Financing Infrastructure with Inattentive Investors: The Case of US Municipal Governments

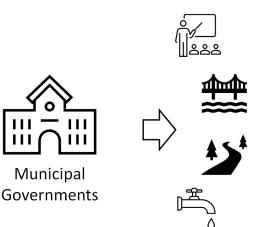
Ehsan Azarmsa

University of Illinois Chicago

Brookings Municipal Finance Conference 2023

	of infusion in the	~ LIC	
Introduction ●000	Fund flows and government borrowing	A model of municipal bond market	Conclusion O

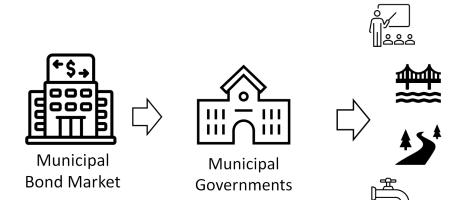
Financing of infrastructure in the US


Municipal Governments

Introduction	
0000	

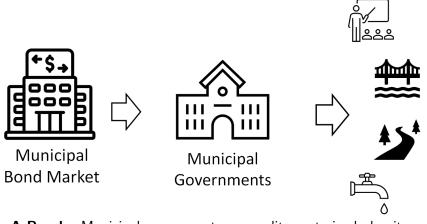
A model of municipal bond market 000

Conclusion 0


Financing of infrastructure in the US

A model of municipal bond market 000

Conclusion 0


Financing of infrastructure in the US

A model of municipal bond market 000

Conclusion 0

Financing of infrastructure in the US

A Puzzle: Municipal governments are credit-constrained, despite being among the safest borrowers in the US. (Adelino et al. 2017; Dagostino, 2018; Yi, 2021) Evidence

Introduction Fur	d flows and government borrowing	A model of munic
0000 00	000000	

An explanation: Dominance of retail investors

- Households are the primary holders of muni bonds.
- However, they might not closely monitor new bond

issues.

Evidence on investor inattention

• Implication: Borrowing capacity is limited to the capital available to attentive investors and intermediaries, since they hold the bonds first.

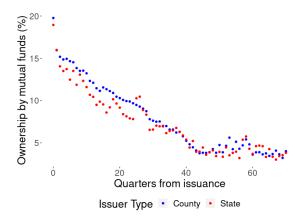
cipal bond market

Introduction	Fund flows and government borrowing	A mo
0000		

A model of municipal bond market 000

An explanation: Dominance of retail investors

- Households are the primary holders of muni bonds.
- However, they might not closely monitor new bond issues. Evidence on investor inattention
- Implication: Borrowing capacity is limited to the capital available to attentive investors and intermediaries, since they hold the bonds first.



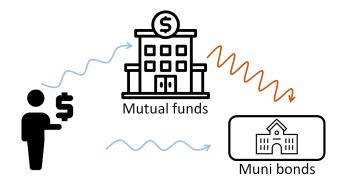
Introduction	Fund flows and government borrowing
0000	

A model of municipal bond market 000

Conclusion O

Municipal mutual funds as market makers

Mutual funds disproportionately buy newly issued bonds

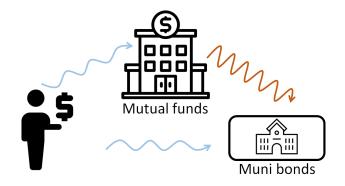

Trade size by Q after issuance

• Bond transition takes more than 10y to complete

Introduction	
0000	

A model of municipal bond market 000

Mechanism

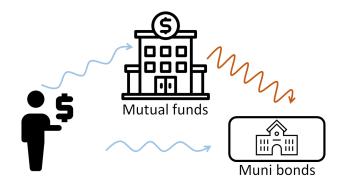

Friction: Investors are slow to respond to new bond issues

- → **Empirical hypothesis:** Capital flows in and out of mutual funds impact the governments' borrowing behavior
- → Theoretical microfoundation: Slow investors + Fast intermediaries

Introduction	
0000	

A model of municipal bond market 000

Mechanism


Friction: Investors are slow to respond to new bond issues

- → **Empirical hypothesis:** Capital flows in and out of mutual funds impact the governments' borrowing behavior
- → Theoretical microfoundation: Slow investors + Fast intermediaries

Introduction	
0000	

A model of municipal bond market 000

Mechanism

Friction: Investors are slow to respond to new bond issues

- → **Empirical hypothesis:** Capital flows in and out of mutual funds impact the governments' borrowing behavior
- \rightarrow Theoretical microfoundation: Slow investors + Fast intermediaries

- Bloomberg: bond issuance data of 262 selected county governments and their subsidiaries Map of the selected counties
 - ightarrow population of at least 100K
 - ightarrow issued bonds at least in 5y between 2009-2019
- **CRSP:** holding data of municipal mutual funds (2009-2019) \rightarrow covers \geq 95% of municipal bond holding by mutual funds

A model of municipal bond market 000

Conclusion 0

Summary statistics of debt issuance

	(30332 30103)				
	Mean	SD	10th	50th	90th
Deal size (\$M)	59.9	11.6	3.4	24.6	150
Overall issuance in a quarter (\$M)	82.3	148.3	5.0	33.7	194.2
Quarters with issuance (Percentage)	12.3 (27.9%)	6.3 (14.2%)	6 (13.6%)	11 (25%)	21 (47.7%)
Yield at issuance (%)	2.4	1.2	0.9	2.3	3.9
Years to maturity	9.3	6.2	2	8.4	18
Coupon	3.7	1.2	2	4	5
Insured ($Y = 1$)	0.073	0.260	0	0	0
Federally taxable ($Y = 1$)	0.101	0.301	0	0	1

Selected counties (58952 bonds)

A model of municipal bond market $_{\rm OOO}$

Conclusion 0

Summary statistics of debt issuance

	(58952 bonds)				
	Mean	SD	10th	50th	90th
Deal size (\$M)	59.9	11.6	3.4	24.6	150
Overall issuance in a quarter (\$M)	82.3	148.3	5.0	33.7	194.2
Quarters with issuance (Percentage)	12.3 (27.9%)	6.3 (14.2%)	6 (13.6%)	11 (25%)	21 (47.7%)
Yield at issuance (%)	2.4	1.2	0.9	2.3	3.9
Years to maturity	9.3	6.2	2	8.4	18
Coupon	3.7	1.2	2	4	5
Insured ($Y = 1$)	0.073	0.260	0	0	0
Federally taxable ($Y = 1$)	0.101	0.301	0	0	1

Selected counties (58952 bonds)

Introduction	Fund flows and government borrowing	A model of municipal bon
	00000000	

Conclusion 0

Summary statistics for mutual funds

Year	# of funds	TNA (S	Million)	Cash holding	Municipal bond holding		
		Mean	Median	% of all assets	Total (\$ Billion)	% of all assets	% of all outstanding
2009	1799	262.7	35.5	Not Avail.	Not Avail.	Not Avail.	Not Avail.
2010	1804	267.6	36.8	0.4	476.9	98.8	12.5
2011	1745	291.1	42.1	1.3	498.8	98.3	12.4
2012	1733	342.8	51.7	0.9	582.8	98.2	14.1
2013	1769	289.5	40.8	0.9	501.9	98.2	13.0
2014	1780	325.8	45.3	1.2	566.6	97.9	14.0
2015	1820	337.3	47.5	1.5	593.4	97.3	14.6
2016	1822	350.1	50.0	0.8	624.9	98.4	15.4
2017	1905	365.7	45.9	1.0	678.4	98.0	16.4
2018	1892	380.0	47.8	0.7	691.8	98.0	17.3
2019	1841	463.4	62.0	0.6	830.9	98.3	20.2

Introduction	Fund flows and government borrowing	A model of municipal bond market
	0000000	

Summary statistics for mutual funds

Year	# of funds	TNA (S	Million)	Cash holding	Municipal bond holding		
		Mean	Median	% of all assets	Total (\$ Billion)	% of all assets	% of all outstanding
2009	1799	262.7	35.5	Not Avail.	Not Avail.	Not Avail.	Not Avail.
2010	1804	267.6	36.8	0.4	476.9	98.8	12.5
2011	1745	291.1	42.1	1.3	498.8	98.3	12.4
2012	1733	342.8	51.7	0.9	582.8	98.2	14.1
2013	1769	289.5	40.8	0.9	501.9	98.2	13.0
2014	1780	325.8	45.3	1.2	566.6	97.9	14.0
2015	1820	337.3	47.5	1.5	593.4	97.3	14.6
2016	1822	350.1	50.0	0.8	624.9	98.4	15.4
2017	1905	365.7	45.9	1.0	678.4	98.0	16.4
2018	1892	380.0	47.8	0.7	691.8	98.0	17.3
2019	1841	463.4	62.0	0.6	830.9	98.3	20.2

Introduction	

A model of municipal bond market 000

Mutual funds' exposure to county governments

	Mean	SD	10th	50th	90th
Number of holdings at quarter-ends	299.8	458.5	60	164	663
Overall exposure to the selected county governments (%)	5.9	7.1	1.4	4.0	11.7

Takeaway: Mutual funds have a small exposure to the selected county governments

ı.

Flow-performance relationship Flow persistence

Introduction	

A model of municipal bond market 000

Mutual funds' exposure to county governments

	Mean	SD	10th	50th	90th
Number of holdings at quarter-ends	299.8	458.5	60	164	663
Overall exposure to the selected county governments (%)	5.9	7.1	1.4	4.0	11.7
Max exposure to a selected county government (%)	0.8	1.6	0.0	0.34	2.14

Takeaway: Mutual funds have a small exposure to the selected county governments

Flow-performance relationship Flow persistence

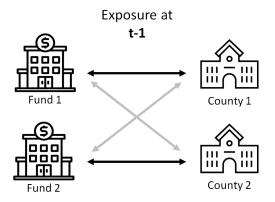
Introduction 0000	Fund flows and government borrowing	A model of municipal bond market	Conclusion O
Empirica	al strategy		

- **Empirical hypothesis:** Fund flows impact the borrowing behavior of the county governments.
- **Problem:** Fund flows are endogenous.
- **Resolution:** Exploit heterogeneities among the county governments in their exposure to mutual funds.
- Standard methodology in the empirical literature (e.g., Lou (2013), Li (2021))

Introduction	Fund flows and government borrowing	A model of municipal bond market	Conclusion
0000		000	O
Empirica	l strategy		

- **Empirical hypothesis:** Fund flows impact the borrowing behavior of the county governments.
- **Problem:** Fund flows are endogenous.
- **Resolution:** Exploit heterogeneities among the county governments in their exposure to mutual funds.
- Standard methodology in the empirical literature (e.g., Lou (2013), Li (2021))

Introduction	Fund flows and government borrowing	A model of municipal bond market	Conclusion
0000		000	O
Empirica	l strategy		

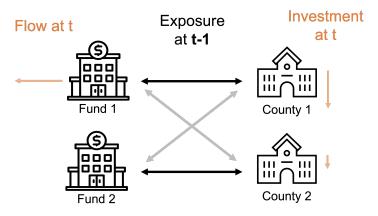

- **Empirical hypothesis:** Fund flows impact the borrowing behavior of the county governments.
- **Problem:** Fund flows are endogenous.
- **Resolution:** Exploit heterogeneities among the county governments in their exposure to mutual funds.
- Standard methodology in the empirical literature (e.g., Lou (2013), Li (2021))

Introduction	

A model of municipal bond market 000

Conclusion 0

Illustration of the empirical strategy



Introduction	

A model of municipal bond market 000

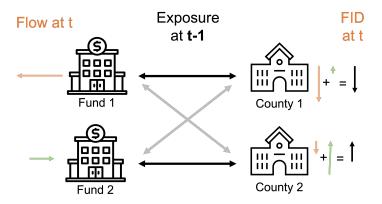
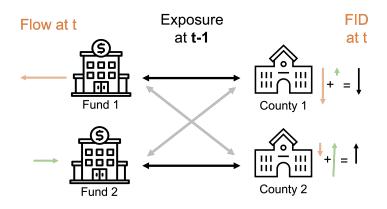

Conclusion O

Illustration of the empirical strategy



Introduction	Fund flows and government borrowing	A model of municipal bond market	Conclus
0000	000000000	000	O
Illustrati	on of the empirical str	atomy	

Illustration of the empirical strategy

Introduction	Fund flows and government borrowing	A model of municipal bond market	Conclusior
0000	0000000000		O
Illustratio	n of the empirical stra	tegy	

Exclusion restriction: Cross-section of fund flows is uncorrelated with the governments' funding needs.

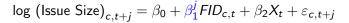
• Plausible, since most funds are not overly exposed to any single county government.

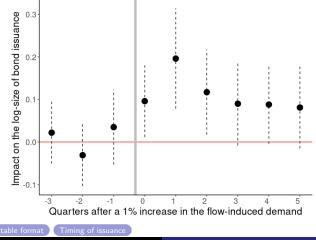
Introduction	

A model of municipal bond market 000

Conclusion 0

Flow-induced demand and the size of issuance


	$log(Issue Size_{c,t+1})$				
	(1)	(2)	(3)	(4)	(5)
FID _c ,t	0.197 ^{***} (0.060)	0.196*** (0.060)	0.224 ^{***} (0.068)	0.245*** (0.081)	0.196*** (0.075)
Observations	2,590	2,590	2,590	2,273	2,119
County FE	Y	Y	Y	Y	Y
Season FE	N	Y	Y	Y	Y
Year-State FE	N	N	Y	Y	Y
Additional Controls	Ν	Ν	Ν	Revenue gr. + lag Expenditure gr. + lag Liability gr. + lag	Income gr. + lag House pr gr. + lag
SE-clustered	State-Year	State-Year	State-Year	State-Year	State-Year
R ²	0.601	0.601	0.643	0.656	0.669


Mechanism

A model of municipal bond market 000

Conclusion 0

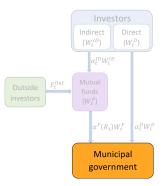
LR and SR effects of FID on borrowing size

Fund flows and government borrowing

A model of municipal bond market 000

Conclusion 0

Flow-induced demand and interest rate at issuance


 $\mathsf{yield}\text{-}\mathsf{spread}_{c,t+1,\mathit{bond}} = \beta_0 + \beta_1 \mathit{FID}_{c,t} + \dots + \varepsilon_{c,t,\mathit{bond}}$

	Tax-adjusted yield-spread (%)	
	(1)	(2)
FID _{c,t}	-0.002** (0.001)	-0.002* (0.001)
log-size	0.026 ^{***} (0.004)	0.026 ^{***} (0.004)
YTM	0.137*** (0.001)	0.135 ^{***} (0.001)
$log-size\timesFID_{c,t}$	0.0001 ^{**} (0.00005)	0.0001 ^{**} (0.00005)
$YTM \times FID_{c,t}$		-0.00005*** (0.00001)
Observations	33,705	33,705
County FE	Y	Y
Coupon rate	Y	Y
quarter-rating FE	Y	Y
Insured-status dummy	Y	Y
Maturity-option FE	Y	Y

Takeaway: Fund flows mostly impact the size of borrowing, not the interest rate!

Introduction	Fund flows and government borrowing	A model of municipal bond market	Conclusion
0000		●00	O
Setup: S	Supply side		

- A representative muni gov't
- Bond is risky: Gov defaults with prob δ

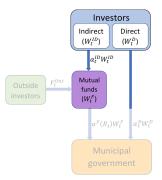
Fund flows and government borrowing 000000000

A model of municipal bond market $\circ \bullet \circ$

Conclusion O

Setup: Demand side

Residents invest either directly or indirectly

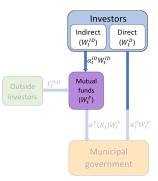

• Infrequent rebalancing: reoptimize portfolio with i.i.d prob $1 - \lambda \in (0, 1)$ $\alpha_t^J = \lambda \quad \alpha_{t-1}^J \quad +(1 - \lambda) \quad \alpha_t^{J-Reb}$

Legacy port.

Reoptimized port

• Funds invest fraction $\alpha^F(R_t)$ in

Optimal portfolios of the rebalancers

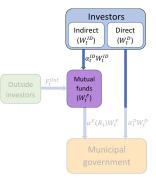

Fund flows and government borrowing

A model of municipal bond market $0 \bullet 0$

Setup: Demand side

- Residents invest either directly or indirectly
- Infrequent rebalancing: reoptimize portfolio with i.i.d prob $1 - \lambda \in (0, 1)$ $\alpha_t^J = \lambda \underbrace{\alpha_{t-1}^J}_{\text{Legacy port.}} + (1 - \lambda) \underbrace{\alpha_t^{J-Reb}}_{\text{Reoptimized port.}}$
- Funds invest fraction $\alpha^F(R_t)$ in

Optimal portfolios of the rebalancers


Fund flows and government borrowing

A model of municipal bond market $0 \bullet 0$

Setup: Demand side

- Residents invest either directly or indirectly
- Infrequent rebalancing: reoptimize portfolio with i.i.d prob $1 - \lambda \in (0, 1)$ $\alpha_t^J = \lambda \underbrace{\alpha_{t-1}^J}_{\text{Legacy port.}} + (1 - \lambda) \underbrace{\alpha_t^{J-Reb}}_{\text{Reoptimized port.}}$
- Funds invest fraction $\alpha^{F}(R_{t})$ in

Optimal portfolios of the rebalancers

Introduction	

A model of municipal bond market $\circ \circ \bullet$

Calibration

Parameters	Symbol	Value
Mutual funds' market share	SF	0.16
Dividend-price ratio (Quarterly)	dp	$1.68 imes10^{-2}$
Bond supply elasticity	γ^{-1}	19
Portfolio inertia	λ	0.924
Survival rate	X	0.994
Funds' demand elasticity	$\eta^{\sf F} dp$	0
Default probability	δ	$3.75 imes10^{-5}$
Long-run demand elasticity	$\eta d {m p}$	158.4
Short-run demand elasticity	$((1-\lambda)\eta+\lambda\eta^{F}S^{F})dp$	11.6

Introduction	

A model of municipal bond market $\circ \circ \bullet$

Calibration

Parameters	Symbol	Value
Mutual funds' market share	SF	0.16
Dividend-price ratio (Quarterly)	dp	$1.68 imes10^{-2}$
Bond supply elasticity	γ^{-1}	19
Portfolio inertia	λ	0.924
Survival rate	X	0.994
Funds' demand elasticity	$\eta^{\sf F} dp$	0
Default probability	δ	$3.75 imes10^{-5}$
Long-run demand elasticity	$\eta d p$	158.4
Short-run demand elasticity	$((1-\lambda)\eta+\lambda\eta^{F}S^{F})dp$	11.6

Introduction	

A model of municipal bond market 000

Calibration

Parameters	Symbol	Value
Mutual funds' market share	SF	0.16
Dividend-price ratio (Quarterly)	dp	$1.68 imes10^{-2}$
Bond supply elasticity	γ^{-1}	19
Portfolio inertia	λ	0.924
Survival rate	X	0.994
Funds' demand elasticity	$\eta^{\sf F} dp$	0
Default probability	δ	$3.75 imes10^{-5}$
Long-run demand elasticity	η dp	158.4
Short-run demand elasticity	$((1-\lambda)\eta+\lambda\eta^{F}S^{F})dp$	11.6

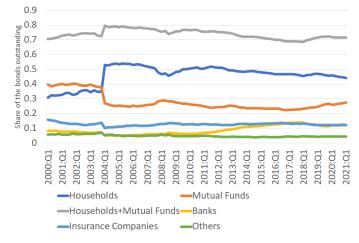
• To match the data, the elasticity of demand should be one order of magnitude smaller in the shot-run and than in the long-run

Concluding remarks

- Puzzle: Why are muni governments credit-constrained?
- **Explanation:** Because retail investors are slow in responding new bond issues.
- **Implication:** Capital available to institutional investors (mutual funds) determines the borrowing capacity
 - Consistent with data
 - Has theoretical support
- **Policy implication:** Muni bond market is not resilient against shocks
 - $\rightarrow\,$ The federal government needs to intervene in times of crisis, especially when mutual funds face massive outflows.
- The model can be used to determine how much financial assistance to provide based on the capital flow from mutual funds.

Concluding remarks

- Puzzle: Why are muni governments credit-constrained?
- **Explanation:** Because retail investors are slow in responding new bond issues.
- **Implication:** Capital available to institutional investors (mutual funds) determines the borrowing capacity
 - Consistent with data
 - Has theoretical support
- **Policy implication:** Muni bond market is not resilient against shocks
 - $\rightarrow\,$ The federal government needs to intervene in times of crisis, especially when mutual funds face massive outflows.
- The model can be used to determine how much financial assistance to provide based on the capital flow from mutual funds.

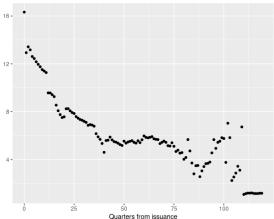

Conclusion

Concluding remarks

- Puzzle: Why are muni governments credit-constrained?
- **Explanation:** Because retail investors are slow in responding new bond issues.
- Implication: Capital available to institutional investors (mutual funds) determines the borrowing capacity
 - Consistent with data
 - Has theoretical support
- **Policy implication:** Muni bond market is not resilient against shocks
 - $\rightarrow\,$ The federal government needs to intervene in times of crisis, especially when mutual funds face massive outflows.
- The model can be used to determine how much financial assistance to provide based on the capital flow from mutual funds.

Concluding remarks


- **Puzzle:** Why are muni governments credit-constrained?
- **Explanation:** Because retail investors are slow in responding new bond issues.
- Implication: Capital available to institutional investors (mutual funds) determines the borrowing capacity
 - Consistent with data
 - Has theoretical support
- **Policy implication:** Muni bond market is not resilient against shocks
 - $\rightarrow\,$ The federal government needs to intervene in times of crisis, especially when mutual funds face massive outflows.
- The model can be used to determine how much financial assistance to provide based on the capital flow from mutual funds.


Distribution of Municipal Bond Holdings

Municipal bond holdings by category

Ownership of investor categories in dollar

Mutual funds' ownership of corporate bonds by quarter after issuance

Average fraction of outstanding bonds held by mutual funds (%)

Mathematical illustration for flow-induced demand

The following heuristic calculations elucidate the intuition Had we defined SIG = OWN:

$$\begin{split} \textit{FID}_{c,t} &\simeq \frac{1}{\textit{MV}_{c,t-1}} \sum_{f \in \mathsf{Fund}} \textit{MV}_{f,c,t-1} \times \textit{Flow}_{f,t-1} \times \textit{PSF} \\ &= \frac{1}{\textit{MV}_{c,t-1}} \sum_{f \in \mathsf{Fund}} \frac{\textit{MV}_{f,c,t-1}}{\textit{AUM}_{f,t-1}} \times \textit{Flow}_{f,t-1}^{\$} \times \textit{PSF} \end{split}$$

Obstacles in the process of bond issuance

- Many municipalities need to hold public elections and obtain super-majority approval (2/3 support from the residents)
- They need to prepare documents on the purpose and revenue prospect of projects they aim to finance
- After obtaining authorization, there are additional financial and legal costs before bond issuance; They are expensive for smaller municipalities
- The long and costly process makes it difficult for governments to respond quickly to transitory demand changes.

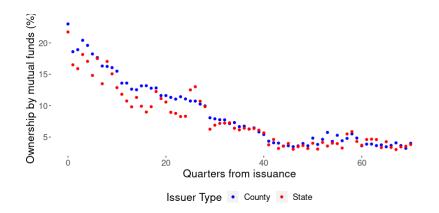
Why do bond issues respond to demand condition?

Two common ways to sell bonds to underwriters

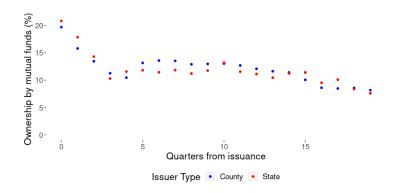
- Negotiated deals
 - An underwriter is selected by the issuing municipality.
 - The underwriter directly negotiates on the issue size and interest rate with the municipality.
 - The underwriter's perception about the market condition is reflected in the deal.
- Competitive deals
 - The issue is auctioned to a set of underwriters; They compete on the interest rate.
 - The issuer sets the deal size with the help of its financial advisors.
 - The deal terms, including the size, impact the set of underwriters willing to participate in the auction.
 - The financial advisor's perception of the market demand impact the deal terms.

Why do bond issues respond to demand condition?

Two common ways to sell bonds to underwriters


- Negotiated deals
 - An underwriter is selected by the issuing municipality.
 - The underwriter directly negotiates on the issue size and interest rate with the municipality.
 - The underwriter's perception about the market condition is reflected in the deal.
- Competitive deals
 - The issue is auctioned to a set of underwriters; They compete on the interest rate.
 - The issuer sets the deal size with the help of its financial advisors.
 - The deal terms, including the size, impact the set of underwriters willing to participate in the auction.
 - The financial advisor's perception of the market demand impact the deal terms.

Evidence on household inattention


- Cornaggia, Hund, and Nguyen (2021)
 - information in equity and CDS markets about bond insurers impact the price of insured muni bonds with a long delay.
- Ameriks and Zeldes (2004)
 - Over a 10-year period, 44% made no change to their portfolio allocation
 - 17% made a single transaction

Ownership of long-term bonds (years-to-maturity \geq 15)

Ownership of short-term bonds (years-to-maturity \leq 5)

Steady state

Bond supply

$$q_{SS} = \phi^{-\gamma^{-1}} P_{SS}^{\gamma^{-1}}$$

• Market clearing

$$\alpha^*(\frac{D+P_{SS}}{P_{SS}}) = P_{SS}q_{SS}$$

• **Observation:** The infrequent rebalancing has no long run effect

Dynamics of bond price and quantity

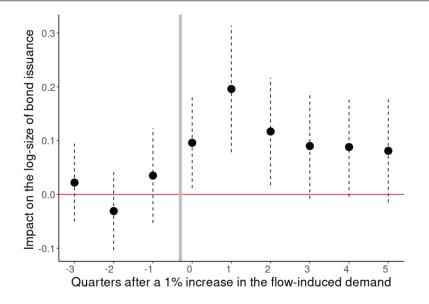
- Let hatted values be deviations from the system's steady state (e.g., $\hat{p}_t = \frac{P_t}{P_{SS}} 1$)
- Bond supply:

$$\hat{q}_t = \gamma^{-1}\hat{p}_t + \gamma^{-1}u_t \tag{1}$$

Solution

• Market clearing:

$$\alpha^{F}W^{F} + \alpha^{H}W^{H} = PQ$$


$$\Rightarrow \underbrace{\mathcal{S}^{F}f}_{\text{FID}} - \underbrace{\mathcal{S}^{F}\eta^{F}p}_{\text{F price reaction}} - \underbrace{\mathcal{S}^{H}\eta^{H}p}_{\text{HH price reaction}} = \underbrace{q}_{\text{Muni Q adjustment}} + p$$

• Demand curve:

$$p = -\frac{1}{S^F \eta^F + S^H \eta^H + 1}q + \frac{S^F}{S^F \eta^F + S^H \eta^H + 1}f$$

• Supply curve (By solving the muni government's problem):

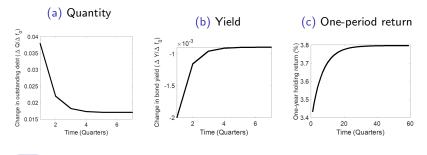
$$q = \gamma^{-1}p + \gamma^{-1}u$$

Optimal portfolios

Optimal portfolios when get to rebalance $(\nu = \lambda x (1 - \delta))$

$$\begin{aligned} \alpha_t^{D-Reb} &= \operatorname*{argmax}_{\alpha} \quad \frac{\delta}{1-\nu} \log\{R^F + \alpha(R^D - R^F)\} \\ &+ (1-\delta) \sum_{s=0}^{\infty} \nu^s \log\{R^F + \alpha(R_{t+s} - R^F)\} \end{aligned}$$

$$\alpha_t^{ID-Reb} = \underset{\alpha}{\operatorname{argmax}} \quad \delta \sum_{s=0}^{\infty} \nu^s \log\{R^F + \alpha \alpha^F(R_{t+s})(R^D - R^F)\} + (1 - \delta) \sum_{s=0}^{\infty} \nu^s \log\{R^F + \alpha \alpha^F(R_{t+s})(R_{t+s} - R^F)\}$$

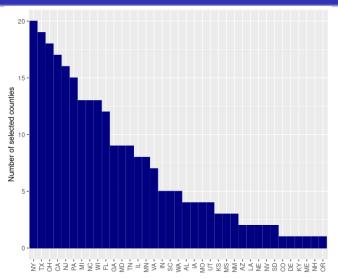

$$\alpha^*(R_{SS}) = \underset{\alpha}{\operatorname{argmax}} \quad (1-\delta) \log\{R^F + \alpha(R_{SS} - R^F)\} + \delta \log\{R^F + \alpha(R^D - R^F)\}$$

Specification of η and $\eta^{\rm F}$

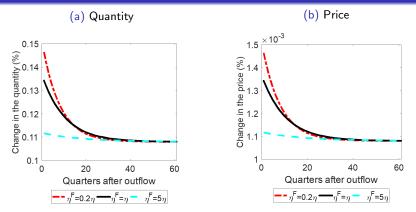
$$\eta^{F} \equiv \frac{\partial \log \alpha^{F}(R_{t})}{\partial R_{t}}|_{R_{t}=R_{SS}}$$
$$\eta \equiv \frac{\partial \log \alpha^{*}(R_{t})}{\partial R_{t}}|_{R_{t}=R_{SS}}$$
$$r_{t} \equiv R_{t} - R_{SS} \simeq \hat{p}_{t+1} - (1+dp)\hat{p}_{t}, \quad dp \equiv \frac{D}{P_{SS}}$$

Response to a 1% permanent inflow

Back


Are governments constrained due to the tax rules?

- Interest incomes on municipal bonds are typically tax-exempt for in-state investors, but not for out-of-state investors.
 - $\rightarrow\,$ It causes market segmentation along the state borders.
 - \rightarrow Many funds are only active in one state. (Babina et al., 2021)
- Are governments borrowing-constrained because of the tax-induced segmentation?
- Testing two implications:
 - Flow-induced demand should be more impactful in states with larger degree of segmentation (California vs. Texas)
 - Governments should benefit equally from inflows to funds active in its state


Are governments constrained due to the tax rules? (2)

_	log(Issue Size) _{c,t}		
	(1)	(2)	
FID _{c,t}	0.328***	0.180**	
.,.	(0.119)	(0.088)	
$FID_{c,t} \times In-state$ tax privilege	-0.027 (0.022)		
State-level $FID_{c,t}$		0.020	
		(0.019)	
Observations	2,542	2,549	
Туре	ÓLS	ÓLS	
County FE	Y	Y	
Year-State FE	Y	Y	
Season FE	Y	Y	
SE-clustered	State	State	
R ²	0.642	0.643	

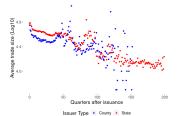
Distribution of the selected counties

Comparative statics: Funds' demand semi-elasticity (η^F)

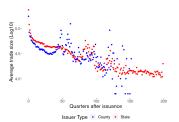
Two forces impacting the funds' demand:

- Inflow \Rightarrow Demand \uparrow
- Bond return $\downarrow \Rightarrow$ Demand \downarrow

$$ightarrow \, \eta^{ extsf{F}} \uparrow \Rightarrow$$
 2nd force gets stronger \Rightarrow Less overshooting


Other evidence on municipalities being credit-constrained

Evidence 2 (Adelino et al. (2017), Cornaggia et al. (2018)): After the recalibration of the credit ratings by Moody's

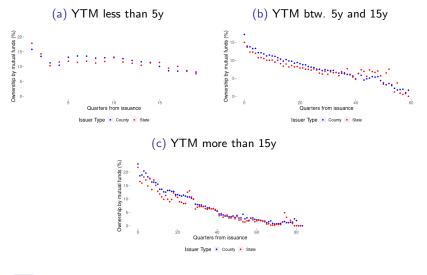

$$\Delta Q^{ ext{upgraded}} - \Delta Q^{ ext{not-upgraded}} \simeq 18\%$$

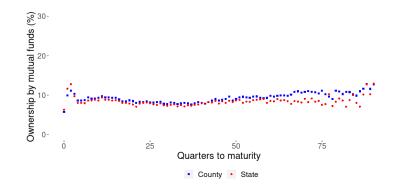
 $\Delta r^{ ext{upgraded}} - \Delta r^{ ext{not-upgraded}} \simeq -0.20\%$

Trade size by quarters after issuance

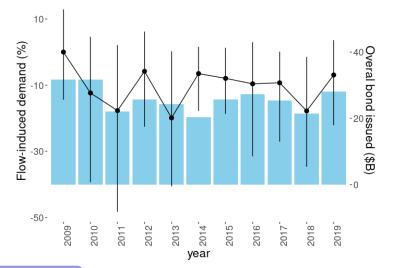
(a) Dealer-to-client

(b) Client-to-dealer





41


Bond maturity at origination and mutual fund ownership

Bond maturity and mutual fund ownership

Flow-induced demand and overall bond issuance

Dist. of FID for states

Past ownership and investment-flow relationship

	$\Delta Inv_{f,c,t}^{Par}$		
	(Inflow Sample)	(Outflow Sample)	
Flow _{f,t}	-0.002 (0.001)	0.002 (0.190)	
$SIG_{f,c,t-1}$	-1.360*** (0.073)	-1.136*** (0.078)	
$SIG_{f,c,t-1} imes \mathit{Flow}_{f,t}$	-0.257 (0.195)	1.962** (0.823)	
$\mathbb{I}\{SIG_{f,c,t-1} > OWN_{f,c,t-1}\}$	-0.066*** (0.025)	-0.030 (0.027)	
$\mathbb{I}\{SIG_{f,c,t-1} > OWN_{f,c,t-1}\} \times \mathit{Flow}_{f,t}$	0.278 ^{***} (0.081)	0.980 ^{***} (0.283)	
Observations R ² Quarter FE Fund FE	155,274 0.035 Y Y	165,712 0.033 Y Y	

Flow-induced demand and the timing of issuance

	$Prob(\mathit{Issue}_{c,t+1})$				
	(1)	(2)	(3)		
FID _{c,t}	0.135***	0.105***	0.044		
	(0.040)	(0.040)	(0.039)		
Observations	7,882	7,882	7,882		
Туре	Probit	Probit	Probit		
County FE	Y	Y	Y		
Season FE	Ν	Y	Y		
Year-State FE	Ν	Ν	Y		
Log Likelihood	-4,347.091	-4,306.712	-4,201.933		

Flow-performance relationship

	Flow _{f,t}			
	(1)	(2)	(3)	
$Ret_{f,t-1}$	-0.951	-1.309	-0.177	
, -	(2.518)	(2.508)	(4.149)	
$Ret_{f,t-2}$	0.624	0.294	-1.261	
*	(2.401)	(2.349)	(4.005)	
$Ret_{f,t-3}$	-1.752	-1.885	0.046	
*	(2.472)	(2.401)	(4.247)	
$Ret_{f,t-4}$	-1.005	-1.044	-2.615	
	(2.472)	(2.419)	(4.142)	
Observations	84,887	84,887	84,887	
Projected R ²	0.00001	0.00001	0.00001	
Fund FE	N	Y	Y	
Quarter FE	N	N	Y	

Persistence of the fund flows

	Flow _{f,t}			
	(1)	(2)	(3)	(4)
$Flow_{f,t-1}$	-0.0001	0.001	-0.0002	0.001
, -	(0.002)	(0.003)	(0.002)	(0.003)
$Flow_{f,t-2}$		0.001		0.001
, -		(0.001)		(0.001)
$Flow_{f,t-3}$		0.00001		0.00003
*		(0.0002)		(0.0002)
$Flow_{f,t-4}$		0.00000		-0.00000
, -		(0.0001)		(0.0001)
Constant	0.414**	0.041***		
	(0.163)	(0.011)		
Observations	77,542	74,285	77,542	74,285
R ²	0.000	0.00001	0.001	0.001
Quarter FE	N	N	Y	Y

LR and SR effects of FID on the borrowing size

				loį	g(Issue Size _{c,t+}	-j)		
	j = -3	j = -2	j = -1	j = 0	j = 1	j = 2	j = 3	
FID _{c,t}	0.022 (0.037)	-0.031 (0.037)	0.035 (0.045)	0.096** (0.043)	0.196*** (0.060)	0.117** (0.051)	0.090* (0.050)	
Observations County FE Season FE SE-Clustered	2,381 Y Y State-Year	2,449 Y Y State-Year	2,520 Y Y State-Year	2,610 Y Y State-Year	2,590 Y Y State-Year	2,526 Y Y State-Year	2,446 Y Y State-Year	S

Flow-induced demand and the timing of issuance (Continued)

	$Prob(\mathit{Issue}_{c,t+1})$			
	(1)	(2)	(3)	
$FID_{c,t}$	0.128*** (0.037)	0.093** (0.037)	0.026 (0.037)	
Observations	8,661	8,661	8,661	
Туре	Probit	Probit	Probit	
County FE	Y	Y	Y	
Season FE	N	Y	Y	
Year-State FE	N	N	Y	
Log Likelihood	-4,815	-4,753	-4,646	

- Investors mostly invest in the bonds issued in their own state
 - $\rightarrow\,$ to receive exemption from state taxes
- Governments are limited to capital inside their state
 → Is it the reason behind the constraint?

- Investors mostly invest in the bonds issued in their own state
 - $\rightarrow\,$ to receive exemption from state taxes
- Governments are limited to capital inside their state \rightarrow Is it the reason behind the constraint?

- Investors mostly invest in the bonds issued in their own state \rightarrow to receive exemption from state taxes
- Governments are limited to capital inside their state
 → Is it the reason behind the constraint?

	log(Issue Size) _{c,t}		
	(1)	(2)	
FID _c ,t	0.328*** (0.119)	0.180 ^{**} (0.088)	
$FID_{c,t} \times In$ -state premium	-0.027 (0.022)		
State-level $FID_{c,t}$		0.020 (0.019)	
Observations	2,542	2,549	
Туре	OLS	OLS	
County FE	Y	Y	
Year-State FE	Y	Y	
Season FE	Y	Y	
SE-clustered	State	State	
R ²	0.642	0.643	

Testing two implications:

- Flow-induced demand should be more impactful in states with larger state taxes (California vs. Texas)
- State-level demand shocks should absorb the effects

- Investors mostly invest in the bonds issued in their own state \rightarrow to receive exemption from state taxes
- Governments are limited to capital inside their state
 → Is it the reason behind the constraint?

	(1)	(2)
$FID_{c,t}$	0.328*** (0.119)	0.180 ^{**} (0.088)
$FID_{c,t} imes In ext{-state premium}$	-0.027 (0.022)	
State-level $FID_{c,t}$		0.020 (0.019)
Observations Type County FE Year-State FE Season FE SE-clustered R ²	2,542 OLS Y Y Y State 0.642	2,549 OLS Y Y Y State 0.643
	$FID_{c,t} \times In$ -state premium State-level $FID_{c,t}$ Observations Type County FE Year-State FE Season FE SE-clustered	$\begin{tabular}{ c c c c c }\hline FID_{c,t} & 0.328^{***} & (0.119) \\ FID_{c,t} \times In-state premium & -0.027 & (0.022) \\ \hline State-level FID_{c,t} & & & \\\hline \hline Observations & 2,542 & \\\hline Type & OLS & \\\hline County FE & Y & \\\hline County FE & Y & \\\hline Season FE & Y & \\\hline Season FE & Y & \\\hline SE-clustered & State & \\\hline \end{tabular}$

Testing two implications:

- Flow-induced demand should be more impactful in states with larger state taxes (California vs. Texas)
- State-level demand shocks should absorb the effects

log(Issue Size)

Steady-state solution

- Suppose initially $F_{0-}^{Out} = 0$
- No friction matters at SS
 - Intuition: The bond return is i.i.d ⇒ the optimal port. doesn't change ⇒ no need to reoptimize Characterization of the optimal portfolio
- Optimal port. characterization + Market clearing + Bond supply at SS:
 - $\rightarrow P_{SS} \checkmark$
 - $ightarrow \ q_{SS}$ (SS bond-to-wealth ratio) \checkmark

 Back

Steady-state solution

- Suppose initially $F_{0-}^{Out} = 0$
- No friction matters at SS
 - Intuition: The bond return is i.i.d ⇒ the optimal port. doesn't change ⇒ no need to reoptimize Characterization of the optimal portfolio
- Optimal port. characterization + Market clearing + Bond supply at SS:
 - \rightarrow P_{SS} \checkmark
 - $ightarrow \, q_{SS}$ (SS bond-to-wealth ratio) \checkmark

Back

Price dynamics

$$-S^{F}\eta^{f}\nu\hat{\boldsymbol{p}}_{t+3} + \left(\nu(1+\gamma^{-1})+\lambda\nu S^{F}\eta^{F}+S^{F}\eta^{F}+M+(1+dp)S^{F}\eta^{F}\nu\right)\hat{\boldsymbol{p}}_{t+2}$$
$$-\left((1+\lambda\nu)(1+\gamma^{-1})+\lambda S^{F}\eta^{F}+(1+dp)(\lambda\nu S^{F}\eta^{F}+S^{F}\eta^{F}+M)\right)\hat{\boldsymbol{p}}_{t+1}$$
$$+\left(\lambda(1+\gamma^{-1})+(1+dp)\lambda S^{F}\eta^{F}\right)\hat{\boldsymbol{p}}_{t} = 0.$$
$$M = (1-\lambda)(1-\nu)(\eta-S^{F}\eta^{F})$$

The characteristic polynomial has one stable root: κ ∈ (0, 1)
Solution:

$$\hat{p}_t = (A + B\kappa^t)f_0$$

$$A = \frac{S^F}{\eta dp + \gamma^{-1} + 1}$$

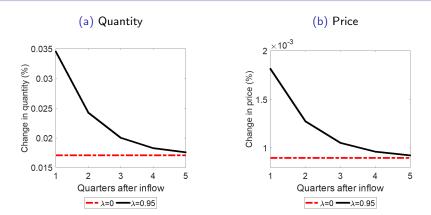
$$B = \frac{\lambda(\eta - \eta^F S^F)S^F}{(1 + \gamma^{-1} + dp)(1 + \gamma^{-1} + (1 + dp - \kappa)(\frac{M\nu}{1 - \nu\kappa} + M + S^F \eta^F))}$$

• A risk-free asset is available with return R^F

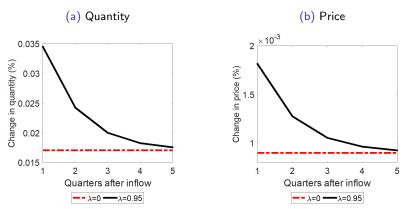
- The government defaults with i.i.d probability δ
- The default arrival time is the only source of uncertainty
 - Upon default, the bond return is $R^D < R^F$
 - The government never defaults again → The bond return will be R^F afterwards.
- The sequence of prices and returns before the default: $\{P_t\}_{t=0}^{\infty}$ and $\{R_t\}_{t=0}^{\infty}$, $R_t \equiv \frac{P_{t+1}+D}{P_t}$

 \rightarrow **Remark:** The bond return is binary: either R_t or R^D

- A risk-free asset is available with return R^F
- The government defaults with i.i.d probability δ
- The default arrival time is the only source of uncertainty
 - Upon default, the bond return is $R^D < R^F$
 - The government never defaults again → The bond return will be R^F afterwards.
- The sequence of prices and returns before the default: $\{P_t\}_{t=0}^{\infty}$ and $\{R_t\}_{t=0}^{\infty}$, $R_t \equiv \frac{P_{t+1}+D}{P_t}$

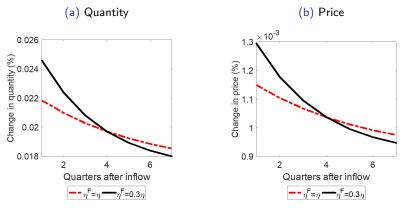

 \rightarrow **Remark:** The bond return is binary: either R_t or R^D

- A risk-free asset is available with return R^F
- The government defaults with i.i.d probability δ
- The default arrival time is the only source of uncertainty
 - Upon default, the bond return is $R^D < R^F$
 - The government never defaults again \rightarrow The bond return will be R^F afterwards.
- The sequence of prices and returns before the default: $\{P_t\}_{t=0}^{\infty}$ and $\{R_t\}_{t=0}^{\infty}$, $R_t \equiv \frac{P_{t+1}+D}{P_t}$


 \rightarrow **Remark:** The bond return is binary: either R_t or R^D

- A risk-free asset is available with return R^F
- The government defaults with i.i.d probability δ
- The default arrival time is the only source of uncertainty
 - Upon default, the bond return is $R^D < R^F$
 - The government never defaults again → The bond return will be R^F afterwards.
- The sequence of prices and returns before the default: $\{P_t\}_{t=0}^{\infty}$ and $\{R_t\}_{t=0}^{\infty}$, $R_t \equiv \frac{P_{t+1}+D}{P_t}$
 - \rightarrow **Remark:** The bond return is binary: either R_t or R^D

Comparative statics: Portfolio sluggishness (λ)


Comparative statics: Portfolio sluggishness (λ)

Mechanism:

- Inflow \Rightarrow Funds need to buy more bonds
- Direct investors are sleepy \Rightarrow Both *P* and *Q* spike

Impact of investment mandates

• $\eta^F = \eta \rightarrow$ Funds invest optimally on behalf of their investors

- $\eta^{F} < \eta \rightarrow$ Funds are less flexible
 - More overshooting
 - Faster dynamics

Azarmsa

Flow-induced demand and the timing of issuance

	$Prob(Issue_{c,t+j})$							
	j = -3	j = -2	j = -1	j = 0	j = 1	j = 2	j = 3	<i>j</i> = 4
FID _c ,t	-0.010	-0.050	-0.047	0.065*	0.093**	0.103***	0.030	0.028
	(0.038)	(0.038)	(0.038)	(0.037)	(0.037)	(0.038)	(0.038)	(0.038)
Observations	7,973	8,218	8,465	8,714	8,661	8,414	8,169	7,925
County FE	Y	Y	Y	Y	Y	Y	Y	Y
Season FE	Y	Y	Y	Y	Y	Y	Y	Y
Log Likelihood	-4,374	-4,503	4,640	-4,788	-4,753	-4,623	-4,492	-4,338

Takeaway: No pre-trend in FID!

Additional results

Back

A puzzle

- Municipal governments are credit-constrained.
- Example (Yi, 2021): In response to a credit shock from the banking sector
 - many municipalities drastically cut the quantity of borrowing and expenditure
 - despite the modest impact on the borrowing interest rate:

$$egin{array}{lll} \Delta Q^{
m most affected} & -\Delta Q^{
m least affected} \simeq -20\% \ \Delta r^{
m most affected} & -\Delta r^{
m least affected} \simeq 0.1\% \end{array}$$

• Why can't borrow from other investors?

More evidence

• **Puzzle:** Why are municipal governments credit-constrained despite being among the safest borrowers?

Back

Azarmsa

A puzzle

- Municipal governments are credit-constrained.
- Example (Yi, 2021): In response to a credit shock from the banking sector
 - many municipalities drastically cut the quantity of borrowing and expenditure
 - despite the modest impact on the borrowing interest rate:

$$egin{array}{lll} \Delta Q^{ ext{most affected}} & - \Delta Q^{ ext{least affected}} \simeq -20\% \ \Delta r^{ ext{most affected}} & - \Delta r^{ ext{least affected}} \simeq 0.1\% \end{array}$$

• Why can't borrow from other investors?

More evidence

• **Puzzle:** Why are municipal governments credit-constrained despite being among the safest borrowers?

A puzzle

- Municipal governments are credit-constrained.
- Example (Yi, 2021): In response to a credit shock from the banking sector
 - many municipalities drastically cut the quantity of borrowing and expenditure
 - despite the modest impact on the borrowing interest rate:

$$egin{array}{lll} \Delta Q^{ ext{most affected}} & -\Delta Q^{ ext{least affected}} \simeq -20\% \ \Delta r^{ ext{most affected}} & -\Delta r^{ ext{least affected}} \simeq 0.1\% \end{array}$$

• Why can't borrow from other investors?

More evidence

• **Puzzle:** Why are municipal governments credit-constrained despite being among the safest borrowers?

Literature

• **Municipal government finances and access to credit:** Adelino, Cunha, and Ferreira (2017), Dagostino (2018), Yi (2021), Agrawal and Kim (2021)

 $\rightarrow~$ New evidence +~ A theory explaining the findings

- **Demand-based asset pricing**: Lou (2013), Koijen and Yogo (2019), Li (2021)
 - $\rightarrow\,$ Studying the real impact of demand shocks + Examining the role of investor inattention in the low demand elasticity
- Investor inattention and asset prices: Duffie (2010), Chien, Cole, Lusting (2012,2016), Abel, Eberly, Panageas (2013), Gabaix (2019)
 - $\rightarrow\,$ A theory with attentive intermediaries and inattentive investors $+\,$ Empirical evidence

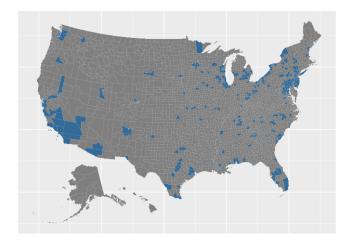
Solving for the impact of fund flows

- In the empirical part, we estimated the impact of uninformative fund flows on the governments' borrowing behavior.
- To imitate the empirical analysis, suppose the funds receive an inflow of 1% of their market share S^F at t = 0 from the outside investors
- Log-linearization to solve for the dynamics induced by the inflow.

Steady-state solution

Solving for the impact of fund flows

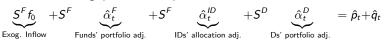
- In the empirical part, we estimated the impact of uninformative fund flows on the governments' borrowing behavior.
- To imitate the empirical analysis, suppose the funds receive an inflow of 1% of their market share S^F at t = 0 from the outside investors
- Log-linearization to solve for the dynamics induced by the inflow.


Steady-state solution

Solving for the impact of fund flows

- In the empirical part, we estimated the impact of uninformative fund flows on the governments' borrowing behavior.
- To imitate the empirical analysis, suppose the funds receive an inflow of 1% of their market share S^F at t = 0 from the outside investors
- Log-linearization to solve for the dynamics induced by the inflow.

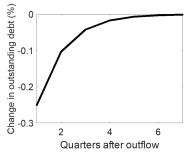
Steady-state solution


Map of the selected counties

Dynamic equations

- Governments' bond supply: $\hat{q}_t = \gamma^{-1} \hat{p}_t$
- Market clearing $(S^D \equiv 1 S^F)$:

- Funds' portfolio adjustment: $\hat{\alpha}_t^F = \eta^F r_t$
- Investors' portfolio adjustment ($\nu \equiv x\lambda(1-\delta)$):


$$\hat{\alpha}_{t+1}^{D} = \lambda \hat{\alpha}_{t}^{D} + (1-\lambda) \underbrace{(1-\nu)\eta \sum_{s=0}^{\infty} \nu^{s} r_{t+s}}_{\hat{\alpha}_{t}^{D-Reb}}$$

$$\hat{\alpha}_{t+1}^{ID} = \lambda \hat{\alpha}_{t}^{ID} + (1-\lambda) \underbrace{(1-\nu)(\eta-\eta^{F}) \sum_{s=0}^{\infty} \nu^{s} r_{t+s}}_{\hat{\alpha}_{t}^{ID-Reb}}$$

How did the massive outflows in March and April 2020 impact the municipal borrowing?

• In March and April 2020, municipal funds experienced an outflow of about 5% of their AUM.

- The model implies **10.5\$B** less issuance in the first quarter.
- It explains **46%** of the decline in bond issuance in March and April 2020.

Definitions

Define the significance of a fund for a county government as:

$$SIG_{f,c,t} = \max_{t-11 \leq t' \leq t} OWN_{f,c,t'}$$

,where

 $OWN_{f,c,t} = \frac{\text{Par-value investment of fund } f \text{ in gov } c \text{ at } t}{\text{Total par-value investment of mutual funds in gov } c \text{ at } t}.$

Investment-flow relationship

 $\log Inv_{f.c.t}^{P_{ar}} - \log Inv_{f.c.t-1}^{P_{ar}} = \beta_0 + \beta_1 Flow_{f,t} + \gamma_2 X_{f,c,t-1} + \gamma_3 Flow_{f,t} \times X_{f,c,t-1} + \varepsilon_{f,c,t-1} + \varepsilon_$

	Dependent variable: $\Delta \log Inv_{f,c,t}^{Par}$					
	Inflow Sample			Outflow Sample		
	(1)	(2)	(3)	(4)	(5)	(6)
Flow _{f,t}	-0.002 (0.001)	-0.002* (0.001)	-0.002 (0.001)	0.524 ^{***} (0.153)	0.501*** (0.154)	0.360 ^{**} (0.157)
$OWN_{f,c,t-1}$		-4.562*** (0.140)			-4.381*** (0.121)	
$OWN_{f,c,t-1} \times \mathit{Flow}_{f,t}$		0.209 (0.199)			5.716*** (1.451)	
$SIG_{f,c,t-1}$			-0.176** (0.069)			-0.286 ^{***} (0.073)
$SIG_{f,c,t-1} imes Flow_{f,t}$			0.489 *** (0.156)			2.229 *** (0.775)
Observations Quarter FE Fund FE R ²	144,312 Y Y 0.031	144,312 Y Y 0.043	144,312 Y Y 0.032	151,088 Y Y 0.029	151,088 Y Y 0.044	151,088 Y Y 0.032
Azarn	nsa					1

Defining flow-induced demand

• Define "Flow-induced demand" (FID) for county c as below:

$$\mathit{FID}_{c,t} = \sum_{f \in \mathsf{Funds}} \mathsf{SIG}_{f,c,t-1} \times \mathsf{Flow}_{f,t-1} \times \mathsf{PSF}$$

- PSF is the coefficient estimates
- *FID* is a demand shifter measured as a fraction of the market value of debt held by the mutual funds Illustration