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1. We use the term “artificial intelligence” to refer to automated processes using algorithms to 
make inferences from data with self-directed learning and adaptation, including, but not limited 
to, machine learning applications. We use “data science” to describe the broader set of capabilities 
necessary to implement machine learning projects. We use “crises” to reference both human-made 
and natural disasters, and we distinguish between the two types as relevant.
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The greatest barrier to achieving many of the Sustainable Development 
Goals (SDGs) lies in fragile settings characterized by extreme poverty, 
weak institutions, and ongoing vulnerability to natural and human-made 

disasters. Given current trends, complex emergencies may become even more 
challenging over the next decade, however, artificial intelligence (AI) holds the 
potential to transform crisis response to both save and improve many lives.1 In 
order to realize that promise, crisis response policymakers will have to prioritize 
ongoing and new AI investments based on a sophisticated understanding of risk 
and return. 

Bending the curve to meet the SDGs in fragile settings will require new 
tools and radical improvements in the impact, scalability, or cost-effectiveness of 
current practices—an ambitious goal that can be supported by the exponential 
growth in promising machine learning applications. In turn, harnessing AI for 
crisis response requires a clear-eyed understanding of the conditions under which 
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machine learning can improve outcomes as well as a framework for when and 
how to effectively integrate machine learning into organizations. 

As we describe below, AI is reshaping our ability to anticipate, respond to, and 
recover from crises. It increases visibility and access to areas that have historically 
been inaccessible; it expands capacities to identify and predict crises and their 
evolution; and it enhances the effectiveness and efficiency of resource allocation 
and optimization during response efforts.2 AI does this by strengthening the 
accuracy and precision of what we know, the speed with which we know it, and 
the ability to continuously optimize decisions that require analyzing many fast-
changing variables simultaneously.3 

Machine learning applications have already begun to transform three key 
functions of crisis response policy and programming, which we expect to accel-
erate over the coming decade. First, machine learning is helping decisionmakers 
continuously assess the risks of new and ongoing crises, particularly in the 
domain of natural disasters where data is rich, scientific modeling of underlying 
causes is advanced, and events are frequent enough to support robust feedback 
loops. Second, humanitarian and governmental crisis responders are increasingly 
using machine learning to improve targeting, intervention selection, and ser-
vice delivery. And third, machine learning is streamlining the mobilization and 
prepositioning of resources for first responders, with current applications ranging 
from anticipatory financing for disasters to optimizing the logistics behind deliv-
ering humanitarian aid. 

What is a vision of the future of crisis response in which AI breakthroughs 
have been successfully scaled? It is one in which crisis response actors increas-
ingly know where and how crises will happen, and crisis policymakers have the 
information required to resource and launch efforts to prevent and mitigate these 
crises. It is a world in which, when unavoidable crises do unfold, financing is 
immediately released to provide life-saving assistance to those affected based 

2. We focus here on “first-generation” machine learning applications that seek to structure, 
automate, and inform crisis response decisions at macro- (for example, national), meso- (for exam-
ple, sub-national), and micro-levels (for example, individual). To address first-order questions in the 
crisis response field, we limit ourselves to identifying, predicting, and optimizing crisis response 
rather than the number of downstream applications that also shape crises, ranging from the use of 
automated image processing by drones to AI-based precision agriculture to reduce the impact of 
climate change.

3. All of this is made possible by general improvements in machine learning algorithms and 
computational processing power, which support AI-based innovation in any field. But like data, 
which is context-specific and often a limiting factor, the most valuable AI also needs a feedback 
platform where interventions and predictions are tested against reality and continuously improved. 
While basic machine learning applications simulate such feedback by splitting a single dataset into 
“testing” and “training” components, a frequently occurring decision problem informed by contin-
uous stream of data on relevant inputs and target outcomes is an ideal condition for AI applications. 
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on preagreed-upon triggers. And, should crises continue, targeted and context-
specific aid can be consistently delivered in record time, at scale, and at a radi-
cally lower cost, helping to save lives, reduce suffering, and speed recovery. 

Before this vision for AI in crisis response can be realized, several key condi-
tions must first be met. To start, data quality, consistency, and coverage need to 
improve. Absent these improvements, the accuracy of machine learning predic-
tions will be constrained to the limitations of existing data coverage, which too 
often reflect biased understandings of the world and structural inequities.4 As 
data deserts continue to shrink amid a growing range of sources, the quality of AI 
predictions will also improve. Next, decisionmakers must identify and develop 
a range of feedback platforms to enable rigorous testing of new machine learn-
ing approaches relative to current practices. Last, frameworks and tools for the 
ethical and accountable use of AI technologies must be created or strengthened 
in relevant institutions to protect against potential abuse and harm.5 Together, 
these necessary steps will help provide the operational architecture needed to 
help effectively, efficiently, and safely integrate AI into the crisis response field. 

While some advocates have previously promoted AI as a crystal ball to predict 
and prevent global crises, this aspiration obscures the political and organiza-
tional constraints that shape crisis response as well as the type of decisions that 
such predictions can influence. Decisionmakers should consider the political and 
technical feasibility of any investment in AI as well as its expected impact, con-
scious that leveraging the impact of any potential application is predicated on 
identifying the types of decisions amenable to machine learning. It also requires 
investing in the capabilities or partnerships to deepen machine learning expertise 
and rigorously assessing the impact of machine learning applications relative to 
current practices.

Too often, discussions of AI descend into polarized caricature. While techno
utopianism often promotes non-testable platitudes or inflated aspirations of a 
single project to change the world, techno-pessimism can often fall into a simi-
lar trap of developing sweeping generalizations from isolated examples of failed 
projects. We aim to move beyond these dichotomies by articulating a frame-
work to understand where the expected risks and returns are highest from AI 
in crisis response. To develop and situate this framework, we analyze current 
use cases of machine learning and explore the boundaries of their application. 
Overall, we recommend policymakers adopt a portfolio investment approach to 
AI that adjusts potential benefits against common risks of political or technical 

4. See, for example, Glandon and others, and Toplic.
5. See, for example, NetHope’s Artificial Intelligence (AI) Ethics for Nonprofits Toolkit, https:​

/​​/​solutionscenter​.nethope​.org​/​artificial​-intelligence​-ethics​-for​-nonprofits​-toolkit​. 
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infeasibility and assesses potential impact relative to current practices. Our goal 
is to help move the debate from “Does AI change everything?” to “When and 
how can specific tools most usefully augment or transform current practice?” 

We focus on the potential impact AI holds for crisis response as generally 
reflected in Sustainable Development Goal 16’s objective of promoting peace-
ful and inclusive societies. This framing allows us to specifically address those 
populations furthest behind in the SDGs—across and within countries—who 
are most often the primary beneficiaries of crisis response efforts. However, it 
limits our ability to address how AI is changing many of the long-term drivers of 
crisis—including poverty, inequality, and economic opportunity—captured in 
other SDGs and covered by other chapters in this volume. And while we focus on 
the implications of AI for crisis policymakers in governments and international 
organizations, we also attempt to highlight implications for those most directly 
affected by crisis—including concerns about individual autonomy, consent, and 
privacy, that are central to discussions and decisions regarding AI.

Crisis and Opportunity
Since the start of this century, natural and human-made disasters have levied a 
rising toll in lives, livelihoods, and social stability. From 2000 until 2019, the 
UN recorded over seven thousand major natural disasters that claimed over 1.2 
million lives, and affected roughly 4 billion additional people, many individuals 
more than once.6 Over those same years, the Uppsala Conflict Data Program 
recorded over 940,000 fatalities from organized violence, including fifty-four 
active state-based conflicts in 2019—the highest number since the end of World 
War II.7 In 2020 alone, UNHCR counted 82.4 million people forcibly displaced 
worldwide due to conflict, natural disasters, and related disruptions, nearly 
doubling the 43.3 million estimate just ten years earlier.8 And as we write this 
article in September 2021, over 221 million people have been infected globally 
with COVID-19 and more than 4.5 million have died so far, with those figures 
expected to grow considerably before the pandemic ends.9 

6. United Nations Office for Disaster Risk Reduction, “Human Cost of Disasters 2000–19,” 
www​.undrr​.org​/​publication​/​human​-cost​-disasters​-2000​-2019​. 

7. Uppsala Conflict Data Program https:​/​​/​ucdp​.uu​.se​/​downloads​/​brd​/​ucdp​-brd​-conf​-201​-xlsx​
.zip​. The 940,000 total reflects best estimates of “battle-related deaths” defined as fatalities “caused 
by the warring parties that can be directly related to combat” and thus exclude indirect deaths due 
to disease, starvation, criminality, or attacks directed at civilians. For more details, see Pettersson 
and Öberg. 

8. UNHCR, “Global Trends 2020: Forced Displacement in 2020,” www​.unhcr​.org​/​flagship​
-reports​/​globaltrends​/​​.

9. Johns Hopkins University & Medicine, Coronavirus Resource Center, https:​/​​/​coronavirus​
.jhu​.edu​/​map​.html​. 
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In listing humanity’s global challenges, the UN’s SDGs 1.5 and 11.5 high-
light the need to prevent and mitigate the compounded harm posted by fre-
quent disasters and complex emergencies. However, the impact goes far beyond 
these two goals, as it is difficult to imagine achieving many SDGs—from end-
ing extreme poverty and hunger to expanding education and healthcare to pro-
moting peace and protecting the environment—without better crisis response. 
Before the impact of COVID-19 was clear, researchers had identified the set of 
countries where the SDGs were already on track to fail based on current trends 
in climate change and ongoing vulnerability to political instability: by 2030, 
between two-thirds and 80 percent of the world’s poor are likely to live in fragile 
and conflict-affected countries.10 This development frontier grows larger if one 
includes subnational hotspots in otherwise prosperous countries: one Brookings 
estimate identified 840 poverty hotspots across 102 countries expected to host 
1.7 billion people in 2030.11

There is a growing recognition that weak institutions and systemic poverty 
make fragile contexts more vulnerable to both political crises and climate haz-
ards, and slower to recover from both types of shocks.12 In short, we observe a 
self-reinforcing cycle in which the hardest development cases remain persistently 
behind, even while emerging and developed economies continue to progress. And 
so, improving the ability of crisis response to prevent and mitigate the impact of 
disasters in fragile settings could imply substantial development returns for those 
furthest behind. 

Trends in modern crises and response efforts suggest the challenge may grow 
even more complex. For one, the impacts of the climate crisis are increasingly 
visible in fragile settings and projected to become even more severe this decade 
across Central America, the Middle East, the Sahel, and Southeast Asia. Wher-
ever climate hazards intersect with weak governance, the challenges likely to face 
crisis responders will multiply exponentially. Whether fleeing human-made or 
natural disasters, displaced populations will place increasing pressure on urban 
centers and neighboring countries, contributing to a regionalization of each local 
crisis as societies strive to adapt. Meanwhile, international institutions may con-
tinue to struggle to rebuild confidence in the face of major power rivalries, while 
on-the-ground coordination challenges keep growing from an influx of govern-
mental and non-state actors. Moreover, many challenges in crisis response may 
be further exacerbated by the long-term humanitarian and economic impact of 
COVID-19.13 

10. Corral and others, 18; OECD, 3. 
11. Cohen, Desai, and Kharas, 210. 
12. See, for example, World Bank and Ghani and Malley.
13. See Ghani. 
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The last two decades have seen exponential growth in the data available 
on crises as well as the tools needed to effectively and efficiently analyze this 
information.14 Historically, data on crises were limited to frontline reports and 
individual observations. In the 1990s and early 2000s, survey data from crisis-
-affected populations, operational data from implementers, and historical cross-
national datasets were used to inform decisionmaking. Over this past decade, the 
informational floodgates have opened, releasing high-frequency, granular data 
from social media, satellite and sensors, call detail records, and so on. Conse-
quently, crisis-related data is rapidly improving in quantity, frequency, granular-
ity, and structure—and thus creating new opportunities to anticipate, respond 
to, and recover from modern crises.15 

Recent estimates indicate that, from 2015 to 2022, the number of people 
online will triple to 6 billion. By 2030, 7.5 billion people will likely use the 
internet—90 percent of the projected world population six years of age and old-
er.16 Mobile phones will drive that growth, especially in developing countries, 
where the aftershocks of disasters can be more severe: from 2020 to 2025, mobile 
subscribers are projected to grow from 5.2 billion to 5.8 billion, but mobile 
internet users will grow twice as much, from 3.8 billion to 5 billion as smart-
phones become more widely available.17 The impact for data collection—even in 
the most challenging settings—are already myriad: researchers are conducting 
phone surveys at unprecedented scale with Voice over Internet Protocol (VoIP), 
proxying for population movements with cell phone–related location data, and 
creating new measures of activity and sentiment from social media.18 Standard 
early warning indicators like commodity price changes are now more easily 
tracked with online databases.19 The cost of remote sensing imagery—from satel-
lites, planes, or low-flying drones—continues to fall. Even remote audio sensors 
are used in settings like Syria to warn civilians of incoming aircraft or nearby 
gunfire.20 

These changes have vastly increased the ability to integrate AI into crisis 
response, catalyzing a number of high-profile projects that have raised public 
expectations around AI’s potential. To help separate hype from reality, we pro-
vide a simple framework that outlines our assessment of the underlying promise 
and pitfalls for integrating AI into crisis response. Specifically, we highlight how 
the risks to AI’s breakthrough potential in crisis response vary by complexity and 

14. Gleditsch, 301–14. 
15. For useful overviews, see Panic and Pauwels. 
16. See Morgan. 
17. GSMA, 6. 
18. Relevant examples include Flowminder, Orange Door Research, and Premise. 
19. See, for example, Cavallo, Cavallo, and Rigobon.
20. See, for example, Hala Systems.



	 Predictable Disasters	 109

timeline of the crisis. We rank order risks in our framework but leave returns 
unspecified, enabling policymakers to apply a risk-adjusted weighting to poten-
tial returns for any particular investment in AI in crisis response. 

Figure 6-1 categorizes potential AI applications in crisis response across two 
dimensions. The horizontal axis represents the crisis timeline, ranging from pre-
vention to response. The vertical axis represents crisis complexity, ranging from 
less complex natural disasters, such as floods, to relatively more complex human-
-made disasters, such as conflict.21 We argue that the expected value of any AI 
investment is driven not only by returns (for example, size and scale of potential 
impact) but also by the risks posed by technical and political barriers of integrat-
ing AI into crisis response efforts. Technical feasibility reflects characteristics 
that make a crisis context more or less amenable to AI implementation: frequency 
of the event, data availability and quality, and modeling complexity. For exam-
ple, natural disasters are often high-frequency events with better data and more 
reliable scientific models, given the underlying natural processes involved when 
compared to complex disasters such as civil war. Political feasibility relates to 
the ability of crisis policymakers to act on the predictions AI can help improve. 

21. For ease of interpretation, we limit the framework’s time horizon to one year before and one 
year after crisis onset. While prevention is desirable over a longer time period, multi-year time spans 
provide less help in thinking about the decision constraints faced by crisis policymakers and how 
best to invest in response in AI applications.

Figure 6-1. Feasibility of AI Applications in Crisis Settings
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This is driven by the incentives around the timing of an intervention—because, 
unfortunately, response is often easier to mobilize than prevention—and the 
extent to which a crisis is driven by natural causes, which can often facilitate 
quicker local and international cooperation. 

This framework has several important implications. First, the political feasi-
bility of crisis response tends to increase as a crisis evolves and expands beyond 
the realm of prevention. The technical feasibility of response also increases for 
more complex crises as more data enables model refinement. Second, it is often 
more politically and technically feasible to respond to low-complexity crises than 
high-complexity crises, though for different reasons. On the one hand, cooper-
ation on natural disaster response is often a win-win for political leaders relative 
to the contentious politics of conflict prevention and mitigation. And on the 
other hand, data and modeling of natural disasters is far more advanced than of 
human-instigated disasters. 

After combining these feasibility constraints, we observe the highest risk-
-adjusted returns for AI investments in the bottom-right quadrant with natural 
disaster relief efforts, and the lowest risk-adjusted returns in the top-left quadrant 
with conflict prevention efforts. While crisis response actors should continue 
pursuing promising, high-return AI investments beyond natural disaster relief 
efforts, we would urge them to probe the technical and political constraints that 
may impede the success of those efforts early on in the process. 

There are also some important caveats to highlight when considering integrat-
ing AI into crisis response, given fundamental concerns and constraints regarding 
data in crisis settings. Above all, having more data—and more complex data—
does not unequivocally imply more useful data. Data that is inaccurate, imprecise, 
or biased can undermine analysis and response. This is true across crisis-affected 
countries—for example, there is more data available for Jordan than South 
Sudan—as well as within countries—for example, social media feeds reflect areas 
with connectivity. This data unevenness is a major limiting factor and often dis-
advantages the most marginalized and least digitally connected communities, 
regularly requiring policymakers to be savvy consumers and communicators of 
the pitfalls inherent to data-driven analysis. Moreover, collecting and analyzing 
these new types of data require capabilities not always well represented in crisis 
response organizations, which in turn demand new organizational investments or 
partnerships. These are nontrivial but soluble challenges that should be assessed 
and prioritized early in each new application of machine learning. 

There are also a growing set of privacy, security, and ethical challenges around 
crisis data management.22 Creating and operationalizing ethical guidelines for 

22. For an overview of ethical considerations in applying AI to conflict-related crisis response, 
see Pauwels.
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AI in crisis response is crucial to appropriately safeguarding individuals and fol-
lowing a no-harm principle, particularly when projects are serving vulnerable 
and marginalized populations. Safeguarding concerns are real and a number of 
AI projects in the humanitarian space have demonstrated the potential negative 
consequences of these methods. While much work remains to be done, emerg-
ing frameworks for crisis response provide guidance on how to ensure privacy, 
accountability, safety, and security, as well as a number of key ethical principles.23 
Again, the responsibility falls to all crisis response actors to ask hard questions 
and demand clear answers about the ethical use of crisis data, so that risks are 
properly balanced against potential returns. 

Prevention and Mitigation
As digital data sources proliferate, machine learning can improve how policy-
makers anticipate and monitor new crises. Indeed, in the notable case of flood 
warning and mapping, that promise is already real. But as local contexts and 
disaster types vary greatly in terms of reliable signals, the crisis response field 
remains a long way from a crystal ball for crises. For example, in January 2020, 
well-informed observers understood the risks were high for a global pandemic, 
famine in Yemen, and war in Ethiopia—but few could say with confidence when 
and how those risks might unfold. And with risks proliferating nearly as fast as 
data, decisionmakers need help deciding what data to pay attention to and when.

Digital technologies have transformed the information available to crisis poli-
cymakers, offering unprecedented insights from disaster settings even as increas-
ing data availability complicates their efforts to separate signals from noise. In 
an ideal-case scenario, crisis responders know exactly which data streams to ana-
lyze—and how—to better anticipate the likelihood, impact, and profile of an 
emerging disaster. Given their high frequency and natural processes, floods pro-
vide one such example where data scientists have made noteworthy progress—
and with clear relevance to multiple SDGs, given the potential of flooding to close 
markets, disrupt food security, shutter schools, and spread diseases. The EU’s 
Global Flood Awareness System (GloFAS) produces daily flood forecasts and 
monthly seasonal outlooks using weather data and hydrological models, while 
UN researchers developed a machine learning approach to processing satellite 
imagery that reduced the time to develop a flood map for emergency response 
teams by 80 percent.24 More generally, scientists are working to translate UN 

23. This includes the Humanitarian Data Science and Ethics Group’s Framework for the Ethical 
Use of Advanced Data Science Methods in the Humanitarian Sector and The Harvard Humanitar-
ian Initiative’s Signal Code.

24. See European Commission, “Global Flood Awareness System,” www​.globalfloods​.eu​/​; 
Nemni and others. 
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climate projections into impact models that can offer localized forecasts to show 
how climate change will affect critical sectors such as water, agriculture, or for-
estry, and nonprofit organizations are using climate models to strengthen physi-
cal infrastructure and population resilience against earthquakes and typhoons.25 

But while climate hazards often lend themselves more readily to data collec-
tion and sophisticated modeling approaches, other common disaster types, such 
as pandemic disease, food insecurity, forced displacement, or deadly conflict are 
more directly influenced by hard-to-predict behavioral processes. So far, pre-
dictive modeling of the onset and evolution of complex emergencies has had 
more modest success than predictive modeling of natural disasters, but notewor-
thy efforts continue to make encouraging progress. And as many human-made 
disasters have gradual onsets followed by cycles of intensification, decline, and 
often relapse, attempts to mitigate low-level or persistent crises may contribute to 
prevention efforts over time. 

The UN’s OCHA-Bucky predictive model of COVID-19 spread and miti-
gation in humanitarian crises is one informative case. Developed as a collabora-
tion between OCHA’s Centre for Humanitarian Data and the Johns Hopkins 
Applied Physics Laboratory, Bucky provides humanitarian decisionmakers with 
subnational, four-week projections of the likely spread of the current pandemic 
in key fragile countries to inform resource planning and facilitate sophisticated 
scenario analysis of non-pharmaceutical interventions, such as changing social 
behavior, limiting movement, increasing healthcare access, or prioritizing medi-
cal care to vulnerable groups.26 By combining pre-pandemic data on subnational 
demographics, intra-regional mobility, and social contact norms with regular 
updates on local case counts and global disease characteristics, Bucky provides 
insights for humanitarian responders in contexts such as Afghanistan, Iraq, and 
South Sudan. While the model is only robust to the accuracy and completeness 
of underlying data inputs, it goes beyond more standard “dashboard”-style exer-
cises through continuous refinement and the ability to explore counterfactual 
scenarios. As such, it both complements and incentivizes the types of fundamen-
tal data investments necessary for sustained progress on AI adoption. 

The devastating scale of COVID-19 has helped spur progress on disease pre-
diction models, such as Bucky, that could generate increased demand for—and 
investment in—the data, algorithms, and feedback platforms needed not just for 
COVID-19 and guarding against future pandemics, but also addressing common 

25. See, for example, the Inter-Sectoral Impact Model Intercomparison Project, www​.isimip​.org​
/​; Build Change, https:​/​​/​buildchange​.org​/​​. 

26. Center for Humanitarian Data, “OCHA-Bucky: A COVID-19 Model to Inform 
Humanitarian Operations,” https:​/​​/​centre​.humdata​.org​/​ocha​-bucky​-a​-covid​-19​-model​-to​-inform​
-humanitarian​-operations​/​​. 
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diseases like malaria—which was responsible for over 400,000 fatalities in 2018 
alone.27 At the time of writing this article, the Biden administration released a 
USD $65b plan for pandemic preparedness, including $3.1b for an early warn-
ing detection system.28 These advances underscore the potential to leverage data 
science for this type of modeling. Moreover, methods recently developed, for 
example, to model the spread of COVID-19 in Cox’s Bazar refugee camps in 
Bangladesh using open-source census datasets, locations of potential gather-
ing places, and other information on daily movements, could be adapted and 
expanded with cell phone–related location data to help decisionmakers as far 
away as Uganda prioritize antimalarial bed net distribution and determine where 
to concentrate spraying for mosquitoes.29 This can be helpful for targeting, even 
where malaria is endemic and transmission is year-round rather than subject to 
outbreaks. Other crises may benefit as well. Efforts to predict food shortages and 
prioritize the allocation of resources both between and within countries to pre-
vent potential famines could receive fresh attention if the COVID-19 prediction 
models can help raise crisis policymakers’ expectations of what insights forecast-
ing approaches might offer elsewhere.30

But reliable predictions will most likely lag behind for challenges such as 
forced displacement and deadly conflict, given issues of data and modeling, even 
though those crises may become more frequent as climate change exacerbates 
food insecurity, water scarcity, and resource competition.31 Forced migration 
data is comparatively scarce in developing countries. The most notable and sys-
tematic data sources are the IOM’s Displacement Tracking Matrix and the Inter-
nal Displacement Monitoring Centre’s Global Internal Displacement Database. 
The UNHCR and World Bank also launched the Joint Data Center on Forced 
Displacement with the goal of improving data on forced migration.32 Moreover, 
decisions on migration frequently involve a set of push-and-pull factors such as 
climate impacts or political instability in origin countries and economic oppor-
tunities and social freedoms in destination countries. While these factors are 

27. World Health Organization, “Malaria Fact Sheet,” www​.who​.int​/​news​-room​/​fact​-sheets​/​
detail​/​malaria​. 

28. StatNews. “The White House wants $65 billion for an ‘Apollo’-style pandemic preparedness 
program,” September 3, 2021. www​.statnews​.com​/​2021​/​09​/​03​/​biden​-wants​-65​-billion​-for​-apollo​
-style​-pandemic​-preparedness​-program​/​

29. See UN Global Pulse, “Modeling the Spread of COVID-19 and the Impact of Public 
Health Interventions in Cox’s Bazar and Other Refugee Camps.” www​.unglobalpulse​.org​/​2020​/​
10​/​modelling​-the​-spread​-of​-covid​-19​-and​-the​-impact​-of​-public​-health​-interventions​-in​-coxs​-bazar​
-and​-other​-refugee​-camps​/​​. 

30. See, for example, Andrée and others. 
31. For a review of AI in the human security field, see Roff.
32. Sarzin. 
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challenging to disentangle, much less predict, some researchers have made mod-
est progress here using online search or advertising data.33 However, existing 
migration prediction models often tend to be limited to country-year aggregate 
predictions that can raise concerns with decisionmakers given a tendency of 
those models to overweight preexisting trends and underpredict large shocks.34

Deadly conflict is subject to data limits similar to those of forced migration, 
though the spread of cell phones and social media may help future researchers 
better understand how and why violence breaks out. Current conflict prediction 
efforts are limited by the availability of high-quality input data from around the 
world, along with the empirical challenge that the onset of civil conflict is a low-
frequency event.35 For instance, one promising public effort combining unsuper-
vised and supervised machine learning methods to analyze newspaper articles 
and predict conflict risk is limited to English-language sources, as natural lan-
guage processing is unavailable for key dialects in many relevant conflict-affected 
countries, not to mention a standardized set of high-quality news sources across 
such settings.36 Another recent rigorous analysis using high-quality conflict 
micro-data from both Colombia and Indonesia had success only in identifying 
persistent, subnational high-violence hot spots—and not new outbreaks or esca-
lations of violence.37 

While conflict early warning remains an elusive goal for crisis analysts given 
the complexity of political systems, progress continues to be made in predicting 
and preventing deadly violence at the micro-level. For example, Hala Systems 
has used remote audio sensors to warn civilians of incoming aircraft or nearby 
gunfire in settings like Syria. Two promising future areas to watch here are efforts 
by the UN to track hate speech online and via radio stations, both of which 
are being led by UN Global Pulse, the big data initiative of the UN Secretary-
General.38 Notably, the latter effort involving radio stations is a creative solution 
to the challenge of measuring activity in remote, marginalized, and often digi-
tally disconnected communities, and could be used to target conflict resolution 
and policing efforts. 

33. See, for example, Bohme, Groger, and Stohr, and Palotti and others. 
34. See, for example, Milano.
35. While several governments have begun applying machine learning to conflict prediction 

and analysis, few details are available, and assessing the quality and policy application of these 
efforts remains challenging.

36. Mueller and Conflict Forecast, www​.conflictforecast​.org​. 
37. Bazzi and others. 
38. For initial results of related previous efforts, see UN Global Pulse, “Exploring the Effects of 

Extremist Violence on Online Hate Speech,” www​.unglobalpulse​.org​/​project​/​exploring​-the​-effects​
-of​-extremist​-violence​-on​-online​-hate​-speech​/​ and “Using Machine Learning to Analyse Radio 
Content in Uganda,” www​.unglobalpulse​.org​/​project​/​pilot​-studies​-using​-machine​-learning​-to​
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Finally, machine learning can improve mitigation efforts such as resource 
mobilization and prepositioning for responders by providing more accurate and 
precise predictions of where and when assistance will be needed. For example, 
in the emerging field of anticipatory disaster financing, the Centre for Disaster 
Protection and others have prominently advocated for a reorientation toward 
risk-based financing approaches based on contingency planning and prespeci-
fied triggers.39 While one of the highest-profile anticipatory finance efforts—the 
World Bank’s Pandemic Emergency Financing Facility—was recently shut down 
after widely shared criticisms of its slow and modest disbursements as COVID-
-19 spread around the world, it would be a mistake to discard a much-needed 
alternative to chronically underfunded humanitarian appeals because the finan-
cial parameters and operational arrangements of one example were poorly cali-
brated.40 Much like the market for terrorism insurance after the 9/11 attacks, it 
will take time and government investment in order for the anticipatory disaster 
financing market to mature.41 As of July 2020, the UN’s Central Emergency 
Response Fund (CERF) disbursed US$5.2 million after a GloFLAS prediction 
of high probability of flooding in Bangladesh—the fastest CERF allocation in 
history and the first one to take place before peak flooding.42 And beyond antic-
ipatory finance, machine learning already delivers large cost savings by optimiz-
ing humanitarian aid delivery systems for agencies like WFP.43 As the predictive 
models discussed above continue to improve, useful applications are also likely 
to emerge for the prepositioning of humanitarian resources. 

Relief and Recovery
In addition to supporting crisis prevention and mitigation, data availability and 
machine learning have generated a sea change over recent years for crisis response 
efforts. OCHA’s Centre for Humanitarian Data now houses over seventeen thou-
sand humanitarian data sets as well as a specific catalogue of predictive models in 
the humanitarian sector.44 Moreover, a recent analysis of predictive analytics in 

39. See Guidance Notes for Highly Effective DRF, www​.disasterprotection​.org​/​guidance​-notes​
-for​-highly​-effective​-drf​. 

40. See Clarke. 
41. Michel-Kerjan and Raschky. 
42. Center for Humanitarian Data, “Anticipatory Action in Bangladesh before Peak Monsoon 

Flooding,” https:​/​​/​centre​.humdata​.org​/​anticipatory​-action​-in​-bangladesh​-before​-peak​-monsoon​
-flood​ing​/​​. 

43. World Food Program, “Palantir and WFP Partner to Help Transform Global Humanitarian 
Delivery,” February 15, 2019, www​.wfp​.org​/​news​/​palantir​-and​-wfp​-partner​-help​-transform​-global​
-humanitarian​-delivery​. 

44. Center for Humanitarian Data, “Catalogue of Predictive Models in the Humanitarian Sec-
tor,” https:​/​​/​centre​.humdata​.org​/​catalogue​-for​-predictive​-models​-in​-the​-humanitarian​-sector​/​​. 
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the humanitarian space commissioned by the then UK Department for Interna-
tional Development identified forty-nine different projects predicting the who, 
what, where, or when of crises.45 This has created an informational foundation 
upon which machine learning has transformed three core areas of humanitarian 
relief and recovery: (1) targeting, the identification of how to allocate resources 
across crisis-affected populations; (2) intervention selection, the determination 
of which services should be provided; and (3) service delivery mechanisms, the 
ways in which core services are provided to clients. While these efforts do not 
necessarily increase the amount of resources allocated to a given crisis, they have 
already begun to influence how existing resources are allocated within a crisis. 
While relief and recovery efforts have demonstrated that AI can be integrated 
well at the project level, they have yet to be effectively scaled through broader 
adoption of practices and approaches. 

One of the most promising areas for AI to transform humanitarian relief and 
recovery is in targeting aid delivery. Assessments to determine individual- and 
population-level needs and vulnerabilities are launched after every crisis and 
integrated into every project implemented in response. Often these are time- 
and capital-intensive processes limited in scale and precision by traditional data 
sources and analytic methods. Leveraging satellite imagery, cell phone records, 
and other administrative data, machine learning applications can systematically 
automate, at scale, the assessment process to more effectively and efficiently 
understand “who has what” and prioritize “who gets what” in crisis response. 

A number of noteworthy pilot efforts have demonstrated AI’s ability to improve 
this type of targeting in recent years. In 2014, GiveDirectly, an organization that 
provides direct cash transfers to the world’s poor, developed algorithms to pro-
cess satellite imagery and detect different types of roofing in Uganda, which was 
highly correlated with household economic characteristics, to enhance targeting 
cash payments.46 Rather than conducting time- and labor-intensive village-level 
surveys to identify household-level poverty data, these algorithms automated the 
selection process, increasing the speed and cost-effectiveness of targeting and 
therefore increasing the ability to provide relief to a greater number of individuals. 

More recently, to provide the most vulnerable Togolese citizens with cash 
support to weather the health and economic consequences of COVID, Joshua 
Blumenstock of UC Berkeley and co-authors used deep learning algorithms to 
process satellite images and phone usage data to map extreme poverty and target 
the transfers accordingly.47 Using detection approaches for the satellite images 

45. Hernandez and Roberts.
46. DataKind, “Using Satellite Imagery to Find Villages in Need,” www​.datakind​.org​/​projects​

/​using​-the​-simple​-to​-be​-radical​/​​. 
47. Joshua Blumenstock, “Machine Learning Can Help Get COVID-19 Aid to Those Who 

Need It Most,” Nature, May 14, 2020, www​.nature​.com​/​articles​/​d41586​-020​-01393​-7​. 
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in conjunction with call record data to estimate wealth and income, the proj-
ect aimed to augment slower, survey-based methods that would traditionally 
identify needs.48 In the article that formally assesses these methods, Aiken and 
co-authors note that compared to standard approaches, leveraging satellite and 
phone data reduced targeting errors by between 4 to 21 percent to many of the 
poorest citizens.49 

This type of targeting has also been deployed outside of crisis contexts, with 
similarly large gains. IDInsight, an organization dedicated to reducing poverty 
through data and evidence, demonstrated that machine learning approaches 
could be used to identify out-of-school girls in parts of rural India, building an 
algorithmic model that increased the ability to locate between 50 percent and 
200 percent more out-of-school children at the same cost as historically con-
ducted individual household surveys.50 These approaches have not only offered 
the ability to accelerate processing, but have also widened the pool of recipients 
by leveraging larger population datasets. In future crises, these datasets can be 
used as a foundation for targeting assessments, further increasing efficiencies and 
the ability to quickly and nimbly respond to crises. 

While advances in targeting have helped answer the question of who needs 
what, AI has also provided the ability to help determine what is needed. A key 
advance in applications of machine learning is the ability to dynamically identify 
needs and optimize crisis response based on what works in a specific program 
context. In the first-ever adaptive experiment implemented in a humanitarian 
context by the International Rescue Committee in Jordan, academic researchers 
developed a machine learning algorithm to allocate different types of employ-
ment support services to Syrian refugees and vulnerable Jordanians based on 
their individual characteristics and how those different support services have 
generated impact.51 This type of “precision social service delivery” optimized the 
specific package of services provided to each individual in order to maximize 
their individual outcomes. The data-driven approach generated a 20-percentage 
point improvement in the probability that refugees and vulnerable Jordanians 
were offered a job and were in formal wage employment six weeks after receiving 
targeted support. 

Improvements in data availability and machine learning have provided the 
ability to better understand individual needs and create individual-level relief 
packages. Médecins sans Frontières created a machine learning–based applica-
tion that allows nonexpert clinicians in low-income settings to identify antibiotic 

48. Aiken and others. 
49. Aiken and others. 
50. Brockman and others. 
51. Caria and others. 



118	 Tarek Ghani and Grant Gordon 

resistance using image processing methods and create bespoke treatment regimes 
for clients.52 Similar approaches have been used to provide educational services 
in emergency contexts. Prior to COVID-19, 75 million children were out of 
school in crisis-affected countries, representing half of the world’s out-of-school 
population. With only 2 percent of humanitarian funding allocated to education 
in emergencies and a lack of educational infrastructure and trained workforce, 
AI has been used to develop individually tailored learning experiences delivered 
through tablets to provide bespoke educational content to children across mul-
tiple learning levels.53 Can’t Wait to Learn is a digital game-based learning soft-
ware developed by War Child Holland, which allows children to learn at their 
own pace and level. A quasi-experimental analysis of the program demonstrated 
that this approach led to significant improvements in math and literacy skills as 
well as psychological well-being.54 While EdTech has clear limitations relative to 
in-person instruction, these individually focused services demonstrate how AI is 
increasingly transforming core service provision during the relief and recovery 
phases of crisis.55 

Moreover, as the digital revolution sweeps through crisis-affected contexts, 
and given that refugees are increasingly displaced in middle-income countries, 
data availability and machine learning will likely continue accelerating inno-
vation in service delivery.56 Especially in the wake of COVID-19, digital deliv-
ery is emerging as an alternative cost-effective way to provide services in crisis 
contexts, including access to healthcare, cash to meet basic needs, educational 
content for children, and job platforms in local labor markets. Naturally, AI is 
shaping implementation models, enabling remote health consultations, support-
ing software to deliver and track cash, creating educational content, and algo-
rithmically matching individuals to job opportunities.57 For example, SkillsLabs 
is an example of a software and machine learning–based approach that largely 
helps refugees navigate labor markets and match into jobs in the EU.58 Similar 
platforms have been established for Syrian refugees in Jordan.59 A crucial chal-
lenge to leveraging AI for job-matching platforms in low- and middle-income 
countries is the availability of job opportunities and lack of evidence on what 
individual-level characteristics predict high-quality matches. Nonetheless, these 

52. See Médecins Sans Frontières, Antibiotic Resistance, www​.doctorswithoutborders​.org​/​what​
-we​-do​/​medical​-issues​/​antibiotic​-resistance, and Google (2019).

53. See, for example, Education Cannot Wait, www​.educationcannotwait​.org​/​the​-situation​/​​. 
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56. Devictor.
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58. See Skills Lab, www​.etf​.europa​.eu​/​en​/​projects​-activities​/​projects​/​skills​-lab​. 
59. See, for example, ILO Skills Platform, www​.ecsjo​.com​/​​.



	 Predictable Disasters	 119

platforms demonstrate that even in these settings, there are gains in employment 
outcomes to using algorithmic matching.60 

Over the past two decades, information provision has emerged as a key com-
ponent of humanitarian service delivery.61 Providing accurate, timely, and pre-
cise information at scale to crisis-affected populations enables them to make 
informed individual decisions about the context and how to respond. Here, too, 
AI has enhanced the ability to deliver information. For example, the Norwegian 
Refugee Council has begun using automated chatbots to provide Venezuelan 
migrants in Colombia with details on their rights within the country.62 Infor-
mation provision may be one of the areas most amenable to machine learn-
ing applications, as it seeks to provide high-frequency data over existing digital 
platforms. 

AI holds the potential to transform the operational and financial model of how 
the humanitarian sector responds to emerging crises. The humanitarian response 
system is driven by what Stefan Dercon and Daniel Clarke call the “begging 
bowl” problem: a crisis breaks out, humanitarian responders deploy and make 
the case that aid is needed, and donors aim to overcome a collective action prob-
lem to finance response.63 In practice, this can generate major delays between the 
advent of a crisis and when humanitarian aid is unlocked. This dynamic is, in 
part, driven by the inability to accurately and precisely identify when crises will 
break out and the consequent distrust by donors of needs assessments given the 
incentives for responders to potentially inflate humanitarian needs.64 

Real-time data flows and machine learning applications will increase the 
ability to objectively identify and measure crises as they unfold, opening up 
opportunities to move into risk-based financing and reshaping how humanitar-
ian response is delivered. Instead of an operational infrastructure grounded in 
post-hoc fundraising and service delivery, a future humanitarian system could 
orient around an operational structure that flexibly increases capacity for rapid 
response as a crisis worsens.65 The Danish Red Cross and International Feder-
ation of Red Cross and Crescent Societies, for example, recently launched the 
first volcano catastrophe bond, which would release large tranches of funding for 
disaster response according to a tiered trigger structure.66 Recently, UN OCHA 
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61. Greenwood.
62. Toplic.
63. Clarke and Dercon.
64. Konyndyk. 
65. Talbot, Dercon, and Barder.
66. See Reuters, “Danish Red Cross launches volcano catastrophe bond,” www​.reuters​.com​/​

article​/​us​-volcano​-insurance​-bond​/​danish​-red​-cross​-launches​-volcano​-catastrophe​-bond​-id​US​KB​
N​2BE00J​/​. 



120	 Tarek Ghani and Grant Gordon 

launched a pilot program in Somalia to explore how these types of instruments 
can be adapted for drought and sudden-onset emergencies.67 

Harnessing Breakthrough Potential
Harnessing AI’s breakthrough potential requires decisionmakers to recognize 
that machine learning applications are no panacea but do offer real opportunities 
to save and improve the lives of those affected by crisis. It requires moving beyond 
broad debates over whether or not AI is useful to instead embrace systematic 
analyses of the conditions under which machine learning enhances or detracts 
from current practice. It requires moving beyond the dichotomy of quantitative 
versus qualitative data to an approach that identifies and integrates the compara-
tive advantages of each type of data as available. And it requires moving beyond 
vague theories of change to concrete assessments of breakthrough potential in 
impact, scale, and cost-effectiveness in specific contexts and plans to develop 
required new capabilities. 

At the ecosystem-level, benefiting from the potential returns of AI requires 
investing in data quality and coverage, launching feedback platforms that take 
result-based learning seriously, and strengthening data ethics standards in gov-
ernance frameworks. At the organizational level, it requires identifying decisions 
that can integrate machine learning applications, establishing capabilities, and 
assessing the impact of these new approaches. From an organizational perspec-
tive, the challenges of integrating machine learning into crisis response are not 
different from the broader question decisionmakers face when they determine if 
and how to invest in new capabilities: (1) what are the anticipated returns from 
a new approach; (2) how should insights from a new approach be integrated into 
organizational decisionmaking processes and culture; (3) should new capabilities 
be in-housed or developed through partnership, and so on. Of course, answers 
to these questions might vary by organization: for example, smaller, agile orga-
nizations may be able to integrate new technologies more quickly, whereas larger 
incumbents may prove to be later adopters at scale. 

One noteworthy point in pursuing AI’s breakthrough potential in crisis 
response is that investing in machine learning applications is about everything 
except the algorithm itself, which is often off-the-shelf technology. Instead, crisis 
response actors seeking to apply AI will have to develop the data sources, con-
ceptual models, and feedback platforms to implement machine learning applica-
tions. Overcoming organizational barriers to adoption is thus an inevitable step 

67. United Nations CERF, “CERF and Anticipatory Action,” https:​/​​/​cerf​.un​.org​/​sites​/​default​/​
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for unlocking AI’s breakthrough potential. Some issues, like establishing opera-
tional procedures or acquiring technical capacity, are straightforward once lead-
ers see a clear value proposition from AI. Other constraints, including cultural 
resistance to quantitative analysis or ethical concerns over privacy and security 
of data sources, will require more nuanced attention. Overall, the achievements 
of data-driven efforts at the UN, such as the Centre for Humanitarian Data and 
UN Global Pulse, provides hope that progress will continue.

As crisis policymakers consider how to invest in AI, one common concern is 
that the use of AI in crisis response currently resembles a disparate set of proj-
ects rather than a cohesive portfolio. In part, this stems from AI tracking the 
natural arc that many new technologies take: several seemingly uncoordinated 
projects are launched to assess potential before more sophisticated programs or 
strategies take shape. Moreover, unlike the private sector’s rapid adoption of AI 
applications, mechanisms for scaling AI in crisis response only move as fast as the 
governance approaches needed to support them. 

While the danger of AI “pilotitis” may loom large for crisis response, there 
are three promising pathways to scale and sustainability. First, specific projects 
should be templatized for reuse, replicated across contexts, and most important, 
translated into global frameworks. For example, the Stanford Immigration Policy 
Lab has developed an algorithm to optimize where refugees are resettled within 
countries. This now needs to be piloted, tested, and replicated across countries, 
and if the impact and cost-effectiveness is confirmed, the United Nations and its 
member states could create a between-country matching system. Second, multi-
lateral institutions should invest in public goods infrastructure and governance 
for data science and machine learning, including but not limited to climate and 
conflict prediction models. The Center for Humanitarian Data is a critical step in 
this direction, but more is needed, including articulating an agenda for how AI 
can meet the goals for preventing and mitigating crises. Third, machine learning 
should be integrated as a standard priority in donor behavior: data science should 
be added as a standard budget line in all projects above a certain funding thresh-
old, funding windows that support AI-proven projects should be launched, and 
support to enhance state and local capacity to use AI should be made available. 

As a range of crisis actors seek to integrate AI to save and improve lives across 
many different disaster contexts, we endorse a risk-adjusted AI investment 
approach that acknowledges where political or technical obstacles may impede 
success. With that said, the crisis response field would be best served by a portfo-
lio of efforts that includes a mix of both high-risk, lower-return bets and low-risk, 
higher-return initiatives. As noted above, each category of crisis response has its 
comparative advantages and drawbacks, with prevention and mitigation more 
exposed to the uncertainty associated with political decisionmaking and relief 
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and recovery more likely to focus on micro-level interventions that need to reach 
scale for significant impact. Achieving breakthrough potential in crisis response 
interventions over the next decade will not be simple or linear. After all, while 
the disasters may be predictable, what works best to prevent or respond to them 
is clearly not. 
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