ECONOMIC IMPACT PAYMENTS AND HOUSEHOLD SPENDING DURING THE PANDEMIC

Discussion by Matthew Rognlie, Northwestern

Brookings Papers on Economic Activity Fall 2022

THIS PAPER: LATEST IN A LINE OF IMPORTANT RESEARCH!

Successor to Johnson, Parker, Souleles (2006) and Parker, Souleles, Johnson, McClelland (2013), among others

- ► Needed to work harder this time
 - ► little variation in timing, no random variation
 - ► use cross-sectional variation in receipt and amount

- ► Ultimately convincing, despite weaker internal validity
 - Stronger external validity than various studies using administrative data

KEY FINDING: A DECREASE IN ESTIMATED MPCS?

Table VI: Estimated MPCs on CE-measured non-durable goods and some services

	Full Sample,	Recipients Only,	Full Sample			
	Three-months	Three-months	Three months of receipt			
	of receipt	of receipt	and subsequent three months			
2001 Economic Rebates	0.386	0.247	0.691*			
	(0.135)	(0.213)	(0.260)			
2008 Stimulus Payments	0.121	0.308	0.347			
I our but stil	(0.055)	(0.112)	(0.155)			
2020 EIP 1	0.102	-0.062	0.124			
significant _	(0.028)	(0.072)	(0.068)			
2020 EIP 2 for a subset	0.083		0.153			
	(0.039)	TT71 () *	(0.104)			
2021 EIP 3 of spending!	0.009	_ what's going	-0.030			
	(0.018)	on here?	(0.047)			

Source: Johnson et al. (2006)), Parker et al. (2013), and Parker et al. (2022) and current paper. The * denotes a large MPC driven in part by one outlier in spending on food.

LARGER WITH ALL GOODS AND SERVICES, LAGS ADDED

Table V: The longer-term response of consumer expenditures to EIP receipt

			Depend	dent variable	e: scaled dollar ci	hange in spen	ding on			
	Panel A: EIP1			Panel B: EIP2			Panel C: EIP3			
	Strictly non- durables	Nondurables	All CE goods and services	Strictly non- durables	Nondurables	All CE goods and services	Strictly non- durables	Nondurables	All CE goods and services	
<i>EIPn</i> _t	0.075 (0.020)	0.102 (0.028)	0.234 (0.059)	0.103 (0.031)	0.083 (0.039)	0.247 (0.090)	0.030 (0.016)	0.009 (0.018)	0.015 (0.043)	
\widetilde{EIPn}_{t-1}	-0.011 (0.020)	-0.080 (0.028)	-0.017 (0.070)	0.030 (0.038)	-0.013 (0.045)	0.107 (0.124)	0.000 (0.010)	-0.049 (0.019)	-0.150 (0.049)	
	Implied cumulative fraction of EIP spent over two three-month periods									
	0.139 (0.051)	0.124 (0.068)	0.452 (0.158)	0.235 (0.086)	0.153 (0.104)	0.601 (0.257)	0.059 (0.036)	-0.030 (0.047)	-0.119 (0.112)	
rge frac	tion spe	ent within	1/			+				
nonths,	especia	ully for			Crazı	v low for	· EIP3.	Possibly	hard to	
P2, tho	P2, though big error			disentangle lagged effects of EIP2 and						
rs and below some			EIP3 given limited independent variation							
evious e	stimate	S			Or something else iffy about EIP3 #s?					

BOTTOM LINE: MPCS PROBABLY SMALLER BUT STILL THERE

- ► Not too surprising given:
 - households with much more liquidity than usual
 - Imited consumption opportunities during pandemic

- My question: did this diminish or merely delay the transfer multiplier?
 - If delay: maybe payments did less than usual on impact, but continue to fuel demand right now?

SIMPLE MODEL OF DYNAMIC MULTIPLIERS

.

► Three groups:

- ► Hand to mouth: consume all income immediately
- Target: aim for a given bond target, consume fraction of gap between bond and target each quarter (microfound with diminishing utility from bonds)
- Long-term savers: standard representative agent, hold any income forever and consume interest 'r' on it
- ► Expectations can be myopic or rational
- Calibration: r=0, β=1, government either increases debt permanently or pays back in far future (at date we'll ignore)
- ► In background: sticky wages, ultimately demand-determined production

SIMPLE MODEL OF DYNAMIC MULTIPLIERS

- ► Three groups: / Why both? Needed to match intertemporal MPCs!
 - Hand to mouth: consume all income immediately
 - Target: aim for a given bond target, consume fraction of gap between bond and target each quarter (microfound with diminishing utility from bonds)
 - Long-term savers: standard representative agent, hold any income forever and consume interest 'r' on it
- ► Expectations can be myopic or rational
- Calibration: r=0, β=1, government either increases debt permanently or pays back in far future (at date we'll ignore)
- ► In background: sticky wages, ultimately demand-determined production

THE CUMULATIVE TRANSFER MULTIPLIER

Result: the **cumulative** multiplier on a transfer, assuming no monetary feedback (i.e. r constant), is always

1 – share of transfer given to saver marginal share of output earned by saver

THE CUMULATIVE TRANSFER MULTIPLIER

Result: the **cumulative** multiplier on a transfer, assuming no monetary feedback (i.e. r constant), is always

1 – share of transfer given to saver marginal share of output earned by saver

- ► Why? Multiplier logic, **just cumulative** over time:
 - Non-savers ultimately spend what they receive, that spending creates income, the non-savers will ultimately spend everything that doesn't leak to saver, and so on...

THE CUMULATIVE TRANSFER MULTIPLIER

Result: the **cumulative** multiplier on a transfer, assuming no monetary feedback (i.e. r constant), is always

1 – share of transfer given to saver marginal share of output earned by saver

Implication: for the cumulative multiplier, the distinction between hand-to-mouth and target households doesn't matter, even though this is a big deal for the impact multiplier

ILLUSTRATIVE EXAMPLE, CALIBRATED FOR PRE-PANDEMIC

- ► Assume **shares of transfer** received by (rest to savers):
 - ► Hand-to-mouth: 20%
 - ► Target: 60%

- Assume target households consume 20% of excess bonds each quarter
 Aggregate 1-qtr MPC out of transfer:
 20%*1 + 60%*0.2 = 0.32
- ► Assume marginal shares of output:
 - ► Hand-to-mouth: 10%
 - ► Target: 40%

Cumulative transfer multiplier: 80% / 50% = 1.6

OUTPUT EFFECT OF DATE-0 TRANSFER: ROUNDS OF SPENDING

IF ALL NON-SAVERS WERE HAND-TO-MOUTH...

IF ALL NON-SAVERS WERE TARGET HOUSEHOLDS...

BACK TO OUR MAIN CASE...

UNDER THE HOOD: EXCESS SAVINGS "FILTERING" DOWN TO SAVERS

Those with high MPCs spend, leaving bonds in the hands of those with low MPCs - so excess savings become steadily less potent for aggregate demand

FILTERING OF SAVINGS: EASY TO SEE IN THE DATA!

From Aggarwal, Auclert, Rognlie, Straub (2022), based on JP Morgan Chase data

Bottom-80% balances spike with checks, but dwindle; top-20% balances just keep growing!

MORE FILTERING IN THE DATA: CREDIT CARD DEBT ROARING BACK?

Household credit card debt (in billions, NY Fed)

MODIFY OUR EXAMPLE TO GET LOWER MPCS

- Assume hand-to-mouth and target households temporarily have lower MPCs
 - Hand-to-mouth: 0.5 instead of 1 for 4 quarters, then quickly phased-in recovery to 1
 - ► Target: **0.1 instead of 0.2** for 4 quarters, then then quickly phased-in recovery to 1

Could result endogenously from more liquidity, or from shock to consumption

SAME CUMULATIVE MULTIPLIER, BUT MUCH SLOWER-MOVING!

UNDER THE HOOD: SLOWER FILTERING OF EXCESS SAVINGS

At 8 quarters non-savers still have 40% of excess savings, vs. 25% before - much more potent for aggregate demand!

THIS IS ONE NARRATIVE OF THE LAST 2.5 YEARS

- ► Huge fiscal interventions
 - Some just provided relief, offset negative shock
 - Didn't instantly create excess demand problem, because MPCs were (temporarily) low, and impact multipliers smaller than usual

- But this just meant delay, not a diminished multiplier
 - Bigger lagged demand impact than usual, and we're suffering the inflationary consequences now

DID THIS EXAMPLE MISS SOMETHING?

- We gave "hand-to-mouth" and "target" households temporarily low MPCs, but assumed they would revert to type and consume excess savings
 - unlikely they'll hold excess liquidity forever!

Alternative view: if they don't spend out of extra income, maybe they'll stow it away in long-run savings?

BUT WHAT KIND OF LONG-RUN SAVINGS?

- Vehicle with the broadest potential is retirement accounts, but no big change apparent there
 - e.g. "employee and employer 401(k) contributions remain relatively steady" - Munnell and Chen (2021)

- ► Two possibilities jump out:
 - housing (e.g. using EIPs and excess savings more generally for down payments)
 - retail stock market investment (see Greenwood, Laarits, Wurgler 2022)
 - ► ... and both the housing and stock markets surged!

NEEDED: LOOKING BEYOND THE CONVENTIONAL MPC

- Gabaix and Koijen "inelastic markets hypothesis": investing \$1 in stock market increases aggregate value by \$5
 - ► ... likely some (3%-7%) MPC out of that capital gain

Saving in equity or housing, rather than consuming, doesn't avoid pressure on aggregate demand—it's just redirected!

$$dY_0 = \frac{1}{1 - MPC - \mathbf{z'MPS}} \left(\partial C + \mathbf{z'}\partial \mathbf{A}\right)$$

From work in progress by Auclert, Rognlie, Straub, Wu: in a simple setting, the aggregate multiplier isn't just 1/(1-MPC), but depends on **pass-through coefficients z** - how much, ultimately, of \$1 invested in an asset finds its way back to aggregate demand

CONCLUDING THOUGHTS

► Great paper, capping many years of important work

► MPCs during the crisis were lower than usual

- ► but maybe spending just **delayed**
- ► and maybe **redirected** toward booming asset markets
- ► ... both with consequences today

Agenda going forward: to understand the full multiplier process, study flows across time and across assets