Discussion of Cryptocurrencies and Decentralized Finance
-- Igor Makarov and Antoinette Schoar

Eswar Prasad
Cornell University, Brookings Institution, and NBER
Bitcoin Sets Off a Revolution

- A system for electronic transactions without relying on trust
- No trusted third parties or intermediaries
- Using only digital identities (pseudonymity)
Technical Challenges

- Validating transactions without trusted party
- Achieving consensus in decentralized manner, without trusted authority
- Need easy, quick verifiability
- Ensure immutability of transactions
- Prevent double spending of digital currency
1. Jack uses his private key in his digital wallet to sign a transaction T paying bitcoin to Jill.

2. Jack sends T to Bitcoin peer-to-peer network. Miners see T, include it in blocks they attempt to mine.

3. Some miner M first solves Proof of Work puzzle for block N that includes T, validating the block.

4. Everyone in network adds block N to Bitcoin blockchain.

5. The new block confirms transaction T, transferring bitcoin to Jill. Also, Miner M gets rewarded with new bitcoins, which enter into circulation.

Source: Prasad (2021)
Bitcoin: The Bad

- Crummy medium of exchange
 - Unstable value
 - Slow processing time, low transaction volumes
- Fuels dark web, illicit activities?
 - Weak anonymity
- Lost Bitcoin: misplaced private keys
- Speculative financial asset (scarcity value? Cap of 21 million Bitcoins)
- Proof of Work damages the environment
Stablecoins

• Objectives: financial inclusion; faster, cheaper cross-border payments; efficient use of fiat currencies (thru tokenization)
• Value to be backed by reserve assets (specific currency; basket of hard currencies)
• Private, centralized verification
• Concerns:
 • Shadow money flows (contra AML/CFT regulations)
 • Lack of regulatory oversight
 • Monetary policy implications
Key Elements of DeFi

Decentralized blockchains have

• Decentralized architectures: no centralized point of failure
• Decentralized governance: control rests with members of network, not central authority
• Decentralized trust: trust achieved through public consensus mechanism

But system is logically centralized—entire network of nodes that make up system linked and in commonly agreed-to state at all times.
DeFi Features

Advantages of decentralized systems:
- Fault tolerance: no single point of failure
- Attack resistance: no central point vulnerable to attack
- Collusion resistant: difficult to collude

Features of decentralized system:
- Permissionless (anyone can use it)
- Censorship resistant (no one can stop it)
- Open (anyone can verify the execution of a transaction)
Figure 5-1. How a Simple Smart Contract Works

Alicia and Carlos want to swap X for Y, respectively, by time T (X and Y are digital tokens representing assets or payment).

Contract: Transacting parties agree on terms and conditions, which are then translated into computer code and launched on (public) blockchain.

Deposit: Contract awaits Alicia’s deposit of X and Carlos’s deposit of Y; contract serves as escrow.

Timeout: Not all conditions of contract fulfilled by time T.

Contract terms satisfied: X and Y deposited by time T.

Abort: Contract ends, any deposits returned.

Withdrawal: Contract allows Alicia to withdraw Y and Carlos to withdraw X.

Settlement: Updates to digital wallet balances, asset ownership are recorded on blockchain.

Source: Prasad (2021)
DeFi in Practice

Smart contracts

Flash loans
• All elements of contract executed serially in batch operation on Ethereum: initiated, executed, and completed in a flash
• No collateral requirements; no default or liquidity risk
• Can be used for arbitrage

Liquidity mining (or yield farming)
• Compound: blockchain-based borrowing and lending app
DeFi: Financial Legos

Permissionless composability: Open-source technology enables connecting applications to build new financial products, services

User deposits cryptocurrency into loan contract, withdraws stablecoins collateralized by that deposit, puts stablecoins in yield-bearing contract.

Multiple users pool stablecoins, build savings game—all of interest earned on pooled stablecoins awarded to lucky winner, others get initial deposits back.

- Open source aspect helps identify, eliminate security and other risks
- Compliance tools can also be “plugged in”
DeFi Risks

• Default and liquidity risk mitigated (in principle)
• Technological vulnerabilities
• Smart contract risk, larger attack surface
• Front-running on certain protocols
• Decentralized governance
• Oracle vulnerabilities (on-chain to off-chain data transmittal)
(Why) Do We Need Cryptocurrencies, DeFi?

- Financial inclusion
- Better payment systems: domestic, international
- Lack of competition, innovation
- Economic rents (concentration, inefficiencies, regulatory capture)
Policy/Regulatory Considerations

- Monetary policy
 - Implementation
 - Transmission
- Financial stability
 - Spillovers into traditional finance
 - Integrity of financial system
- External sector stability
- Investor protection
- Data -- privacy, confidentiality
Meta Issues

- What role for governments/regulators? Government’s role not obvious in areas where private sector has efficiency advantage
- Regulation that facilitates innovation but can identify and control systemic risks
- How to ensure financial stability if traditional financial institutions (esp. commercial banks) decline in importance
- Democratization of finance or greater concentration of wealth if benefits captured by large players/economic elites?