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Engineering value: The returns to technological talent 
and investments in artificial intelligence1 

Daniel Rock 
U. Pennsylvania, Wharton 

Abstract: This paper studies the extent to which firms also earn returns to their employees’ AI 
skill investments and what might drive this value capture. Employees with technological skills are 
highly complementary to the intangible knowledge assets that firms accumulate. Companies 
signal that they own assets complementary to AI by employing workers with AI skills. Using over 
180 million position records and over 52 million skill records from LinkedIn, I build a panel of firm-
level skills to measure the market value of exposure to newly available deep learning talent from 
the open-source launch of Google’s TensorFlow (a deep learning software package). AI skills are 
strongly correlated with market value, though variation in AI skills from 2014-2017 does not 
explain contemporaneous revenue productivity within firms. Using a variety of difference-in-
differences specifications, I show that the TensorFlow launch is associated with an approximate 
market value increase of $11 million per 1 percent increase in AI skills exposure for firms with 
assets complementary to AI. Given a lack of contemporaneous productivity shifts, increases in 
the price of installed firm-specific AI complements following the TensorFlow AI skill shock is a 
likely mechanism for market valuation increases for AI adopters. These results suggest that the 
privately appropriable returns to open source software can be especially large when targeted 
toward scarce skillsets. 

 

 

 

 

 

 
1 I am grateful to Erik Brynjolfsson, Prasanna Tambe, Chad Syverson, and Andrew Lo for extensive comments and 
guidance. I am grateful as well to Sarah Bana, Sagit Bar-Gill, Seth Benzell, Lee Branstetter, Carter Braxton, Tim 
Bresnahan, Avi Collis, Chiara Farronato, Daniel Fehder, Morgan Frank, Jillian Grennan, Lorin Hitt, Jonathan Hersh, 
Dave Holtz, Zanele Munyikwa, Frank Nagle, Anton Korinek, Joshua Krieger, Danielle Li, Christian Peukert, 
Guillaume Saint-Jacques, Daniela Scur, Sebastian Steffen, Martin Watzinger, Lynn Wu, Sam Zyontz, and numerous 
seminar participants for helpful suggestions. The LinkedIn Economic Graph Research team (particularly Di Mo, 
Guy Berger, Stephen Lynch, and Jacqui Barrett) provided excellent feedback and access to LinkedIn data as part of 
the LinkedIn Economic Graph Research Challenge. The MIT Initiative on the Digital Economy and Brookings 
Institution Center on Regulation and Markets provided generous financial support. All errors are my own. 



2 
 

Introduction 

“If you are looking for a career where your services will be in high demand, you should find 

something where you provide a scarce, complementary service to something that is getting 

ubiquitous and cheap. So what’s getting ubiquitous and cheap? Data. And what is 

complementary to data? Analysis.” - Hal Varian, Chief Economist at Google2 

There has been a sizeable increase in the progress of artificial intelligence (AI) capabilities in 

the past decade, largely driven by breakthroughs in deep learning. Deep learning is a subset 

class of algorithms within machine learning (ML), a specific variety of AI, and training deep 

learning models from scratch is often a significant challenge. Modern deep learning models 

often have millions of parameters. Historically, implementing deep neural networks (DNNs) has 

required large investments in computational assets to run the algorithms, talented researchers 

and developers to implement the code, reasonably large-scale standardized data for an 

appropriate use case, and a problem to solve that simpler methods failed to handle well. This 

paper focuses directly on the talent complements to AI-related capital investment. The primary 

research question for this paper is therefore the following: To what extent do firms also earn 

returns to their employees’ AI skill investments, and what might drive this value capture? This 

line of inquiry is neither limited to AI skills nor technology, yet AI skills are newly emergent and 

specific technological skills that are easily tracked in the digital exhaust of online talent 

databases (Tambe and Hitt 2012; Tambe 2014). If firms and workers face perfectly competitive 

markets, then workers earn the marginal product of their skill investments. The worker might 

therefore fully capture the surplus associated with learning to use new technologies. 

Complementary assets are therefore a possibly important channel for employers to gain from 

employee skillsets. 

With so many bottlenecks, the business value of AI was until recently more speculation than 

reality. But the awakening of AI interest following the remarkable research progress in deep 

learning algorithms has led to new corporate AI initiatives. There are several supply-side 

tailwinds for AI adoption. Computational and data storage limitations are considerably mitigated 

by the proliferation of cloud computing technologies, leveling the playing field for technological 

competition (Ewens, Nanda, and Rhodes-Kropf 2018; Jin and McElheran 2017). Firms are 

investing in data infrastructure and data collection at a rapid clip (Brynjolfsson, Hitt, and Kim 

 
2 Stephen J. Dubner, “Hal Varian Answers Your Questions,” Freakonomics, February 25, 2008, 
https://freakonomics.com/2008/02/25/hal-varian-answers-your-questions/ [Accessed December 7, 2021]. 
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2011; Brynjolfsson and McElheran 2016; Farboodi et al. 2019; Wu, Hitt, and Lou 2020; Tambe 

et al. 2020). These new economics of data – that data assets are nonrival (Jones and Tonetti 

2020), have high fixed costs of acquisition with low marginal costs of replication, are highly 

complementary to analytical talent (Abis and Veldkamp 2020; J. E. Bessen et al. 2020), and 

serve as prerequisites for implementing AI and other advanced technologies (Iansiti and 

Lakhani 2020; Zolas et al. 2021) – motivate new shifts in competition over digital capabilities 

(Sambamurthy, Bharadwaj, and Grover 2003; J. Bessen 2020). One by one, the barriers to 

generating business value from the deep learning variant of AI are falling. AI-related capital 

investments are therefore becoming more common. 

The set of mechanisms by which technology workers might generate market value is generally 

applicable to all kinds of human capital. However, technological skill investments can change or 

depreciate much faster than other kinds of skills (Horton and Tambe 2019; Deming and Noray 

2020). Technological shifts therefore supply outside researchers with a chance to study the 

outcomes for human capital-intensive firms. Studying technological changes can supply insight 

into how companies and employees both gain from business activity. Ordinarily it is a 

substantial challenge to look within the firm with granular information about specific types of 

employed workers and the skills they have. This study is among the first to normalize and 

deploy detailed data on firm employment over time and how workers contribute to the value of 

their employers. 

This paper connects technological human capital acquisition decisions made by employees to 

the market values of their employers. I find evidence that the expected future proliferation of AI 

talent causes previously sidelined AI projects to become profitable and existing AI projects to 

become even more profitable ("price effects"). The principal finding is that these price effects at 

the outset of a skill proliferation event are a likely mechanism than contemporaneous 

productivity increases or overall firm-level worker exposure to AI. These effects increase the 

value of installed capital that is complementary to AI talent. 

Hal Varian’s advice in the quote above that one should "find something where you provide a 

scarce, complementary service to something that is getting ubiquitous and cheap" is equally 

relevant to firms as costs to acquire the computational and data inputs to ML applications drop. 

In the current market environment, there are few technologies with the transformative potential 

of artificial intelligence and machine learning (Agrawal, Gans, and Goldfarb 2018; Brynjolfsson, 

Rock, and Syverson 2018; Cockburn, Henderson, and Stern 2018). Availability of (affordable) 

talent is nevertheless a remaining challenge for many would-be employers. The returns to 
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investments in ML applications can be hampered by the hunt for AI talent, with top tier scientists 

earning more than $1 million annually in some cases.3 In a series of reports, McKinsey research 

teams reported that by 2016, there were only about 235,000 data scientists in the U.S. labor 

force (approximately 0.16 percent of workers) (Nicolaus Henke et al. 2016; Bughin et al. 2017). 

However, between 2013 and 2020, job postings related to machine learning grew from 0.1 

percent to 0.5 percent of all postings; postings related to AI grew from 0.03 percent to 0.3 

percent (Zhang et al. 2021). 

In what came as a surprise to many, a number of large information technology firms made their 

deep learning implementation platforms open source. In particular, Google’s November 2015 

decision to open source TensorFlow—its internal platform for designing, training, and deploying 

deep neural networks—led to a staggering increase in the availability of AI talent. By the end of 

2015, TensorFlow was already one of the most popular machine learning software libraries 

available (Zhang et al. 2021).4 

Given that it was broadly unexpected for Google5 to make some of its core technology readily 

available to the machine learning community, the open-source launch of TensorFlow constitutes 

a natural experiment to understand the talent acquisition and valuation effects for firms with 

previously sunk investments in AI complements. Furthermore, by tracking accumulation of skill-

level corporate human capital, we can better understand valuation changes due to technological 

labor exposure. Prior to TensorFlow, the ability to train neural networks was rare and highly 

specialized. The launch of this tool both effectively commodified deep learning as a skill and 

accelerated forward expectations for how soon deep learning would be easy to learn more 

generally. Employers then have an opportunity to provide a scarce complement to an 

increasingly ubiquitous AI skillset. 

I explore how prior investment in AI-related skills at the corporate level facilitated employer 

value capture because of an improved outlook for AI talent markets (primarily via TensorFlow). I 

define firms with AI complements as those companies which have signaled the presence of 

assets that make AI productive via observable hiring of workers with AI skillsets. I construct a 

 
3 Cade Metz, “A.I. Researchers Are Making More Than $1 Million, Even at a Nonprofit,” New York Times, April 
19, 2018, https://www.nytimes.com/2018/04/19/technology/artificial-intelligence-salaries-openai.html. 
4 As measured by GitHub stars, a means of tracking open-source engagement on the GitHub software versioning 
platform. TensorFlow had more stars than Theano, Caffe, and even Scikit-Learn (a popular ML library) 
5 https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/ 
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dataset of matched employer-employee skills stocks and employment for a panel of publicly 

traded firms using LinkedIn’s database. Following the introduction of TensorFlow, there is a 

rapid increase in the rate and quantity of addition of artificial intelligence skills on LinkedIn. 

Using a series of difference-in-difference designs with the firm as the unit of analysis, I find that 

the TensorFlow shock had differential effects on market value. The value of companies making 

investments in AI grew more following TensorFlow, even controlling for a wide variety of other 

complementary skills and including firm fixed effects. For firms in the third and fourth quintile of 

AI skills, each additional 1% in AI skill record counts on LinkedIn is correlated with an increase 

in firm market value of nearly $3.3 million following the introduction of TensorFlow. Using a 

synthetic difference-in-differences specification, I find that having deep learning talent exposure 

during the TensorFlow launch leads to increases in firm market value of about $14 billion in 

adopter firms. 

I test several mechanisms, finding evidence consistent with an increase in the price of AI 

complement assets and not through productivity enhancements or rapid AI-related asset 

quantity accumulation following the TensorFlow launch. The core prediction of my theoretical 

model is that tools that make it easier to learn technological skills increase firm market values 

via the price of intangible capital complements. I further refine the possible source of the price 

effect to ascertain whether the revalued intangible asset might be firm-level opportunities to 

apply machine learning in reorganizing employee tasks. That is, using the Suitability-for-

Machine Learning (SML) measures in (Brynjolfsson and Mitchell 2017; Brynjolfsson, Mitchell, 

and Rock 2018), I investigate whether firms with higher average worker SML increase in value 

after TensorFlow is released. Higher average firm exposure to ML-suitable tasks is negatively 

correlated with market value in the post period, but the timing of negative valuation changes 

correlated with SML does not coincide with the TensorFlow launch. Similar tests on a number of 

related placebo skills do not show similar responses to the TensorFlow launch. I also apply 

alternative specifications within the set of difference-in-difference approaches (including 

synthetic difference-in-differences (Arkhangelsky et al. 2019)) to test the robustness of the main 

result. These results suggest an upward adjustment in the market expectations of future yields 

for firms that were early to AI investment when the AI skillset became cheaper to acquire. 

The paper is organized as follows: Section 2 describes the relevant literature on AI skills and 

technological investments as well as the TensorFlow context. Section 3 details a stylized 

theoretical model of how employee skill acquisition can enter the market valuation of employers. 

Section 4 describes the LinkedIn data and includes summary statistics. Section 5 reports main 
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results across different specifications. Section 6 tests some candidate mechanisms and 

discusses threats to identification assumptions. Section 7 contains a series of robustness 

checks, with discussion in Section 8. Section 9 concludes. 

Background 

AI Skills and Technological Investments 

Like information technology in general, artificial intelligence-related assets are often intangible, 

but the returns for AI are mostly in the future at this point (Brynjolfsson, Rock, and Syverson 

2018). The recent progress in AI is predominantly a result of advances in deep learning 

techniques, a specific kind of machine learning approach. Deep learning and neural net 

algorithms are decades old but have only recently grown in popularity as large-scale datasets 

and cheap computational power have made them viable in new domains (White and Rosenblatt 

1963; Rumelhart, Hinton, and Williams 1986; LeCun et al. 1998; LeCun, Bengio, and Hinton 

2015). As a new kind of software, however, deep learning and AI more broadly appears to be an 

early-stage general purpose technology (Bresnahan and Trajtenberg 1995; Bresnahan 2010; 

Goldfarb, Taska, and Teodoridis 2020). AI is potentially pervasive, improves over time as better 

and more data arrive, and can spawn complementary innovation. Within AI, deep learning is 

also a prediction technology (Agrawal, Gans, and Goldfarb 2017, 2018). Of course, deep 

learning is not the only prediction technology of its kind – similar problems might be solved by 

simpler methods like linear regression. Yet the performance of deep learning on formerly 

insurmountable tasks (e.g. image and speech recognition) has marked a watershed moment in 

the cost of prediction. 

AI capabilities are a type of information technology investment, and IT investments generally 

necessitate coinvention that leads to an accumulation of intangible assets (Bresnahan et al. 

1996; Melville, Kraemer, and Gurbaxani 2004). These intangibles include knowhow, business 

processes, corporate culture, and organizational designs that allow the new technology to 

increase corporate productivity. Understandably as a result, intangible assets are also 

complementary to and correlated with measures of investment in IT categories as well as 

technological human capital (Bresnahan, Brynjolfsson, and Hitt 2002; Brynjolfsson, Hitt, and 

Yang 2002; Saunders and Tambe 2015; Saunders and Brynjolfsson 2016). Further, the shift 

toward intangible assets in the digital age has opened a research agenda into the productivity 

effects of new varieties of IT capital, with technology diffusion serving as a leading explanation 

for the widening productivity differences between firms at the frontier and firms at the median 
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productivity level (Lustig, Syverson, and Van Nieuwerburgh 2011; Andrews et al. 2015; Tambe 

et al. 2020). Intangible assets are inherently hard to measure. Typical approaches to 

measurement involve monitoring more easily measured complementary investments. Findings 

following this approach suggest that intangibles constitute an increasingly large component of 

the U.S. economy’s asset stock and are one possible driver of industrial concentration (Corrado, 

Hulten, and Sichel 2009; Marrano, Haskel, and Wallis 2009; McGrattan 2017; Haskel and 

Westlake 2017; Crouzet and Eberly 2018, 2019; Bessen 2020). Firms often fail to capitalize 

software expenses, for example, but market value of hidden investments is recoverable using 

observable complements (like measures of labor inputs).67 IT capabilities are also not only cost 

reducers, but sources of revenue and productivity growth (Dewan, Michael, and Min 1998; 

Dewan and Kraemer 2000; Mithas et al. 2012; Mehra et al. 2014). This firm-specific set of 

capabilities is therefore a possible source of rents for IT-intensive companies (Bharadwaj 2000; 

Barua et al. 2004; Bardhan, Krishnan, and Lin 2013). Often these firm-specific returns arise as 

firms discover unique complementarities between IT and other functions (Barua, Lee, and 

Whinston 1996; Tambe 2014). 

Technological labor is a well-established driver of corporate market value, innovation, and 

productivity (Hall 1993, 2006; Tambe and Hitt 2012; Bapna et al. 2013; Mehra et al. 2014; 

Tambe 2014; Tambe et al. 2020). Several IT business value studies have taken advantage of 

Tobin’s 𝑞𝑞 or similar constructs as a proxy for documenting the investment returns to technology, 

relying on the intuitive argument that successful IT systems are costly for competitors to 

replicate (Bharadwaj, Bharadwaj, and Konsynski 1999; Brynjolfsson and Hitt 2000; Brynjolfsson, 

Hitt, and Yang 2002; Tambe and Hitt 2012). When productive, IT-related intangible assets are 

valued highly because they are so difficult to replicate and to market. It would be difficult to for a 

company to sell off part of its culture, for example, and managing IT (even for outsourcing) 

requires investment in firm-specific information capabilities (Mani, Barua, and Whinston 2010; 

Mithas, Ramasubbu, and Sambamurthy 2011; Fitoussi and Gurbaxani 2012; Mani, Barua, and 

Whinston 2012; Raffiee and Coff 2016; Bana et al. 2021).8 

 
6 This quantity is the focal object of study in Tambe et al. (2020). 
7 See Cummins (2005) for a discussion of assumptions and an alternative method using analyst forecasts. 
8 There are fixed costs of capital investment that apply to human capital as well, wherein quasi-rents can accrue to 
firms which have already sunk the necessary recruitment and training expenses required to make an employee 
productive (Hall 2001). The process for valuation of labor-related assets (not just AI skills) is functionally identical 
to the valuation of capital assets. Because the marginal adjustment costs of competitors set the price at which the 
asset is available, firms will hire capital until the marginal adjustment costs of competitors is equal to the marginal 
value created with that capital (Tobin’s 𝑞𝑞) (Kaldor 1966; Tobin and Brainard 1976; Hayashi 1982). 
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Since prediction is pervasive throughout the economy, the promise of this new AI is that it will 

lead to (often firm-specific) business process innovation, job redesign, automation, and new 

engineering advances across many domains in the economy (Furman and Seamans 2019; 

Brynjolfsson, Mitchell, and Rock 2018; Felten, Raj, and Seamans 2018; Webb 2019; 

Ransbotham et al. 2019). Even the relatively early bespoke applications of deep learning could 

feasibly cause large shifts in labor demand and economic value creation processes 

(Brynjolfsson, Hui, and Liu 2018). Like other technologies with the potential to change and 

automate work, machine learning will differentially impact tasks that are technologically and 

socially feasible (Autor, Levy, and Murnane 2003; Acemoglu and Autor 2011; Autor and Dorn 

2013; Ransbotham et al. 2017; Acemoglu and Restrepo 2018; Frank et al. 2019; Teodorescu et 

al. 2021). Possibly one driver of corporate valuation then is the intangible asset of potential to 

re-engineer tasks using AI. 

In AI, the pecuniary benefits of open-source innovation, by revealed preference, outstripped the 

benefits of private IP for Google in TensorFlow’s case. Since one of Google’s stated aims in 

open-sourcing TensorFlow was to increase usability and accessibility of deep learning for 

engineers throughout the economy,9 a primary pecuniary benefit of making AI models easier to 

build is an expected future drop in marginal wage rates for AI-intensive human capital. This 

paper therefore makes a contribution to the open source software (OSS) literature, linking 

market value and an open-source event. OSS has been linked already to productivity (Nagle 

2019), human capital development for workers (Mehra, Dewan, and Freimer 2011; Mehra and 

Mookerjee 2012), intangible capital (Robbins et al. 2018; Murciano-Goroff, Zhuo, and 

Greenstein 2021), overall economic value (Greenstein and Nagle 2014; August, Shin, and 

Tunca 2018; Nagaraj 2021), and strategic concerns in software provision (Chen and Forman 

2006; August, Shin, and Tunca 2013; August, Chen, and Zhu 2021). This paper describes some 

of the ramifications of the "birth" of an OSS new skill, though similar exogenous events might 

also cause skill "death" (Horton and Tambe 2019).10 

 
9 Cade Metz, “Google Just Open Sourced TensorFlow, Its Artificial Intelligence Engine,” Wired, November 9, 2015, 
https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/. 
10 Similar studies of technological tool-based and technological knowledge-based exogenous events have addressed 
how such changes impact various performance measures for firms and other entities. See, for example Ewens, 
Nanda, and Rhodes-Kropf (2018; Jin and McElheran 2017) (Amazon Web Services and cloud), Agrawal, Goldfarb, 
and Teodoridis (2016) (mathematics), Teodoridis (2017) (Microsoft Kinect), Thompson (2017) (multicore 
processing), and Zyontz (2018) (CRISPR). 
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It can take decades for firms to reconfigure production processes around a new technology and 

while those investments are in progress it may appear that productivity is lagging (Brynjolfsson, 

Rock, and Syverson 2021). With effects that are mostly in the future, market value is one of a 

handful of measures which is sufficiently forward-looking to account for returns to investment 

activity in the present day. Given the interest in AI-related skillsets, a few papers have already 

started to track the impact of hiring AI talent, answering the call to use firm-level data in AI 

studies in Raj and Seamans (2018). Recent work tracking AI investments has also tended to 

focus on labor stocks and flows, if only because labor-based datasets make it easier to track 

where firms are investing in AI or ML projects. Large scale online labor datasets like 

CareerBuilder and LinkedIn have been used in a number of studies linking the business value of 

IT and productivity gains from technology to measurements of labor flows (Tambe and Hitt 

2012; Tambe 2014; Benzell, Lagarda, and Rock 2018). Bessen et al. (2020) study AI startups’ 

reliance on data inputs. Alekseeva et al. (2020) and Acemoglu et al. (2020) document a rise in 

AI job postings, with the latter paper showing relatively little effect on employment or wages 

overall so far. Babina et al. (2020) use a combination of job postings data and employment 

profiles to show that AI investing firms have faster growing sales and employment, and that AI 

investment is more prevalent in large firms (matching many of the results in this paper). Babina 

et al. (2020) and Acemoglu et al. (2020) find little correlation between firm productivity and AI 

talent using alternative datasets, including job postings. Nevertheless, many papers have 

already found evidence of productivity or positive effects of AI and other algorithms in 

businesses across many domains, but in specific cases. This includes finance (Grennan and 

Michaely 2019; Fuster et al. 2020), hiring (Cowgill 2018; Li, Raymond, and Bergman 2020), 

news (Claussen, Peukert, and Sen 2019), board selection (Erel et al. 2018), government 

(Glaeser et al. 2021), and monitoring poverty and war destruction from space (Engstrom, Hersh, 

and Newhouse 2017; Mueller et al. 2020).11 

 
11 Of course firm-specific investment on the employee’s part might give their employer a bargaining advantage, 
among other factors. Many papers consider monopsony power and frictions leading to it (like covenants to not 
compete) in greater detail (Marx 2011; Starr 2019; Jeffers 2017; Starr, Balasubramanian, and Sakakibara 2017; Azar 
et al. 2018; Caldwell and Danieli 2018; Schubert, Stansbury, and Taska 2020), including for technology workers and 
researchers in particular (Stern 2004; Roach and Sauermann 2010; Kokkodis and Ipeirotis 2016; Balasubramanian et 
al. 2018; Kokkodis 2019; Miric and Ozalp 2020; Tambe, Ye, and Cappelli 2020). This paper does not explicitly 
consider monopsony power, but rather assumes a firm-level bargaining advantage against AI workers is itself 
manifested as a kind of intangible asset specific to the firm. The results in this paper therefore nest monopsony as a 
possibility without relying on market power as a certainty. 
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TensorFlow Background 

The open-source launch of Google Brain’s TensorFlow machine learning toolkit on November 9, 

2015 was a departure from expectations that Google would try to safeguard all of its AI-related 

intellectual property.12 The project grew out of a 2011 Google Brain initiative called DistBelief to 

build and train deep neural nets for research and commercial applications (Abadi et al. 2016).13 

TensorFlow was unique among deep learning modules at the time in that it was designed to 

serve as a single system that could run on a variety of platforms, ranging from mobile devices to 

large-scale computational systems with multiple GPUs. Its release meant the wide availability of 

production-level software packages with greater stability and simplicity than other popular 

packages at the time (e.g. Theano, Caffe, and Torch). At launch, TensorFlow could be installed 

as a Python module or in C++, taking advantage of popular programming languages to make 

deep learning available to as many people as possible. There is now support for R as well.14 

But was the TensorFlow open-source decision about talent? Oren Etzioni, a machine learning 

expert and executive director of the Allen Institute for Artificial Intelligence, at the time stated 

that Google was trying to “attract developers and new hires to its technology”.15 With new 

technologies, especially open source software packages, adoption dynamics and value creation 

can be highly sensitive to network effects (Hippel and Krogh 2003; Lakhani and Hippel 2002; 

Ceccagnoli et al. 2012; Niculescu and Wu 2014). In the past decade, many large technology 

firms have shifted to OSS. Google, Facebook, Microsoft, LinkedIn, Uber, and others have made 

 
12 As noted in Wired (Metz, “Google Just Open Sourced TensorFlow”): “With TensorFlow, however, the company 
has changed tack, freely sharing some of its newest—and, indeed, most important—software. Yes, Google open-
sources parts of its Android mobile operating system and so many other smaller software projects. But this is 
different. In releasing TensorFlow, Google is open sourcing software that sits at the heart of its empire. ‘It’s a pretty 
big shift,’ says [Jeff Dean, an engineer at Google], who helped build so much of the company’s groundbreaking data 
center software…” 
13 Neural networks are usually called "deep" when a standard neural net architecture has four or more layers. 
14 The package also includes a set of software pipelining tools such as TensorBoard, which helps machine learning 
engineers visualize the computational graph they have built, and performance tracing which helps track threads as 
they are processed. At the time, few of the comparable systems (Caffe, Chainer, Theano, and Torch) simultaneously 
supported symbolic differentiation, was written C++ to facilitate high performance production code, and could 
easily be mapped to many machines at once. Further, the Python interface and training documentation provided a 
baseline on which the open-source community could improve. Soon after, additional abstraction layers like Keras 
(Chollet 2015) and PyTorch (Paszke et al. 2017), a Pythonized version of the popular Torch software developed by 
employees at Facebook, would enter as competitors for TensorFlow. Keras is now integrated with TensorFlow, and 
other packages like fast.ai have grown popular with users. PyTorch is especially popular within the deep learning 
research community. 
15 https://bits.blogs.nytimes.com/2015/11/09/google-offers-free-software-in-bid-to-gain-an-edge-in-machine-
learning/. Last accessed 12/09/21. 
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best-in-class software packages available to the programming community, choosing the open 

strategy. 

One interpretation then is that the TensorFlow open-source strategy meant Google could 

capture more of the rents in the economic applications of machine learning. Another is that their 

software platform would improve with the benefit of a community of contributors, as in 

Niculescu, Wu, and Xu (2018).16 The growth in TensorFlow interest was immediate and 

explosive at its launch, with interest as measured by GitHub stars eclipsing other popular ML 

libraries like Scikit-Learn nearly immediately (Zhang et al. 2021). Figure 6, from the 2021 AI 

Index Report, demonstrates the rapid accelerating of TensorFlow interest (Zhang et al. 2021). 

Figure 7 shows the Google Trends data for "Deep Learning" searches for the same period. 

Earlier technologies like MapReduce had eventually been developed in OSS formats that would 

require Google employees to be retrained. Important as well was Google’s growing cloud 

business, which now includes many machine learning tools. With so many complements to 

benefit from an active machine learning developer community, the open-source choice for 

Google (and later Facebook) might have had a number of motivations. In any case, the toolkit’s 

success is without doubt. Many programmers can pick up deep learning at lower cost. We now 

turn to why this change might have enhanced corporate valuations other than Google’s. 

A Model of Firm-Specific Assets with Cheap(er) Learning 

Worker Investment in Skills 

Let us start with the case where workers with heterogeneous ability who must decide if they 

want to invest in a costly new skill that can enhance their wages, a model similar in spirit to 

Spence (1978) and Bedard (2001) but assume that the skill confers value to the employer 

beyond its signal alone. Further assume that each worker of ability 𝜃𝜃 earns a wage 𝑤𝑤(𝑐𝑐𝑡𝑡) in 

each period, where 𝑐𝑐𝑡𝑡 ∈ {0,1} is a binary cost variable set to one when the worker invests in 

(deep learning) skills and zero otherwise. 𝜃𝜃 is distributed according to continuous distribution 

𝐹𝐹(𝜃𝜃) which has support on the interval 𝜃𝜃 ∈ (0,∞). 𝐹𝐹(𝜃𝜃) might, for example, take the form of a 

lognormal distribution. Then in any period 𝑡𝑡 we define worker utility as: 

 
16 Indeed, as of early 2022 the TensorFlow GitHub repository has over 163 thousand stars and 86 thousand forks, 
making it among the most successful machine learning software toolkits in existence. Source: 
https://github.com/tensorflow/tensorflow. 
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𝑢𝑢𝑡𝑡(𝜃𝜃, 𝑐𝑐𝑡𝑡) = 𝑤𝑤𝑡𝑡(𝑐𝑐𝑡𝑡) −
𝑐𝑐𝑡𝑡
𝜃𝜃

 (1) 

The cost of learning machine learning is an inverse function of ability 𝜃𝜃. Utility at time 𝑡𝑡 is a 

function of static ability 𝜃𝜃, the prevailing wage function 𝑤𝑤𝑡𝑡(𝑐𝑐𝑡𝑡), and the cost decision to invest in 

skills. Assume that workers with the skill always earn more than workers without: 𝑤𝑤𝑡𝑡(1) >

𝑤𝑤𝑡𝑡(0) ∀𝑡𝑡.17 Then within each period, there is 𝜃𝜃𝑡𝑡∗ such that the worker is indifferent between 

investing in the skill or not: 

𝑤𝑤𝑡𝑡(1) −
1
𝜃𝜃𝑡𝑡∗

= 𝑤𝑤𝑡𝑡(0)

𝑤𝑤𝑡𝑡(1) − 𝑤𝑤𝑡𝑡(0) =
1
𝜃𝜃𝑡𝑡∗

 (2) 

In any given period, the difference in wages earned with and without the skill for 𝜃𝜃∗ ability 

workers is equal to 1
𝜃𝜃𝑡𝑡∗

, an index of ability. That means that for 𝐹𝐹(𝜃𝜃∗) = 𝑃𝑃𝑃𝑃(𝜃𝜃 < 𝜃𝜃∗) the share of 

workers that acquire the skill is 1 − 𝐹𝐹(𝜃𝜃𝑡𝑡∗) in period 𝑡𝑡. Wage differentials and ability affect the 

choice to acquire ML skills. 

Investment in skills might be a continuous choice. Extending the problem now to make wage an 

increasing function of ability 𝜃𝜃 and to include continuous costs reflecting more intensive skill 

investment 𝑐𝑐𝑡𝑡 ∈ (0,∞) with discount factor for period 𝑡𝑡 equal to 𝛿𝛿𝑡𝑡, we have the worker’s 

problem to optimize over their investment choice sequence {𝑐𝑐𝑡𝑡}0∞: 

max
{𝑐𝑐𝑡𝑡}

 �𝛿𝛿𝑡𝑡(𝑎𝑎𝑡𝑡(𝑐𝑐𝑡𝑡))
∞

𝑡𝑡=0
subject to

1)  𝑎𝑎𝑡𝑡+1 =
1
δ
𝑎𝑎𝑡𝑡 + 𝑤𝑤𝑡𝑡(𝑐𝑐𝑡𝑡 ,𝜃𝜃) −

𝑐𝑐𝑡𝑡
𝜃𝜃

 ∀𝑡𝑡

2)  𝑎𝑎0 = 0

 (3) 

The worker’s problem is to maximize their total present discounted value of income. Assets start 

at zero, are a function of skill investment 𝑐𝑐𝑡𝑡 and are equal to 𝑎𝑎𝑡𝑡 for time 𝑡𝑡. They must make the 

 

17 The continuous version of this skill investment cost criterion is that ∂𝑤𝑤𝑡𝑡
∂𝑐𝑐𝑡𝑡

> 0. We will assume this in the next step. 
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choice, based on the prevailing wage function 𝑤𝑤𝑡𝑡(𝑐𝑐𝑡𝑡 ,𝜃𝜃) and their abilities 𝜃𝜃, whether to invest in 

skills for that period, and skills depreciate fully by the next period.18 

This reduces to a relatively simple rule. If the increased wage value is larger than the ability-

adjusted marginal cost for worker 𝑖𝑖, the worker should acquire more of the skill at level 𝑐𝑐𝑖𝑖𝑖𝑖: 

� �
∂𝑤𝑤𝑡𝑡
∂𝑐𝑐𝑡𝑡

�
𝑐𝑐𝑖𝑖𝑖𝑖

𝑐𝑐𝑡𝑡=0
 𝑑𝑑𝑐𝑐𝑡𝑡  >

𝑐𝑐𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖

   ∀𝑡𝑡 (4) 

and with fixed 𝜃𝜃𝑖𝑖 over all periods, we get an analog of the above. Worker 𝑖𝑖 should acquire more 

of the skill if: 

∫ �∂𝑤𝑤𝑡𝑡∂𝑐𝑐𝑡𝑡
�𝑐𝑐𝑖𝑖𝑖𝑖

𝑐𝑐𝑡𝑡=0
 𝑑𝑑𝑐𝑐𝑡𝑡

𝑐𝑐𝑖𝑖𝑖𝑖 
 >  

1
𝜃𝜃𝑖𝑖

      ∀𝑡𝑡 (5) 

and for each 𝑖𝑖, it will be the case that 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖∗  at some level, so the inequality above will hold 

with equality and reduce to the following (the worker is indifferent between learning and not 

learning the new skill): 

∂𝑤𝑤𝑡𝑡
∂𝑐𝑐𝑡𝑡

 =  
1
𝜃𝜃

     ∀𝑡𝑡 (6) 

In the binary cost case, the interpretation is the same: increased wages justify investing in deep 

learning skills, but so do lower costs. It is further possible that for some levels of ability the wage 

increases are insufficient to justify investment. At this 𝜃𝜃∗, anyone with lower ability will not invest 

at all in the skill.19 The probability of acquiring the skill overall for a worker with randomly drawn 

type is 1 − 𝐹𝐹(𝜃𝜃∗). With 𝑁𝑁 workers in a simple economy, 𝑁𝑁�1 − 𝐹𝐹(𝜃𝜃∗)� workers will acquire the 

skill, albeit at differing levels. We can see that either 1) raising the present value of the stream of 

wage premia to learn the skill or 2) driving down the present value of the skill acquisition cost 

stream will induce workers of lower marginal ability to invest in learning. The employer looking 

to hire skilled talent has both options, but using open source as a strategy offers an opportunity 

in the latter. In the short-run, TensorFlow drives the costs to learn how to train deep neural 

 

18 We also require the Spence-Mirrlees single crossing condition that ∂
2𝑊𝑊

∂𝑐𝑐𝑡𝑡 ∂𝜃𝜃
(𝑐𝑐𝑡𝑡 ,𝜃𝜃) > 0. 

19 There are two special but relatively uninteresting cases: the first is if the skill is so difficult that nobody ever wants 
it (𝜃𝜃∗ approaches ∞) and the second is if the skill is costless to acquire so everyone gets it (𝜃𝜃∗ = 0). 
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networks down, inducing marginally lower ability entrants to acquire the skill. Before addressing 

how firms benefit from this, we will solve for the firm’s problem. 

Firm Market Valuation with Intangibles 

Here we follow a setup common to Lucas (1967; Hayashi 1982; Wildasin 1984; R. E. Hall 2001; 

Yang and Brynjolfsson 2001; Tambe et al. 2020; Brynjolfsson, Rock, and Syverson 2021). The 

formulation of the firm’s market value problem is similar to the presentation in Brynjolfsson, 

Rock, and Syverson (2021). For the sake of brevity, the full derivation is included in Appendix 

Section 1.1. 

𝑉𝑉(0) = �𝜆𝜆𝑗𝑗

𝐽𝐽

𝑗𝑗=1

(0)𝐾𝐾𝑗𝑗(0) (7) 

The 𝜆𝜆 value for each capital variety 𝐾𝐾 includes its replacement cost as well as the present value 

of adjustment costs, priced at the marginal adjustment cost of competitors. Therefore, the firm 

valuation at time 0 is 𝑣𝑣(0), equal to the sum of the asset values priced at their respective 

shadow costs. For an asset like a cloud computing implementation, the replacement cost of the 

assets is observable in the market, but the market value of the installed cloud computing system 

within the firm includes the firm-specific component of the marginal product of that investment. 

Since competitors might not be able to generate a productive cloud system at as low a cost, the 

difference between what competitors can achieve and what the focal firm can achieve is firm-

specific. Investors therefore price the asset above its replacement cost. 𝜆𝜆 prices on investment 

therefore have a component driven by the market price of investment and a component that is 

the present value of the marginal product of the investment within the firm. 

This formulation is highly flexible. Nearly anything can be included as an asset in this 

framework, such as a monopsony rent capacity, complementarities between inputs, and 

intangible assets around business capabilities, branding, or managerial technologies. It also 

includes standard capital like property, plant, and equipment. Additionally, the model suggests 

that the marginal investment in a unit of capital will be equal to the competitors’ marginal 

adjustment cost value (less replacement costs), but inframarginal rents are permitted. 

The Learning Price Shock and Firm Value 

Let us now consider the case that there is an open-source launch of a tool like TensorFlow that 

makes it cheaper in present value terms for workers to pick up human capital. From our 
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equation for the ability level that is indifferent between acquiring and not acquiring the skill 

before, 𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛∗ < 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜∗ , and therefore 𝐹𝐹(𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛∗ ) < 𝐹𝐹(𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜∗ ). With 𝑁𝑁 total workers in the market, 

workers of lower ability will learn TensorFlow and supply in terms of workers who invest at all 

will increase from 𝑁𝑁�1 − 𝐹𝐹(𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜∗ )� to 𝑁𝑁�1 − 𝐹𝐹(𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛∗ )�. Workers with some investment in ML skills 

will be incentivized to acquire even more from the cost shock. From the perspective of forward-

looking firms, this will be stimulative for investment; rents paid to workers for skills will be lower 

at the new higher equilibrium quantity. But those investments, requiring foregone output, have 

not yet been made. That means this expected future increase in quantities of workers hired 

does not on its own increase market value according to the theory above. 

Which firms gain or lose value? Since this change comes as a surprise to all firms except 

Google, the value of prior capitalized investment value in rented human capital 𝑉𝑉𝐻𝐻 was made 

under assumptions of higher costs, with investment prices for human capital denoted by 𝑧𝑧𝐻𝐻,𝑡𝑡 (𝐻𝐻 

denotes human capital – see Appendix Section 1.2): 𝔼𝔼before�𝑧𝑧𝐻𝐻,𝑡𝑡� > 𝔼𝔼after�𝑧𝑧𝐻𝐻,𝑡𝑡� ∀𝑡𝑡 if we set 𝑡𝑡 = 0 

at the time of the change. Therefore because of the change now, all prior investments are 

inframarginal (�𝑝𝑝𝐺𝐺𝐼𝐼𝐻𝐻,𝑡𝑡 − 𝑧𝑧𝐻𝐻,𝑡𝑡�𝛿𝛿𝑡𝑡 + 𝜆𝜆𝐻𝐻 > 0 ∀𝑡𝑡 on the investments made before).20 Or, put 

differently, there is a price increase in the employer’s human capital investment value because 

the ongoing costs to rent that capital are lower in perpetuity, but the expected future service 

flows are the same. 

This is the core prediction of the theory: the launch of tools that make it easier to learn 
technological skills increases the firm market value via a price channel. This formulation 

and possibility establish the employer’s sunk investments in human capital-intensive production 

processes as a form of real option on future employee skill sets. If the costs to acquire those 

skills are volatile (especially with a negative drift), the employer stands to benefit by refinancing 

their prior investment at lower human capital rental prices. This channel also suggests a 

difference-in-difference empirical specification. AI-intensive firms that have already sunk AI 

investments are exposed directly to the TensorFlow release, but firms without AI complements 

will not have yet to pay the fixed costs of investment and therefore have no opportunity to 

reprice their assets. With 𝛥𝛥 to denote the difference in a measure between pre and post-open-

 
20 𝑝𝑝𝐺𝐺𝐼𝐼𝐻𝐻,𝑡𝑡 is the marginal value of investment to the firm in human capital and 𝜆𝜆𝐻𝐻 is the shadow price of human 
capital. See Appendix Section 1.2. 
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source launch and 𝑀𝑀𝑉𝑉𝐴𝐴𝐴𝐴 and 𝑀𝑀𝑉𝑉¬𝐴𝐴𝐴𝐴 denoting market value for firms with and without AI 

complements respectively, we predict the following21: 

𝛥𝛥𝛥𝛥𝑉𝑉𝐴𝐴𝐴𝐴 − 𝛥𝛥𝛥𝛥𝑉𝑉¬𝐴𝐴𝐴𝐴 = �𝛥𝛥𝑧𝑧𝐻𝐻�𝐼𝐼𝐻𝐻𝐴𝐴𝐴𝐴 − 𝐼𝐼𝐻𝐻¬𝐴𝐴𝐴𝐴�� (8) 

Other channels connecting the TensorFlow shock and market value are also possible. The 

marginal product of investment might include exposure to 𝐴𝐴𝑡𝑡, the total factor productivity of the 

firm at time 𝑡𝑡. Increasing the firm’s productivity has a similar effect of making the marginal 

product of 𝐼𝐼𝐻𝐻 more negative since more output must be foregone to sink investments. Therefore, 

all former investments made under lower productivity assumptions are more valuable. 

Importantly for this to affect market values on an ongoing basis, this must happen to all firms, 

but each in their own way. Otherwise, the higher productivity of all assets will lead to higher 

market prices for investment, offsetting the marginal product effects. Either channel then relies 

on an argument for firm-specific assets, and likely intangible assets if they are difficult to 

replicate. Additionally, total factor productivity increases affect the value of all assets. This is 

empirically testable, as we will show with placebo skills and other assets. 

It might also be the case that the new skill shock makes workers more productive inside their 

firms, driving up the efficiency units supplied by each ability level that has acquired the skill. This 

might have the opposite effect on asset prices depending on the firm demand elasticity. If, for 

example, one worker could supply all firms with her deep learning labor, then only the highest 

ability superstar worker would get paid for her human capital (and get paid a lot!) (Rosen 

1981).22 Firms with sunk investments will possibly have done so assuming lower prices for skill 

"rental" than the market would bear. In this case the result is ambiguous. 

To summarize, the model suggests three hypotheses can link cheaper employee skills to 

possibly increased firm market value. We might see 1) price channel effects as the employer 

"refinances" its human capital stock at a lower rate, 2) the new skill might increase total factor 

productivity at some point, causing a widespread asset price increase over all asset varieties 

with firm-specific components, and 3) worker-level productivities might increase, driving up 

payments to skilled employees with ambiguous effects on market value but increased 

compensation to workers. These possibilities are by no means unique to technology skills, but 

 
21 𝐼𝐼𝐻𝐻¬𝐴𝐴𝐴𝐴 would be zero in this case. 
22 This seems less likely given standard compensation rates for machine learning engineers. Superstars are still 
highly compensated, but there is a market for others. 
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technology skills like deep learning are well-suited to an empirical study of possible channels. 

The value of tech skills often depreciates quickly, and open source software is linked to 

productivity (Horton and Tambe 2019; Nagle 2019; Deming and Noray 2020). Additionally, there 

is some evidence that IT-intensive firms carry greater asset risk (Dewan, Shi, and Gurbaxani 

2007). Employee skills might account for some of that variation. I now turn to the data. 

Data on AI and Engineering Talent 

The main data source is member resume information from LinkedIn. Part of the reason the firm 

value of engineering and technological talent has been difficult to measure in the past is 

because of a relative paucity of granular data in this area. Online platforms like LinkedIn present 

an opportunity to tie organizations to the skills, education, career histories, and professional 

networks of their staff. Outside of governmental and administrative datasets, data at this scale 

and level of detail is unusual. LinkedIn has over 575 million members in over 200 countries and 

territories (more than 150 million U.S. members, 15 million in Canada, and 25 million in the 

U.K.). Additionally, over 26 million companies, 60 thousand schools, and 35 thousand skills are 

represented on LinkedIn.23 The LinkedIn platform has become a standard tool for job seekers in 

many labor markets. 

The primary data source for analyzing AI talent flows effects on firm market value come from 

LinkedIn-derived values from the relatively recently constructed panel of detailed skills data. 

LinkedIn first rolled out the skills product in 2011, though collection of high-fidelity records of 

member additions of skills began in 2013. LinkedIn now has over 55 million unique skills records 

across over 35 thousand standardized skill units. Recently, LinkedIn has categorized and 

standardized the approximately 35 thousand unique skills on its standard platform into a set of 

skills clusters using nonlinear embedding spaces.24 These clusters are seeded and curated by 

human taxonomists and subsequently applied to co-occurrences of skills on profiles across the 

entire platform. Skills are related by distance in “skill space” as a result of this machine learning-

driven encoding. Skills that tend to be closer in this space are more likely to be associated 

together and tagged with a common human-curated cluster name. Likewise, skills that co-occur 

 
23 Source: LinkedIn, “Economic Graph Research and Insights,” https://engineering.linkedin.com/teams/data/data-
science/economic-graph-research-insights [Accessed February 17, 2022].  About 70% of platform membership is 
outside the U.S. The growth rate of membership is approximately 2 members per second as of July 2018. LinkedIn 
Economic Graph Research and Insights supplied data and valuable feedback to make this project possible. 
24 Clusters including Agronomy, Artificial Intelligence, People Management, and Digital Literacy (amongst others) 
and rely upon user-supplied data. Because the user-supplied data is highly variable, all skills go through a 
standardization algorithm before being made available for analysis. 
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less frequently are classified in separate clusters. I make use of the production neural skills 

embeddings supplied by the LinkedIn engineering team. For this analysis, LinkedIn fortunately 

had several pre-defined dedicated skill clusters related to AI, data science, and other relevant 

technology skills. 

The result is a series of aggregated counts of skills additions in different categories which I then 

aggregate, accumulate, and normalize at the firm-year-occupation and firm-year levels. I extract 

specific skill counts for deep learning, machine learning, linear regression, and a handful of 

other data science skills. Skill records from individual profiles are aggregated by firm-quarter. 

Most specifications in the analysis log the accumulated skill counts from members (adding 1 to 

zero entries) because the skill counts are skewed (similarly to assets). All of these measures 

are then joined to Compustat measures of financial performance by firm and quarter. The 

Compustat measures serve to create the primary outcome variables. Details on Compustat 

measure construction are in the Data Section of the Appendix. Figure 1 shows the aggregate 

skill additions for AI-related skills and advertising across the entire platform. There is some 

seasonality in the data, with more skills getting added in the beginning of the year. Table 1 

shows some example skills for different aggregated categories. Table 2 reports summary 

statistics for skills by firm. 
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Figure Notes: These charts show the total additions of user-reported skills within publicly 
traded companies across the LinkedIn platform for the designated time period. The TensorFlow 
launch in red is November 2015. 

 

Table Notes: Skill clusters taken from production embedding model and taxonomy output. Each 
skill cluster conceptually has overlap with others, but skills in this taxonomy are assigned 
specifically to one larger cluster. Deep Learning, for example, is part of the artificial intelligence 
cluster, but is not part of the Data Science cluster. To the extent that there is some 
misclassification of skills, there should not be measurable differences effects estimated for 
different skill indices — this facilitates the use of different indices as placebos in difference-in-
difference analyses. 
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Table Notes: While all skill-related regressions use a completely balanced quarterly panel from 
2014 to the end of 2017, the table reflects summary data for firms outside of the sample as well. 
For accounting data, the sample is larger. Value added (VA) is calculated as quarterly revenue 
less quarterly materials expense, calculated as 25% of annual operating expense less annual 
labor expense from the Compustat database. Many firms are missing one or more of these 
fields, reducing the sample for VA. Residual market value is calculated as the market value less 
book value of assets. Many skill values at the firm level are 0, and skill additions tend to be 
highly skewed except for the most common skills like management and digital literacy. In this 
regard AI, Data Science, and other technology skills are very similar. The logged indices are 
actually 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) in all cases, where 𝑥𝑥 is the skill count. 

I also use the profile employment data. With over 180 million individual position records 

spanning from 2000 to 2017, I build firm-level aggregates of worker years of education as well 

as counts and total wage bills (employee counts multiplied by Bureau of Labor Statistics 

average wages) of specific varieties of worker. The process is similar to the variable 

construction in (Benzell, Lagarda, and Rock 2018; Tambe et al. 2020). The data appendix in 

Tambe et al. (2020) describes the dataset in detail. The same data, in addition to skills data, are 

used in this paper. 

The LinkedIn data covers a substantial portion of the global knowledge and human capital-

intensive worker population. The representativeness of the LinkedIn panel is imperfect, with 

predictably sparser coverage of smaller (non-public) organizations, less educated workers, blue-
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collar workers, and non-U.S. firms. Further the sample quality varies by year as LinkedIn’s 

adoption diffused through the workforce. While there are data going back substantially farther 

than 2000, the coverage at that point relies upon members populating their pages with highly 

detailed work histories. Additionally, the incentives governing whether to post certain information 

differ across workers. The selection of workers observed on LinkedIn is likely to differ in 

meaningful ways from the underlying employee population. Workers seeking employment, for 

example, are more likely to have updated employment history and skills information on their 

profiles. 

With respect to skills data, incentives to report skill information are higher for job seekers. 

Another possible concern is whether the user self-reported data is accurate or reflects credential 

inflation. Especially for job seekers, dishonest reporting on LinkedIn is not costless, but it does 

occur. To the extent that my skill measures overstate the true skill levels within firms, the 

parameter estimates from the regressions to follow will represent lower bounds on the true 

effects. Perhaps more concerning, and more likely, is underreporting on the LinkedIn platform. It 

is difficult, especially with skills data, to construct a true estimate of the stock of corporate skills. 

Workers will commonly omit their qualifications on LinkedIn profile data. In this case, the 

regression estimates will constitute an upper bound; accordingly, I interpret the skills measures 

not as precise measures of skill stocks, but rather as relative indices of these human capital 

varieties at the firm-level.25 

I pursue several strategies to mitigate these potential sources of bias. The simplest is the 

inclusion of combinations of firm, industry-time, and time fixed effects in all regression 

specifications. In all specifications, however, I correct for occupation, year, and firm-based 

discrepancies between LinkedIn and administrative labor datasets from the Bureau of Labor 

Statistics Occupational Employment Survey (BLS-OES). The BLS-OES survey provides 

detailed industry-level measures of occupational employment and wage. As in Benzell, Lagarda, 

and Rock (2018; Tambe et al. 2020), I build a crosswalk between LinkedIn’s internal 

occupational classification system and the BLS-OES Standard Occupational Classification 

(SOC) Code by year. While skills data is compiled into a firm-quarter index form, the overall 

human capital measures, and explicit measures of talent varieties by firm are normalized using 

the BLS-OES survey in a procedure described in the Data section of the Appendix. Industry 

 
25 Classical measurement error arising from underreporting, overreporting, and noise together will of course 
attenuate all estimated coefficients toward zero. 
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controls are especially important given the skewed distribution of technology skills across 

industries. Figure 2 below reports the distribution of AI skills by industry. 

 

Figure Notes: This plots the prevalence of AI skills per thousand employees as of the end of 
the sample. The information, financial, advanced manufacturing, and scientific sectors have 
relatively higher penetration of AI skills. Accommodation and food services, construction, and 
transportation and warehousing have relatively fewer AI employees. These values are similar to 
industry breakdowns using other data sources such as job postings from Burning Glass 
Technologies (Goldfarb, Taska, and Teodoridis 2020). 

Occupations like software engineer have high fidelity and near complete coverage for U.S. 

firms. A few other titles, like dentist or transportation specialists, have lower baseline levels of 

coverage but are adjusted to BLS-OES consistency with this process. Nevertheless, the 

occupations and firms for which LinkedIn membership is relatively sparse will have noisier 

adjusted employment shares as well. To handle these issues as well as possible, fixed effects 
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at the industry, year, and firm-level are included in regression specifications. Software engineers 

and related occupations constitute the vast majority of workers with AI skills. But for analyses of 

other skillsets these sampling issues are potentially more concerning. In any case, the residual 

variation in coverage issues that might bias estimation coefficients for models with firm and year 

effects, for example, must change within firm and over time (and analogously within industry-

year for specifications with those fixed effects). Plots and statistics on LinkedIn’s coverage are 

reported in Tambe et al. (2020) as well as the Data section of the Appendix. 

Given the theoretical emphasis on sharp changes in a specific type of human capital, variation 

in firm-level general human capital stocks is a likely confound. I construct a total education 

years variable for each firm in each year as a control for the overall level of human capital at 

each firm. For this variable, following Tambe et al. (2020), I aggregate the educational records 

of the workers according to the years of education required to achieve each listed degree.26 

That is, an Associate’s degree counts as two years, a Bachelor’s degree counts for four years, a 

Master’s degree counts for two years, a research doctorate or medical doctor degree counts as 

six years. High school is counted as 12 years. These values are adjusted for coverage in the 

procedure above and summed by firm-year to generate a total education years control. 

Descriptive statistics for the LinkedIn measures can be found below in Table 2. 

One of the possible outcomes of the TensorFlow shock is that companies with high exposure to 

machine learning in their workforces would be affected. This ML exposure might be driven by 

automation and/or augmentation opportunities, a type of intangible asset. I use the Suitability for 

Machine Learning (SML) measure from (Brynjolfsson, Mitchell, and Rock 2018; Brynjolfsson et 

al. 2019) to test whether TensorFlow created or destroyed market value in companies that 

employ workers with machine learning exposure. This measure is constructed at the 6-digit 

SOC code occupational level and reflects aggregated machine learning scores from 1 (low 

exposure) to 5 (high exposure) for a rubric with about 20 questions. The measure is not 

designed to represent automation, but rather the relative exposure of occupations to ML 

technologies. With measures of counts of employees in different occupational categories by firm 

and quarter, I create weighted-average SML scores for each firm in each quarter using BLS-

OES salaries to construct wagebill (employment count times annual salary) weights at the firm-

quarter level. SML is forward-looking in the sense that it represents potential. It is therefore 

 
26 The normalization of education years to adjust for coverage is an identical process to the count normalization 
process described in the data appendix. 
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useful in testing the hypothesis that firms with a highly specific form of intangible complement to 

AI — workforce reorganization potential due to ML — are better positioned to benefit from 

improvements in AI skills technologies like TensorFlow and PyTorch. 

Estimating the Market Value Shock from AI Talent 

Hedonic Market Value Analysis 

Equation 7 above suggests a natural decomposition of the market value of firms onto the 

valuations of their constituent assets. This is the first step to determining the contribution of AI to 

firm’s Tobin’s 𝑞𝑞 value. But a simple predictive OLS specification is useful for another purpose: if 

AI talent is not correlated with market value or other measures of firm performance, then any 

following analysis is likely unnecessary. Tables 3 and 4 below detail some suggestive evidence 

that it is indeed the case that AI and other skills are correlated with improved firm performance. 

In Table 3, various classes of the following regression model are estimated: 

𝑀𝑀𝑉𝑉𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑖𝑖𝑖𝑖 + 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻𝐾𝐾𝑖𝑖𝑖𝑖 + 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑖𝑖𝑖𝑖 + 𝐗𝐗𝐢𝐢𝐢𝐢′𝛄𝛄 + 𝜇𝜇𝑖𝑖 + 𝜈𝜈𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖 (9) 

The included variables in equation 9 are 𝑇𝑇𝑇𝑇, the total book value of assets at the firm; 𝐻𝐻𝐻𝐻, the 

(logged) human capital index built from adding up the total years of education for all workers 

whose LinkedIn profiles indicate being employed at firm 𝑖𝑖 at time 𝑡𝑡 (normalized following the 

procedure in the appendix and Tambe et al. (2020)); the AI skills index measure; a firm fixed 

effect; a time fixed effect; and 𝑋𝑋, a matrix of additional skills indices and controls27. All skills 

indices are constructed as the cumulative sum of skills reported by workers of that variety in that 

firm-quarter. These indices are logged when nonzero (1 is added to entries with zero). In Table 

4, model specifications with firm and industry-time fixed effects are compared for outcome 

variables of market value, revenue, and value added (respectively). That leads to a nearly 

identical setup as equation 9 but for different outcomes of Revenue and value added in 

specifications 3-6. These additional outcome variables are for the purposes of examining 

possible correlations between AI and firm performance. Logged outcome specifications will be 

additionally useful for testing whether the skills indices are related to the total factor productivity 

residual. 

 
27 As well as a vector of 1s for the intercept. 
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Table Notes: *** p<0.01, ** p<0.05, * p<0.1. Industry is defined at the 4-digit NAICS level. 
Standard errors are clustered by firm for all specifications. The table reports firm fixed effect 
ordinary least squares (OLS) regressions of market value on skill indices and associated 
covariates (total assets, log(total years of education in the firm) as human capital, and lagged 
market value. The logged indices are actually 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) in all cases. 
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Table Notes: *** p<0.01, ** p<0.05, * p<0.1. Industry is defined at the 4-digit NAICS level. 
Standard errors clustered by firm for firm fixed effects specifications and clustered by 4-Digit 
NAICS code for industry-time specifications in parentheses. Checkmarks indicate where fixed 
effects were included; X’s indicate where fixed effects were not included. 

Using a balanced panel of publicly traded firms for all quarters from 2014-2017 and a variety of 

skills indices, a regression of market value on these logged skills indices returns a coefficient of 

$480.7 million (standard error $188.7 million) per 100% increase in the AI skills index for 

specification (1) with firm and year fixed effects. Other point estimates in the other specifications 

vary between approximately $400 million and $410 million with similar precision, and the 

specifications vary by introducing additional skills indices as controls. These estimates for AI are 

all significant at a five percent level. The one exception is if previous market value is used as a 

control. In this case the point estimate is positive and large at $185 million but no longer 

statistically significant. This indicates more valuable firms are more likely to invest in AI; 

however, it also suggests that lagged market value is a possible bad control (though still useful 

to include for comparison’s sake). Nevertheless, if market prices are perfectly efficient, this table 

reflects a pricing of AI talent at the firm level. All these estimates include firm and quarter fixed 

effects, so the variation is within-firm. 
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The other results in Table 3 are encouraging for validation purposes. Coefficients on Total 

Assets are roughly equal to $1 per dollar on the balance sheet, the human capital index 

coefficients are positive, large, and significant, and many of the skillsets that are relatively 

abundant like digital literacy and cloud computing have no statistically significant relationship 

with market value after including firm fixed effects. Comparing the full specification of skills 

indices with different types of fixed effects is informative, as the firm performance measures in 

Table 4 do. Column (1) in this table is the same as column (5) in the first table. Notably we see 

for market value, the industry-time fixed effects (industry defined as 4-Digit NAICS code) 

specification in column (2) places an even higher valuation on AI skills. In this specification, a 1 

percent increase in the AI skillset of a firm is correlated with a market value increase of about 

$50 million. 

The reason the firm fixed effects make such a large impact on the coefficient estimates is 

predicted by the 𝑞𝑞 theory of investment. With industry-time fixed effects, the specification is 

closer to matching the valuation maximization problem of the firm. In the theory, firms invest up 

until the point that the additional 𝑞𝑞 value they create is equal to the marginal adjustment costs of 

competitors (what the firm can do that the competitors cannot with the same assets). Therefore, 

controlling for time-varying industry proxies for the best capabilities of competitors to dissipate 

rents. Including firm fixed effects, on the other hand, forces any covariance between the firm’s 

characteristics and the performance outcomes to arise from changes within the firm — any fixed 

assets driving the results will be stripped away from the AI skill index. Firm fixed effects are 

therefore a possibly overly conservative (even adversarial) modeling choice to finding rents. 

They remove the time-invariant asset base and econometrically make the firm compete with 

itself for 𝑞𝑞 value in the residual time-varying investment. Comparing specifications across 

different types of fixed effects models is therefore a useful approach. 

In specifications (3) and (4), the predicted output is revenue instead. A 1 percent increase in the 

AI skills index is correlated with an approximate $6.92 million (standard error $0.17 million) 

increase in revenues for specification (4) with industry-time effects, but including firm fixed 

effects reduces this point estimate considerably and leads to a loss of statistical significance. 

Value added (VA) in the remaining columns shows consistent results with the other outcome 

variables, though the coefficient on AI skills for the industry effect model remains significant at a 

10 percent level. VA specifications rely on fields where missing data is common; there are 

therefore substantially fewer observations for this sample. Again, the variation in firms drives the 
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variation in revenues and adoption of AI. Firms with greater revenues tend to invest more in AI 

talent, adjusting for firm size. 

Main Difference-in-Difference Results: AI Skills Increase Market Value 

If learning how to do deep learning specifically, and machine learning more generally, has really 

become substantially cheaper, does this skill acquisition cost reduction show up in the market 

value of employer firms? The previous section established a correlation between AI skills and 

market value adjusting for a wide series of technology and other related skills. AI appears 

correlated with valuations in a statistically and economically significant way. 

The next step is to apply a series of difference-in-difference approaches to evaluate the 

estimate for a causal impact of the increasing abundance of AI skills in the labor market. If we 

consider the launch of TensorFlow as a natural experiment, we have the following difference-in-

difference setup following the theoretical prediction made in equation 8. For the empirical 

estimation, however, we include a series of like confounds via the other skills indices to isolate 

the AI investment effect. In particular, 

𝑀𝑀𝑉𝑉𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝑇𝑇𝐴𝐴𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐻𝐻𝐾𝐾𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝐴𝐴𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽4[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑡𝑡 ∗ 𝐴𝐴𝐼𝐼𝑖𝑖𝑖𝑖] + 𝐗𝐗𝐢𝐢𝐢𝐢′𝛄𝛄 + 𝜇𝜇𝑖𝑖 + 𝜈𝜈𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖 (10) 

This is a very similar regression to that in equation 9, but equation10 modifies the approach to 

an ordinary two-way fixed effects difference-in-difference estimation. The coefficient of interest 

for the causal effect of the TensorFlow shock, if all assumptions necessary for identification 

hold, is 𝛽𝛽4 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑡𝑡 denotes whether the time period is after the TensorFlow launch).28 

That will reveal the effect of AI talent in the post period. Firm and time unit fixed effects are also 

included (𝜇𝜇𝑖𝑖 and 𝜈𝜈𝑡𝑡) to adjust for unit-specific and time-specific differences in means across 

firms. This limits the kind of variation that could lead to market value effects to be within-firm; 

cross-sectional differences in firms that predict Tobin’s 𝑞𝑞 ideally should not affect this estimate (I 

will discuss possible challenges to identification in a later section). The estimate in this equation 

will describe the additional market value increase to firms with assets that are complementary to 

AI in the post period. After adjusting for time-varying AI investment and other skills, firm size in 

terms of total assets, firm size in terms of overall human capital accumulation29, and other 

controls, an increase in the market value of firms with AI complements relative to those without 

 
28 All treated units experience treatment simultaneously, or an adjustment following Callaway and Sant’Anna (2020) 
would be necessary. 
29 This adjustment is made via the logged total education years at the firm, 𝐻𝐻𝐾𝐾𝑖𝑖𝑖𝑖. 
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in the post period provides evidence of a causal effect of AI skills becoming easier to acquire. 

The assumptions necessary for a conclusion of this sort are that 1) AI skills are indeed 

becoming more abundant and easier to acquire in the post period, 2) that the trends of 

corporate valuations for firms with and without AI complements before AI skills became easier to 

acquire are parallel (i.e. firms that have complementary assets would be worth less in a 

counterfactual world without TensorFlow), 3) conditional on the included covariates (including AI 

and other skill indices), the exposure to TensorFlow was not determined by market value (as 

might be the case if some high market value firms got early access), and 4) the stable unit 

treatment value assumption (SUTVA). I will revisit these assumptions, but for now will note that 

Google is dropped from all analyses to avoid an obvious possible cause of endogeneity. The 

results are below in Table 5. 

 
Table Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by firm in parentheses. 
The table reports results from estimating versions of equation 10 on a balanced panel of firms 
from the beginning of 2014 to the end of 2017. The logged indices, including human capital, are 
actually 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) in all cases. Column (1) reports a specification without time fixed effects. 
Column (2) reports a specification with no additional adjustments other than the fixed effects, 
total assets, and human capital. Columns (2) to (6) add in different skills indices, including 
advertising (in case AI is mostly useful for ad tech). Columns (7) and (8) include controls for 
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lagged market value (1 quarter) and lagged market value growth (1 and 2 quarters) respectively 
to further control for possible trends in market value like AI hype or momentum in investment. 
Specifications including unit fixed effects and lagged dependent variables are known to create 
downward bias in coefficient estimates. These biases are adversarial finding a large effect, but 
qualitatively results are preserved in these specifications. Overall, the AI index x Post-TF 
estimates are relatively stable between $7.2 and $11.2 million more market value per 1 percent 
increase in AI skills in the post period. In other words, TensorFlow appears to cause 
proportionate increase of $720 million to $1.1 billion per 100 percent increase of AI talent in 
companies. Unbalanced panel and Tobin’s 𝑞𝑞 (market value less book value of assets) results 
are reported in Tables A.4 and A.5 in the Appendix. Checkmarks indicate where fixed effects 
were included; X’s indicate where fixed effects were not included. 

 

Table 5 reports economically and statistically significant impact for effects of AI talent in the post 

period. The coefficients on the AI Skills Index x TensorFlow post-period variable vary between 

$722 million (standard error $267 million) in column (7) to $1.12 billion (standard error $438 

million) in column (6). Each column varies only by the included control variables, though all 

specifications include adjustments for the total book value of assets in the firm, the logged total 

education years at the firm variable (human capital), and firm and quarter fixed effects. While 

the theoretical coefficient on total assets without adjustment costs is $1 per unit of asset book 

value, in reality this can vary somewhat. The coefficients on total assets are not statistically 

significantly different from this theoretical value in columns (1) to (6). But the inclusion of total 

assets enforces that the other covariates are used to explain variation in the Tobin’s 𝑞𝑞 value of 

the firm. Columns (3) through (6) each add an additional skill index control. Columns (7) and (8) 

also include controls for one quarter of lagged market value (7) and two quarters of lagged 

market value growth (8). The lagged market value covariate estimate is statistically significant at 

a 5 percent level. Typically, unit-level fixed effects regressions do not include lagged dependent 

variables. These covariates are designed to partial out the effects of momentum or AI-related 

hype, and to provide an adversarial case for estimating a TensorFlow effect. If AI companies are 

simply becoming more valuable, then the simple effect of being a high return company is 

removed with these effects. Specifications including unit fixed effects and lagged dependent 

variables are known to create downward bias in coefficient estimates. These biases therefore 

bias against finding a large effect, but qualitatively results are nevertheless preserved in these 

specifications. Coefficients on the AI index itself are negative and almost perfectly offset by the 

post period coefficient, suggesting most of the returns to AI investment have occurred following 
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the proliferation of workers with AI talent via TensorFlow and other packages.30 This set of 

results establishes that there is a post-period effect, though does not assign a mechanism. 

Indeed, the effect might not even coincide with the TensorFlow launch. I estimate therefore a 

new regression, interacting the AI skills index with each time period to create an event study 

version of equation 10: 

𝑀𝑀𝑉𝑉𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝑇𝑇𝐴𝐴𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐻𝐻𝐾𝐾𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝐴𝐴𝐼𝐼𝑖𝑖𝑖𝑖 + �[𝛽𝛽4𝑡𝑡𝐴𝐴𝐼𝐼𝑖𝑖𝑖𝑖 ∗ 𝑍𝑍𝑡𝑡]
15

𝑡𝑡=1

+ 𝐗𝐗𝐢𝐢𝐢𝐢′𝛄𝛄 + 𝜇𝜇𝑖𝑖 + 𝜈𝜈𝑡𝑡 + 𝜉𝜉𝑖𝑖𝑖𝑖 (11) 

In this equation, each 𝛽𝛽4𝑡𝑡 is unique for the time period 𝑡𝑡. The coefficient values are reported in 

the Appendix in Table A.2. For event study specifications, I include total assets, human capital, 

and the full set of other skills indices related to technology following column (5) of Table 5. The 

results are summarized in Figure 3 below: 

 

Figure Notes: This plots the 95 percent confidence interval for the coefficients 𝛽𝛽4𝑡𝑡 from 
equation 11 estimated on the set of covariates in column (5) of Table 5 over time. All values 
have been normalized by subtracting the pre-TensorFlow mean value of the coefficients to set 
an (average) baseline value of 0 in the pre-treatment period. The zero benchmark represents 
firms that do not use AI at all. The upper and lower bounds of the 95 percent confidence interval 
are represented with dashed lines, and the 0 line is in blue. The y-axis is the coefficient values 
for the regression of market value on the interacted time dummies and AI skills. A coefficient of 

 
30 The offset of the AI Index effect in the post-period is an indication that the there is an AI-related increase in value 
following the TensorFlow launch, and that AI intangibles are negatively correlated with valuations in the pre-period. 
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1000, for example, means that a 100 percent increase in AI in that period predicts a $1 billion 
increase in market value. Standard errors are clustered by firm. 

While adding this many additional covariates on the right-hand side of the regression increases 

the standard errors, the point estimates are consistent with the timing of market value increases 

coinciding with the TensorFlow talent shock. Market Values for AI using firms relative to the 0 

benchmark of firms that do not use AI at all (AI Index measures multiplied by time dummies for 

firms with zero AI will always be zero). It is clear from the figure that companies with assets 

complementary to AI are growing in value relative to the companies without them, and that this 

growth begins sometime around the period in which AI talent began to proliferate towards the 

end of 2015. There are do not seem to be notable trends prior to the TensorFlow launch 

quarter. It is worth noting that since market value is a forward-looking measure, firms with AI-

complementary assets need not be able to find immediately available talent to benefit from the 

TensorFlow launch. Instead, what is necessary is for forward-looking investors to reprice the 

firm’s present investments on the assumption that in the future talent will be less of a bottleneck. 

What this figure and the foregoing analysis does not reveal is which of the hypothesized 

mechanisms leads to the market value change. The next section discusses and investigates 

those possibilities. 

Testing Possible Mechanisms for the AI-Related Market Value Increase 

Price, Productivity, and Corporate Workforce ML Exposure Results 

Revisiting the hypotheses in the model section, there are a few possible mechanisms via which 

a change in the difficulty of acquiring a new technical skill for employees might affect the market 

value of employers. The first possibility is price. Forward-looking investors judge that installed 

asset base of the firm is worth more after one of the necessary complementary inputs (worker 

human capital) becomes more abundant. Since the expected future rental rate of those skills is 

lower if more workers have them, the firm’s investments sunk under the assumption that the 

rental rate would be higher going forward are now a source of quasi-rents. New investment, 

however, will require paying the market rate for additional capital (human and otherwise), which 

will be higher.  

The second possibility is an increase in total factor productivity. By a similar logic to the price 

shift, if firms are now more productive because of their employees’ newfound ability to apply a 

technical skill, then the installed asset base will yield more in terms of capital service flows than 

it was expected to do. Two types of productivity change should be separated. An instantaneous 
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productivity increase from, for example, existing deep learning workers shifting their approach to 

a more efficient platform, increases demand for complementary skills like data science or cloud 

computing. If productivity is growing and causing a demand-side effect, then the valuation of 

skills other than deep learning (but perhaps in a similar category) should also grow. An 

expected future productivity increase, on the other hand, falls under the price mechanism 

category as well, but affects all asset varieties with firm-specific components. Without any firm-

specific component, competitors will be able to bid up the value for assets that would be equally 

productive in any company. The firm-specific complementary assets to AI talent in this case 

grow more valuable because of what the firm itself can do. It might also be the case that worker-

level productivity changes. This is a likely result of a new software package or easier method of 

approaching complicated problems. The net effects of such a change on market value are 

ambiguous, as more productive workers can achieve more for their employers but also demand 

more compensation. Without detailed compensation data, it is difficult to document the extent to 

which worker productivity is enhanced. 

One specific kind of intangible asset of relevance is firm sensitivity to machine learning 

technology in the workforce. Increasing the availability of workers using AI technology might 

have implications for firms and workers that are exposed to the technology in other ways. I 

apply the SML measure in Brynjolfsson and Mitchell (2017; Brynjolfsson, Mitchell, and Rock 

2018; Brynjolfsson et al. 2019) to discern whether it is exposure to AI talent or talent potentially 

affected by AI that leads to market value changes in the post period. 

Table 6 below reports the result of regressions of logged revenue and logged value added as 

outcomes on logged skill indices and the asset and human capital controls. These are standard 

ordinary least squares productivity regressions. If we assume a Cobb-Douglas production 

function, then 𝑌𝑌 = 𝐴𝐴𝐾𝐾𝛼𝛼𝐿𝐿𝛽𝛽 where 𝐾𝐾 and 𝐿𝐿 are capital and labor (in this case proxied by total 

assets and the human capital measure since that is likely highly correlated with labor inputs). 𝐴𝐴 

is the total factor productivity, and in a log-log regression we have: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑘𝑘𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑙𝑙𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖 (12) 

Lower case variables in equation 12 denote logged variables. The residual of a regression of 𝑌𝑌 

(either revenue or value added) on logged capital and labor will contain productivity. Therefore if 

AI skills (or other skills) are statistically significant when estimating equation 12, they might be 

correlated with productivity 𝐴𝐴. As Table 6 shows, there is little evidence of AI’s correlation with 

contemporaneous productivity in the 2014 to end of 2017 sample period. 
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Table Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by firm for firm fixed 
effect specifications and by 4-digit NAICS for industry-time fixed effect specifications in 
parentheses. The table reports results from estimating versions of equation 12 on a balanced 
panel of firms from the beginning of 2014 to the end of 2017. The logged indices, including 
human capital, are actually 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) in all cases. Columns (1) and (2) reports the elasticity of 
revenue with respect to total assets, human capital, and skills indices. Columns (3) and (4) 
report the same for value added. Value added is calculated as quarterly revenue less quarterly 
materials expense, calculated as 25% of annual operating expense less annual labor expense 
from the Compustat database. Checkmarks indicate where fixed effects were included; X’s 
indicate where fixed effects were not included. 

Total assets and human capital are both strongly correlated with the outcome variables, but 

there are no uniformly present correlations between the skill indices selected and the outcomes. 

For firm fixed effect models, this may suggest that productivity effects of these technology skills 

in the sample period are absorbed by fixed firm characteristics. The industry-time model point 

estimates are somewhat more positive. But overall it does not seem that AI talent in particular is 

currently correlated with productivity. None of the coefficients on AI skills are statistically 

significant. Further investigating the productivity hypothesis will be an analysis of placebo skills 

in the section dealing with robustness. 
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To test the specific hypothesis that the relevant intangible asset is workforce exposure to future 

AI opportunities, I apply a similar difference-in-difference analysis as in the main results 

following equation 10 testing the difference-in-difference estimates for SML instead of AI skills 

and equation 11 conducting an event study on the interaction between time dummies for each 

period in the sample and the firm-level SML score. Firm-level SML scores are calculated in a 

multi-step process. First I calculate the wagebill paid by each firm to each occupation in each 

quarter using a normalized count of LinkedIn profiles at each firm in each quarter by each 

occupation (defined by 6-digit SOC Code), multiplied by the annual salary for that occupation 

reported by the BLS-OES (this is the procedure described in the data appendix of this paper 

and of Tambe et al. (2020)). These wagebills by occupation-quarter constitute the weights in a 

weighted average of occupation-level SML scores (also for 6-Digit SOC Codes). What results is 

a wagebill-weighted overall SML score for the firm that reflects the central tendency of the SML 

scores given how much the firm spends on each type of worker. The results of a difference-in-

difference estimation procedure with SML score instead of AI skills are reported in Table 7 

below. 
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Table Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by firm in parentheses. 
The table reports results from estimating versions of equation 10 on a balanced panel of firms 
from the beginning of 2014 to the end of 2017. The logged indices, including human capital, are 
actually 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) in all cases. Columns are analogous to Table 5 for AI skills. 

Coefficient estimates for the SML and SMLxPostTensorFlow covariates are not statistically 

significant for any of the specifications, and the point estimates are negative for all specifications 

except for column (6). Given that the requisite assumptions hold for identifying a causal effect of 

AI exposure, these results are evidence that so far ML exposure in the workforce is not a 

channel via which TensorFlow might have caused an increase in employer market value. 

Bolstering the case that high SML firms are not affected positively by the TensorFlow change 

(or other AI talent shocks in the same period) are the event study results following equation 11 

with AI skills swapped for SML scores. Figure 4 shows no evidence of a contemporaneous 

market value shift during the time that TensorFlow is open source, and toward the end of the 

sample period it appears that high SML firms begin to lose market value. That is, the firms with 

the most workers exposed to new ML capabilities are declining in their valuations. Firms with 

large proportions of their resources, including the workforce, exposed to new technologies are 

more likely to have to change their value creation processes in response to competitive 

pressure. Changing these processes can be very expensive, especially without in-house talent 

to implement new ones. These fixed costs of investment are simultaneously what insulate the 

rents of high value firms from competition ex-post and destroy the rents of incumbents at a 

discontinuity in technological capabilities. Just as fixed assets and intangible capital can provide 

upside exposure to employee skills, they can also create downside risks when adjustment is 

needed. 
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Figure Notes: This plots the 95 percent confidence interval for the coefficients 𝛽𝛽4𝑡𝑡 from 
equation 11 estimated on the set of covariates in column (5) of Table 7 over time. The upper 
and lower bounds of the 95 percent confidence interval are represented by vertical lines. The y-
axis is the coefficient values for the regression of market value on the interacted time dummies 
and SML exposure. Standard errors are clustered by firm. 

Having found little evidence for the total factor productivity or the workforce exposure 

hypothesis, I now turn to possible threats to identification of the price effect. The caveats on the 

main results are closely related to the worker productivity hypothesis as well and will be 

addressed in the robustness section. 

Threats to Identification and Causal Interpretations of Results 

There are a few possible threats to the validity of the assumptions necessary to make a causal 

inference from the AI skills difference-in-differences regressions. Though it seems to be the 

case that, in aggregate, there are no major pre-trends in market value per Figure 3, a more 

serious concern is selection issues across the sample. This is partly mitigated by using a 

balanced panel of firms — by eliminating entry and exit into the sample there is a greater 

chance of recovering a causal estimate rather than a correlation reflecting compositional 

changes. But even within the balanced panel there may be changes in AI intensity that bias the 

coefficient estimates for the treatment effect. A related problem is that the market value 

behavior of firms without AI complements might be an inappropriate control for outcomes in 

companies that do have AI complements. It may also be the case that other skills, how the AI 

skills measure is coded (continuous versus discrete), or worker-level productivity effects (via the 
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third hypothesis predicted by the theory) are driving the effects. In the subsequent section, I will 

test the robustness of the results to each of these factors. 

There are, however, a few assumptions needed that are more difficult to test. One possible 

issue is that the interpretation of all the foregoing analysis assumes that market participants are 

properly pricing the assets of publicly traded firms. That is, to some extent the market must be 

efficient with respect to pricing human capital-related intangible capital holdings. Eisfeldt and 

Papanikolaou (2013, 2014) provide a rationale and empirical investigation for why it seems to 

be the case that the market does price intangible assets, and human capital-related assets. But 

for this specific case, how is it that market participants know how many AI workers are at each 

company? By 2020, numerous datasets with detailed worker data (like the ones used in this 

study) were readily available to hedge funds and other investors. These datasets existed, but 

were less prevalent, at the time of the TensorFlow shock. While verifying the information set of 

investors toward the end of 2015 would prove too difficult a challenge, a simpler constraint can 

be imposed that also helps deal with the compositional shift identification problem: breaking 

firms into quintiles (or any other quantile) reflecting their level of AI employment at the time of 

the TensorFlow launch. The sample is then consistent over time and requires less from 

investors. Instead of knowing specific levels of AI skills by firm, they need only have a general 

sense of the level of AI use at each company. As it turns out, by the end of 2015 fewer than half 

of firms used AI. Figure 5 shows the histogram of firms by AI skills quintile. The second quintile 

is absorbed into the first with no skills, while the third quintile is small and also partially absorbed 

into the first. These quintiles will be applied for further analysis. I will also use a binary variable 

reflecting an indicator for hiring any AI skills or not to estimate a synthetic difference-in-

differences model (Arkhangelsky et al. 2019) in the robustness section. 
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Figure Notes: This plot is a histogram of the percentage of firms in each AI Skill quintile. Most 
firms do not use AI, and the third quintile is small. The fourth and fifth quintiles are as expected. 
Differences from 20 percent membership there are due to ties in the discrete counts of skills. 

A final challenge for the identification of the TensorFlow effect is the assumption that it is 

TensorFlow causing these changes at all. Of course, it is not possible to be absolutely certain 

that the TensorFlow launch caused the changes observed. The estimation is done at the 

quarterly level, which might include a variety of information shocks with respect to the AI content 

of firms. Abstraction is helpful here to some extent. Rather than considering the TensorFlow 

shock as unique to Google’s decision, the real requirement to test whether worker potential AI 

skill acquisition is linked to the market value of employers is that there is a talent shock in that 

time period. Demonstrating the existence of a talent shock at that period is possible; it need not 

(only) come from TensorFlow. There are at least three separate datasets that corroborate the 

existence of a large talent shock at the time of the TensorFlow launch in late 2015: GitHub 

activity reflecting engagement with AI toolkits, Google Trends interest in deep learning and AI 

skillsets, and LinkedIn activity in adding deep learning and related skills. Figure 1(b) shows that 

deep learning skill additions increased at a rapid clip starting in late 2015. Using data from 

GitHub and Zhang et al. (2021), it is clear that engagement with AI software toolkits began to 

trend similarly around the same time. Figure 6 shows trends in GitHub stars, a measure of 
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activity with respect to software modules.31 The Google Trends data shows similar trends, with 

a rapid uptick in searches for TensorFlow (as might be expected) on the day of the launch. 

Figure 7 shows the relative search interest on Google Trends for deep learning, TensorFlow, 

and Theano (an older library) over time. Taken together, the three sources suggest that the 

talent shock did occur sometime around the launch of TensorFlow, even if it is possible that it 

was not TensorFlow causing the change. 

 

Figure Notes: This plot shows the GitHub star count for a number of machine learning libraries 
following Zhang et al. (2021) with data from GitHub. The data are publicly accessible via the 
2021 AI Index Report: https://aiindex.stanford.edu/report/. TensorFlow is the most popular 
library by a wide margin according to this metric. 

 
31 GitHub is a popular versioning control application and website. Software engineers can collaborate across open-
source projects, making contributions without conflicting versions. Additionally, many companies, including 
Google, host open-source projects on GitHub. GitHub was acquired by Microsoft in 2018. 



41 
 

 

Figure Notes: This plot shows in panel (a) the relative search index for Deep Learning, 
TensorFlow, and Theano as search terms. Deep Learning accelerates in conjunction with 
TensorFlow after its launch, and prior to TensorFlow’s launch it has little demonstrated interest. 
Theano interest briefly increases and declines in the same interval. Further development is not 
supported in Theano by its developing team. Panel (b) shows Deep Learning on its own. 

Robustness Checks 

Skills Placebos, Alternative AI Measures, and Synthetic Difference-in-Differences 

How can the shifts in market value among AI using firms be better linked to AI skills and not 

other types of skills with related effects? Here we will test the hypothesis that worker productivity 

is influencing the market value of firms while also testing the price effect of AI. Skills placebos 

are an important check that can verify whether the level shifts in market value might be caused 

by other skills in the same time period, or perhaps if skills changes in general are covarying with 

firm value. Additionally, these placebo checks provide some insight into the worker productivity 

hypothesis. AI workers have bundled skillsets in data science, cloud computing, and other 

techniques. If there was a shock to AI talent making it easier to acquire machine learning skills 

at the end of 2015, and any response in market value were not due to AI alone, then we can 

expect a similar event study to show evidence of an increase in market value from those 

bundled skills as well (unless the worker appropriates the full value of those shifts). 

Below I estimate event study coefficients of the form in equation 11. Instead of interacting AI 

skills with each of the time dummy variables, I instead interact high level skill cluster category 

indices in data science, management, and advertising with time dummies, and low-level specific 

skill indices for linear regression, A/B Testing, and deep learning (specifically) to see if the 

observed market value effects from the previous sections are specific to AI-related talent. In 

each case, the goal is to be adversarial to the AI talent price hypothesis. Therefore, the included 
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controls for all specifications are lagged market value, total book value of assets, human capital 

years, and skills indices for cloud computing, digital literacy, data storage, big data skills, and AI. 

Additionally, I include indices for data science, management, and advertising when those 

indices are not interacted with dummies. The results of these regressions are reported in Figure 

8 below. To preserve an interpretation of a "per skill" value, these covariates are not logged. 

Therefore, the effect under consideration should be a level shift at the time of the TensorFlow 

release. If something else shifts the market value of these skills in that time period, it will only 

occur once. 

 

Figure Notes: These charts show event study results per equation 11. Controls included are 
lagged market value, total book value of assets, years of education at the firm (human capital), 
and skills indices for cloud computing, digital literacy, data storage technologies, big data skills, 
AI skills, and advertising, management, and data science when those categories are not 
interacted with time fixed effects. Additionally firm and industry-time fixed effects are included. 
All skills are user-reported within publicly traded companies across the LinkedIn platform for the 
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designated 2014-2017 (inclusive) time period. The TensorFlow launch in red is November 2015. 
Vertical bars are 95 percent confidence intervals. Standard errors clustered by Industry-Time 
where industry is defined as 4-Digit NAICS code. 

The placebos show that, for the most part, there is no shift in market value for the AI Skills 

acceleration start period (the final quarter of 2015) in response to skills other than deep 

learning. The broad categories show positive and statistically significant estimates for the value 

of Data Science, Management, and Advertising skills, but no major shifts immediately following 

the TensorFlow launch. A/B Testing and Linear Regression are two related competencies that 

are especially prevalent in the types of AI-intensive and data science-intensive employers that 

might see an increase in valuation because of TensorFlow. There appears to be a small 

increase in the point estimate for these skills following the TensorFlow launch, but it is not large 

enough to be out of the trend for these skill values. What this means, however, is that there is 

some (albeit weak) evidence for the worker productivity hypothesis because those related skill 

value point estimates do increase. It nevertheless seems unlikely to be the entire story. Deep 

Learning skills, in contrast, show a large and statistically significant increase immediately 

following the TensorFlow launch. At the same time, the confidence intervals for Deep Learning 

value in the pre-period are wider than they are for the post-period. This is because of massive 

additions of skills to the LinkedIn platform in this category. That increase in skill value due to 

deep learning, if not due to noise, would constitute a level shift in that period in the value of 

deep learning skills. It may indeed just be due to noise. This motivates the next section, where I 

analyze alternative codings of AI skills (quintiles and binary specifications). 

Exposure to digital forms of capital is concentrated in some of the largest firms (Bessen 2020; 

Tambe et al. 2020). Given possible changes in the size of firms with respect to their AI talent 

flows, it makes sense to recast the AI measure into quintiles. These quintiles are set based on 

the AI skillset within each firm in the panel at the time of the TensorFlow launch. In some ways 

this is a more faithful measure of exposure for our outcome of choice; market participants are 

more likely to be able to discern AI using from non-AI using firms or quintiles of use than specific 

AI talent on a continuous basis. Quintiles also reduce the possible effects of skewness in the 

skill measures and maintains a constant sample composition. The entire table for logged and 

unlogged market value coefficients by quintile with firm and industry-time fixed effects are in the 

appendix in Table A.3. Table 8 below re-estimates the results in Table 5, but this time excluding 

the top quintile of firms. 
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Table Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by firm in parentheses. 
The table reports results from estimating versions of equation 10 on a balanced panel of firms 
from the beginning of 2014 to the end of 2017. The logged indices, including human capital, are 
actually 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) in all cases. Columns are identical to Table 5 for AI skills, but exclude the 
top quintile of AI firms. 

The coefficient estimates are still broadly indicative of the same trends without the top quintile, 

but with considerably smaller coefficients. Now the putative effects of the TensorFlow launch 

are between $306 million (standard error $161 million) in column (6) and $333 million (standard 

error $173 million) in column (3) per doubling of AI talent. These are only statistically significant 

at a 10 percent size. This suggests that a large component of the valuation changes observed in 

earlier sections of the paper was driven by large firms. Since IT assets generally are 

concentrated in some of the highest market value firms and the link between IT, productivity, 

and rents is well-established (Brynjolfsson and Hitt 2000; Corrado, Hulten, and Sichel 2009; 

Tambe and Hitt 2012; Tambe 2014; McGrattan 2017; Tambe et al. 2020), this is reasonably 

predicted by the literature as a likelihood for AI as well. Figure 9 plots the equivalent event study 

design as in Figure 3, this time dropping the top quintile as well. The effects are noticeably 

smaller for non-top firms. 
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Figure Notes: This plots the 95 percent confidence interval for the coefficients 𝛽𝛽4𝑡𝑡 from 
equation 11 estimated on the set of covariates in column (5) of Table 8 over time. All values 
have been normalized by subtracting the pre-TensorFlow mean value of the coefficients to set 
an (average) baseline value of 0 in the pre-treatment period. The zero benchmark represents 
firms that do not use AI at all. The upper and lower bounds of the 95 percent confidence interval 
are represented with dashed lines, and the 0 line is in blue. The y-axis is the coefficient values 
for the regression of market value on the interacted time dummies and AI skills. A coefficient of 
1000, for example, means that a 100 percent increase in AI in that period predicts a $1 billion 
increase in market value. Standard errors are clustered by firm. Omits the top quintile of AI 
index firms. 

The diminished estimates from excluding the top quintile are indicative that the results may be 

sensitive to choice of control group. In comparing firms with AI talent (and therefore AI-related 

complementary assets) to firms without AI talent, the aim is to estimate the effect of an AI talent 

shock between groups that are exposed and those that are not. The ideal experiment, however, 

is to think about what the same firm might do in response to the talent change without any AI 

talent versus what occurs. For AI-intensive firms, we would like to compare to a doppelganger 

firm that does not have any AI skills. We can approximate this thought experiment in 

observational data with synthetic difference-in-differences (Arkhangelsky et al. 2019), a 

modification on the standard difference-in-difference framework that combines two-way fixed 

effects with the insights from the synthetic control literature. In synthetic control methods, pre-

treatment trends are aligned by finding weights over untreated units that synthetically recreate 

the outcomes of treated units (and omits unit fixed effects). Synthetic controls, however, are not 

amenable as a method to large panels. In synthetic difference-in-differences, there are unit 

weights on the standard difference-in-differences two-way fixed effect squared errors as in 
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synthetic controls, but there are also time weights. Since the difference in pre-treatment control 

and treatment group averages changes over time in the pre-period and this difference over time 

might be predictive of differences in the post-period, synthetic difference-in-differences 

reweights by time as well. This has the benefit of mitigating the biasing effect of time periods in 

the pre-period that are substantially different than the post-period that might occur with synthetic 

controls. Synthetic difference-in-differences also includes a unit fixed effect, which in the case of 

firm-level analyses constitutes a large component of the overall variation. Per Arkhangelsky et 

al. (2019), the synthetic difference-in-difference solves: 

�𝛽̂𝛽1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝛽̂𝛽0, 𝜇̂𝜇𝑖𝑖 , 𝜈̂𝜈𝑡𝑡� = argmin
𝛽𝛽0,𝜇𝜇𝑖𝑖,𝜈𝜈𝑡𝑡,𝛽𝛽1

���(𝑌𝑌𝑖𝑖𝑖𝑖 − 𝛽𝛽0 − 𝜇𝜇𝑖𝑖 − 𝜈𝜈𝑡𝑡 − 𝛽𝛽1𝑋𝑋𝑖𝑖𝑖𝑖)2
𝑇𝑇

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

𝜔𝜔�𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜆̂𝜆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� (13) 

In this case, 𝑋𝑋𝑖𝑖𝑖𝑖 is a binary treatment variable that I use to represent having nonzero AI talent or 

not (encoded as 1 if AI skills are present, else 0), 𝜇𝜇𝑖𝑖 and 𝜈𝜈𝑡𝑡 are unit and time fixed effects, 

respectively, 𝛽𝛽0 is an intercept, and 𝛽𝛽1 represents the treatment effect of interested (a shock to 

AI Talent). 𝜔𝜔�𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝜆̂𝜆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are the unit weights (as in synthetic controls) and the time weights 

that enable a more robust treatment effect. In other words, this method will better compare 

similar units with and without AI in similar time periods. Standard errors are calculated with a 

jackknife estimation procedure described in Arkhangelsky et al. (2019) and implemented in the 

associated R package. Effectively this process allows for better modeling of pre-treatment 

outcomes. Results for AI and other selected binary covariates are below in Table 9. 

 
Table Notes: Jackknife standard errors reported in the table. The table reports results from 
estimating versions of equation 13 on a balanced panel of firms from the beginning of 2014 to 
the end of 2017. All skill indices (AI, data science, cloud computing, business management, and 
linear regression) are recast as 1 if skill values are nonzero at the time of the TensorFlow 
launch and 0 otherwise. SML is made into a binary variable by recoding it as 1 if equal to or 
above median and 0 if below. Estimates are in billions USD. 
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In Table 9, the only statistically significant estimates at the 5 percent level are those for AI skills 

and Deep Learning skills. With better matching of treatment and control (via the more flexible 

synthetic DID framework), the coefficient estimates actually get larger. Given the identification 

assumptions hold, being a firm with some AI workers at the time of the TensorFlow launch now 

causes an approximate $1.6 billion (standard error $750 million) increase in market value. If the 

firm is using deep learning in particular, the estimated caused increase in market value is $14.3 

billion (standard error $4.9 billion). Notably there not many firms using deep learning (only 60), 

so this value increase only affects a few firms who are lucky enough to be positioned for it. AI is 

more widespread at the time, with 605 firms in the AI-intensive group. The other point estimates 

are all positive, but not statistically significant. The same placebo checks as before therefore 

hold, and the composition of the sample is held constant in this analysis. With this better 

matching of an AI-intensive firm to a synthetic non-AI using comparison group, we see 

treatment effects are larger. Taken together, it appears that the AI talent shock (very likely 

related to TensorFlow at a minimum) caused a revaluation of firms with AI-complementary 

assets per the pricing hypothesis. The two flavors of productivity hypotheses did not show up in 

valuation for other skills to a significant extent and the SML exposure results suggest negative 

value effects, if any at all. 

Discussion and Managerial Implications 

Through several results and regression specifications, the balance of the evidence suggests 

that the open-source launch of TensorFlow (or a concurrent shock making it easier to acquire 

AI-related skills) caused an increase in the market value of firms with AI complements. This 

change likely occurred via the hypothesized price effect: sunk fixed investments at firms with 

firm-specific value became more valuable as the costs to service complementary investments in 

talent dropped. The advantage of using market value is that it is forward-looking, as opposed to 

many other important measures like productivity which can only be measured 

contemporaneously. There is little observable effect of the TensorFlow launch on total factor 

productivity (proxied for via a production function OLS estimation and by value of other skills), 

and the productivity effects for talented workers with complementary skills to AI appear muted at 

best. Lastly, firms with lots of exposure to applications of AI and machine learning, as measured 

by the weighted SML measure, appear to be either unaffected or possibly negatively affected 

with a lag by the shift in skill acquisition costs. Returning to the price effect is therefore a 

diagnosis of exclusion in a way — the other possibilities are ruled out. 
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These results are robust to a variety of placebo checks and other diagnostics. The parallel 

trends assumption can of course be problematic for any difference-in-differences model. A 

visualization of pre-trends yields no obvious problem, but firms with AI complements do tend to 

outperform non-AI counterparts in the pre-period. Dropping these early adopters leads to 

diminished estimates that are qualitatively similar. But additionally, there is the question of 

whether non-AI firms as a group constitute an appropriate comparison group. Using the 

synthetic difference-in-difference method to build a better comparison group, the effects of the 

rapid increase in ML talent starting at the end of 2015 is even stronger for companies that have 

started up the AI and deep learning adoption curve. This type of model, in recasting the AI 

exposure variable as binary, further handles a separate problem: how do investors know how 

intensively companies use AI? It is far easier to tell the extensive margin of technology use as 

an onlooker than the intensive margin. The results are also robust to sample selection changes 

that might be introduced by using a continuous measure, even if the panel is balanced. When 

looking at quintiles that are fixed, the results are qualitatively like the continuous measures. 

These quintiles reveal as well that the largest effects are concentrated. Only 60 firms are using 

deep learning at the time of the TensorFlow launch, and the point estimates for their market 

value growth as a result are large. Firms in the third and fourth quintile of AI talent also appear 

to receive a market value boost from more abundant expected future talent, but that boost is 

short-lived in comparison to the larger AI skill index firms. Like other forms of IT, the market 

value gains to AI investment seem to accrue to a relatively concentrated set of firms. The rapid 

proliferation of skillsets, however, is spread out over many different workers as interest in deep 

learning skills has climbed rapidly in recent years. 

There are many facets to the managerial implications of these results. The first, as indicated by 

the theory, is that firm-specific capital investments provide exposure to future employee 

skillsets. Employee skills have different risk-reward profiles. Technology skill value can be highly 

volatile, with quick adoption and abandonment (Horton and Tambe 2019). The firm-specific 

technological assets in a company will grow in value if the human capital complements become 

more abundant. Even firms, as Hal Varian suggested, can become expensive complements to 

something that is rapidly becoming cheaper. Those technological assets can easily become 

obsolete or impaired by new technologies. Companies with highly ML-exposed employees are 

declining in market value over the last few quarters of the skill sample relative to peers. 

Managers can therefore consider employee skills as part of their investment portfolio, and even 

guide them deliberately as companies like Google, Facebook, Uber, IBM, and LinkedIn have by 

making open-source projects a key part of their business strategy. The choice to use OSS may 
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avoid future training costs. Additionally, from a measurement perspective, keeping a careful 

inventory of the human capital varieties within firms will be occasionally important to 

understanding what is driving the share price. Changes like the deep learning talent effects are 

infrequent but have the potential to be large.32 New large-scale labor platforms like LinkedIn and 

GitHub can help firms take inventory of their skillsets. Finally, though this paper considers 

technological skills in detail, such changes are possible as well outside of technology skills. New 

software packages are relatively easy to measure in comparison to social skills or leadership 

ability, but they are not uniformly more valuable. Investing in measurement of non-technological 

human capital may be a high return activity. 

Conclusion 

This paper investigates the effect of making technological talent in artificial intelligence more 

abundant via a shock to the worker costs of investing in machine learning skills. The results 

indicate that AI talent-exposed firms, having sunk firm-specific investments in AI, experienced 

larger growth because of Google’s decision to open source TensorFlow (or a similar shock 

causing a growth in AI talent at the same time). The results are robust to a variety of 

specifications, placebo checks, and additional analyses. 

This study is among the first to analyze a large-scale online database of the supply-side of AI 

talent in firms to understand the effects of AI adoption in companies. I also link human capital 

acquisition decisions made by employees to the market values of their employers, finding that 

the price effects at the outset of a skill proliferation event are the most likely explanation and not 

contemporaneous productivity increases or prior overall workforce exposure as an intangible 

asset. The market value increases are more likely due to the value of AI projects increasing 

instead. Technology skills like deep learning are particularly well-suited to analyses of this kind 

because coverage of tech workers on online platforms tends to be high, their skills are easily 

captured in online databases and explicitly named (and sometimes quite strangely named), and 

the skills can arise and die off quickly. Nevertheless, measurement can be subject to a host of 

biases and issues when using online platforms. While the measurement is challenging, the 

economics and managerial implications are relatively simple: firm-specific assets provide 

 
32 When Andrew Ng left Baidu, for example, the market capitalization of Baidu dropped by about $1.5 billion. 
Source: Sam Shead, “Baidu's value took a $1.5 billion plunge after its chief scientist announced he's leaving,” March 
22, 2017, https://www.businessinsider.com/baidu-value-took-a-15-billion-plunge-after-chief-scientist-andrew-ng-
announced-hes-leaving-2017-3. 
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exposure to the employee human capital complements. The 𝑞𝑞-value of companies is linked to 

the technological knowledge they rent from workers. When workers decide to pursue new skills, 

it is a win-win for employers as well. 
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Appendix 

Online Appendix 

Theoretical Derivation of Market Value 

Assume a production function of the following form: 

𝑌𝑌 = 𝑝𝑝𝑝𝑝(𝐴𝐴,K, 𝐿𝐿𝐻𝐻 , 𝐿𝐿𝐿𝐿 ,I) (𝐴𝐴. 1) 

Here 𝑌𝑌 is output, 𝐴𝐴 is total factor productivity, 𝑝𝑝 is the price of output, 𝐺𝐺 is the production 
function, K, 𝐿𝐿𝐻𝐻, 𝐿𝐿𝐿𝐿, and I are the vector of capital stock quantities by variety, the quantity of labor 
hired that chooses to invest in the skill, the quantity of labor hired that chooses not to invest in 
the skill, and the investment quantity vector by variety (respectively). Assume perfect 
competition between firms and constant returns to scale in all factor inputs. The vector of market 
prices for new investment goods is z. 𝐺𝐺 represents the final output net of adjustment costs, is 
non-increasing and convex in all varieties of I, is non-decreasing and concave in all varieties of 
K and 𝐿𝐿, and has homogeneity of degree one. These restrictions make it such that the firm will 
pay opportunity costs at an increasing rate to accelerate capital investment, have diminishing 
marginal returns in single inputs, and constant returns to scale. The market value of a price-
taking firm will be equal to the sum of the assets of the firm, priced at the replacement cost plus 
the marginal adjustment cost per unit of assets. With 𝑗𝑗 indexing capital varieties, the firm 
maximizes profits over investment in capital and hiring of perfectly flexible labor: 

max
𝐼𝐼, 𝐿𝐿

 �� 𝜋𝜋
∞

𝑡𝑡=0
(𝑡𝑡)𝛿𝛿𝑡𝑡 𝑑𝑑𝑑𝑑� = 𝑉𝑉(0) (𝐴𝐴. 2) 

where, suppressing subscripts for time 𝑡𝑡, 

𝜋𝜋(𝑡𝑡) = 𝑝𝑝𝑝𝑝(𝐴𝐴,K, 𝐿𝐿𝐻𝐻 , 𝐿𝐿𝐿𝐿 ,I) −𝑤𝑤𝐻𝐻𝐿𝐿𝐻𝐻 − 𝑤𝑤𝐿𝐿𝐿𝐿𝐿𝐿 − z’I
and
𝑑𝑑𝐾𝐾𝑗𝑗
𝑑𝑑𝑑𝑑

= 𝐼𝐼𝑗𝑗 − 𝛽𝛽𝑗𝑗𝐾𝐾𝑗𝑗  ∀𝑗𝑗 = 1,2, . . . , 𝐽𝐽.
 (𝐴𝐴. 3) 

We add depreciation rates for capital variety 𝑗𝑗 defined by 𝛽𝛽𝑗𝑗, and 𝛿𝛿𝑡𝑡 corresponds to the discount 
factor at time 𝑡𝑡 as before. The firm solves for the solution to the Hamiltonian maximization at 𝑡𝑡 =
0: 
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𝐻𝐻(K, 𝐿𝐿𝐻𝐻 , 𝐿𝐿𝐿𝐿 ,I,𝐴𝐴) = (𝜋𝜋(𝑡𝑡)𝛿𝛿𝑡𝑡) + �𝜆𝜆𝑗𝑗

𝐽𝐽

𝑗𝑗=1

�𝐼𝐼𝑗𝑗 − 𝛽𝛽𝑗𝑗𝐾𝐾𝑗𝑗�

with standard constraints (𝑡𝑡 subscripts are assumed and suppressed on all prices,
quantities, and marginal products),

1) 
∂𝐻𝐻
∂𝜆𝜆𝑗𝑗

= 𝐾𝐾𝚥̇𝚥 = 𝐼𝐼𝑗𝑗 − 𝛽𝛽𝑗𝑗𝐾𝐾𝑗𝑗  ∀𝑗𝑗 ∈  1,2, . . . , 𝐽𝐽,  ∀𝑡𝑡 ∈ [0,∞),

2) 
∂𝐻𝐻
∂𝐾𝐾𝑗𝑗

= −𝜆𝜆𝚥̇𝚥 = 𝑝𝑝𝐺𝐺𝐾𝐾𝑗𝑗𝛿𝛿
𝑡𝑡 − 𝜆𝜆𝑗𝑗𝛽𝛽𝑗𝑗  ∀𝑗𝑗,∀𝑡𝑡,

3) 
∂𝐻𝐻
∂𝐼𝐼𝑗𝑗

= 0 = �𝑝𝑝𝐺𝐺𝐼𝐼𝑗𝑗 − 𝑧𝑧𝑗𝑗� 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑗𝑗  ∀𝑗𝑗,∀𝑡𝑡,

4) 
∂𝐻𝐻
∂𝐿𝐿𝐻𝐻

= 0 = �𝑝𝑝𝐺𝐺𝐿𝐿𝐻𝐻 − 𝑤𝑤𝐻𝐻�𝛿𝛿𝑡𝑡  ∀𝑡𝑡,

5) 
∂𝐻𝐻
∂𝐿𝐿𝐿𝐿

= 0 = �𝑝𝑝𝐺𝐺𝐿𝐿𝐿𝐿 − 𝑤𝑤𝐿𝐿�𝛿𝛿𝑡𝑡  ∀𝑡𝑡,

6) lim
𝑡𝑡→∞

𝛌𝛌(𝐭𝐭)K(t) = 0

 (𝐴𝐴. 4) 

Note here in constraints 4 and 5 above that labor earns precisely its marginal product and there 
are no adjustment costs for skilled labor. We will assume that ability is observable to both 
employer and employee, and that markets are competitive across all abilities. The two labor 
types are only separated out to illustrate that there are different varieties, but the human capital 
component of skilled worker compensation will require fixed costs of investment (it will be a 
capital variety, not labor). This leads to a value of the firm precisely equal to the sum of the 
individual capital variety values, priced at the shadow cost of investment: 

𝑉𝑉(0) = �𝜆𝜆𝑗𝑗

𝐽𝐽

𝑗𝑗=1

(0)𝐾𝐾𝑗𝑗(0) (𝐴𝐴. 5) 

Firm Investment in Human Capital 

When workers acquire new technological human capital by investing in skills, they must rent 
their newfound human capital to their employer. At that point it becomes the employer’s asset if 
the contract continues. We can then set the wages for labor of any type to be the same, and 
consider the residual premium awarded to employees with skills as a rent awarded to human 
capital. Assume then that 𝑊𝑊𝐻𝐻 = 𝑊𝑊𝐿𝐿 = 𝑊𝑊, but that there is a capital stock and investment variety 
𝐾𝐾𝐻𝐻 and 𝐼𝐼𝐻𝐻 that the firm rents from the worker. Taking our case above, the compensation to 
workers who have purchased the new skill in period 𝑡𝑡 is 𝑊𝑊𝑡𝑡 + 𝑧𝑧𝐻𝐻,𝑡𝑡(𝜃𝜃𝑐𝑐𝑡𝑡) if each of these workers 
has 𝜃𝜃𝑐𝑐𝑡𝑡 units of 𝐼𝐼𝐻𝐻 to supply at price 𝑧𝑧𝐻𝐻,𝑡𝑡. The 𝜃𝜃 ability parameter converts costs spent to 
productivity. Denote efficiency units of 𝜃𝜃𝑐𝑐𝑡𝑡 then as 𝑐𝑐𝚤𝚤𝚤𝚤� = 𝜃𝜃𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 for each worker 𝑖𝑖. 

Per efficiency unit, the firm sinks investment in human capital of its employees at a market 
investment price 𝑧𝑧𝐻𝐻,𝑡𝑡 such that in each period the (discounted) difference between the marginal 
product of human capital investment and the market price is equal to the 𝜆𝜆𝐻𝐻, the shadow price 
of human capital that includes the replacement cost and the firm-specific marginal adjustment 
costs of competitors. In other words, the employer invests in hiring employee human capital up 
until the point that its competitors can pay equal values for that human capital, the highest 
willingness to pay that the competitor business model facilitates. Where the employer can 
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deploy its workers’ skills in unique or hard to replicate ways, they will earn the excess above 𝑧𝑧𝐻𝐻,𝑡𝑡 
as a rent. Following Becker (1962) and Hashimoto (1981), the firm and worker share the costs 
of human capital investment, with the firm focusing on the firm-specific component of human 
capital. Formally, from constraint 3 in Appendix Section 1.1: 

∂𝐻𝐻
∂𝐼𝐼𝐻𝐻

= 0 = �𝑝𝑝𝐺𝐺𝐼𝐼𝐻𝐻,𝑡𝑡 − 𝑧𝑧𝐻𝐻,𝑡𝑡�𝛿𝛿𝑡𝑡 + 𝜆𝜆𝐻𝐻  ∀𝑡𝑡 (𝐴𝐴. 6) 

For a firm hiring up to the 𝑀𝑀𝑡𝑡ℎ efficiency unit of 𝐼𝐼𝐻𝐻 in period 𝑡𝑡, the total value to the firm of the 
employee human capital net of the costs paid for worker skill service flows from that period will 
be: 

� 𝑐𝑐𝚤𝚤𝚤𝚤�
𝑀𝑀

𝑖𝑖
�𝜆𝜆𝐻𝐻 − 𝛿𝛿𝑡𝑡𝑧𝑧𝐻𝐻,𝑡𝑡� 𝑑𝑑𝑑𝑑 = � 𝑐𝑐𝚤𝚤𝚤𝚤�

𝑀𝑀

𝑖𝑖
�−𝑝𝑝𝛿𝛿𝑡𝑡𝐺𝐺𝐼𝐼𝐻𝐻,𝑡𝑡

(𝑖𝑖)� 𝑑𝑑𝑑𝑑 (𝐴𝐴. 7) 

with the total value inclusive of what is paid to the worker as 

𝑉𝑉𝐻𝐻,𝑡𝑡 = � 𝑐𝑐𝚤𝚤𝚤𝚤�
𝑀𝑀

𝑖𝑖
[𝜆𝜆𝐻𝐻] 𝑑𝑑𝑑𝑑 = 𝜆𝜆𝐻𝐻𝐼𝐼𝐻𝐻,𝑡𝑡 (𝐴𝐴. 8) 

and straightforwardly, the total value to the firm of all investment in variety 𝐻𝐻 is the discounted 
total 𝑉𝑉𝐻𝐻,𝑡𝑡: 

𝑉𝑉𝐻𝐻 = � 𝛿𝛿𝑡𝑡
∞

0
𝑉𝑉𝐻𝐻,𝑡𝑡 𝑑𝑑𝑑𝑑 (𝐴𝐴. 9) 

The marginal product of investment 𝐺𝐺𝐼𝐼𝐻𝐻,𝑡𝑡 is negative because investment constitutes foregone 
output in the current period but is capitalized as future capital service flow value. The difference 
then between the shadow price 𝜆𝜆𝐻𝐻 and the discounted investment price paid to the employee for 
their skills constitutes the firm-specific rent (which will be equal to zero on the margin). On 
average, however, the per unit investment marginal product cost in foregone output is less than 
the shadow price value per unit. This generates the firm’s Tobin’s 𝑞𝑞 value at a diminishing rate 
given our assumptions above. 

Data Supplement 

Compustat Data: The Compustat/Capital IQ data used come from the Compustat North 
America database accessed via Wharton Research Data Services (WRDS). For the primary 
outcome variable of Market Value, I calculate the total assets (at) less the common equity book 
value (ceq) and add back the market value of the common equity (prcc_c times csho) all at the 
quarter time period. Other variables used in the analysis include gross value of property, plant, 
and equipment as an additional asset measure ppegt, book value of intangible assets intan, 
goodwill gdwl, cash and equivalents che, other assets oa, and employee count emp where 
populated (otherwise it is inferred in a procedure described below). Industry identifiers are from 
Compustat’s NAICS code field, and the primary key for a firm as an observational unit is the 
Compustat gvkey and ticker symbol. 

Occupation Count Measures: Some specifications include a measure of the overall human 
capital of a firm within a given time period, and specifications for overall engineering value 
include counts or wage measures by employee function within firms. These measures can be 
normalized against the BLS-OES data and Compustat/Capital IQ. For firm-level aggregate 
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employment data, I use the Compustat/Capital IQ North America database value of EMP 
(employee counts). In the case that the EMP value is missing or erroneous, I substitute the 
predicted value of EMP from a linear model trained on known EMP values of the following 
form33: 

𝐸𝐸𝐸𝐸𝑃𝑃𝚤𝚤𝚤𝚤� = 𝛽𝛽0 + 𝛽𝛽1𝐿𝐿𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑇𝑇𝐴𝐴𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑗𝑗𝑗𝑗 + 𝜈𝜈𝑖𝑖𝑖𝑖 (𝐴𝐴. 10) 

 
Table Notes: Robust standard errors in parentheses. This reports the results of a regression of 
Compustat’s employee variable (EMP) on the total assets of the firm and the LinkedIn employee 
count, along with a fixed effect for industries and firms. Since EMP is in thousands of 
employees, the interpretation of the coefficient on the LinkedIn worker count is how many 
employees exist per LinkedIn profile. This plot also appears in Tambe et al. (2020). 

The predicted EMP for firm 𝑖𝑖 in year 𝑡𝑡 is a function of the intercept, the LinkedIn total count for 
that firm in that year (𝐿𝐿𝐼𝐼𝑖𝑖𝑖𝑖), the total assets of the firm 𝑇𝑇𝐴𝐴𝑖𝑖𝑖𝑖, a fixed effect for that industry-year 
combination 𝛾𝛾𝑗𝑗𝑗𝑗, and an error term 𝜈𝜈𝑖𝑖𝑖𝑖. With knowledge of the total firm-year varying 
employment, the industry classification (3-Digit NAICS Code), the LinkedIn employment counts 
by LinkedIn occupational category, and the industry-level employment composition according to 
the BLS-OES, I build a firm-year-occupation-level coverage ratio for all the publicly traded firms 
in Compustat/Capital IQ. Whereas omitting the occupational coverage differences within firm 
implicitly assumes all workers in the same firm face the same incentives to post information to 
their profile, this adjustment assumes that all workers with the same occupation in the same firm 
in the same year are subject to similar data supply incentives. Firm-level differences and year-
level differences in coverage are even more substantial and handled by this procedure. 
Meanwhile this adjustment does make a potentially significant assumption that workers 
employed by U.S. publicly traded firms but working elsewhere are employed in similar 
proportions to the BLS-OES industrial occupational employment shares. The appendix has the 
regression results for equation A.10 in Table A.1. Typically, firms have about 1.9 times as many 
employees as are available on LinkedIn, controlling for the asset base size and industry-year 
(using specification 3 from that table). 

 
33 Prediction accuracy gains from models with higher complexity (e.g. tree-based models or support 
vector machines) were relatively small. 
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In detail, first I take the occupational employment shares by industry-year from the BLS-OES. I 
then calculate the industry-employment shares by industry from Compustat using either EMP or 
predicted EMP from equation A.10. Re-weighting the BLS-OES occupation-industry-year shares 
by the Compustat industry-year shares and summing by occupation yields the Compustat 
occupation-year shares. These Compustat occupation-year shares are multiplied by total 
Compustat employment (emp or predicted emp) to get the total Compustat employment by 
occupation-year. The total employment by occupation in publicly traded firms on LinkedIn is 
compared to this Compustat employment by occupation value to get a job-year-level coverage 
value 𝜇𝜇𝑗𝑗𝑗𝑗

𝑗𝑗𝑗𝑗𝑗𝑗 for the proportion of Compustat employment in job 𝑗𝑗 and year 𝑡𝑡 captured on LinkedIn. 
The total LinkedIn count in year 𝑡𝑡 at the firm 𝑖𝑖 is then divided by the total Compustat 
employment in that firm to get 𝜇𝜇𝑖𝑖𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, the firm-year coverage ratio. Multiplying these two factors 
is analogous to flipping two biased coins – one for if the worker in firm 𝑖𝑖 is captured by 
Compustat and LinkedIn, and another for if the worker with job 𝑗𝑗 is on Compustat and LinkedIn. 
Since these coverages will double-count the employment weighted average coverage ratio by 
firm 𝜇𝜇‾𝑗𝑗𝑗𝑗

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, I divide that out such that total adjusted LinkedIn employment is equal to total 
Compustat employment. The relatively simple normalization function to convert observed 
LinkedIn occupation-firm-year counts into BLS-OES-Compustat standard occupation-firm-year 
counts is as follows: 

𝐿𝐿𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 =
�𝜇𝜇𝑖𝑖𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜇𝜇𝑗𝑗𝑗𝑗
𝑗𝑗𝑗𝑗𝑗𝑗�

𝜇𝜇‾𝑗𝑗𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖𝑖𝑖 (𝐴𝐴. 11) 

The result is Compustat-BLS-OES-consistent firm-year-occupation employment coverage 
ratios. LinkedIn defines Engineering, Information Technology, and Research as separate 
functional areas within a firm. When members submit their profile information, they are 
additionally classified into a given functional area. Occupations are distributed across these 
different domains, not always into the same functional area of the company. Software engineers 
are most frequently included in the Engineering category (as are most occupations with 
“engineer” in the title), but may also be categorized in Information Technology. I calculate the 
total employee counts in each of these different categories. The normalized counts of workers 
are taken as the output of the adjustment represented in Data Appendix equation A.11. Those 
employee counts are multiplied by their BLS-OES wage in the relevant respective year to 
construct the wage bill variables for analysis of overall engineering talent. The figures below 
detail coverage ratios over time by occupation grouping. 
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Figure Notes: This figure plots the LinkedIn count of Research Fellows, Data Analysts, and 
Database Engineers in Compustat firms over time relative to the expected amounts computed 
from the procedure in the appendix of Tambe et al. (2020). 

 

Figure Notes: This figure plots the LinkedIn count of IT support staff, Systems Administrators, 
and Quality Assurance employees in Compustat firms over time relative to the expected 
amounts computed from the procedure in the appendix of Tambe et al. (2020). 
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Figure Notes: This figure plots the LinkedIn count of software engineers, IT consultants, and 
hardware engineers in Compustat firms over time relative to the expected amounts computed 
from the procedure in the appendix of Tambe et al. (2020). 

 

Figure Notes: This figure plots the LinkedIn count of executives, accountants, doctors, 
salespeople, and transportation workers in Compustat firms over time relative to the expected 
amounts computed from the procedure in the appendix of Tambe et al. (2020). 

Additional LinkedIn Coverage Plots: Below are plots showing the firm-level histogram over 
coverage rates over time. The comparison is the total LinkedIn employees counted in public 
firms compared to the EMP variable from Compustat. 
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Figure Notes: These charts show the histogram of firm employment coverage ratios for 
selected years. The coverage ratio is the total count of resume records on LinkedIn divided by 
the Compustat EMP database item. 
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Supplementary Tables for Event Study Coefficients and Other Robustness Checks 

 
Table Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by firm for firm fixed 
effects in parentheses. The second column performs the event study in equation 11 but drops 
the top quintile of AI using firms. Skill index and control variable estimate values other than AI 
and Data Science are omitted for display purposes, but very similar to values in other 
specifications. Period 1 is the reference period and has coefficients equal to 0. Specification and 
included controls are based on column (5) of Table 5. Checkmarks indicate where fixed effects 
were included; X’s indicate where fixed effects were not included. 
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Table Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by firm for firm fixed 
effects and by 4-Digit NAICS for industry-time fixed effects specifications in parentheses. 
Coefficients reflect event study specifications, with the first period as the reference period and 
non-AI-using firms as the reference group, and all skill indices in Table 5 included. The 
coefficients other than quintiles interacted with time dummies are omitted for display purposes, 
but very similar to values in other specifications. Specification and included controls are based 
on column (5) of Table 5. Checkmarks indicate where fixed effects were included; X’s indicate 
where fixed effects were not included. 
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Table Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by firm in parentheses. 
The table reports results from estimating versions of equation 10 on an unbalanced panel of 
firms from the beginning of 2014 to the end of 2017. The logged indices, including human 
capital, are actually 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) in all cases. Column (1) reports a specification with no additional 
adjustments other than the fixed effects, total assets, and human capital. Columns (2) to (5) add 
in different skills indices, including advertising (in case AI is mostly useful for ad tech). Columns 
(6) and (7) include controls for lagged market value (1 quarter) and lagged market value growth 
(1 and 2 quarters) respectively in order to further control for possible trends in market value like 
AI hype or momentum in investment. Overall the AI index x Post-TF estimates are relatively 
stable between $7.8 and $10.9 million more market value per 1 percent increase in AI skills in 
the post period. In other words, TensorFlow appears to cause proportionate increase of $780 
million to $1 billion per 100 percent increase of AI talent in companies. The unbalanced panel is 
broadly consistent with the balanced one. Checkmarks indicate where fixed effects were 
included; X’s indicate where fixed effects were not included. 
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Table Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by firm in parentheses. 
The table reports results from estimating versions of equation 10 on a balanced panel of firms 
from the beginning of 2014 to the end of 2017. The logged indices, including human capital, are 
actually 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) in all cases. Column (1) reports a specification with no additional 
adjustments other than the fixed effects, total assets, and human capital. Columns (2) to (5) add 
in different skills indices, including advertising (in case AI is mostly useful for ad tech). Columns 
(6) and (7) include controls for lagged market value (1 quarter) and lagged market value growth 
(1 and 2 quarters) respectively in order to further control for possible trends in market value like 
AI hype or momentum in investment. Results in this table are substantively similar to the main 
specifications, but constrain the total asset coefficient to be one. Checkmarks indicate where 
fixed effects were included; X’s indicate where fixed effects were not included. 
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