, or vice versa. Our main focus is on 

trends in volume and prices of non-emergency care since these are the situations in which providers 

have the option to turn away patients, but we also report results for emergency care. We are aware of 

one other paper that studies similar transitions: Melnick and Fonkych (2020a), who examine an 

episode in which a single hospital chain left all private insurers’ networks.5  

We note that an alternative approach would be to use cross-sectional (or other) variation to 

estimate a demand system that predicts hospital volume as a function of network status and other 

characteristics, which is the approach taken by Prager and Tilipman (2020) in their analysis of 

regulating out-of-network prices. If paired with comparable estimates of prices as a function of 

network status, these estimates could be used to calibrate equations (6) and (8). Our approach has the 

virtue of being simple and transparent, but this alternative approach has advantages as well, as it can 

potentially provide estimates applicable to all hospitals (or even specific hospitals), whereas our 

estimates only directly apply to the sample of hospitals that we observe changing network status. 

2.1 Data 

We use claims data from the Health Care Cost Institute (HCCI) that encompass the universe of 

claims from three large national insurers (Aetna, Humana, and United Healthcare) for 2014-2017. 

Each claims record contains various information about the relevant encounter, including: diagnosis, 

procedure, and revenue codes; an encrypted enrollee identifier; an encrypted version of the provider’s 

national provider identifier (NPI); the provider’s billed charge; the plan’s allowed amount; an indicator 

for whether the provider was in the plan’s network when the service was delivered; and an indicator 

for whether the plan was the primary payer for that encounter. The data also include a file that reports 

 
 5 The network status transitions studied by Melnick and Fonkych occurred during the 2005-2007 period. The transitions we 
study all occurred during 2015 or 2016, so there is no overlap between our samples. 
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information about each enrollee, including: the market segment of the enrollee’s plan (e.g., group, 

nongroup, or Medicare Advantage); an encrypted group identifier for the employer offering the plan 

(for group plans); and the enrollee’s age, months of enrollment, and zip code of residence. Throughout, 

we limit our analysis to employer plans, exclude enrollees ages 65 and older, and exclude claims where 

the plan is functioning as a secondary payer.  

Our empirical strategy requires us to group together claims associated with a particular hospital 

as well as claims associated with a particular employer plan. To group claims at the hospital level, we 

use a crosswalk produced by HCCI that maps all facility NPIs associated with a given hospital to a 

single “consolidated” NPI (HCCI 2020). To group claims at the plan level, we use the encrypted group 

identifier reported for each enrollee. There may be cases where a single group identifier encompasses 

multiple plans offered by the same employer. For our purposes, this will be a problem only if those 

plans offer different networks and are available in the same geographic areas, which is likely relatively 

rare. Moreover, even when this does occur, the likely consequence is that we would fail to identify some 

instances where a hospital changed network status and thus lose the ability to analyze those particular 

episodes, which would not pose an obvious risk of bias. Thus, in what follows, we abstract from this 

complication and describe each group identifier as representing a single “plan.” 

2.2 Identifying network status transitions 

We seek to identify episodes where a hospital enters or leaves the network of one or more plans. 

We do not directly observe plan networks, so we instead use the following algorithm to identify 

episodes empirically using the network status indicator reported on each claim. 

Step 1: Identify hospital-plan pairs with adequate expected volume 

To begin, we limit our attention to hospital-plan pairs that are expected to account for at least 10 

emergency department visits in each year covered by our data given the distribution of the plan’s 

enrollment across zip codes and average hospital utilization patterns in each zip code. To calculate 

expected volume, we first use the enrollment file to tabulate the number of person-years of enrollment 

accounted for by plan 𝑝𝑝 in zip code 𝑧𝑧 in year 𝑦𝑦, which we denote 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝. We then use the claims file to 

calculate the number of emergency department visits to hospital ℎ by people in zip code 𝑧𝑧 in year 𝑦𝑦, 
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which we denote 𝑣𝑣ℎ𝑝𝑝𝑝𝑝.6 Our measure of expected volume in year 𝑦𝑦 for the hospital-plan pair consisting 

of hospital ℎ and plan 𝑝𝑝 is then simply 𝑒𝑒ℎ𝑝𝑝𝑝𝑝 = ∑ 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ [𝑣𝑣ℎ𝑝𝑝𝑝𝑝 𝑁𝑁𝑝𝑝𝑝𝑝⁄ ]𝑝𝑝 , where 𝑁𝑁𝑝𝑝𝑝𝑝 = ∑ 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 .  

The purpose of this expected volume restriction is to limit our sample to hospital-plan pairs where 

we are likely to observe enough emergency department visits to obtain an accurate picture of how the 

hospital’s network status under a plan evolves over time. We use emergency department volume 

(rather than total volume) for this purpose because the flow of these visits is likely less affected by 

network status (something that is borne out in our results) and because our primary interest is in 

changes in volume, revenue, and prices for non-emergency visits. Thus, using emergency department 

volume minimizes the risk that hospital-plan pairs will be selected into our initial sample based on 

how much non-emergency volume the hospital actually retains when out-of-network.7 

Step 2: Identify candidate transition episodes 

We next identify hospital-plan pairs that may have experienced a suitable network status 

transition by limiting the sample to hospital-plan pairs with at least two quarters where the majority 

of emergency department visits are out-of-network and at least two quarters where the majority of 

emergency department visits are in-network. 

Step 3: Combine hospital-plan pairs experiencing the same transition event into a single episode  

In some cases, we find that more than one hospital-plan pair associated with a particular hospital 

appears to have experienced a network status transition, which may often reflect instances where an 

insurer has a contract with the hospital that applies across multiple employer plans. In these cases, we 

apply a chi-squared test of whether all of the hospital-plan pairs associated with the hospital exhibit 

the same mix of network statuses by quarter. If this test generates a p-value greater than or equal to 

 
6 We identify emergency department claims as claims that HCCI classifies as outpatient facility claims that report a place of 
service code of 22, 23, or missing and either: (1) a Current Procedural Terminology code of 99281-99285 or 99291-99292; or 
(2) a revenue code of 0450-0459 or 0981. This definition is similar to definitions used in prior work (e.g., Venkatesh et al. 
2017). We use a visit identifier populated by HCCI to group all claims associated with an encounter into a single “visit.” 
7 While they are not our main focus, we do present estimates of how emergency volume, revenue, and prices change around 
network status transitions. In principle, these estimates could also be distorted by the type of sample selection bias we are 
discussing here. In practice, the summary statistics presented in Table 1 suggest that our episodes typically have ample volume 
when both in- and out-of-network, suggesting that few episodes are near the margin of sample inclusion. 
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0.05, then we consolidate the hospital-plan pairs into a single transition episode.8 Consolidating pairs 

in this way reduces the number of hospital-plan-quarter tuples for which we do not observe a claim 

and, thus, cannot ascertain the hospital’s network status under the plan.  

Step 4: Assign quarterly network status and select episodes of interest  

For each potential transition episode, we determine the network status of the hospital under the 

relevant plan (or plans) based on the network status of the emergency department visits observed for 

that quarter. Each quarter’s assigned network status can be either in-network, out-of-network, mixed 

(which may occur if a network status transition occurs in the middle of a quarter), or missing (which 

may occur if no claims are observed for a quarter). We then select only the episodes for which we 

observe the hospital to have had a single network status (either in- or out-of-network) for at least four 

quarters and then the opposite network status for the subsequent six quarters (or, alternatively, mixed 

network status for next quarter and the opposite status for the subsequent five quarters).   

2.3 Analytic dataset 

After identifying the transition episodes, we construct an analytic dataset that consists of ten 

quarterly entries for each transition episode: four pre-transition entries and six follow-up entries. For 

each quarter, we compute several aggregate amounts across all plans associated with the episode, 

including the aggregate number of (combined) inpatient and outpatient visits to the hospital in 

question by enrollees in the relevant plan (or plans), the aggregate facility charges associated with 

those visits, and the aggregate facility allowed amounts associated with those visits.9 We calculate each 

of these aggregates separately for emergency and non-emergency encounters.10  

 
8 In simulations, we found that this test had high power to detect instances where two hospital-plan pairs had different network 
status transition patterns, so we are unlikely to inappropriately consolidate hospital-plan pairs into a single episode. 
9 We are unable to report results for inpatient and outpatient visits separately because we often observe very few non-
emergency inpatient visits when hospitals are out-of-network, which caused some of our regression coefficients to correspond 
to cells with fewer than 11 claims, the minimum cell size for which HCCI permits researchers to export results. 
10 We classify an outpatient visit as emergent if the underlying claim (or claims) meet the criteria we used to make our initial 
tallies of emergency department visits.  We classify an inpatient visit as emergent if the underlying claim (or claims) reports: 
(1) a type of admission code of “emergency” or “trauma center”; or (2) one of the revenue codes (or, rarely, CPT codes) we use 
to identify emergency outpatient visits. Once again, we use a field pre-populated by HCCI to consolidate all claims associated 
with an encounter into a single “visit.” 
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Table 1 presents descriptive statistics for our final episode-by-quarter analytic sample. The sample 

contains a total of 26 episodes in which a hospital changed its network status under one or more plans. 

Of those episodes, 6 involve a hospital transitioning from in-network to out-of-network, while 20 

involve a hospital transitioning from out-of-network to in-network. 

There are likely multiple reasons that we identify relatively few transition episodes. First, limiting 

our sample to hospital-plan pairs with at least 10 expected emergency department visits annually has 

the effect of limiting our attention to pairs where the plan is of at least moderate size and has 

meaningful enrollment in the hospital’s catchment area. Since larger employers tend to prefer plans 

with very broad networks (KFF 2020), there may be relatively few out-of-network hospitals in these 

plans that could transition to being in-network, and insurers may be loath to allow in-network 

hospitals to transition out-of-network (especially for long enough to satisfy our inclusion criteria). 

Second, because we hold data for 2014 through 2017 and must observe at least four pre-transition 

quarters and six follow-up quarters means, our final sample can only include transitions that occurred 

during 2015 or the first three quarters of 2016, a relatively short time period.  

2.4 Regression specification 

We use the resulting dataset to run a series of (quasi-)Poisson event study regressions of the form: 

E�𝑦𝑦𝑒𝑒𝑒𝑒� = exp�𝛾𝛾𝑒𝑒 + 𝛿𝛿𝑒𝑒�, (9) 

Table 1. Summary Statistics 
Transition sample:  In-Network to  

Out-of-Network  
 Out-of-Network to 

In-Network 
  Pre Post  Pre Post 
Mean quarterly emergency volume       
Visits  21.6 17.9  16.4 17.8 
Charges (1000s of $)  139.8 135.8  122.3 158.1 
Allowed amounts (1000s of $)  46.6 82.8  81.6 55.8 
       
Mean quarterly non-emergency volume       
Visits  42.0 12.0  2.9 18.4 
Charges (1000s of $)  271.2 70.1  19.6 129.1 
Allowed amounts (1000s of $)  162.6 53.9  14.5 41.4 
       
Number of observations       
Episode-quarters  24 36  80 120 
Episodes  6 6  20 20 
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where 𝑒𝑒 indexes transition episodes, 𝑞𝑞 ∈ {−4. .5} indexes quarters relative to the transition quarter, 𝑦𝑦𝑒𝑒𝑒𝑒 

is the outcome of interest, {𝛾𝛾𝑒𝑒} are a set of episode fixed effects, and {𝛿𝛿𝑒𝑒} are a set of time-to-transition 

effects. We estimate these regressions by conditional maximum likelihood and cluster standard errors 

at the episode level. In what follows, the parameters of interest are generally the exponentiated 

coefficients exp 𝛿𝛿𝑒𝑒 (or combinations thereof), which reflect proportional differences across periods. 

We construct standard errors and confidence intervals for these parameters using the delta method. 

We estimate equation (9) separately for the samples of in-network to out-of-network transition 

episodes and out-of-network to in-network transition episodes. We normalize 𝛿𝛿−4 to zero 

(equivalently, exp 𝛿𝛿−4 = 1) when analyzing in-network to out-of-network transitions and normalize 𝛿𝛿5 

to zero (equivalently, exp 𝛿𝛿5 = 1) when analyzing out-of-network to in-network transitions. This 

ensures that the base quarter is always an in-network quarter, which facilitates graphical display. 

Our ultimate goal is to estimate the ratio of (steady state) out-of-network outcomes to (steady 

state) in-network outcomes. To do so, we make the identifying assumptions that post-transition 

outcomes: (a) would have matched the pre-transition average without the change in network status; 

and (b) remained at the level observed in the final post-transition quarter in later quarters. The 

estimand of interest can then be expressed as exp 𝛿𝛿5 ∕ �(1 4⁄ )∑ exp 𝛿𝛿𝑒𝑒𝑒𝑒∈{−4..−1} � for in-network to out-

of-network transitions and as the reciprocal, �(1 4⁄ )∑ exp 𝛿𝛿𝑒𝑒𝑒𝑒∈{−4..−1} � exp⁄ 𝛿𝛿5, for out-of-network to in-

network transitions. We also report weighted average estimates in which the estimates obtained for 

each type of transition episode are weighted by the number of episodes of that type. 

3 Empirical Results 

Figure 2 reports the estimates of how hospital visit volume changes around a change in network 

status that are obtained from equation (9); formally, each point corresponds to the relevant estimate 

of exp 𝛿𝛿𝑒𝑒. Panel A shows that the number of non-emergency visits changes sharply around a change in 

network status. Visit volume falls sharply when an in-network hospital moves out-of-network and rises 

sharply when an out-of-network hospital moves in-network. By contrast, Panel B shows that there is 
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much less, if any, change in emergency volume around a network status transition, plausibly because 

patients seeking emergency care often just choose a nearby hospital (e.g., Brown, Decker, and Selck 

2015) or are steered to hospitals by factors beyond their control, like ambulance company preferences 

(e.g., Doyle, Graves, and Gruber 2019).  Panels A.1 and B.1 of Table 2 present corresponding summary 

estimates of how out-of-network volume compares to in-network volume. When averaging across the 

two transition directions, we estimate that out-of-network non-emergency volume is 15.2% of in-

network volume, while out-of-network emergency volume is 83.6% of in-network volume.  

The observed volume trends offer some support for our identifying assumptions. The relative 

stability in non-emergency volume prior to the network status transition and the sharp changes 

immediately thereafter suggests the observed volume changes are not driven by secular trends in plan 
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Table 2. Out-of-Network Volume, Revenue, and Prices 
Transition type: In-Network to  

Out-of-Network 
Out-of-Network 
to In-Network 

Weighted 
Average 

A. Non-emergency encounters 
   

A.1 Volume (% of in-network volume)    

Visits 21.4 
(8.8) 

13.4 
(3.2) 

15.2 
(3.2) 

Charges 6.4 
(5.1) 

13.9 
(3.0) 

12.2 
(2.6) 

A.2 Revenue (% of in-network revenue)    

Collect allowed amount only 4.6 
(2.6) 

31.7 
(7.6) 

25.5 
(5.9) 

Collect full charge 10.6 
(9.0) 

42.9 
(8.7) 

35.4 
(7.0) 

Collect allowed amount + 30% of balance bill 6.4 
(4.6) 

35.1 
(7.9) 

28.5 
(6.2) 

A.3 Prices (% of in-network prices)    

Collect allowed amount only 72.6 228.4 209.5 
Collect full charge 165.5 308.9 291.5 
Collect allowed amount + 30% of balance bill 100.7 252.6 234.1 

B. Emergency encounters 
   

B.1 Volume (% of in-network volume)    

Visits 77.1 
(10.5) 

85.6 
(8.8) 

83.6 
(7.2) 

Charges 94.5 
(17.7) 

64.9 
(13.6) 

71.8 
(11.2) 

B.2 Revenue (% of in-network revenue)    

Collect allowed amount only 177.6 
(32.2) 

107.8 
(29.9) 

123.9 
(24.1) 

Collect full charge 281.3 
(55.8) 

159.8 
(45.2) 

187.9 
(37.0) 

Collect allowed amount + 30% of balance bill 208.9 
(38.0) 

123.5 
(34.1) 

143.2 
(27.7) 

B.3 Prices (% of in-network prices)    

Collect allowed amount only 188.0 166.1 172.7 
Collect full charge 297.7 246.2 261.8 
Collect allowed amount + 30% of balance bill 221.1 190.2 199.6 
Note: For in-network to out-of-network transitions, the volume and revenue point estimates are calculated as exp 𝛿𝛿5 ∕
�(1 4⁄ )∑ exp 𝛿𝛿𝑒𝑒𝑒𝑒∈{−4..−1} � using estimates from the relevant version of equation (9), while estimates for out-of-network to in-
network transitions are the reciprocal. Weighted average estimates weight each transition type by the number of episodes of 
that type. Standard errors are calculated via the delta method from clustered standard errors of the underlying parameters. Price 
estimates are derived by dividing the relevant revenue estimate by the relevant charge-based volume estimate. 
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enrollment or patient demand for the transitioning hospitals. The relative stability in emergency 

volume over the entire period also implies that network status transitions do not typically coincide 

with large changes in the number of plan enrollees who live near the transitioning hospital. It also 

offers some additional evidence that patient demand for different hospitals is relatively stable over 

time, although shocks to patient demand for particular hospitals might have a muted effect on 

emergency volume for the same reasons that network status has little effect on those volumes. 

A downside of using visit counts to assess volume trends is that they do not account for variation 

in the resource intensity of different visits. To address this concern, Figure 3 presents trends in 

aggregate provider charges around network status transitions. While provider charges are an 

admittedly crude measure of intensity, they are available directly from the claims record and are likely 

computed comparably for both in- and out-of-network visits. 



24 
 

The trends in aggregate charges depicted in Figure 3 are qualitatively similar to the trends in raw 

visit volume depicted in Figure 2, albeit a bit noisier. As with raw visits, charge-weighted non-

emergency volume falls sharply when a hospital moves out-of-network and rises sharply after a 

transition in the opposite direction. Once again, however, emergency volume changes much less, if at 

all, surrounding changes in network status. Panels A.1 and B.1 of Table 2 report the corresponding 

summary estimates. When averaging across the two transition directions, out-of-network charge-

weighted non-emergency volume is 12.2% of in-network volume, while out-of-network charge-

weighted emergency volume is 71.8% of in-network volume. 

We next examine trends in hospital revenues and prices around network transitions. A challenge 

in analyzing revenue trends is that we observe only the plan’s allowed amount and the hospital’s 

charge, not how much the hospital actually succeeds in collecting. In particular, we do not observe 

whether the hospital successfully collects the portion of the allowed amount that is due from the 

patient as cost-sharing. Additionally, for out-of-network care, providers can bill the patient for the 

amount that the provider’s charge exceeds the plan’s allowed amount, but we do not observe how much 

hospitals collect from these “balance bills.”11 Since hospitals’ ability to collect from patients is 

imperfect (Ippolito and Vabson 2023), these omissions create uncertainty about how much hospitals 

ultimately collect, especially for out-of-network care that tends to carry larger cost-sharing obligations 

and can precipitate balance bills (Biener et al. 2021; Song et al. 2020; Pelech 2020). 

We proceed by considering three scenarios for provider collections. The three scenarios all assume 

that the hospital collects the plan’s full allowed amount when in-network but incorporate different 

assumptions about out-of-network collections. The first scenario assumes that hospitals collect only 

the plan’s allowed amount when out-of-network, while the second assumes that hospitals collect their 

full charge when out-of-network. Neither of these extreme scenarios is likely realistic, so we also 

consider a third scenario, which is our preferred scenario in what follows. This scenario assumes that 

hospitals collect the allowed amount plus 30% of the difference between the hospital’s charge and the 

 
11 During our study period, some states had banned balance billing in certain circumstances, but those laws generally did not 
apply to facilities. As of January 2022, federal law bars facilities from balance billing for emergency care. 
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plan’s allowed amount (that is, 30% of the potential balance bill); this aligns with evidence on how 

much physicians collect for out-of-network emergency services (Biener et al. 2021).12 

Figure 4 reports estimated trends in revenue for non-emergency care around network transitions 

under the two extreme scenarios for providers’ out-of-network collections. Like volumes, revenues for 

non-emergency care are also lower when out-of-network. However, the revenue declines depicted in 

Figure 4 are smaller than the volume declines depicted in Figures 2 and 3, at least in the sample of 

out-of-network to in-network transitions. Panel A.2 of Table 2 shows that, in our preferred scenario 

where hospitals collect the allowed amount plus 30% of the potential balance bill, the weighted average 

 
12 For emergency visits occurring in 2011 through 2016 involving potential balance bills, Biener et al. report an average charge 
of $789, an average plan payment of $168, and an average enrollee payment of $219. If the patient’s cost-sharing obligation 
averages 20% of the allowed amount, then the average cost-sharing payment is $42 (=$168*[0.2/0.8]), which together with 
the above implies an average balance bill of $579 (=$789 - $168 - $42) and an average balance bill collection of $177 (=$219 - 
$42). Thus, the total average collection is the allowed amount plus 31% (=$177/$579). 
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estimate is that out-of-network non-emergency revenue is 28.5% of in-network revenue, whereas out-

of-network non-emergency volume is 12.2% of in-network volume (using the charge-based measure). 

This pattern indicates that hospitals collect notably higher prices for out-of-network care than they 

collect for in-network care, at least under our preferred assumptions about out-of-network collections. 

To formalize this, Panel A.3 of Table 2 calculates estimates of weighted average prices by dividing the 

revenue estimates from Panel A.2 by the charge-based volume estimate from Panel A.1. Under our 

preferred assumption that hospitals collect 30% of potential balance bills, the weighted average 

estimate is that the out-of-network price for non-emergency services is 234.1% of the in-network price.  

In closing, we note that revenue trends differ markedly for emergency care. Figure 5 demonstrates 

that under the full range of assumptions we consider, expected collections for emergency care are 

actually higher when a hospital is out-of-network than when it is in-network. Indeed, Panel B.2 of 
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Table 2 shows that, in our preferred scenario, the weighted average estimate is that emergency out-of-

network revenue is 143.2% of in-network revenue. The difference relative to non-emergency care 

primarily reflects the fact emergency volume is relatively insensitive to provider network status, as our 

estimates of the ratio of out-of-network prices to in-network prices are similar for emergency and non-

emergency care. 

4 Model Calibration 

We now use our empirical results to calibrate the upper bound on how much an out-of-network 

cap can reduce in-network prices that appears in equation (6), as well as the exact expression for the 

maximum achievable reduction in in-network prices that appears in equation (8). 

 In doing so, we rely on the estimates in Table 2 that average across the two transition directions. 

For volume, our preferred estimate (which reflects our charge-based volume measure) is that hospitals 

that shift out-of-network retain 12.2% of their in-network non-emergency volume; thus, we set 

𝑄𝑄�nocap 𝑄𝑄∗⁄ = 0.122. For prices, our preferred estimate (which assumes that hospitals collect the plan’s 

allowed amount plus 30% of the potential balance bill when out-of-network) is that the prices hospitals 

collect for out-of-network non-emergency care are 234% of in-network prices; thus, we set 

𝑝𝑝�nocap 𝑝𝑝nocap
∗⁄ = 2.34. We note that these parameter estimates are broadly similar to the corresponding 

estimates reported by Melnick and Fonkych (2020a) in their study of a single hospital chain. The 

hospitals they studied appear to have retained around 8% of their in-network non-emergency volume 

when they shifted out-of-network and also received markedly higher out-of-network prices.13 

Calibrating the exact expression for the maximum achievable reduction in in-network prices that 

appears in equation (8) also requires an estimate of the ratio of the provider’s marginal cost to the in-

network price, 𝑐𝑐 ∕ 𝑝𝑝nocap
∗ . We do not observe hospital costs in our data, so we combine an estimate from 

the Medicare Payment Advisory Commission (2023) that hospitals’ marginal cost of delivering care 

averaged 92% of Medicare’s prices in 2021 with an estimate from a Congressional Budget Office (2022) 

 
13 See footnote 28 of Fiedler (2020) for how to derive this 8% estimate from Melnick and Fonkych’s estimates. 
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review that the prices commercial insurers pay for hospital services (including both inpatient and 

outpatient services) average 223% of Medicare’s prices. We obtain 𝑐𝑐 𝑝𝑝nocap
∗⁄ = 0.412 

Using these estimates to calibrate the bound in equation (6), we find that an out-of-network cap 

can reduce in-network prices for non-emergency hospital services by at most 19%. This estimate is an 

upper bound on the potential effect of an out-of-network cap in this setting, so the actually achievable 

price reductions may be smaller. Indeed, our point estimate from calibrating the exact expression for 

this maximum achievable reduction presented in equation (8) is only 13%, although we note that this 

estimate relies on an assumption that ℎ is quadratic, whereas the bound holds more generally. Because 

non-emergency care accounts for a large majority of health care spending, including around two-thirds 

of hospital spending (Fiedler 2020), these results suggest that there are meaningful limits on how 

much an out-of-network cap can reduce in-network prices, contrary to what an analysis that ignored 

providers’ ability to turn away out-of-network patients would suggest. 

There are a several caveats to these conclusions worth noting. First, our results would look at least 

somewhat different if we focused exclusively on the sample of in-network to out-of-network transitions 

or the sample of out-of-network to in-network transitions, rather than weighted averages across the 

samples. While both samples exhibit broadly similar volume trends, the price trends differ markedly. 

For the in-network to out-of-network transitions, our preferred estimate of 𝑝𝑝�nocap 𝑝𝑝nocap
∗⁄  is close to one, 

which implies the that upper bound in equation (6) is close to zero. For out-of-network to in-network 

transitions, on the other hand, our estimates of 𝑝𝑝�nocap ∕ 𝑝𝑝nocap
∗  are higher; using those estimates implies 

an upper bound from equation (6) of 25% and a point estimate from equation (8) of 19%, higher than 

the bound and point estimate we obtain when using the weighted average estimates. The reason for 

the differences between the two samples is not clear, but one possible explanation is that they reflect 

idiosyncratic differences between the plan-hospital pairs that happen to be included in the two 

samples. If this is the case, it would suggest that the scope for an out-of-network cap to reduce in-

network prices may vary across plans and providers. 

Second, our model does not allow failure to reach a network agreement to affect the parties’ payoffs 

except through its effects on prices and volume. However, as shown formally in Appendix D, if being 
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out-of-network imposes additional costs on hospitals, then our approach will overstate how much a 

hospital’s decision to give up its out-of-network volume will worsen its bargaining position relative to 

a world without a cap and, correspondingly, overstate the scope for an out-of-network cap to reduce 

in-network prices. The reverse will be true if insurers bear additional costs when out-of-network. 

In practice, there is reason to suspect that collecting payment is more costly for hospitals when 

they are out-of-network. A much larger share of the revenue hospitals receive for out-of-network care 

must be collected directly from patients since patient cost-sharing obligations typically represent a 

larger fraction of the plan’s allowed amount and “balance bills” are, by definition, collected from 

patients (Biener et al. 2021; Pelech 2020; Song et al. 2020). In practice, collecting large amounts 

directly from patients may involve larger administrative and reputational costs (Cooper, Scott Morton, 

and Shekita 2020). Thus, these considerations offer some reason to believe that our results overstate 

the scope for an out-of-network cap to reduce in-network prices.14 

Third, it is notable that we find that the revenues and prices hospitals receive for emergency 

services actually rise when a hospital shifts out-of-network, a finding that again echoes Melnick and 

Fonkych (2020a). As noted above, collecting from out-of-network patients may be burdensome for 

hospitals, so being out-of-network may not be as attractive with respect to emergency services as our 

results suggest. Nevertheless, these findings raise the possibility that some of the pricing power 

hospitals hold is “shifted” into the in-network prices of non-emergency services rather than being fully 

reflected in the prices of emergency services (Pope 2019; Melnick and Fonkych 2020a). This could be 

because provider-insurer contracts often specify prices as a multiple of some other fee schedule, like a 

Medicare fee schedule or the hospital’s chargemaster (Clemens and Gottlieb 2016; Cooper et al. 2019), 

rather than separately specifying prices for all relevant services.  

If some of the pricing power hospitals derive from their emergency services is indeed reflected in 

the prices negotiated for non-emergency services, then the in-network prices for non-emergency 

services that we observe on claims are higher than the “true” prices of those services; similarly, the in-

 
14 If the out-of-network collection process imposes additional non-financial costs on patients (e.g., disutility from negotiating 
a balance bill, being exposed to unpleasant collection tactics, or failing to pay) and insurers take those non-financial costs in 
account when assessing the value of reaching a network agreement, then that could work in the opposite direction. 
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network prices that we observe for emergency services are lower than the “true” prices of those 

services. That would suggest that our estimate of the ratio 𝑝𝑝�nocap ∕ 𝑝𝑝nocap
∗  is biased downward and, thus, 

that our results understate the scope for an out-of-network cap to reduce in-network prices. It would 

also suggest that the “true” share of hospital spending attributable to emergency care is higher than it 

appears, which would imply in turn that more spending happens in settings where out-of-network 

caps can be highly effective in reducing in-network prices.15  

Finally, our analysis does not account for the possibility that hospitals that turn away out-of-

network patients incur reputational costs by doing so. If this is the case, then our approach will 

overstate how easy it is for hospitals to turn away out-of-network patients and, correspondingly, 

understate the scope for an out-of-network cap to reduce in-network prices. Importantly, however, 

this is only the case for reputational costs that are directly tied to turning way out-of-network patients, 

rather than just to going out-of-network. (As noted above, if hospitals incur reputational costs by going 

out-of-network, then our approach will actually tend to overstate the scope for an out-of-network cap 

to reduce prices.) Our finding that a hospital that goes out-of-network loses the large majority of its 

non-emergency volume suggests that there may be little scope for turning away out-of-network 

patients to impose substantial additional reputational costs.  

5 Conclusion 

We use a model of provider-insurer bargaining adapted from Fiedler (2020) to show that the 

amount of leverage an insurer derives from an out-of-network cap hinges on whether the provider is 

able to turn away out-of-network patients. We then use the model to derive an upper bound on the 

amount an out-of-network cap can reduce in-network prices in settings where providers can turn away 

patients; this bound depends on how much volume hospitals retain when they shift out-of-network—

and at what price. By examining episodes where hospitals change network status, we estimate that 

 
15 Notably, this view would suggest that the No Surprises Act—a recent federal law that limits prices for out-of-network 
emergency services using an arbitration system in which arbitrators are directed to base their decisions in part on each 
insurer’s median in-network price before enactment—is more stringent than it appears and, thus, has correspondingly greater 
potential to reduce in-network prices for hospital services. 
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hospitals that shift out-of-network retain only 12% of their non-emergency in-network volume, albeit 

at a price more than double what they receive when in-network. When we use these estimates to 

calibrate the model-derived bound, we conclude that an out-of-network cap can reduce in-network 

prices for non-emergency hospital services by at most 19%. Because non-emergency care accounts for 

a large majority of all health care spending, our results suggest that there are meaningful limits on how 

much an out-of-network cap can reduce the prices of health care services, contrary to what an analysis 

that ignored providers’ ability to turn away out-of-network patients would suggest. 

Our findings have a couple of policy implications. First, our results suggest that while there is some 

scope to reduce the prices that commercial plans pay for in-network services by capping out-of-

network prices, policymakers wishing to greatly reduce in-network prices may need to consider other 

approaches. These could include regulating both in- and out-of-network prices or combining an out-

of-network cap with limits on providers’ ability to turn away out-of-network patients in non-

emergency settings (Fiedler 2020). These alternative approaches may also be less likely to reduce 

access to out-of-network services; regulating in-network prices does not create the same incentives to 

turn away out-of-network patients, and the latter policy directly prevents them from doing so. 

Second, our estimates offer insights into the forces that determine provider prices in the Medicare 

Advantage (MA) program. A striking feature of the MA market is that the prices MA plans negotiate 

for hospital and physician services are close to traditional Medicare’s (e.g., Berenson et al. 2015; Maeda 

and Nelson 2018; Pelech 2020), even as commercial plans pay much higher prices, including around 

twice as much for inpatient services and even more for outpatient facility services (e.g., Blumberg et 

al. 2020; Chernew, Hicks, and Shah 2020; Cooper et al. 2019; Maeda and Nelson 2018; Whaley et al. 

2020). Some prior work (e.g., Berenson et al. 2015; Maeda and Nelson 2018; Pelech 2020) has 

suggested that the MA out-of-network cap is a major driver of the lower prices observed in MA. 

Our bound on the amount an out-of-network cap can reduce in-network prices implies that the 

MA out-of-network cap is likely not the primary reason that MA plans pay providers so much less than 
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commercial plans.16 Rather, other aspects of the MA landscape likely play the central role in 

disciplining provider prices in MA. One particularly important factor may be MA plans’ need to remain 

competitive with traditional Medicare, which may allow plans to credibly refuse to pay prices much 

above traditional Medicare’s (Berenson et al. 2015; Maeda and Nelson 2018; Fiedler 2020; Pelech 

2020). However, other factors could also play a role. For example, the fact that plan choices typically 

occur at the individual level in MA, but at the employer level in commercial plans, could reduce how 

much plans are willing to pay to lure additional providers into their plans by magnifying risk selection 

pressures (Shepard 2022) or reducing the weight assigned to consumers who place a high value on 

having broad provider networks (Tilipman 2022). 

If competition from traditional Medicare is playing an important role in disciplining provider 

prices in MA, then this has major implications for the future of the Medicare program. MA plans have 

captured steadily higher market share in recent years and now account for around half of all program 

enrollment (Freed et al. 2022), which suggests that traditional Medicare is becoming a steadily weaker 

competitor for MA plans. Traditional Medicare’s ability to discipline the prices that MA plans pay 

providers likely hinges on the amount of competitive pressure it applies to MA plans, not its mere 

presence in the market (Fiedler 2020). In the future, that competitive pressure may become weak 

enough that the out-of-network cap is no longer sufficient to bring the prices negotiated by MA plans 

the rest of the way down to traditional Medicare’s prices. If MA plans began to pay providers higher 

prices, this would put upward pressure on plan bids, which would increase federal payments to plans, 

erode supplemental benefits for MA enrollees, and raise premiums for all Medicare beneficiaries, while 

also potentially slowing or stopping the decline in traditional Medicare’s market share. 

This possibility also has implications for the effects of reforms to the Medicare program that would 

change traditional Medicare’s competitive position relative to private plans. For example, in modeling 

proposals to adopt a “premium support” system in Medicare, the Congressional Budget Office (2017) 

has assumed that the prices paid by private plans would remain close to the prices paid by traditional 

 
16 The existence of limits on how much an out-of-network cap can reduce in-network prices can also help explain why MA 
plans sometimes fail to negotiate in-network prices close to traditional Medicare’s. Notably, Lin et al. (2022) estimate that MA 
plans pay 127% of traditional Medicare’s prices for dialysis services, on average.  
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Medicare (as long as the existing out-of-network cap remained in place and traditional Medicare 

remained available as an option) even though traditional Medicare’s market share would fall sharply, 

reflecting a sharp deterioration in its competitive position. Our results and the discussion above cast 

some doubt on this assumption, suggesting that this type of system might result in higher plan bids 

and, correspondingly, higher federal outlays, than projected.  
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Appendix A: Solution of Nash Bargaining Problem 

This appendix shows that the solution to the Nash bargaining problem specified in equation (1) 

satisfies equations (2) and (3). To start, we show that any solution must satisfy equation (2): 𝑄𝑄(𝑝𝑝∗, 𝑙𝑙∗) =

𝑄𝑄∗. To that end, consider any (𝑝𝑝, 𝑙𝑙) with 𝑄𝑄(𝑝𝑝, 𝑙𝑙) ≠ 𝑄𝑄∗. Define 𝛿𝛿 = [𝑉𝑉(𝑄𝑄∗)− 𝑐𝑐𝑄𝑄∗]− �𝑉𝑉�𝑄𝑄(𝑝𝑝, 𝑙𝑙)� −

𝑐𝑐𝑄𝑄(𝑝𝑝, 𝑙𝑙)�, and observe that 𝛿𝛿 > 0. Next, define 𝑝𝑝′ = 𝑐𝑐 + [𝜋𝜋(𝑝𝑝, 𝑙𝑙) + 𝛿𝛿 2⁄ ] ∕ 𝑄𝑄∗ and select 𝑙𝑙′ ∈ [0,1] such 

that 𝑄𝑄(𝑝𝑝′, 𝑙𝑙′) = 𝑄𝑄∗. Straightforward algebra demonstrates that 𝜋𝜋(𝑝𝑝′, 𝑙𝑙′) = 𝜋𝜋(𝑝𝑝, 𝑙𝑙) + 𝛿𝛿 ∕ 2 and 𝑊𝑊(𝑝𝑝′, 𝑙𝑙′) =

𝑊𝑊(𝑝𝑝, 𝑙𝑙) + 𝛿𝛿 ∕ 2, which implies that (𝑝𝑝, 𝑙𝑙) does not satisfy equation (1). 

We now consider the restricted maximization problem 

𝑝𝑝𝑟𝑟∗ = argmax
𝑝𝑝∈ℝ s.t.

𝑊𝑊(𝑝𝑝,𝑝𝑝)≥𝑊𝑊� ,𝜋𝜋(𝑝𝑝,𝑝𝑝)≥𝜋𝜋�

 �𝑉𝑉(𝑄𝑄∗)− 𝑝𝑝𝑄𝑄∗ −𝑊𝑊� �𝜃𝜃[(𝑝𝑝 − 𝑐𝑐)𝑄𝑄∗ − 𝜋𝜋�]1−𝜃𝜃. 

This problem’s domain can be rewritten as 𝑝𝑝 ∈ �𝑐𝑐 + 𝜋𝜋� 𝑄𝑄∗⁄ , �𝑉𝑉(𝑄𝑄∗)−𝑊𝑊� � 𝑄𝑄∗⁄ �. This domain is non-

empty since 𝑊𝑊� = 𝑎𝑎�𝑊𝑊(𝑝𝑝�, 𝑙𝑙) and 𝜋𝜋� = 𝑎𝑎�𝜋𝜋(𝑝𝑝�, 𝑙𝑙) for some (𝑝𝑝�, 𝑙𝑙,𝑎𝑎�) in our setting and, thus, 

𝑉𝑉(𝑄𝑄∗)−𝑊𝑊�
𝑄𝑄∗  − �𝑐𝑐 +

𝜋𝜋�
𝑄𝑄∗� =

1
𝑄𝑄∗

�{𝑉𝑉(𝑄𝑄∗)− 𝑐𝑐𝑄𝑄∗}− 𝑎𝑎� �𝑉𝑉 �𝑄𝑄�𝑝𝑝�, 𝑙𝑙�� − 𝑐𝑐𝑄𝑄�𝑝𝑝�, 𝑙𝑙��� ≥ 0. 

If the domain consists of a single point, then straightforward algebra shows that this single point 

satisfies 𝑝𝑝𝑄𝑄∗ = 𝑐𝑐𝑄𝑄∗ + (1− 𝜃𝜃)[𝑉𝑉(𝑄𝑄∗)− 𝑐𝑐𝑄𝑄∗] + 𝜃𝜃𝜋𝜋� − (1− 𝜃𝜃)𝑊𝑊� , so the restricted problem has a unique 

solution, and this solution satisfies equation (3).  Alternatively, if the domain is non-degenerate, let 𝑓𝑓 

denote the maximand of the restricted problem, and observe that  

𝑓𝑓′(𝑝𝑝) = 𝑓𝑓(𝑝𝑝)𝑄𝑄∗ �
𝜃𝜃

𝑉𝑉(𝑄𝑄∗)− 𝑝𝑝𝑄𝑄∗ −𝑊𝑊�
−

1 − 𝜃𝜃
(𝑝𝑝 − 𝑐𝑐)𝑄𝑄∗ − 𝜋𝜋�

� 

for 𝑝𝑝 ∈ �𝑐𝑐 + 𝜋𝜋� 𝑄𝑄∗⁄ , �𝑉𝑉(𝑄𝑄∗)−𝑊𝑊� � 𝑄𝑄∗⁄ �. It is easy to show that 𝑓𝑓′(𝑝𝑝) is strictly decreasing with a unique 

interior zero that satisfies 𝑝𝑝𝑄𝑄∗ = 𝑐𝑐𝑄𝑄∗ + (1 − 𝜃𝜃)[𝑉𝑉(𝑄𝑄∗)− 𝑐𝑐𝑄𝑄∗] + 𝜃𝜃𝜋𝜋� − (1− 𝜃𝜃)𝑊𝑊� . The maximand is 

strictly positive at this point versus zero on the boundary of the domain, so this point must be the 

unique solution of the restricted problem and that solution satisfies equation (3). It follows 

immediately that the full problem has a unique solution with 𝑝𝑝∗ = 𝑝𝑝𝑟𝑟∗ and 𝑙𝑙∗ equal to the unique value 

of 𝑙𝑙 such that 𝑄𝑄(𝑝𝑝𝑟𝑟∗, 𝑙𝑙) = 𝑄𝑄∗ and that this solution satisfies equations (2) and (3). 
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Appendix B: Proof of Proposition 1 

This section presents a proof of Proposition 1. We begin by making a few definitions that are 

convenient for what follows. To start, we observe that equations (2) and (3) imply that the provider 

chooses out-of-network actions 𝑝𝑝� and 𝑎𝑎� that maximize: 

𝑔𝑔�𝑝𝑝�, 𝑙𝑙,𝑎𝑎�� ≡ 𝜃𝜃𝑎𝑎�𝜋𝜋�𝑝𝑝�, 𝑙𝑙� − (1− 𝜃𝜃)𝑎𝑎�𝑊𝑊�𝑝𝑝�, 𝑙𝑙� = 𝑎𝑎��𝑝𝑝�𝑄𝑄� − 𝜃𝜃𝑐𝑐𝑄𝑄� − (1− 𝜃𝜃)𝑉𝑉�𝑄𝑄���, 

where 𝑄𝑄� ≡ 𝑄𝑄(𝑝𝑝�, 𝑙𝑙). Similarly, the insurer chooses the out-of-network coverage level 𝑙𝑙 to minimize 

𝑔𝑔(𝑝𝑝�, 𝑙𝑙,𝑎𝑎�). The function 𝑔𝑔 is essentially just a normalized version of the in-network price 𝑝𝑝∗(𝑝𝑝�, 𝑙𝑙,𝑎𝑎�) that 

arises from actions (𝑝𝑝�, 𝑙𝑙,𝑎𝑎�), as 𝑝𝑝∗�𝑝𝑝�, 𝑙𝑙,𝑎𝑎�� = [1 𝑄𝑄∗⁄ ]�𝜃𝜃𝑐𝑐𝑄𝑄∗ + (1− 𝜃𝜃)𝑉𝑉(𝑄𝑄∗) + 𝑔𝑔(𝑝𝑝�, 𝑙𝑙,𝑎𝑎�)�. Working with 𝑔𝑔 is 

more convenient than working directly with 𝑝𝑝∗ or the associated payoff functions.  

For later reference, we state the derivatives of 𝑔𝑔 with respect to the actions 𝑝𝑝� and 𝑙𝑙 in the case 

where the provider has decided to accept out-of-network patients (so 𝑎𝑎� = 1): 

𝑔𝑔𝑝𝑝��𝑝𝑝�, 𝑙𝑙, 1� = 𝑄𝑄� + 𝑄𝑄�𝑝𝑝�𝑝𝑝� − 𝜃𝜃𝑐𝑐 − (1− 𝜃𝜃)𝑉𝑉′�𝑄𝑄��� (B1) 

𝑔𝑔𝑝𝑝�𝑝𝑝�, 𝑙𝑙, 1� = 𝑄𝑄�𝑝𝑝�𝑝𝑝� − 𝜃𝜃𝑐𝑐 − (1− 𝜃𝜃)𝑉𝑉′�𝑄𝑄��� , (B2) 

where 𝑄𝑄�𝑝𝑝 ≡ 𝑄𝑄𝑝𝑝(𝑝𝑝�, 𝑙𝑙) and 𝑄𝑄�𝑝𝑝 ≡ 𝑄𝑄�𝑝𝑝(𝑝𝑝�, 𝑙𝑙). 

We now prove a pair of lemmas showing that 𝑔𝑔(𝑝𝑝�, 𝑙𝑙, 1) is suitably quasi-concave in 𝑝𝑝� and quasi-

convex in 𝑙𝑙 and, thus, that these objective functions give rise to well-defined best response functions. 

Lemma B1 (Provider). For any 𝑙𝑙 < 1, 𝑔𝑔(𝑝𝑝�, 𝑙𝑙, 1) is strictly quasi-concave as a function of 𝑝𝑝�, the 

provider’s best response function 𝑟𝑟𝑃𝑃�𝑙𝑙� = argmax𝑝𝑝∈ℝ 𝑔𝑔(𝑝𝑝�, 𝑙𝑙, 1) is well-defined, and 𝑟𝑟𝑃𝑃 is strictly 

increasing in 𝑙𝑙. For 𝑙𝑙 = 1, 𝑔𝑔(𝑝𝑝�, 𝑙𝑙, 1) is strictly increasing in 𝑝𝑝�. 

Proof. Fix some 𝑙𝑙 < 1, and observe that equation (B1) can be rewritten as 

𝑔𝑔𝑝𝑝��𝑝𝑝�, 𝑙𝑙, 1� = 𝑄𝑄�𝑝𝑝 �
𝑄𝑄�

𝑄𝑄�𝑝𝑝
+ 𝑝𝑝� − 𝜃𝜃𝑐𝑐 − (1 − 𝜃𝜃)𝑉𝑉′�𝑄𝑄��� .  

The expression in brackets on the right-hand side is negative for sufficiently small 𝑝𝑝� (e.g., 𝑝𝑝� = 0). 

Furthermore, differentiating this expression with respect to 𝑝𝑝� and applying Assumption QC implies 

that it is strictly increasing in 𝑝𝑝� with a slope bounded below by some 𝜖𝜖 > 0. Since this expression is 
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also continuous, it must cross zero exactly once at some critical value 𝑝𝑝�′ and do so from below. Because 

𝑄𝑄�𝑝𝑝 < 0, it follows that 𝑔𝑔𝑝𝑝�(𝑝𝑝�, 𝑙𝑙, 1) has its unique zero at 𝑝𝑝�′ and crosses zero from above. Thus, 𝑔𝑔�𝑝𝑝�, 𝑙𝑙, 1� 

is strictly quasi-concave and 𝑟𝑟𝑃𝑃�𝑙𝑙� = 𝑝𝑝�′. 

To establish that 𝑟𝑟𝑃𝑃 is strictly increasing, observe first that  

𝑔𝑔𝑝𝑝�𝑝𝑝�𝑝𝑝�, 𝑙𝑙, 1� = 𝑄𝑄�𝑝𝑝�1− (1− 𝜃𝜃)𝑉𝑉′′�𝑄𝑄��𝑄𝑄�𝑝𝑝� + 𝑄𝑄�𝑝𝑝𝑝𝑝�𝑝𝑝� − 𝜃𝜃𝑐𝑐 − (1− 𝜃𝜃)𝑉𝑉′�𝑄𝑄���, 

where 𝑄𝑄�𝑝𝑝𝑝𝑝 ≡ 𝑄𝑄𝑝𝑝𝑝𝑝(𝑝𝑝�, 𝑙𝑙). Applying Assumption QC and the other maintained assumptions shows that the 

first term on the right-hand side is always strictly positive, while the second is weakly positive if 𝑝𝑝� ≥

𝜃𝜃𝑐𝑐 + (1 − 𝜃𝜃)𝑉𝑉′(𝑄𝑄�), which must be the case at 𝑝𝑝� = 𝑟𝑟𝑃𝑃(𝑙𝑙). It follows that 𝑔𝑔𝑝𝑝�𝑝𝑝�𝑟𝑟𝑃𝑃�𝑙𝑙�, 𝑙𝑙, 1� > 0. Since 

𝑔𝑔𝑝𝑝��𝑟𝑟𝑃𝑃�𝑙𝑙�, 𝑙𝑙, 1� = 0, this implies that for any 𝑙𝑙′ > 𝑙𝑙 sufficiently close to 𝑙𝑙, we have 𝑔𝑔𝑝𝑝��𝑟𝑟𝑃𝑃�𝑙𝑙�, 𝑙𝑙′, 1� > 0 and 

thus 𝑟𝑟𝑃𝑃�𝑙𝑙′� > 𝑟𝑟𝑃𝑃(𝑙𝑙). The conclusion that 𝑟𝑟𝑃𝑃 is globally strictly increasing follows immediately. 

To see that 𝑔𝑔(𝑝𝑝�, 1,1) is strictly increasing in 𝑝𝑝�, simply recall that 𝑄𝑄𝑝𝑝(𝑝𝑝�, 1) = 0, which implies that 

𝑔𝑔𝑝𝑝�(𝑝𝑝�, 1,1) = 𝑄𝑄(𝑝𝑝�, 1) > 0, as desired.□ 

Lemma B2 (Insurer). For any 𝑝𝑝� ∈ ℝ, the function 𝑔𝑔(𝑝𝑝�, 𝑙𝑙, 1) is strictly quasi-convex as a function of 

𝑙𝑙, and the insurer’s best response 𝑟𝑟𝐼𝐼(𝑝𝑝�) = argmin𝑝𝑝∈[0,1] 𝑔𝑔(𝑝𝑝�, 𝑙𝑙, 1) is well-defined. Furthermore, 𝑟𝑟𝐼𝐼 is 

decreasing in 𝑝𝑝�. 

Proof. To start, fix some 𝑝𝑝� ∈ ℝ, and observe that differentiating the term in brackets in equation (B2) 

with respect to 𝑙𝑙 yields −(1− 𝜃𝜃)𝑉𝑉′′�𝑄𝑄��𝑄𝑄�𝑝𝑝 > 0, which indicates that the term in brackets is strictly 

increasing in 𝑙𝑙. Since 𝑄𝑄�𝑝𝑝 > 0, it follows that 𝑔𝑔𝑝𝑝�𝑝𝑝�, 𝑙𝑙, 1� is either everywhere positive, everywhere 

negative, or has exactly one zero where it crosses zero from below. Thus, 𝑔𝑔(𝑝𝑝�, 𝑙𝑙, 1) is strictly quasi-

convex in 𝑙𝑙. Since the interval [0,1] is compact, it follows that 𝑟𝑟𝐼𝐼 is well-defined. 

To establish that 𝑟𝑟𝐼𝐼 is decreasing, we first define Ω(𝑝𝑝�) = �𝑙𝑙 ∈ [0,1) ∶ 𝑔𝑔𝑝𝑝�𝑝𝑝�, 𝑙𝑙, 1� ≥ 0� ∪ {1} and note 

that the discussion above implies that 𝑟𝑟𝐼𝐼(𝑝𝑝�) = inf Ω(𝑝𝑝�). Differentiating the term in brackets in equation 

(B2) yields 1 − (1− 𝜃𝜃 )𝑉𝑉′′�𝑄𝑄��𝑄𝑄�𝑝𝑝, which is strictly positive by Assumption QC, which in turn implies 

that Ω(𝑝𝑝�) ⊂ Ω(𝑝𝑝�′) whenever 𝑝𝑝�′ ≥ 𝑝𝑝�. It follows immediately that 𝑟𝑟𝐼𝐼(𝑝𝑝�′) ≤ 𝑟𝑟𝐼𝐼(𝑝𝑝�) whenever 𝑝𝑝�′ ≥ 𝑝𝑝�.□ 
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We now present the proof of Proposition 1. In doing so, we rely heavily on the facts established in 

the preceding lemmas, but we omit references to the lemmas to streamline the prose. 

Proof of Proposition 1. We proceed by separately considering the scenario corresponding to 

each of parts (i) through (iii) of the proposition. For each part, we establish that an equilibrium exists, 

that all equilibria give rise to the same in-network price, and that the other specified properties hold. 

Part (i): No out-of-network cap 

For this part, we begin with the case where the provider cannot reject out-of-network patients (i.e., 

when the provider must set 𝑎𝑎� = 1). To start, observe that for any (𝑝𝑝�, 𝑙𝑙) such that 𝑔𝑔𝑝𝑝��𝑝𝑝�, 𝑙𝑙, 1� = 0, 

equation (A1) implies that 𝑝𝑝� − 𝜃𝜃𝑐𝑐 − (1− 𝜃𝜃)𝑉𝑉′�𝑄𝑄�� > 0, which in combination with equation (A2) 

implies that 𝑔𝑔𝑝𝑝�𝑝𝑝�, 𝑙𝑙, 1� > 0. It follows that 𝑙𝑙 = 0 is the insurer’s best response to 𝑟𝑟𝑃𝑃(0), so that (𝑟𝑟𝑃𝑃(0), 0) 

is an equilibrium. Furthermore, since  𝑔𝑔𝑝𝑝��𝑝𝑝�, 𝑙𝑙, 1� = 0 whenever the provider plays a best response, it 

follows that any equilibrium must have 𝑙𝑙 = 0, so this equilibrium is unique. 

We now consider the case where the provider can reject out-of-network patients. Observe that 

𝑔𝑔�𝜃𝜃𝑐𝑐 + (1− 𝜃𝜃)𝑉𝑉′(0), 𝑙𝑙, 1� > 0 for any 𝑙𝑙 since 𝑉𝑉 is strictly concave. Since 𝑔𝑔�𝑝𝑝�, 𝑙𝑙, 0� = 0 for any 𝑝𝑝� and 𝑙𝑙, it 

follows that setting 𝑎𝑎� = 0 can never be a best response for the provider. Thus, the unique equilibrium 

when the provider cannot reject patients is also the unique equilibrium when it can reject patients. 

The preceding discussion establishes that �0, 𝑟𝑟𝑃𝑃(0)� are the desired (𝑝𝑝�nocap, 𝑙𝑙nocap) and that 𝑝𝑝nocap
∗  is 

the corresponding in-network price. The assumed properties of 𝑄𝑄 imply that 𝑄𝑄�nocap ≡ 𝑄𝑄(𝑝𝑝�nocap, 0) <

𝑄𝑄∗. To see that 𝑝𝑝nocap
∗ < 𝑝𝑝�nocap, then note that  

  𝑝𝑝nocap
∗ 𝑄𝑄∗ = 𝑝𝑝�nocap𝑄𝑄�nocap + 𝜃𝜃𝑐𝑐�𝑄𝑄∗ − 𝑄𝑄�nocap�+ (1− 𝜃𝜃)�𝑉𝑉(𝑄𝑄∗)− 𝑉𝑉(𝑄𝑄�nocap)� 

< 𝑝𝑝�nocap𝑄𝑄�nocap + �𝜃𝜃𝑐𝑐 + (1 − 𝜃𝜃)𝑉𝑉′(𝑄𝑄�nocap)��𝑄𝑄∗ − 𝑄𝑄�nocap� 

< 𝑝𝑝�nocap𝑄𝑄∗, 

where: the equality follows from equation (3); the first inequality follows from the strict concavity of 

𝑉𝑉 and the fact that 𝑄𝑄�nocap ≡ 𝑄𝑄(𝑝𝑝�nocap, 0) < 𝑄𝑄∗; and the second inequality follows from the fact that 

𝑔𝑔𝑝𝑝��𝑝𝑝�nocap, 0,1� = 0, which in turn implies that 𝜃𝜃𝑐𝑐 + (1 − 𝜃𝜃)𝑉𝑉′�𝑄𝑄�nocap� < 𝑝𝑝�nocap. 

 



38 
 

Part (ii): Out-of-network cap and provider cannot reject patients 

For this part, we first characterize the equilibrium strategies and then use them to establish the 

relevant facts about the in-network price. To start, we note that the provider’s best response function 

with an out-of-network cap is �̅�𝑟𝑃𝑃�𝑙𝑙� = argmax𝑝𝑝�∈(∞,�̅�𝑝]𝑔𝑔(𝑝𝑝�, 𝑙𝑙, 1). Since 𝑔𝑔(𝑝𝑝�, 𝑙𝑙, 1) is strictly quasi-concave 

in 𝑝𝑝� for 𝑙𝑙 < 1 and strictly increasing in 𝑝𝑝� for 𝑙𝑙 = 1, it follows that �̅�𝑟𝑃𝑃�𝑙𝑙� = min{�̅�𝑝, 𝑟𝑟𝑃𝑃�𝑙𝑙�} for 𝑙𝑙 < 1 and 

𝑟𝑟𝑃𝑃(1) = �̅�𝑝. We now consider two cases. 

We first consider the case �̅�𝑝 ≥ 𝑝𝑝�nocap. The equilibrium without an out-of-network cap derived in 

part (i) remains an equilibrium since �̅�𝑟𝑃𝑃(0) = 𝑝𝑝�nocap. It also remains true that any equilibrium must 

have 𝑙𝑙 = 0 since either the provider opts for an interior solution with 𝑔𝑔𝑝𝑝��𝑝𝑝�, 𝑙𝑙, 1� = 0, in which case the 

arguments from part (i) imply that 𝑙𝑙 = 0, or the provider sets 𝑝𝑝� = �̅�𝑝 ≥ 𝑝𝑝�nocap, in which case the fact that 

𝑟𝑟𝐼𝐼 is a decreasing in 𝑝𝑝�  implies that 𝑙𝑙 = 𝑟𝑟𝐼𝐼(𝑝𝑝�) ≤ 𝑟𝑟𝐼𝐼�𝑝𝑝�nocap� = 0. Thus, this equilibrium remains unique. 

Now, consider the case where �̅�𝑝 < 𝑝𝑝�nocap.  Observe first that �̅�𝑟𝑃𝑃�𝑟𝑟𝐼𝐼(𝑝𝑝�)� = �̅�𝑝 for any 𝑝𝑝� ≤ �̅�𝑝. This is 

immediate if 𝑟𝑟𝐼𝐼(𝑝𝑝�) = 1; otherwise, it follows from the fact that 𝑟𝑟𝐼𝐼 is decreasing, so 𝑟𝑟𝐼𝐼(𝑝𝑝�) ≥ 𝑟𝑟𝐼𝐼�𝑝𝑝�nocap� =

0, which together with the fact that 𝑟𝑟𝑃𝑃 is increasing implies that 𝑟𝑟𝑃𝑃�𝑟𝑟𝐼𝐼(𝑝𝑝�)� ≥ 𝑟𝑟𝑃𝑃(0) = 𝑝𝑝�nocap > �̅�𝑝. This 

implies that ��̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝)� is an equilibrium and, in fact, the unique equilibrium. 

We now let 𝑝𝑝accept
∗ (�̅�𝑝) denote the in-network price that arises in the unique equilibrium under an 

out-of-network cap �̅�𝑝 and show that it has the desired properties. It is immediate that 𝑝𝑝accept
∗ (�̅�𝑝) = 𝑝𝑝nocap

∗  

for �̅�𝑝 ≥ 𝑝𝑝�nocap. To handle the cases �̅�𝑝 ∈ (𝑐𝑐,𝑝𝑝�nocap) and �̅�𝑝 = 𝑐𝑐, note that any out-of-network actions (𝑝𝑝�, 𝑙𝑙) 

such that 𝑄𝑄�𝑝𝑝�, 𝑙𝑙� = 𝑄𝑄∗ result in an in-network price of 𝑝𝑝� by equation (3). Thus, for any �̅�𝑝 ∈ (𝑐𝑐, 𝑝𝑝�nocap), 

we can choose 𝑙𝑙 ̅such that 𝑄𝑄��̅�𝑝, 𝑙𝑙�̅ = 𝑄𝑄∗ and note that 𝑙𝑙 ̅ > 𝑟𝑟𝐼𝐼(�̅�𝑝) since 𝑔𝑔𝑝𝑝��̅�𝑝, 𝑙𝑙 ,̅ 1� = 𝑄𝑄𝑝𝑝(�̅�𝑝, 𝑙𝑙)̅[�̅�𝑝 − 𝑐𝑐] > 0; it 

follows that �̅�𝑝𝑄𝑄∗ − 𝑝𝑝accept
∗ (�̅�𝑝)𝑄𝑄∗ = 𝑔𝑔��̅�𝑝, 𝑙𝑙 ,̅ 1� − 𝑔𝑔(�̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝), 1) > 0, so 𝑝𝑝accept

∗ (�̅�𝑝) < �̅�𝑝. Similarly, for �̅�𝑝 = 𝑐𝑐, 

we note that 𝑔𝑔�𝑐𝑐, 𝑙𝑙, 1� = (1− 𝜃𝜃) �𝑐𝑐𝑄𝑄�𝑐𝑐, 𝑙𝑙� − 𝑉𝑉 �𝑄𝑄�𝑐𝑐, 𝑙𝑙���, so 𝑄𝑄�𝑐𝑐, 𝑟𝑟𝐼𝐼(𝑐𝑐)� = 𝑄𝑄∗ and 𝑝𝑝accept
∗ (𝑐𝑐) = 𝑐𝑐. 

Finally, we note that a suitable envelope theorem (e.g., Corollary 4 in Milgrom and Segal 2002) 

implies that the function 𝑔𝑔(�̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝), 1) is differentiable as a function of �̅�𝑝 on the domain [𝑐𝑐, 𝑝𝑝�nocap], with 

derivative 𝑔𝑔𝑝𝑝�(�̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝), 1), so 𝑝𝑝accept
∗  is differentiable on this domain with �𝑝𝑝cap

∗ �′(�̅�𝑝) = 𝑔𝑔𝑝𝑝�(�̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝), 1) ∕
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𝑄𝑄∗. Since 𝑔𝑔𝑝𝑝��𝑝𝑝�nocap, 𝑟𝑟𝐼𝐼�𝑝𝑝�nocap�, 1� = 0, it follows that 𝑝𝑝accept
∗  is, in fact, differentiable on [𝑐𝑐,∞). 

Additionally, for �̅�𝑝 ∈ [𝑐𝑐,𝑝𝑝�nocap), recall that 𝑟𝑟𝑃𝑃�𝑟𝑟𝐼𝐼(�̅�𝑝)� > �̅�𝑝, which implies that 𝑔𝑔𝑝𝑝�(�̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝), 1) > 0, so 

�𝑝𝑝accept
∗ �′(�̅�𝑝) > 0. 

Part (iii): Out-of-network cap and provider can reject patients 

For this part, we begin by showing that there is a unique �̅�𝑝 ∈ (𝑐𝑐,𝑝𝑝�nocap) such that 𝑔𝑔(�̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝), 1) = 0. 

The fact that the provider never wishes to turn away out-of-network patients without an out-of-

network cap, which was established in part (i), implies that 𝑔𝑔�𝑝𝑝�nocap, 𝑟𝑟𝐼𝐼(𝑝𝑝�nocap),1� > 0. Similarly, it was 

shown in part (ii) that 𝑄𝑄�𝑐𝑐, 𝑟𝑟𝐼𝐼(𝑐𝑐)� = 𝑄𝑄∗, which implies that 𝑔𝑔(𝑐𝑐, 𝑟𝑟𝐼𝐼(𝑐𝑐), 1) = (1− 𝜃𝜃)[𝑐𝑐𝑄𝑄∗ − 𝑉𝑉(𝑄𝑄∗)] < 0. 

Since 𝑔𝑔(�̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝), 1) is differentiable (hence continuous) and strictly decreasing as a function of �̅�𝑝 on the 

domain [𝑐𝑐,𝑝𝑝�nocap], the desired �̅�𝑝 must exist. 

We label this unique value �̅�𝑝reject and verify that it has the desired properties. When �̅�𝑝 > �̅�𝑝reject, 

observe that for any 𝑙𝑙, 𝑔𝑔��̅�𝑝, 𝑙𝑙, 1� ≥ 𝑔𝑔(�̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝), 1) > 0, where the first inequality follows because 𝑟𝑟𝐼𝐼 is the 

insurer’s best response and the second follows from the definition of �̅�𝑝reject, so rejecting out-of-network 

patients is never a best response for the provider. It follows that the equilibrium is unchanged from 

the case where the provider cannot reject patients. 

When �̅�𝑝 < �̅�𝑝reject, the definition of �̅�𝑝reject implies that 𝑔𝑔(�̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝), 1) < 0, so playing 𝑎𝑎� = 1 is no longer 

a best response for the provider when the insurer plays 𝑟𝑟𝐼𝐼(�̅�𝑝). Since ��̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝)� was the only equilibrium 

when the provider was required to play 𝑎𝑎� = 1, it follows that any equilibrium must have 𝑎𝑎� = 0. There 

are many such equilibria, but it is easy to see that (�̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝), 0) is one of them and that all lead to 

disagreement payoffs 𝜋𝜋� = 𝑊𝑊� = 0 and, thus, an in-network price 𝑝𝑝accept
∗ (�̅�𝑝reject). 

When �̅�𝑝 = �̅�𝑝reject, similar arguments imply that (�̅�𝑝, 𝑟𝑟𝐼𝐼(�̅�𝑝), 1) is an equilibrium, and that there are 

also equilibria with 𝑎𝑎� = 0. All have 𝑔𝑔�𝑝𝑝�, 𝑙𝑙,𝑎𝑎�� = 0 and, thus, an in-network price 𝑝𝑝accept
∗ (�̅�𝑝reject).□  
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Appendix C: Derivation of Equation (7) 

This appendix derives equation (7) from the main text. Since ℎ is assumed to be a quadratic 

function, ℎ′ is a linear function, and ℎ′([𝑄𝑄0 + 𝑄𝑄1] 2⁄ ) = �ℎ(𝑄𝑄1)− ℎ(𝑄𝑄0)� (𝑄𝑄1 − 𝑄𝑄0)⁄  for any 𝑄𝑄0 and 𝑄𝑄1.  

Using these properties and the fact that ℎ(0) = 0, we obtain 

ℎ�𝑄𝑄�nocap�
𝑄𝑄�nocap

−
ℎ(𝑄𝑄∗)− ℎ�𝑄𝑄�nocap�

𝑄𝑄∗ − 𝑄𝑄�nocap
= ℎ′ �

𝑄𝑄�nocap

2
� − ℎ′ �

𝑄𝑄�nocap + 𝑄𝑄∗

2
� 

= �ℎ′ �
𝑄𝑄�nocap + 𝑄𝑄∗

2
� − ℎ′(𝑄𝑄∗)� �

𝑄𝑄∗

𝑄𝑄∗ − 𝑄𝑄�nocap
� 

= �
ℎ(𝑄𝑄∗)− ℎ�𝑄𝑄�nocap�

𝑄𝑄∗ − 𝑄𝑄�nocap
− ℎ′(𝑄𝑄∗)� �

𝑄𝑄∗

𝑄𝑄∗ − 𝑄𝑄�nocap
�. 

Recalling that ℎ(𝑄𝑄∗)− ℎ�𝑄𝑄�nocap� = 𝑝𝑝nocap
∗ 𝑄𝑄∗ − 𝑝𝑝�nocap𝑄𝑄�nocap and ℎ′(𝑄𝑄∗) = 𝑐𝑐, we obtain 

ℎ�𝑄𝑄�nocap�
𝑄𝑄�nocap

=
𝑝𝑝nocap
∗ 𝑄𝑄∗ − 𝑝𝑝�nocap𝑄𝑄�nocap

𝑄𝑄∗ − 𝑄𝑄�nocap
+ �

𝜋𝜋nocap
∗ − 𝜋𝜋�nocap

𝑄𝑄∗ − 𝑄𝑄�nocap
� �

𝑄𝑄∗

𝑄𝑄∗ − 𝑄𝑄�nocap
�, 

from which equation (7) follows immediately. 
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Appendix D: Adding Costs of Being Out-of-Network 

This appendix considers how our conclusions would change if the provider and insurer bear 

additional costs in the absence of a network agreement. Let 𝑘𝑘𝑃𝑃(𝑄𝑄�) and 𝑘𝑘𝐼𝐼(𝑄𝑄�) denote the additional 

costs borne by the provider and insurer, respectively. For convenience, we also let 𝑘𝑘��𝑄𝑄�� ≡ 𝜃𝜃𝑘𝑘𝑃𝑃�𝑄𝑄�� −

(1− 𝜃𝜃)𝑘𝑘𝐼𝐼(𝑄𝑄�), the weighted difference between the additional costs borne by the two parties. 

We assume that the functions 𝑘𝑘𝑃𝑃 and 𝑘𝑘𝐼𝐼 are specified so that the equilibrium of the modified model 

has the same basic structure as the equilibrium of the original model. That is: (1) the model has an 

(essentially) unique equilibrium; (2) without an out-of-network cap, the provider does not turn away 

patients and the parties’ actions result in 𝑄𝑄�nocap ∈ (0,𝑄𝑄∗); and (3) with an out-of-network cap, the 

provider turns away out-of-network patients once the cap becomes stringent enough that it can obtain 

a higher negotiated price by doing so. These conditions will be satisfied for many different 

specifications of 𝑘𝑘𝑃𝑃 and 𝑘𝑘𝐼𝐼, including specifications in which the parties bear a fixed cost of being out-

of-network and specifications in which these costs vary linearly with sufficiently small slope. 

Under these conditions, equation (4) is replaced by an analogue with an additional term: 

�𝑝𝑝nocap
∗ − 𝑝𝑝accept

∗ ��̅�𝑝reject��𝑄𝑄∗ = 𝑝𝑝�nocap𝑄𝑄�nocap − ℎ�𝑄𝑄�nocap� − �𝑘𝑘��𝑄𝑄�nocap� − 𝑘𝑘�(0)�, (4′) 

Similarly, equation (3) now implies that ℎ(𝑄𝑄∗)− ℎ�𝑄𝑄�nocap� = 𝑝𝑝nocap
∗ 𝑄𝑄∗ −  𝑝𝑝�nocap𝑄𝑄�nocap + 𝑘𝑘�(𝑄𝑄�nocap), so the 

analogue to equation (5) in the modified model is 

ℎ�𝑄𝑄�nocap� > [𝑝𝑝nocap
∗ 𝑄𝑄∗ −  𝑝𝑝�nocap𝑄𝑄�nocap + 𝑘𝑘��𝑄𝑄�nocap�] �

𝑄𝑄�nocap 𝑄𝑄∗⁄
1 −𝑄𝑄�nocap 𝑄𝑄∗⁄

� . (5′) 

Combining equations (4') and (5'), we obtain a modified upper bound 

𝑝𝑝nocap
∗ − 𝑝𝑝accept

∗ ��̅�𝑝reject�
𝑝𝑝nocap
∗ < �

𝑄𝑄�nocap 𝑄𝑄∗⁄
1− 𝑄𝑄�nocap 𝑄𝑄∗⁄

� ⋅ �
𝑝𝑝�nocap

𝑝𝑝nocap 
∗ −

�𝑘𝑘��𝑄𝑄�nocap� − 𝑘𝑘�(0)� 𝑄𝑄�nocap� + 𝑘𝑘�(0) 𝑄𝑄∗⁄
𝑝𝑝nocap 
∗ − 1� . (6′) 

The key difference between this upper bound and the original upper bound is the presence of a 

term that reflects the additional costs the parties incur when out-of-network. When the costs borne by 

the provider are large relative to the costs borne by the insurer, the scope for an out-of-network cap to 
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reduce in-network prices will be smaller than implied by our original bound. When the costs borne by 

the insurer are relatively large, the opposite will be true. 

Similarly, we can derive a modified version of the exact expression for the maximum achievable 

price reduction presented in equation (8). The analogue to equation (7) in the modified model is 

ℎ�𝑄𝑄�nocap� = �𝑝𝑝nocap
∗ 𝑄𝑄∗ −  𝑝𝑝�nocap𝑄𝑄�nocap + 𝑘𝑘��𝑄𝑄�nocap�+

𝜋𝜋nocap
∗ − 𝜋𝜋�nocap + 𝑘𝑘�(𝑄𝑄�nocap)

1 − 𝑄𝑄�nocap 𝑄𝑄∗⁄
� �

𝑄𝑄�nocap 𝑄𝑄∗⁄
1 −𝑄𝑄�nocap 𝑄𝑄∗⁄

� . (7′) 

Combining equations (4') and (7'), we obtain an analogue to equation (8): 

𝑝𝑝nocap
∗ − 𝑝𝑝accept

∗ ��̅�𝑝reject�
𝑝𝑝nocap
∗ = �

𝑄𝑄�nocap 𝑄𝑄∗⁄
1− 𝑄𝑄�nocap 𝑄𝑄∗⁄

� ⋅                                                                                                          

                   

⎣
⎢
⎢
⎢
⎡
𝑝𝑝�nocap

𝑝𝑝nocap 
∗ −

�𝑘𝑘��𝑄𝑄�nocap� − 𝑘𝑘�(0)� 𝑄𝑄�nocap� + 𝑘𝑘�(0) 𝑄𝑄∗⁄
𝑝𝑝nocap 
∗ − 1−

𝜋𝜋nocap
∗

𝑝𝑝nocap
∗ 𝑄𝑄∗ −

𝜋𝜋�nocap
𝑝𝑝nocap
∗ 𝑄𝑄∗ +

𝑘𝑘��𝑄𝑄�nocap�
𝑝𝑝nocap
∗ 𝑄𝑄∗

1 − 𝑄𝑄�nocap 𝑄𝑄∗⁄
⎦
⎥
⎥
⎥
⎤

. (8′)
 

Once again, the key difference relative to the original expression is the presence of expressions related 

to the additional costs borne by the parties when they are out-of-network. As above, when the costs 

borne by the provider are large relative to the costs borne by the insurer, the scope for an out-of-

network cap to reduce in-network prices will be smaller than implied by the original version. When 

the costs borne by the insurer are relatively large, the opposite will be the case. 
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