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1.  Introduction 

Understanding the linkage between policy instruments and desired outcomes is important for the design 

and calibration of public policy actions. For example, formulating good monetary and fiscal policies 

requires understanding how changes in interest rates or government spending affect the economy. For 

climate policy, quantifying the linkage between policy actions and subsequent climate outcomes is also 

crucial, but this connection has often been difficult to perceive given the complexity of the relevant socio-

economic and physical climate responses. To better understand the efficacy of climate policy, we propose 

using Climate Policy Curves (CPCs), which quantify the relationship between the effective price of carbon 

dioxide (CO2) and the future increase in global temperature.  

CPCs incorporate two important relationships: the link from CO2 prices to emissions and the link 

from emissions to climate outcomes and global temperature. The first link involves technology and 

economics—how much emissions abatement will result from a rise in the effective price of CO2, the 

subject of many recent evaluations (e.g., Andersson, 2019; Bayer and Aklin, 2020; Best et al., 2020; 

Leroutier, 2022; Pretis, 2022). This effective CO2 price is a summary measure of the entire range of 

possible energy and climate policies—including carbon and fuel taxes, emissions trading programs, green 

subsidies, energy-efficiency regulations, renewable-energy mandates, or behavioral interventions. These 

diverse policy levers can all be broadly summarized in terms of a direct price on each ton of CO2 emitted 

(e.g., Gillingham and Stock 2018; Gosnell et al. 2020; IMF 2021). In particular, non-price policies can be 

accommodated by reproducing their associated emission reductions with an equivalent carbon price. 

Similarly, policies for other greenhouse gases (GHGs) can be translated into a CO2 equivalence. The 

second link involves climate and earth system science—and depends on how sensitive the earth’s climate 

is to CO2 emissions. We use the global average surface temperature as a summary measure to encompass 

a whole host of other environmental shifts, including rising sea levels, shifted weather extremes, and other 

related climate hazards.  

We obtain CPCs by quantifying these two links using integrated assessment models (IAMs). Such 

models imply a relationship between carbon prices and global temperature outcomes, but previous work 

has typically focused on individual CO2 price paths required to meet a specific temperature goal or 

maximize social welfare (e.g., Dietz and Venmans, 2019; Gerlagh and Liski, 2018; Golosov et al., 2014; 

Hänsel et al., 2020; Ricke et al., 2018; Traeger, 2022; van den Bijgaart et al., 2016). Viewed through the 

lens of a CPC, these estimates typically provide only a single point on the curve. But a complete 

accounting of climate-economy interactions and alternative climate policy choices requires mapping the 

entire CPC, which describes the climate consequences of a wide range of possible carbon policies. 

Thinking about climate policy in terms of the relationship between CO2 prices and global 

temperatures is helpful as it focuses on the key policy question: What climate outcomes will result from a 

given climate policy setting? In this way, CPCs can describe how much higher the effective CO2 price path 

ahead needs to be to reduce future global warming by, say, 0.1ºC. Alternatively, CPCs can quantify the 

climate-economic trade-off between current and future action that policymakers face. For example, 

limiting the global temperature increase to 2°C can be achieved with a high initial CO2 price that grows 

slowly over time or a low initial price that grows rapidly. The latter path postpones significant action—and 

mitigation burden—to the future (Gollier, 2021). Thinking about climate policy in terms of CPCs is helpful 

precisely because it is an important simplification of an otherwise complex relationship. Furthermore, 
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comparing CPCs from different climate-economy models—including different generations or iterations of 

the same model—can also be useful as a diagnostic tool for assessing alternative IAMs. 

2.  Quantifying Climate Policy Curves 

To calculate CPCs, we project emissions, CO2 concentrations, and temperature trajectories under 

alternative exogenous paths for the carbon price using the Dynamic Integrated Climate-Economy (DICE) 

model developed by Nordhaus (1994, 2018) as updated by Hänsel et al. (2020). As in the baseline 

scenario of Nordhaus (2018), we rearrange the marginal abatement cost equation to obtain the emissions 

path resulting from a pre-specified CO2 price path. We then vary the CO2 price in the first period, assume 

an annual growth rate for future CO2 prices, and plot the resulting atmospheric temperature in 2100 and 

at its maximum over the full modelling horizon (see Appendix A for details). Panels A and B in Figure 1 

show the resulting CPCs. The horizontal axis measures the 2025 carbon price in constant (2010) US 

dollars per ton of CO2, which is the initial policy choice variable. The vertical axis measures climate 

outcomes: average global 2100 temperature in panel A and the peak temperature in panel B—in both 

cases relative to the 1850-1900 average. The shaded regions are uncertainty bands described in the next 

section. 

 

 

Figure 1 | Climate Policy Curves. The relationship between the carbon price in 2025 and the global 

temperature for different CO2 price growth rates. Panel A shows global average temperature increases by 

2100 (above the 1850-1900 average), and Panel B shows overall peak global average temperature increases 

for three exemplary growth rates of carbon prices of 2% (red), 4% (green), and 6% (blue). Climate sensitivity 

uncertainty shaded regions are based on ‘likely’ ranges (66% probability) for the equilibrium climate 

sensitivity between 2.5-4°C in IPCC (2022) AR6. All prices are in constant 2010 dollars. See Appendix A for a 

description of methods. 
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Both the initial level of the effective CO2 price and its expected future growth rate are fundamental 

climate policy choices that determine future emissions and global temperatures. Figure 1 plots CPCs for 

annual CO2 price growth rates of 2, 4, and 6%, which are consistent with a survey of expert 

recommendations that revealed a median growth rate of global carbon prices of 4.1% from 2020 to 2050, 

with a 66-percentile range of 2.3% to 6.5% (Drupp et al., 2022).  

Figure 1 illustrates a key climate policy tradeoff. Policymakers need to choose a combination of an 

initial carbon price and its (expected) growth rate to restrain global warming. At one extreme, an 

ambitious climate policy starts with a high initial carbon price and a low subsequent growth rate, which 

may be socially optimal (Hänsel et al., 2020; Nesje et al., 2022). At the other extreme, policymakers might 

start with a low initial carbon price, but promise a high CO2 price growth rate, which shifts the bulk of the 

mitigation burden to the future (Gollier, 2021).  

At very low levels for the initial CO2 price, the CPCs in Panel A imply, in expectation, about 3°C of 

warming above pre-industrial levels by 2100. This is consistent with other analyses that analyze current 

global climate policies, which can be approximated with a global effective CO2 price of just a few dollars 

(see IPCC, 2018, and Raftery et al., 2017). Clearly, climate policy needs to be substantially more ambitious 

to attain the UN climate target of 2°C. Figure 1 reveals combinations of current carbon prices and future 

growth rates that are consistent with this target. For panel A, at a growth rate of 4%, the green CPC shows 

that limiting global warming to 2°C by 2100 in expectation would require a carbon price around US$50. 

If, instead, there is a slower projected growth rate of only 2%, the requisite current carbon price rises to 

about US$100.  

The UN 2°C climate target is often interpreted as trying to limit the peak temperature   rather than 

the end-of-century temperature, as the former goal may be necessary to curtail potentially severe and 

irreversible climate damages (e.g., Drouet et al., 2021; IPCC, 2022). Panel B of Figure 1 plots alternative 

CPCs, which measure the climate outcome as the peak temperature.  At currently very low levels of the 

effective global carbon price, global temperature is substantially higher than in panel A, as temperatures 

continue to rise after 2100, unless the growth rate of the carbon price is quite high. Panel B shows that 

limiting the peak temperature increase to 2°C requires a more ambitious climate policy mix—for instance, 

an initial carbon price of US$70 at a 4% carbon price growth rate. 

Figure 2 elaborates on the CPCs to illustrate further how a broad range of alternative policy choices 

will translate into 2100 (panel A) and peak (panel B) temperatures. These heatmaps illustrate how 

combinations of initial 2025 carbon prices and subsequent carbon price growth rates (horizontal and 

vertical scales, respectively) will result in a given temperature—denoted by color. Each CPC in Figure 1 

can be represented by a horizontal line in Figure 2. The contour lines for a 2°C temperature increase in 

Figure 2 illustrate the combinations of initial 2025 carbon prices and subsequent price paths that are 

compatible with attaining these temperature targets. For example, in panel A, staying below 2°C by 2100 

with only a 1% annual increase in carbon prices would require an initial 2025 carbon price of more than 

US$160. By contrast, staying below 2°C at an 8% growth rate would require a 2025 carbon price of 

approximately US$25. In terms of a peak temperature, panel B shows that while limiting peak warming to 

2°C is still feasible, it requires an even larger immediate increase in effective carbon prices and sizable 

future increases in climate policy stringency.  Figures 1 and 2 also show that limiting the peak 

temperature increase to 1.5°C is effectively impossible for the given range of carbon prices and growth 

rates. Still, in the context of the model, it is possible to overshoot and then return the global temperature 

in 2100 to 1.5°C because a high enough carbon price can induce significant CO2 removal and a reversal of 

climate change. 
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Figure 2 | Climate policy choices and temperature outcomes. Panel A shows a heatmap of global average 

temperature increase by 2100 and Panel B for peak temperature increase for various combinations of initial 

carbon prices in 2025 and annual carbon price growth rates. The temperature color scale is shown on the 

right. Contours that indicate carbon price paths that lead to UN global temperature targets are denoted by 

white lines. All prices are in constant 2010 dollars. See Appendix B for a description of methods. 

3.  Uncertainty in Climate Policy Curves 

Uncertainty is a central issue for the design and assessment of climate policy. Despite much climate 

science and climate economics research, substantial uncertainty remains about the key climate-economy 

interactions (e.g., Gillingham et al., 2018; Nordhaus, 2018). In particular, the CPC’s causal chain from 

carbon prices to global temperatures is subject to socio-economic uncertainties in the link from carbon 

prices to emissions and climate uncertainties in the link from emissions to global temperatures. Monte 

Carlo simulations across probability distributions for model parameters have been used to evaluate the 

sensitivity of IAM implications (e.g., Nordhaus, 2008; Nordhaus, 2018). However, scientific knowledge 

about the relevant probability distributions for many model parameters is severely limited. In addition, 

the multidimensional nature of the calculation of CPCs makes Monte Carlo simulations impractical. 

Instead, we use an intuitive approach to illustrate how uncertainty affects the CPC climate policy 

tradeoffs: We vary several important model parameters in turn from baseline central estimates to high 

and low boundaries. These central values and bounds summarize the available literature and expert 

judgement. Plotting CPCs for these values demonstrates how changes in specific parameters affect policy 

tradeoffs. The resulting curve shifts reveal the magnitude of CPC changes—in level and shape—in 

response to changes in a specific parameter, and whether the range of parameter choices have symmetric 

or asymmetric effects on CPCs.  

In Figure 1, the shaded regions reflect uncertainty about the equilibrium climate sensitivity (ECS), 

which measures the temperature change from a doubling of atmospheric carbon. The ECS plays an 

important role in determining the sensitivity of global temperatures to carbon prices. To shift the CPCs in 
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Figure 1, we vary ECS within the ‘likely’ range of 2.5°C to 4°C with a baseline estimate of 3°C—consistent 

with the IPCC’s Sixth Assessment report (AR6) (cf. Sherwood et al., 2020). The higher level of the ECS 

results in a higher temperature—of about 0.4°C—at any given initial carbon price, which makes the Paris 

goals notably more difficult to achieve. 

In Figure 3, six other sources of parameter uncertainty are considered that affect the slope and shape 

of the CPCs. In contrast to the ECS, there is much less guidance in the literature about the appropriate 

empirical probability distributions for these six parameters. We consider ranges of alternative 

specifications based on the available literature, but our CPC analysis using these parameter variations is 

more exploratory. Table 1 provides details on the alternative parameterizations we consider and 

supporting sources, and see Appendix C for further description.  

Panels A, B, and C of Figure 3 consider three curve shifters that could potentially be managed 

relatively quickly by appropriate policy choices. These are alternative parameterizations for the 

availability of negative emissions technologies (e.g., direct air capture at scale), the cost of carbon 

abatement technologies, and the emissions of greenhouse gasses other than CO2. 

Figure 3 | Climate policy curve shifters. CPCs for a 4% carbon price growth rate: baseline (green solid 

lines) and under alternative model parameterizations (green shaded areas with dashed lines denoting the 

upper and lower bounds). Panel A shows the effect of making negative emissions technologies available in 

2050 and 2100 (green solid and dashed lines respectively). Panel B shows the effect of different assumptions 

on the price of a backstop technology in 2050. Panel C shows the effect of higher non-CO2 forcings—the green 

dashed line corresponds to the non-CO2 forcing in Nordhaus (2018). Panel D shows the effect of alternative 

global population projections for 2050.  Panel E shows the effect of different assumptions on the rate of 

decarbonization. Panel F shows the effect of different assumption on the growth rate of total factor 

productivity (TFP). All prices are in constant 2010 dollars. See Appendix C for a description of methods. 
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The availability of negative emission technologies (Panel 3A) is a critical element for meeting the UN 

climate targets (IPCC, 2018; Fuss et al., 2018). Most IPCC scenarios assume availability at scale by around 

2050, and we adopt this timing for our baseline estimate (Hänsel et al., 2020). As an alternative, we also 

estimate CPCs assuming negative emission technologies only become available in 2100, which is closer to 

the assumption in the DICE model. Panel 3A shows that the later availability of negative emission 

technologies would shift the CPC upward, notably for medium to high carbon prices. This highlights the 

importance of climate policies that can incentivize the timely uptake of these technologies. 

 

 

Model attributes that underlie 

estimation of CPC 

Baseline 

estimate 

Range, 

high 

end 

Range, 

low end 

Supporting 

references 

ECS, °C 3 4 2.5 IPCC AR6 

Availability of negative emissions 

technologies at scale, year 

2050 2100 2050 IPCC SP1.5; 

Nordhaus 2018 

Backstop price in 2050, 2010US$ 

per ton CO2 

461 687 461 Nordhaus 2018; IPCC 

AR6 

Non-CO2 forcing in 2100, W/m2 0.33 1 0.33 REMIND SSP2 2.6; 

Nordhaus 2018 

Population in 2050, millions 9,791 10,000 9,400 Nordhaus 2018, 

United Nations 2022 

Decarbonization, % per year -1.52 -0.88 -2.16 Nordhaus 2018 

Initial TFP growth, % per year 1.48 2.41 0.55 Nordhaus 2018 

 

Table 1 | Summary of parametrization for CPC shifters.  

 

 

The costs of emission abatement (Panel 3B) are a major source of uncertainty for CPCs. The DICE 

model includes a generic backstop technology with an exogenous price path that is calibrated such that 

the marginal cost of abatement, i.e. the carbon price, is equal to the backstop price at the time of zero 

emissions. We vary the exogenous time path for the backstop price to account for the uncertainty in 

abatement costs, similar to Dietz et al. (2018). Specifically, we recalibrate the initial backstop price and its 

yearly decline rate to the interquartile range of pathways of emissions and carbon prices of the IPCC AR6 

model runs that have at least a 67% probability of staying below 2°C. Since the lower IPCC range almost 

coincides with the DICE specification in Nordhaus (2018), Panel 3B considers only the upper end of the 

IPCC range as a curve shifter. The panel shows that uncertainty with respect to abatement costs is 

relevant for the whole range of carbon prices.  

The extent to which non-CO2 emissions (Panel 3C), such as methane emissions from agriculture, will 

be managed in line with the UN climate targets represents another source of uncertainty. Our baseline 

estimate of non-CO2 emissions is aligned with climate scenarios compatible with the UN climate targets 

(Hänsel et al., 2020). Specifically, the exogenous path for non-CO2 forcing is calibrated to peak at 0.59 

W/m2 in 2040 and decrease to 0.34 W/m2 by 2100.  We also consider an alternative DICE assumption, 

which implies a linear increase in non-CO2 forcing to 1 W/m2 by 2100. Panel 3C shows that management 

of non-CO2 emissions is an important determinant of level of the CPC, which highlights the significant 
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potential of non-CO2 mitigation policies to influence climate outcomes.  Note that this conclusion holds 

even though we have not considered potential low probability but very adverse tipping points, such as 

large methane releases from collapsing permafrost. 

The lower three panels of Figure 3 consider variation in growth rates of population, decarbonization, 

and total factor productivity (TFP). Our baseline assumption for global population growth follows 

Nordhaus (2018), but as an alternative, we assume higher and lower population paths (with 2050 

population of 10 and 9.4 billion, respectively) in line with updated UN projections (United Nations 2022). 

However, Panel 3D shows that the effect of different assumptions about population dynamics on CPCs is 

negligible.  

The DICE model we use does not distinguish between dirty and clean sectors, so the exogenous rate of 

decarbonization follows the decoupling of economic output and CO2 emissions. Our baseline estimate is -

1.5% per year, but as alternative assumptions for the CPC, we consider the range from -0.88% to -2.16% 

(Nordhaus, 2018). Panel 3E shows that the speed of decoupling matters for the shape of the CPC 

especially at initial carbon prices below $100. In particular, at the high end of the range (slower 

decarbonization), low to medium initial carbon prices would result in higher temperatures in 2100 than 

under our baseline.    

Panel 3F shows that total factor productivity (TFP) growth is also an important determinant of the 

CPC. Faster productivity growth boosts economic output, which in turn increases CO2 emissions and 

temperature. Around our baseline estimate of 1.48% per year, we consider the 66-percentile range of 

0.55% - 2.41% in Nordhaus (2018). The different TPF growth scenarios affect the steepness of the CPC 

especially for initial carbon prices below US$100. Higher productivity growth translates into higher 

temperature increases on its own. However, a more nuanced view recognizes that decarbonization (Panel 

3E) and TFP growth (Panel 3F) are intimately related aspects of technological progress. Namely, TFP 

growth will exacerbate climate change unless it is part of an offsetting transformation towards cleaner 

production. 

4.  Implications for Policy and Model Evaluation 

Climate policies come in many forms, including carbon prices and emissions trading systems as well as 

many policies without an explicit price per ton of CO2, such as efficiency standards, clean-energy 

subsidies, and pledges to achieve net zero emissions. CPCs can be a useful policy tool by enabling a 

comparison of various policies, quantifying the climate outcomes of such policies, and elucidating the 

uncertainty in obtaining those outcomes. 

For example, CPCs can crystalize the importance of comparing climate policy today with its future 

path. Different combinations of these two components can lead to similar climate outcomes: An initial 

effective carbon price of US$50 that grows at 6% each year and an initial price of US$160 that grows at 

2% both appear likely to limit the global temperature increase in 2100 to below 2°C. These different 

carbon price paths starkly illustrate the choice of climate mitigation burden-sharing across generations: 

the tradeoff between today’s climate policy setting and the burden on future generations. Accordingly, 

CPCs can help frame and navigate the difficult choices between near-term ambition and procrastination. 

In addition, CPCs can highlight the fundamental role of uncertainty in these choices as shown in Figures 1 

and 3.  

CPCs can also serve as a useful summary metric for IAM evaluation and comparison. In particular, 

contrasting the CPCs obtained from different types and calibrations of IAMs can provide a 
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straightforward means to compare the key implications of these models and to highlight differences in 

climate policy implications.  Along these lines, CPCs can serve as a useful model diagnostic tool that 

illuminates important policy tradeoffs in model comparison exercises (see, e.g., Harmsen et al., 2021; 

Kriegler et al., 2015). As an example, Figure 4 plots each of the different model simulations from the IPCC 

AR6 (Byers et al., 2022) as grey dots in the carbon price and temperature space. The black line fits a 

power function to these data and provides the composite “AR6-CPC” that is implicit in the diverse AR6 

model runs, which feature a wide variety of modelling choices and carbon price paths. For a range of 2025 

carbon prices between US$35 and US$95, the AR6-CPC settles between our CPCs based on the updated 

DICE model with constant carbon price growth rates of 4% and 6% (the green and blue lines). The AR6-

CPC suggests that carbon prices below US$35 are more effective in reducing temperatures as compared to 

the 6%-CPC; however, above US$95, the AR6-CPC is rather insensitive, suggesting that a carbon price is 

less effective than the 4%-CPC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 | AR6-CPC. Comparison of DICE-based CPCs with a CPC fitted to AR6 model simulations. The grey 

dots represent AR6 data on the 2025 carbon price and the global‐mean surface air temperature (GSAT), and 

the black line fits a power function to these data.  The green and the blue line are the CPCs based on an 

updated DICE model with 4% and 6% carbon price growth rates. See Appendix D for a description of 

methods. All prices are in constant 2010 dollars. 

 

 

By focusing on the essential mapping from climate policy to climate outcomes, CPCs can assist in 

understanding complex climate-economy interactions. They provide a novel and powerful summary of 

climate policy that can help calibrate, assess, and communicate that policy. The broad range of CPCs we 

have considered underscore that while policymakers can, to some degree, trade off initial policy ambition 

with mitigation burden delayed on future generations, attaining the UN climate targets will require 

setting in place sizable carbon prices, or their regulatory equivalents, in the near future.  
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APPENDIX 

We calculate climate policy curves (CPCs) using the DICE 2016R2 model (Nordhaus 2018) as updated by 

Hänsel et al. (2020), which provides a better calibration of the carbon cycle and energy balance model, 

improved climate damage estimates, updated timing of the availability of negative emissions technologies, 

and updated projections of non-industrial emissions.
1  

A.  Methods for Figure 1: Climate policy curves  

To calculate the CPCs implied by the model, we use the optimality condition for the carbon price paths 

that would result in a first-best setting. Accordingly, the first-best optimal carbon price 𝑝𝐶𝑂2
∗  must be equal 

to the marginal cost of emission, which in DICE (cf. Nordhaus 2018) is: 

𝑝𝐶𝑂2
∗ (𝑡) = 𝑝𝑏𝑎𝑐𝑘(𝑡) 𝜇(𝑡)

𝜃2−1,       (1) 

Note that time 𝑡 is measured in increments of five years with 𝑡 ∈ [0; 100], and  𝑡 = 0 corresponds to 

the year 2015. All prices are in 2010 US$ (purchasing power parity corrected). The optimal carbon price 

path 𝑝𝐶𝑂2
∗ (𝑡) is modeled to depend on the time path of the price of a generic backstop technology, 𝑝𝑏𝑎𝑐𝑘 (𝑡); 

a technology, like wind energy or solar PV, that is expected to be capable of replacing CO2–intensive 

energy production by 100% at some future date. In the baseline parametrization, the price of the backstop 

is assumed to be $550 per tonne of CO2 in 2020 (Nordhaus 2018), and to decline by an exogenously given 

rate of half a percent per year. Furthermore, the carbon price depends on the emissions control rate 𝜇(𝑡) 

capturing the fraction of industrial CO2 emissions that is abated in each period. Finally, the calibration 

parameter 𝜃2 = 2.6 reflects the convexity of the marginal abatement cost function, i.e., that the marginal 

cost of emission abatement increases the more emissions are already abated.  

In order to compute the CPC as a mapping of a current given non-optimal carbon price to the future 

level of global temperature, we proceed in three steps. 

First, we solve the carbon price equation (1) for the emission control rate 𝜇(𝑡), which we require to be 

bounded above by 1 (maximal 100% emission control) until the last period 𝑁 before negative emissions 

technologies are available, and 1.2 thereafter (c.f. Nordhaus, 2018). For the baseline (best) estimate we set 

𝑁 = 6, i.e., negative emission technologies are available from 2050 onwards following recent IPCC reports 

and Hänsel et al. (2020). 

𝜇(𝑡) =

{
 
 

 
 min [1.0, (

𝑝𝐶𝑂2(𝑡)

𝑝𝑏𝑎𝑐𝑘(𝑡)
)

1

𝜃2−1] , 𝑖𝑓 𝑡 ≤ 𝑁 

min [1.2, (
𝑝𝐶𝑂2(𝑡)

𝑝𝑏𝑎𝑐𝑘(𝑡)
)

1

𝜃2−1] , 𝑖𝑓 𝑡 > 𝑁

     (2) 

Second, we assume an exogenous carbon price path that grows exponentially, until it hits the 

backstop price, at the per-period rate 𝑔: 

𝑝𝐶𝑂2(𝑡) = 𝑝𝐶𝑜2(0) 𝑒
𝑔𝑡,        (3) 

. . . 

1. The model program is written in AMPL and solved with the Knitro optimization solver (version 12.4). 
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For a given initial carbon price, 𝑝𝐶𝑜2(0), and carbon price growth rate, 𝑔, equations (2) and (3) 

together determine an exogenous non-optimal path for the emissions control rate. The non-optimal time 

path of the emissions control rate reflects the abatement of industrial emissions that is incentivized by a 

particular exogenously given carbon price path and thereby determines the dynamics of global 

temperature increases.  

Third, we solve the updated DICE model as in Hänsel et al. (2020) subject to the pre-specified 

exogenous path for the emission control rate according to equation (2) and (3) and calculate the resulting 

global temperature increases. All other model equations including social welfare remain unaffected and 

calibrated according to the main specification in Hänsel et al. (2020).
2
  

In our CPC analysis we use 𝑝𝐶𝑂2(2), i.e., the carbon price in 2025, as our independent variable, which 

is the next possible planning step. As the outcome variable, we plot either (a) the change of the 

atmospheric temperature in 2100, or (b) the peak atmospheric temperature change over the whole time 

horizon from 2010-2510, in both cases relative to the 1850-1900 pre-industrial level. These two 

alternative outcome variables are both useful for policy analysis in their own right, as we discuss in the 

main text.  

The uncertainty ranges in Figure 1 are based on varying the equilibrium climate sensitivity (ECS), i.e., 

the temperature resulting from a doubling of atmospheric carbon. The ECS represents a key source of 

uncertainty with respect to carbon price sensitivity, and its quantification has been the subject of 

extensive prior research. In our simulations, we vary ECS within the range considered in the latest ECS 

assessment (Sherwood et al., 2020) and IPCC’s Sixth Assessment report. This includes a ‘likely’ range of 

2.5°C-4°C and best estimate of 3°C.  

B.  Methods for Figure 2: Climate policy choices and the UN climate targets  

Figure 1 in the main paper presents CPCs for three illustrative carbon price growth rates. In order to 

depict a more comprehensive possibility space for the link between climate policy and climate outcomes, 

we calculate and plot heatmaps. Using color codes, these heatmaps show in two dimensions the 

temperature increases in 2100 and their peaks that result from a broad combination of initial carbon 

prices and growth rates. To obtain these, we solve the updated DICE model 8600 times, while for each 

run we (i) draw 𝑝𝐶𝑂2(0) from a uniform distribution on the interval [$2, $200] and (ii) vary the yearly 

carbon price growth rate in 0.1% steps on the interval [0%, 8%].  

We use the heatmaps to illustrate the combinations of initial carbon prices and growth rates that are 

in line with the 1.5°C and 2°C UN temperature targets. To calculate these contour lines within the 

depicted two-dimensional space of prices and growth rates we use the algorithm implied by the “dgrid3d” 

option of gnuplot version 5.2 that converts the plotting data into a suitable grid data format.  Specifically, 

we use a grid of size 12 by 12 and a norm value of 4. The norm parameter is used to inversely weight each 

data point by its distance from the grid raised to the norm power.  

. . . 

2. Specifically, we use the central estimate for welfare parameters in Hänsel et. al (2020) implying a rate of pure time preference 

of 0.5% per year and a unit value for the elasticity of marginal utility (cf. Drupp et al., 2018). 
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C.  Methods for Figure 3: Climate policy curve uncertainty  

Figure 3 of the main text shows the effect of six sources of parameter uncertainty on the estimated slope 

and shape of the CPCs. We consider alternative parameterizations for the availability of negative 

emissions technologies (e.g., direct air capture), the cost of carbon abatement technologies, the emissions 

of greenhouse gasses other than CO2, and the growth rates of population, decarbonization, and total factor 

productivity (TFP). There is little guidance in the literature about the appropriate empirical probability 

distributions for these six parameters, so our CPC uncertainty analysis using these parameter variations is 

more exploratory.  

Negative emissions availability 

In the DICE model, the dynamics of industrial emissions 𝐸𝐼𝑛𝑑(𝑡) is given by  

𝐸𝐼𝑛𝑑(𝑡) = 𝜎(𝑡) 𝑄(𝑡) (1 − 𝜇(𝑡)),       (4) 

where 𝑄(𝑡) is global output, 𝜎(𝑡) the CO2-intensity of output and  𝜇(𝑡) is the emissions control rate. The 

availability of negative emissions technologies (NETs) is then simply modelled by an upper bound for the 

emissions control rate 𝜇(𝑡) at a particular point in time 𝑡.  In equation (3), we denote by 𝑁 the last time 

period 𝑡 with a maximal emissions control rate of 𝜇(𝑡) = 1 (maximal 100% emission control), i.e. the last 

period before NETs are available. As in Nordhaus (2018), 𝜇(𝑡) is bounded above by 𝜇(𝑡) = 1.2 thereafter, 

i.e. NETs allow for a maximum of 20% of industrial emissions to be taken out of the atmosphere for each 

period 𝑡. For the baseline (best) estimate, we set 𝑁 = 6, i.e., NETs are available from 2050 onwards 

following recent IPCC reports and Hänsel et al. (2020). As a curve shifter, we explore the implications of a 

50 year later availability by 2100 corresponding to 𝑁 = 16. Figure C1 depicts the dynamics of industrial 

CO2 emissions for different initial carbon prices 𝑝𝐶𝑂2(0) (assuming the same 4% carbon price growth rate) 

and different time horizons for the availability of NETs. The figure shows that for low initial carbon prices, 

like $10, the time path of industrial emissions is independent from the availability of NETs. For medium 

to high(er) initial carbon prices, here $50-$100, the time horizon until NETs are available affect the 

emissions time path and thereby the increase in global temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C1 | Industrial Emissions. Dynamics of industrial CO2 emissions for different initial carbon prices 

𝑝𝐶𝑂2(0) with the same 4% growth rate and different time-horizons for the availability of negative emissions 

technologies.  
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Backstop price  

We use variations of the exogenous time path of the price of the generic backstop technology 𝑝𝑏𝑎𝑐𝑘(𝑡) to 

capture uncertainty about abatement costs. Equation (2) clearly shows that 𝑝𝑏𝑎𝑐𝑘(𝑡) is a major 

determinant of the time path of the emissions control rate 𝜇(𝑡) that results from a particular carbon price 

path 𝑝𝐶𝑂2(𝑡). Given the backstop price in the first period 𝑝𝑏𝑎𝑐𝑘(0), the exogenous time path of the backstop 

evolves according to 

𝑝𝑏𝑎𝑐𝑘(𝑡) = 𝑝𝑏𝑎𝑐𝑘(𝑡 − 1) (1 − g𝑏𝑎𝑐𝑘),      (5) 

with g𝑏𝑎𝑐𝑘 = 0.025 being the per-period decline rate. The initial backstop price 𝑝𝑏𝑎𝑐𝑘(0) and its decline 

rate g𝑏𝑎𝑐𝑘  are calibrated such that the marginal abatement costs, i.e. the carbon price, is equal to the 

backstop price at the time of zero emissions. To calculate how the best-guess CPC shifts as a result of 

different scenarios on the cost development of the backstop, we recalibrate the initial backstop price and 

its decline rate to the interquartile range of pathways of emissions and carbon prices of the IPCC AR6 

model runs (AR6 Scenario Database 2022) that have at least a 67% probability of staying below 2°C. From 

this set of model runs, we extract the time of zero emissions within the interquartile range and the 

corresponding carbon prices in that year. The interquartile range (IQR) for the year of zero emissions 

ranges from 2080 to post-2100 with carbon prices ranging from $321-$637 at the time of zero emissions.
3
 

In a next step we calibrate 𝑝𝑏𝑎𝑐𝑘(0) and g𝑏𝑎𝑐𝑘  to best match the IQR from the AR6 modelling data. The 

calibration for the first quartile and the resulting time path for the backstop almost coincides with the 

standard DICE 2016R2 parametrization. Thus, we stick to that parametrization as our best-guess while 

using the parametrization for the third quartile as a curve shifter. Table C1 summarizes the resulting 

parametrization and Figure C2 plots the resulting trajectories for the backstop price. 

 

 

 Baseline Range, high end 

𝑝𝑏𝑎𝑐𝑘(0) $550 $750 

g𝑏𝑎𝑐𝑘  0.025 0.0125 

Resulting backstop 

price in 2050, 𝑝𝑏𝑎𝑐𝑘(7) 
$461 $687 

   

Table C1 | Summary of parametrization for the backstop technology as a CPC curve shifter. 

 

 

 

 

 

. . . 

3. The IQR for 2025 carbon prices for that path is $33-74$. 
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Figure C2 | Backstop Price. Time paths for the exogenous backstop price for two different parametrizations: 

The best-guess (black line) is the standard Nordhaus (2018) specification and almost coincides with the 

lower interquartile rate of IPCC AR6 model runs. The upper range (green line) is a parametrization that 

resembles the upper interquartile range of the AR6 model runs. 

 

Non-CO2 forcings 

In the DICE model, the time path for total radiative forcing is given by 

𝐹(𝑡) = 𝜅 
log

𝑀𝐴𝑇(𝑡)

𝑀𝐴𝑇𝐸

log 2
+ 𝐹𝑒𝑥(𝑡),       (6) 

where 𝜅  is forcing of equilibrium CO2 doubling, 𝑀𝐴𝑇(𝑡) is atmospheric carbon in period 𝑡, 𝑀𝐴𝑇𝐸  is the 

equilibrium (pre-industrial) concentration of atmospheric carbon and 𝐹𝑒𝑥(𝑡) are exogenous non-CO2 

forcings. The standard DICE 2016R2 version assumes that 𝐹𝑒𝑥(𝑡) linearly increases from 0.5 W/m2 in 

2015 to 1 W/m2 in 2100 and remains constant thereafter. For our best-guess we follow the updated DICE 

version (Hänsel et al., 2020) assuming that the management of non-CO2 forcings is in line with, e.g., the 

Representative Concentration Pathways (RCP) 2.6 and 4.5 or the Shared Socioeconomic Pathways (SSPs). 

Specifically, the exogenous path for non-CO2 forcing is calibrated to match the REMIND integrated 

assessment model using the SSP2 2.6 scenario peaking at 0.59 W/m2 in 2040 and decreasing to 0.34 

W/m2 by 2100. Figure C3 compares our best-guess estimate (black line) for non-CO2 forcings to the 

standard DICE 2016R2 pathway (green line), which we use as a CPC curve shifter.  
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Figure C3 | Non-CO2 forcings. Time paths for exogenous non-CO2 forcings for two different parametrizations: 

The best-guess (black line) is Hänsel et al. (2020) specification taken from the REMIND model that is 

compatible with the UN climate targets. The upper range (green line) is the Nordhaus (2018) specification. 

 

Population 

Given an initial level, 𝐿(0), the exogenous population path in DICE 2016R2 is given by  

𝐿(𝑡) = 𝐿(𝑡 − 1) (
�̅�

𝐿(𝑡−1
)
𝑔𝐿

,        (7) 

where �̅� is an assumed asymptotic population size, and 𝑔𝐿 is the per-period growth rate. We calibrate �̅� 

and 𝑔𝐿 in light of the 2050 population distributional projections in the latest UN report (United Nations 

2022). The report estimates that a mean global population of 9400 million people in 2050 with a 95% 

confidence interval ranging from 9400 to 9700 million people. Our baseline estimate based on the DICE 

2016R2 calibration is a middle-of-the-road assumption, and we broadly conform to the UN uncertainty 

range. Table C2 summarizes the parametrization and Figure C4 shows the resulting population dynamics 

until the end of the century.  

 

 

 Range, high end Baseline Range, low end 

�̅� 14500 11500 10000 

𝑔𝐿 0.08122 0.134 0.2022 

   

Table C2 | Summary of parametrization for population dynamics as a CPC curve shifter.  
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Figure C4 | Population. Time paths for exogenous global population development for three different 

parametrizations: The best-guess (black line) is the standard DICE 2016R2 assumption while the upper range 

(green line) and the lower range (red line) correspond to the 95% confidence interval of the 2022 UN 

population projections.   

 

Decarbonization 

Given its initial value in the first period 𝜎(𝑡) the time path for the CO2-intensity of output in DICE 2016R2 

reads 

𝜎(𝑡) = 𝜎(𝑡 − 1) 𝑒5𝑔
𝜎(𝑡−1),        (8) 

where 𝑔𝜎(𝑡) = 𝑔𝜎(𝑡 − 1)(1 + 𝛿𝜎)5 and 𝑔𝜎(0) given.  

As curve shifters we consider the 95 percentile range for the initial growth rate 𝑔𝜎(0)  from Nordhaus 

(2018) with a mean of -1.5% per year and standard deviation of 0.32% (95 percentile range from -0.88% 

to -2.16%). The resulting dynamics for 𝜎(𝑡) is plotted in Figure C5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C5 | CO2-intensity output. Time paths for the exogenous CO2-intensity of output for three different 

parametrizations: The best-guess (black line) is the standard DICE 2016R2 assumption while the upper range 

(green line) and the lower range (red line) correspond to the 95% confidence interval in Nordhaus (2018).  
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 Total factor productivity (TFP) growth 

Total factor productivity is exogenous in the DICE 2016R2 model and evolves according to 

𝐴(𝑡) =
𝐴(𝑡−1)

1−𝑔𝐴(𝑡−1)
,         (9) 

where 𝑔𝐴(𝑡) = 𝑔0
𝐴 𝑒−𝛿

𝐴5𝑡 and 𝐴(0) is given.  

The baseline productivity growth rate of 7.6% per five years (see e.g. GAMS code of DICE 2016R2 

model) results in 1.48% p.a. on average. As curve shifters we consider the 66 percentile range for the 

initial rate of productivity growth 𝑔0
𝐴 as used in Nordhaus (2018, online appendix, Table A-2). The 

reported standard deviation of 0.93% implies a 66 percentile range between 0.55% and 2.41% 

productivity growth per year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C6 | TFP growth. Time paths for the exogenous rate of total factor productivity growth (TFP) for 

three different parametrizations: The best-guess (black line) is the standard DICE 2016R2 assumption while 

the upper range (green line) and the lower range (red line) correspond to the 66% confidence interval in 

Nordhaus (2018).  

 

D.  Methods for Figure 4: AR6-CPC  

So far our analysis has only relied on the DICE 2016R2 integrated assessment model as updated in Hänsel 

et. al (2020). To explore how the CPCs derived from this modelling framework compare to a more diverse 

set of models and modelling assumptions we use the IPCC AR6 Scenario Database (2022) to trace out the 

relationship between carbon pricing and temperature increase across AR6 model runs. From the raw 

data, we’ve extracted data on the 50.0th Percentile of Surface Temperature (GSAT) forecast for the year 

2100 from the FaIRv1.6.2 model and carbon prices in US$2010/t CO2 for the years 2025, 2030, 2050 and 

2100 for 1665 model runs. We excluded runs where temperature in 2100 was not available (N=157), thus 

leaving 1507 model runs. We used all carbon prices, as provided by the AR6, in US$2010/t CO2. We 

replaced non-existent or zero values in specific years—mostly in year 2025—by a carbon price of 0.01 

US$2010/t CO2 to be able to calculate growth rates. Next, we calculated an exponential growth rate of the 
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carbon price from 2025 to 2100. To compute the AR6-CPC equivalent to the ones derived from the 

updated DICE model, we base the AR6-CPC on all 879 data point pairs of 2025 carbon prices in-between 

$2 and $200 and 2100 temperatures. Specifically, we apply the nonlinear least-squares Marquardt-

Levenberg algorithm of gnuplot version 5.2 to fit a power function of the form 𝑓(𝑥) = 𝑎 𝑥𝑏 to the 

modelling data.
4 The estimated parameters and summary statistics of the non-linear fitting procedure are 

summarized in Table D1.  

 

 

Non-linear fitting statistics for AR6-CPC 

Sum of squares of residuals 144.949 

Degrees of freedom 877 

Standard deviation of residuals 0.406544 

Variance of residuals 0.165278 

Final set of parameters Asymptotic Standard Error 

a = 2.84078 +/- 0.07529 

b = -0.139534 +/- 0.008024 

 

Table D1 | Non-linear fitting statistics for AR6-CPC and final set of parameters 

 

 

Figure 4 in the main text shows the AR6 modelling data and the resulting AR6-CPC and compares 

them to the CPCs with the constant 4% and 6% growth rates based on the updated DICE model used in 

this paper. Figure 4 illustrates how the CPCs based on the updated DICE model by Hänsel et al. (2020) 

with constant growth rates of carbon prices relate to a CPC derived from the diverse set of models and 

assumption used in the IPCC AR6 report. 

 

  

. . . 

4. We have also tested the power function specification against alternative functions of the form 𝑓(𝑥) = 𝑎 ln(x) + b (log-

specification) and 𝑓(𝑥) = 𝑎x + b (linear specification). Among these functional forms, the power function specification 

minimizes the sum of squared residuals, which we used as the relevant criterion. 
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