
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

 

 
Center on Regulation and Markets Working Paper #5 
 
 
 
 
 
 
 
 
 
 

Non-Euclidean statistics 
beyond linear regression 
 

Aaron Klein and Joel Levine 
 

 

This working paper is available online at: https://www.brookings.edu/series/center-on-regulation-and-markets-working-papers/ 

 

The Center on Regulation and Markets at Brookings 
creates and promotes rigorous economic scholarship 
to inform regulatory policymaking, the regulatory 
process, and the efficient and equitable functioning of 
economic markets. The Center provides independent, 
non-partisan research on regulatory policy, applied 
broadly across microeconomic fields. 

December 2022 
 

https://www.brookings.edu/series/center-on-regulation-and-markets-working-papers/


Disclosure 
The Brookings Institution is financed through the support of a diverse array of foundations, corporations, 
governments, individuals, as well as an endowment. A list of donors can be found in our annual reports 
published online here. The findings, interpretations, and conclusions in this report are solely those of its 
author(s) and are not influenced by any donation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.brookings.edu/about-us/annual-report/


 

 1 

 
 

Non-Euclidean statistics beyond linear regression1 
 

Aaron Klein 
Senior Fellow 

Economic Studies 
Brookings Institution 

Joel Levine 
Professor Emeritus 

Quantitative Social Sciences 
Dartmouth College 

 
 
This paper considers the application of one type of advanced statistical model using three 
examples to demonstrate its ability to detect relationships in data that does not initially 
present either a numerical or ordinal scale. These three examples, socioeconomic status, 
movement of stock prices over time, and voting patterns within Congress, do not have 
any inherent relationship to each other. The three have been studied and analyzed to-
gether to show the ability of this model to detect interesting relationships.  

 
This AI model uses non-Euclidean statistical techniques to infer quantitative scales for 
variables, to estimate metric distances among attributes, and to evaluate the fit of the 
model in every cell of the tabular data by chi-square or other devices appropriate to the 
data. The model does not use linear regression as part of its techniques. Linear regres-
sion has been the traditional workhorse of econometrics and other empirical fields in so-
cial science. By avoiding the use of regression techniques and statistics, this model has 
the potential to uncover new insights.2 It also opens up a broader question of where future 
analysis can migrate as mathematical and computational abilities create opportunities for 
more sophisticated analytical tools than regression analysis.  

 
 
 
 
 
 
 
 
 
 
 
 

 
1 Computer code and assistance are available from the authors. 
2 A linear model with 12 columns would be asked to fit 12 column means. By contrast, for data with 12 
columns and 6 rows this model is asked to fit 74 cell values, using every detail of the tabulation. This allows 
the model to extract more information from the data and, perhaps counter-intuitively, this allows the model 
to infer a more-orderly-than-anticipated overview of the data. 
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Example 1:  Social economic status  
 

We begin with two well-researched and correlated elements of social economic status: 
educational attainment and income. Our data are shown in Exhibit 1, without usable labels 
(by which a human would be able to guess at order) and without numbers that a human 
could identify as a scale.   
 

 
Exhibit 1: 

Joint Distribution of Two Sets of Attributes — In Random Order with Labels Removed 

 
 

 
 

Our assumptions, however, will make statistic-like assumptions about the structure of 
these data. Specifically, while making sure that this hypothesis is falsifiable, we hypothe-
size that there exist 𝑥𝑥’s for the rows and 𝑥𝑥’s for the columns setting up a standard matrix. 
We also hypothesize that these numbers exist in a one-dimensional space, and we define 
distances (row i to column j) as the absolute value of the difference between the unknown  
𝑥𝑥’s for row 𝑖𝑖 and column 𝑗𝑗, Equation 1.3 

 
 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗 = �𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 − 𝑥𝑥𝑐𝑐𝑟𝑟𝑐𝑐𝑗𝑗�     (1) 
 

Mathematically, this initial model is simple. But as a hypothesis about the world behind 
the data it requires that the structure of the real world itself be simple—as the 72 row-to-
column distances will have to be derived at the cost of only 15 degrees of freedom (the 
15 intervals among the 16 objects in the space).4 We hypothesize that such distances 
exist but are unknown.    

 
If these distances and their space exist, we can find them by asking how they would 
manifest themselves in the data? Initially we suggest that when the distance between a 
row object and a column object is short, the joint frequency of that row and that column 
will be high and, more specifically, that the frequencies will attenuate as a negative expo-
nential of distance with attenuation parameter a. 

 
3 The second and third examples generalize to multiple dimensions and not-necessarily-Euclidean metrics. 
4 The number of rows minus 1, plus the number of columns minus 1, minus 1. 
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𝐹𝐹𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝐹𝐹𝑖𝑖𝑖𝑖  ≈  2−𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑑𝑑𝑖𝑖𝑗𝑗

𝑎𝑎
    (2) 

shown with 𝑑𝑑 = 2       
 

 
 
 

If Equation 2 ‘worked’ it would be elegant: It would mean that the row attributes and col-
umn attributes could be quantified. It would mean that the initially unquantified attributes 
are linked by a linear central tendency (the ridge of Equation 2). And it would mean that 
even the deviations from the central tendency were orderly. We would give our program 
the ability to use this model by encoding the model as a function and allowing the program 
to move rows and columns of Exhibit 1 (i.e., change the 𝑥𝑥’s) until the re-arranged data 
matched the pattern of Equation 2 (with the match evaluated by chi-square error).     

 
But Equation 2 does not work. All six frequencies in column c (Exhibit 1) are high com-
pared to all six frequencies in column l, making it apparent that Equation 2 cannot match.   

 
However, Equation 2 can be augmented by row and column effects used as multipliers, 
𝑅𝑅𝑖𝑖 and 𝐶𝐶𝑖𝑖 .𝐸𝐸𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑖𝑖𝐸𝐸𝑑𝑑 3.  In this form the model has five parts—a constant effect, row effects, 
column effects, interaction effects, and the inevitable residuals. The program can estimate 
these effects using the chi-square statistic as an objective function, Equation 4.   

 
𝐹𝐹(𝑖𝑖, 𝑗𝑗 ) ≈  𝑅𝑅𝑖𝑖𝐶𝐶𝑖𝑖2−� 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑑𝑑𝑖𝑖,𝑗𝑗�

a
          (3) 

with  𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖,𝑖𝑖 =  �𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 − 𝑥𝑥𝑐𝑐𝑟𝑟𝑐𝑐 𝑖𝑖�  
 

Chi-Square Error = ∑ �𝐹𝐹𝑖𝑖𝑗𝑗−𝐹𝐹�𝑖𝑖𝑗𝑗�
2

𝐹𝐹�𝑖𝑖𝑗𝑗 𝑖𝑖,𝑖𝑖          (4)  

 
We hypothesize that this augmented relationship is appropriate to the data and let the 
program search for the parameters that create the best fit. Through computational brute 
force, it evaluates the goodness of fit with which the initial parameters fit the data.5 It 
increases or decreases the parameters, one at a time—deciding which is the better value. 
By repeating these small steps tens of thousands of times, within seconds of real time, it 
arrives at a solution.6 

 
5 Demonstrated in Appendix 1. 
6 Even so, the run time of large examples runs to hours and days 
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Executing the search, the model reaches a least chi-square of 37.24. The result is good:7 
Using the standards for null hypotheses as a rule of thumb by which to evaluate the hy-
pothesis, if chi-square with 39 degrees of freedom is within the interval 39 ± 8.83 (± one 
standard deviation) or 39 ± 17.66 (± two standard deviations)—which it is—then there is 
no compelling evidence of error.   

 
Because positive hypotheses cannot be accepted or rejected (as the mirror image of null 
hypotheses) this close fit does not prove the positive hypothesis. But the close fit demon-
strates that the positive hypothesis is sufficient to exhaust the information present in these 
data. The solution is a good match.   

 
The fitted values for the data displayed in Exhibit 2 show how the model has quantified 
the relationships between income and education. The data on top of the cell shows the 
frequency of the observed pairing with the model generated fitted frequency below it. Next 
to each row and column are shown the plot point in a uni-dimensional axis. Those points 
are then shown in Exhibit 3 which displays the model’s solution on a uni-dimensional axis 
that effectively pairs income with educational attainment.8 Properly labelled, the aug-
mented model has ‘figured out’ that education and income are two scalable variables and 
that they have a strongly correlated linear relation whose common attribute is social eco-
nomic status. 
 
Ordinarily the overview of a study of education and income begins with the overview al-
ready in hand, prior to the analysis. The variables are in hand and the research adds 
detail and assess the strength of the relation.    

 
By contrast, here our advanced model, with its data-fitting metric space, infers much of 
the structure of the variables and their attributes directly from the data.  

 
It is the attempt to fit all of the cells that allows us to extract information for which regres-
sion requires exogenous sources or assumptions regarding the relationship between the 
data (integers, ordinality, etc.). It is the goodness of fit achieved that demonstrates that 
what the model has inferred is consistent with the data. 
 

 
 
 
 
 

 
7 For simplicity, we have started with 𝑑𝑑 = 2, the power of distance as it would be if he data were bivariate 
normal.  The resulting makes it clear that either “2” is correct or else the remaining information in the resid-
uals is insufficient for a better estimate. 
8 For simplicity we started with the power of distance, 𝑑𝑑,  set equal to 2, as it would be if the data were 
bivariate normal.   Having then discovered that the close fit achieved with 𝑑𝑑 = 2 exhausts the information 
in the data (low chi-square) , we have left the estimate at a = 2.    
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Exhibit 2: 
Frequencies, Fitted Frequencies, Estimated Multipliers and Estimated Coordinates 

 
All 
multi-
plier 

              

4.25  Col Multipli-
ers 

5.771 7.806 23.818 1.186 1.231 4.176 1.049 0.077 1.503 0.032 0.138 0.286 

  X Coordi-
nates 

1.677 1.510 0.931 0.572 0.486 -0.160 -0.331 -
0.388 

-0.747 -
0.934 

-
1.054 

-
1.562 

Row 
Multi-
pliers 

X coor-
dinates 

Observed 
and Fitted 
Values 

8 or 
less 

Less 
than 
high 
school 

High 
school 

Junior 
college 

Associ-
ate’s 

Bachelor’s Master’s MBA Graduate MD Law PhD 

               
0.307 0.932 Under $10 

thousand 
22 41 120 6 6 11 3 0 2 0 0 0 

   21.73 34.23 131.66 5.99 5.93 10.09 1.92 0.13 1.18 0.02 0.05 0.02 
               
0.492 0.453 Under $20 

thousand 
20 34 173 12 11 30 3 1 4 0 1 0 

   18.12 31.88 180.25 10.41 10.90 28.51 6.07 0.42 4.91 0.07 0.25 0.15 
               
1.068 0.282 Under $40 

thousand 
27 45 36 20 20 62 16 1 17 0 0 0 

   28.86 52.79 342.52 21.53 23.02 70.16 15.55 1.09 13.89 0.22 0.77 0.52 
               
1.691 -0.063 Under $80 

thousand 
20 32 379 25 34 131 30 1 26 1 1 2 

   21.62 42.81 366.55 27.34 30.46 126.50 30.43 2.19 33.14 0.57 2.13 1.84 
               
2.853 -0.564 Under $170 

thousand 
10 22 253 28 29 195 53 3 77 0 1 8 

   9.15 20.33 260.47 24.93 29.47 191.83 51.96 3.89 75.53 1.49 6.00 7.37 
               
1.288 -1.041 $170 thou-

sand or over 
1 5 32 3 5 54 17 2 34 1 5 5 

   0.80 1.99 37.37 4.53 5.67 56.64 17.18 1.34 32.87 0.73 3.20 5.50 
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Exhibit 3: Social Economic Status Data Space Educational Degree by Family Income 
(6x12) 
 

 
Chi-Square = 37.24 with 39 Degrees of Freedom 
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The model’s ability to recreate the known rank order of impact with unknown data is a 
significant validation of the overall approach. It is also a reminder that rank order data is 
commonly misused in linear regression. Linear regression analysis requires data that are 
integers. Assigning rank order values to numbers does not imbue integer status. Integers 
are by definition evenly spaced between each other. If a college degree is given the num-
ber 3, high school 2, and graduated school 4, the assignment does not imbue integer 
status on the actual relationships. However, it forces the mathematical models to treat the 
differences as having constant value between accomplishments. 

 
However, perhaps for lack of a solution, many social scientists seem to wave away this 
problem and treat ordinal data as integers.9 For example, ordinal data is represented by 
integers but using the properties of real numbers. This can be seen in the survey process 
of assigning a rank order value of 1-10 in answer to a standardized question produces a 
set of rank order data. For each person, an answer of eight is greater than that of seven 
and less than that of nine. However, the difference between seven and eight is not nec-
essarily equal to that between eight and nine. Thus, the mathematical operation of aver-
aging, or computing the sum of squares of error produced by the line of best fit, is not 
valid. It can be done; many mathematical operations can be performed, regardless of 
whether they make sense. Ask a computer to average ‘satisfied,’ ‘happy,’ ‘ecstatic,’ ‘ap-
oplectic,’ and there will be no answer. Assign those values five, seven, nine, and two, and 
the computer will spit back an average of 5.75. That hardly makes the average experience 
of the group that level. 

 
Put another way, an exciting application of this solution is that it is no longer necessary 
to assume that ‘happy’ is one unit greater than ‘satisfied’ and one unit less than ‘ecstatic’. 
That is not in the data. And the solution allows us to estimate the scale from the evidence 
as people experience it. 

 
 

Example 2:  Time series without time 
 

For a second demonstration, we move to a different target: Time. Whereas the prior var-
iables of education were not ordinal, time is. Time is a variable on a uniform scale, the 
distance between days remains constant. We withhold this information from our model, 
which is challenged with the data and the requirement to order it, without the information 
that the variable being searched exists on an interval scale.  

 
The data are shown schematically in Exhibit 4. They provide twenty years (5,033 dated 
columns) of prices for 352 components of the S&P 500 over 20 years. These are the 352 
members of the present ‘Standard & Poor’s 500’—for which there is a 20-year record. For 
these data, stripped of their labels, time will be treated as an unknown that needs to be 
inferred from the data.    
 

 
9 Liddell, Kurschke. “Analyzing ordinal data with metric models: What could possibly go wrong?” Journal of 
Experiment Social Psychology 79 (November 2018). 



 

 8 

 
Exhibit 4: Excerpt for stock prices in time series 

 
S&P 
500 

1498.58 1505.97 1494.73 1487.37 1501.34 … $2526.90 

A $74.39 $70.10 $66.88 $69.34 $75.10 … $72.29 
AAPL $4.85 $4.76 $4.55 $4.66 $4.47 … $244.93 
ABC $3.75 $3.66 $3.89 $4.01 $4.20 … $83.89 
ABT $15.75 $16.56 $17.65 $18.35 $16.92 … $79.44 
ADBE $27.83 $26.39 $25.44 $26.80 $28.66 … $303.96 
ADI $80.50 $74.19 $71.00 $72.97 $78.81 … $87.70 
ADM $9.82 $10.00 $10.06 $10.12 $10.24 … $34.33 
ADP $38.06 $39.44 $40.23 $39.59 $41.36 … $131.55 
… … … … … … … … 

 
Withholding the known dates and applying our model calibration to the assumed-to-be-
unknown variable time, the procedure is identical to that of the first example except for 
goodness of fit. For price data, goodness of fit has been measured by least squares ap-
plied to natural log prices and fitted log prices. With this change the result is shown in 
Exhibit 5. (For these data the procedure demonstrated in Appendix I continues to apply.) 

 
For this result the point of interest is the overview. The remarkable thing about Exhibit 5 
is that it exists at all: Instead of using physical time to mark the data prior to analysis, 
“market time” has been inferred directly from behavior. As ordinary physical time is in-
ferred from physical behavior, the graph indicates that behavioral time—the time period 
it takes for behavior to change—exists, and that behavioral time can be inferred from 
behavioral data. While market averages moved up and down during these years (Exhibit 
5), market time (generally) moved ‘forward,’ albeit at different rates relative to physical 
time. 

 
This result shows that market time exists, and it is quantifiable. What “market time” is is 
a rate of differentiation: If stock #1 is moving up by at a certain rate per unit of time and 
stock #2 is moving down by a certain rate per unit time, then the spread between the two 
increases over time. The search has extracted “time” from the spread.  If “market time” 
increases positively with physical time, then the differentiation is increasing, on average, 
across the data.   

 
In 2008-2009, as the market average fell, while “time” or “differentiation” accelerated com-
pared to the rate of differentiation that had prevailed for the previous eight years. For a 
few months in 2009, the differentiation reversed—it went backward as shown by the de-
cline just after the local peak during the middle period in the graph—after which the long-
term trend of differentiation resumed the trend of the previous nine years. This demon-
strates the model’s ability to detect not only the shock of the financial crisis but the change 
in the speed of the market itself, which shifted during the financial crisis. The AI has in-
ferred from data in an objective process something that market participants speak of as 
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anecdotal inference: during the 2008 financial panic days felt like months and months felt 
like years.   

Exhibit 5: 
Market Time versus Clock Time 

 
                                                      
 

 
Exhibit 6: 

Standard & Poor’s 500 Average (Log Scale) versus Clock Time 
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Two-dimensional time series 
 

For initial exploration it is useful to demonstrate that AI-based quantification is consistent 
with or not in conflict with traditional quantification. But it is also useful to take an initial 
peek into the future, into what mathematics and data analytics might discover that tradi-
tional quantification cannot. For these data, they could expand time series into two di-
mensions—with interesting initial results.   
 
Expanding time series to 2 dimensions and generalizing distance to Minkowski metrics 
(that include the Euclidean metric), we generalize distance to the definition in Equation 5. 

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖,   𝑐𝑐𝑟𝑟𝑐𝑐 𝑖𝑖 =  �∑ �𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖,𝑑𝑑 − 𝑥𝑥𝑐𝑐𝑟𝑟𝑐𝑐 𝑖𝑖,𝑑𝑑�
𝑀𝑀𝐷𝐷

𝑑𝑑=1 �
1
𝑀𝑀�                             (5) 

 
For dimensions 1 through dim, and Minkowski parameter M > 0.10 
 
With this extension, the same model using the same equations as earlier, with the same 
chi-square optimization function, is asked to search the data for empirical evidence of the 
two-dimensional theoretical pattern described by the equation. And the result is extraor-
dinary, as shown in Exhibit 7. On the time scale of 20 years, the market has redistributed 
value with great regularity, with long trends punctuated by orthogonal change. 
 
The direction of the market can be thought of as the set of public companies whose equity 
prices are appreciating at different speeds relative to the market average. This is constant 
over long periods of time. The model depicts these as nearly straight lines on the graph. 
For two-plus years, from March 2000 into the third quarter of 2002 stocks shown on the 
left side of the space were gaining relative to stocks on the right ( second and third quad-
rants over the first and the fourth). Whether by coincidence or by cause, the market con-
tinued in this direction until it was interrupted, after which the market turned abruptly in a 
new direction (with almost orthogonal sets of winners and losers).  
 
This period corresponds with the dot-com crash and accounting scandals, both of which 
had major impacts on equity prices. The magnitude of the accounting scandals, some-
times referenced by two of the largest accounting failures of Enron and WorldCom, is 
often overlooked. However, the decline in the S&P during the accounting scandal period 
is comparable to that of the other major equity crashes during the twenty-year period the 
data covers. 
 
After these corrections, the market maintained a new direction for 7 years until again it 
was interrupted by a crash (the financial panic of 2008), after which it abruptly executed 
another sharp turn. Post financial panic, the market then changed again, engaging in a 
uni-directional movement for the next 11 years. 

 
10 Technically, for M>=1 the result is a distance, while 0<M<1 is a semi-distance for which the triangle 
inequality fails. 
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With a nod to Stephen Jay Gould’s ‘punctuated evolution,’ the evidence suggests that 
market ‘evolution’ during these years has been punctuated: For long intervals, 2 years, 7 
years, and 11 years, market movement was stable in one direction until, abruptly and 
coincident with a crisis, it changed direction, and returned to gradual ‘evolution’ in a new 
almost-orthogonal direction.11 
 

Exhibit 7: The Time Line 
Estimate Coordinates Describing the Twenty Year Trend of Daily Prices or S&P 500 Stocks 

that have a Twenty Year Record 

 
Sum of squared log errors = 87,315.646,  𝑑𝑑 ≈ 5.523, 𝑀𝑀 ≈ 325.651 

 
11 The sum of squared errors is 87,315.6, (with attenuation a ≈ 5.523 and Minkowski metric M ≈ 325.651.   For 
comparison, the sum of squared errors from 352 regressions (one for each stock) is 204,719.3.  If the data are 
‘corrected’ for changes in the S&P average (dividing stock prices by the S&P) — the sum of squared errors from the 
352 regressions is reduced to 179,700.6.  Thus, the error shown here is approximately half (49%) of the comparable 
regression error. 
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Example 3: The two-dimensional Senate 
 
The third demonstration is applied to the quantification of partisanship in the current U.S. 
Senate: The U.S. Senate and, presumably, the data for the Senate will show partisan 
polarization, Republicans versus Democrats—a one-dimensional split. 
 
It would hardly be an accomplishment should our analysis concur with this partisan split. 
The question for this example is whether AI quantification can show more.12 
 
Our data for this question is the record of all 241 roll call votes for the 2021 U.S. Senate, 
January 6, 2021, through June 17, 2021, shown schematically in Exhibit 8. 

 
Exhibit 8: 

U.S. Senate Roll Call Votes (“Yea”, “Nay”, or not voting) 
January 6, 2021 through June 17, 2021 

 
Source: Civic Impulse, LLC: www.govtrack.us, June 17, 2021 

 
For this analysis we think of each roll call as a split into two coalitions, a coalition of the 
“yeas” and a coalition of the “nays,” forming 482 coalitions for the 241 roll calls.  We think 
of each senator as a coalition of size 1 that intersects with some of these 482 coalitions. 
We think of the data as frequencies—as the number of links between each senator and 
each of the 482 coalitions. With these 0’s and 1’s as frequencies we continue to use chi-
square as the objective functions, as it was used for the frequencies in the social eco-
nomic status data. The same equations from the prior models are utilized, just changing 
the data to senators and their votes. 
 

 
12 See Hanson, 1998 for an earlier attempt at similar analysis using a more primitive AI given the computing 
power available at that time.  

http://www.govtrack.us/
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Moving past the obvious (that the Senate is polarized) the two-dimensional quantification 
is shown in Exhibit 9. This breaks down the senators on the basis of their votes, showing 
clear cleavages into two major partitions, Democrats and Republicans.   
 
Here as in the previous example, the point of interest is the overview: The overview is 
that there is a second dimension. The first dimension (horizontally) suggests partisanship 
dividing the Senate. One can clearly see the Democrats clustering on one side and the 
Republicans on the other. The second dimension (vertically) suggests factionalism that 
divides the parties, with differences observed among each party on that dimension. 
 
Between parties—between an approximate middle of the Democrat’s cluster and an ap-
proximate middle of the Republican’s cluster—the distance is roughly two units (in this 
metric). Within parties, and particularly within the Republican, the distances between the 
outlying factions and the party leaders is of the same order of magnitude. 
 
Among Democrats, Exhibit 10 (right-hand side of the first map) factionalism is clear but 
limited when it comes to a vote. Factions are clear, with two well-known liberal senators, 
Warren (D-RI) and Sanders (I-VT), at one end and party leadership near the other. But 
when it comes to these recorded votes, the division is limited (with comparatively little 
variation).    
 
Among Republicans, Exhibit 11 (left-hand side of the first map) the factional distance 
between the self-described libertarian13 Senator Paul (R-KY) and Republican leadership 
is of the same order of magnitude as the distance between Republicans and Democrats.14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
13 Hartsoe, Steve. “Rand Paul on How Libertarian Philosophy Can Connect Divided Partisans.” Duke Today, 
November 9, 2018. https://today.duke.edu/2018/11/rand-paul-how-libertarian-philosophy-can-connect-di-
vided-partisans 
14 The Senate identification number of each vote and each coalition of “yeas” and “nays” is also indicated 
on the map.   At the cost of legibility, these have been shown in their true positions, showing the densely 
packed clumps of apparently politically equivalent roll calls. 
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Exhibit 9: 
Partisanship and Factionalization: The Two Dimensional Senate 

 
 

Exhibit 10: Democrats 
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Exhibit 11: Republicans 

 
 

The model has sorted the entire U.S. Senate along two axes, picking up both the partisan 
sorting as well as clustering within parties. The within-party differentiation on two axes 
produces two different set of end points. Among Republican senators, Sen. Collins (R-
ME) is at one end, closest to the Democrats on the more dominant x-axis. However, along 
the less dominant but still important y-axis, Sen. Portman (R-Oh) becomes the Republi-
can closest to the Democrats.  
 
A close examination of the y-axis differentiation yields substantial overlap of the Republi-
can leaders who formed the so-called ‘Gang of 20’ to negotiate the bipartisan infrastruc-
ture legislation the Senate recently passed. This group, led by Senator Portman, including 
Senators Moran (R-Kansas), Blunt (R-MO), and Graham (R-SC), was in essence pre-
dicted by the model using a set of roll call data produced before consideration of the 
infrastructure legislation. 
 
This is quite interesting as traditional classification would not have labeled some of these 
senators as the most likely to find bi-partisan consensus. The traditional metrics listed 
Senator Blunt as the 25th most conservative senator and Senator Moran ranks 30th.15 
 
Similarly, for the Democrats, while Senator Machin (D-WV) is clearly the most conserva-
tive Democrat on the dominant x-axis, Senator Tester (D-MT) becomes the most 

 
15 Govtrack ideological rankings for 2019 legislative year.  https://www.govtrack.us/congress/members/re-
port-cards/2019/senate/ideology 
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‘Republican’ Democrat on the y-axis. Both were leaders of the Gang of 20 for the Demo-
crats, indicating that the AI is able to determine multiple dimensions of partisanship.  
 
Discussion: New science / old principles 
 
New advances in data analysis enable social scientists to make progress by using data 
in novel ways. It is Newton and Leibnitz’ calculus that made least squares curve fitting 
practical. It was tables of probability distributions, hand-computed over decades in the 
19th century, that enabled 20th century scholars to test results against null hypotheses.   
 
But “soft science” as it is now practiced with these methods is a struggle against at least 
two problems. One is a paucity of valid quantitative variables. The other is the basic prob-
lem of exacting positive information from the rejection of null hypotheses. As B.F. Skinner 
might have put it in describing the ineffectiveness of punishment as a device for learning: 
There are just too many ways to be wrong. Basically it is only binary tests—Yes/No, 
True/False, Same/Different—for which disproving a null has the effect of “proving” a pos-
itive result. 
 
But when a scientist is ‘exploring’ the data, when a scientist has twenty possibly ‘causal’ 
variables to consider, a clean implementation of a test against a clear null hypothesis 
becomes difficult. If for each variable the probability of a false positive is .05, then proba-
bility of one or more false positives is 0.65, i.e., greater than even. If any one of the twenty 
variables has a strong result, the scientist should follow up (and publish the preliminary 
result). But the scientist cannot (yet) claim statistical “proof.” The problem is that while the 
strategy of inventing and testing against null hypotheses is brilliant in its place, its place 
is limited. 
 
The solution would appear to be simple, Above we have used simple hypotheses: That 
numbers exist, that relations exist, that row and column effects exist, and that there is an 
overall distribution to which a joint distribution of data conforms. The trouble is that the 
simplicity of an idea can be quite unrelated to the computational difficulty of putting it to 
work. 
 
Computing power and advanced data analytics together are cracking this barrier at the 
speed of Moor’s Law. In this work we have addressed the problem of quantifying varia-
bles. We have reverse-engineered quantity from the pattern it imposes on data. The 
mathematics of a linear relation sometimes hold. The mathematics of negative exponen-
tials has been practical for about two centuries. The mathematics of separating effects 
into row effects, column effects, and constants, dates back at least a century. But the 
technology for putting these technologies together is new. 
 
Our emphasis has been on validating the results achievable with advanced methods. The 
first example acts as if categories of income and education had no known scale or order 
and then reverse-engineers their numbers from the data. The second example reverse-
engineers time from time series data of prices. The third example reverse-engineers par-
tisanship and factionalism from unlabeled votes in the U.S. Senate. In each case data 
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values implied by the constructed quantities are a good fit to the actual data. And both of 
the latter examples show preliminary evidence that quantification may lead beyond num-
bers to new understandings of data. 
 
This paper demonstrates the capacity of non-parametric statistical models to go beyond 
the capacity of linear regression to facilitate understanding of the relations present in well-
studied data and to reveal order that, in some data, evades ordinary regression. New 
statistical tools combined with new computational power allow for new methods of analy-
sis facilitating an understanding that linear regression does not always allow. It has the 
potential to overcome some commonly used assumptions of linearity and ordinal relation-
ships in data that are not true. 
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Appendix 
 
Figures A1  and A2 operationalize the model in Excel format 
 
In A1 there are three tables:  Table 1 is the data for education and family income, showing labels and 
frequencies. 
 
In A1 Table 2 is a starting configuration from which to minimize error. Row and column multipliers are 
initialized with the row and column multipliers of an ordinary “null model” for frequency data.  In the null 
model row multipliers are row sums divided by the square root of the “n” for the full table.  Column multipliers 
use the corresponding computation for columns. 
 
In this starting configuration the coordinates are initialized randomly, using Excel’s rand() fuction  at for all 
x’s.   
 
In A1 Table 3 shows the components of the chi-square, cell by cell, with total total chi-square of 664558 
 
Figure A2 is identical to Figure A1 with a single exception:   One coordinate has been increased resulting 
in a modest improvement of goodness of it.   The search for order has begun.  
 
 
 

Figure A1  
8 or 
less 

Less than high 
school 

High school Junior 
college 

Associate’s Bachelor's Master's MBA Graduate MD PhD Law 

$170K + 1 5 32 3 5 54 17 2 34 1 5 5 
<$170K 10 22 253 28 29 195 53 3 77 0 8 1 
<$80K 20 32 379 25 34 131 30 1 26 1 2 1 
<$40K 27 45 360 20 20 62 16 1 17 0 0 0 
<$20K 20 34 173 12 11 30 3 1 4 0 0 1 
<$10K 22 41 120 6 6 11 3 0 2 0 0 0 

 
Sum: 2593 
 
    

8 or 
less 

Less 
than 
high 
school 

High 
school 

Junior 
college 

Associate Bachelor's Master's MBA Graduate MD PhD Law 

  
Col Mult 1.964 3.515 25.863 1.846 2.062 9.485 2.396 0.157 3.142 0.039 0.295 0.157   
Col x's 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

4.25 
              

 
Row Mult Row x's 

            

$170K + 3.221 0.000 6.32 11.32 83.30 5.95 6.64 30.55 7.72 0.51 10.12 0.13 0.95 0.51 
$170K 13.334 0.000 26.19 46.87 344.87 24.61 27.50 126.48 31.95 2.09 41.90 0.52 3.93 2.09 
$80K 13.393 0.000 26.30 47.08 346.39 24.72 27.62 127.04 32.09 2.10 42.08 0.53 3.95 2.10 
$40K 11.154 0.000 21.91 39.21 288.49 20.59 23.00 105.80 26.72 1.75 35.05 0.44 3.29 1.75 
$20K 5.675 0.000 11.15 19.95 146.78 10.48 11.70 53.83 13.60 0.89 17.83 0.22 1.67 0.89 
$10K 4.144 0.000 8.14 14.57 107.17 7.65 8.54 39.30 9.93 0.65 13.02 0.16 1.22 0.65   

Chi-Sq by 
cell 

            

   
4.483 3.529 31.590 1.459 0.405 18.003 11.170 4.411 56.354 6.032 17.300 39.915    
10.005 13.199 24.472 0.466 0.082 37.123 13.874 0.391 29.410 0.524 4.222 0.572    
1.510 4.830 3.070 0.003 1.475 0.124 0.136 0.579 6.146 0.427 0.959 0.579    
1.185 0.855 17.725 0.017 0.391 18.134 4.304 0.323 9.294 0.438 3.286 1.752 
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7.035 9.894 4.682 0.221 0.042 10.551 8.259 0.013 10.730 0.223 1.672 0.013    
23.617 47.973 1.536 0.356 0.758 20.382 4.834 0.651 9.327 0.163 1.221 0.651 

               
  Chi-sq 571.3            

 
 
 
 
 
Where the initial (null model) row multiplier in cell B15 is 
 

𝑓𝑓𝑥𝑥 = 𝑆𝑆𝑆𝑆𝑀𝑀(𝐷𝐷2:𝑂𝑂2/$𝐵𝐵$8^0.5) 
 
Where  the initialized (null model) column multiplier in cell  D12 is 

 
𝑓𝑓𝑥𝑥 = 𝑆𝑆𝑆𝑆𝑀𝑀(𝐷𝐷2:𝐷𝐷7)/$𝐵𝐵$8^0.5 

 
With fitted values as specified by Equation 2. For cell D16 the Excel expression of Equation 2 is 
 

𝑓𝑓𝑥𝑥 = $𝐵𝐵16 ∗ 𝐷𝐷$12 ∗ 2^ − (𝐴𝐴𝐵𝐵𝑆𝑆($𝐶𝐶16 − 𝐷𝐷$13)2) 
 
The Excel expression for the chi-square contribution from cell D24 is 
 

𝑓𝑓𝑥𝑥 = ((𝐷𝐷2 − 𝐷𝐷16)2)/𝐷𝐷16) 
 
And the table chi-square in cell D31 is 
 

𝑓𝑓𝑥𝑥 = 𝑆𝑆𝑆𝑆𝑀𝑀(𝐷𝐷24:𝑂𝑂29) 
 
 
 
 

Figure A2  
8 or 
less 

Less 
than 

High 
scho 

Junior 
coll 

Associ-
ate 

Bache-
lor's 

Mas-
ter's  

MBA Gradu-
ate  

MD PhD Law 

$170K+ 1 5 32 3 5 54 17 2 34 1 5 5 
<$170K 10 22 253 28 29 195 53 3 77 0 8 1 
<$80K 20 32 379 25 34 131 30 1 26 1 2 1 
<$40K 27 45 360 20 20 62 16 1 17 0 0 0 
<$20K 20 34 173 12 11 30 3 1 4 0 0 1 
<$10K 22 41 120 6 6 11 3 0 2 0 0 0 

 
    

8 or less Less than 
high 
school 

High school Junior 
college 

Associate Bachelor's Master's MBA Graduate MD PhD Law 

  
Col 
Mults 

1.964 3.515 25.863 1.846 2.062 9.485 2.396 0.157 3.142 0.039 0.295 0.157 
  

Col x's 0.163 0.464 0.226 -0.265 -0.248 0.034 0.179 0.360 0.341 -0.295 0.288 0.292 
4.25 

              
 

Row Mults Row 
x's 

            

$170K + 3.221 0.409 6.07 11.30 81.39 4.34 4.92 27.71 7.44 0.51 10.09 0.09 0.94 0.50 
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<$170K 13.334 -0.069 25.22 38.49 324.68 23.97 26.89 125.56 30.61 1.84 37.30 0.51 3.60 1.91 
<$80K 13.393 -0.428 20.65 27.13 257.59 24.27 27.01 109.61 24.86 1.37 27.95 0.52 2.77 1.47 
<$40K 11.154 -0.096 20.91 31.54 268.47 20.19 22.63 104.57 25.36 1.52 30.71 0.43 2.97 1.58 
<$20K 5.675 -0.146 10.43 15.42 133.39 10.37 11.62 52.65 12.64 0.75 15.14 0.22 1.47 0.78 
<$10K 4.144 0.199 8.13 13.87 107.12 6.59 7.44 38.56 9.92 0.64 12.84 0.14 1.21 0.65   

Chi-Sq 
by cell 

            

   
4.231 3.510 29.974 0.414 0.001 24.937 12.286 4.424 56.689 9.235 17.55

7 
40.37
9    

9.189 7.064 15.823 0.678 0.166 38.408 16.373 0.724 42.257 0.505 5.396 0.436    
0.020 0.876 57.225 0.022 1.811 4.174 1.062 0.099 0.137 0.444 0.212 0.150    
1.776 5.740 31.204 0.002 0.307 17.333 3.453 0.176 6.121 0.426 2.966 1.579    
8.775 22.394 11.763 0.255 0.033 9.742 7.352 0.086 8.196 0.219 1.467 0.062    
23.663 53.034 1.550 0.052 0.278 19.701 4.832 0.639 9.152 0.137 1.214 0.647    
47.653 92.618 147.539 1.423 2.595 114.294 45.358 6.149 122.552 10.96

8 
28.81
2 

43.25
2   

Chi-
Square 

663.2136
043 

           

  
Chi-
Square 

664.5583
589 
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