
CORA KINGDON
University of California, Berkeley

LISA RENNELS
University of California, Berkeley

ROGER COOKE
Resources for the Future

ADRIAN E. RAFTERY
University of Washington

HANA ŠEVČÍKOVÁ
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ABSTRACT   The social cost of carbon (SCC) is a crucial metric for inform-
ing climate policy, most notably for guiding climate regulations issued by the 
US government. Characterization of uncertainty and transparency of assump-
tions are critical for supporting such an influential metric. Challenges inherent to 
SCC estimation push the boundaries of typical analytical techniques and require 
augmented approaches to assess uncertainty, raising important considerations for 
discounting. This paper addresses the challenges of projecting very long-term  
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economic growth, population, and greenhouse gas emissions, as well as cali-
bration of discounting parameters for consistency with those projections. Our 
work improves on alternative approaches, such as nonprobabilistic scenarios and 
constant discounting, that have been used by the government but do not fully 
characterize the uncertainty distribution of fully probabilistic model input data 
or corresponding SCC estimate outputs. Incorporating the full range of eco-
nomic uncertainty in the social cost of carbon underscores the importance of 
adopting a stochastic discounting approach to account for uncertainty in an 
integrated manner.

As the primary economic measure of the benefits of mitigating climate
change, the social cost of carbon (SCC) has been called “the most 

important number you’ve never heard of” (Economist 2017; Roston 2021). 
Put simply, the SCC is an estimate, in dollars, of the economic cost (i.e.,  
damages) resulting from emitting one additional ton of carbon dioxide (CO2) 
into the atmosphere. Conversely, it represents the benefit to society of reduc-
ing CO2 emissions by one ton—a number that can then be compared with 
the mitigation costs of reducing emissions. There are analogous metrics 
for methane (CH4) and nitrous oxide (N2O). The SCC has deep roots in 
economics. Indeed, many textbooks use carbon emissions and the result-
ing climate change as the canonical example of an externality that must be 
addressed through Pigouvian taxation or other means to maximize human 
welfare. In particular, basic economic theory recommends that an optimal tax 
on CO2 emissions (a carbon tax) be set equal to the SCC, for which marginal 
damages are measured along an optimal emissions trajectory (Pigou 1920; 
Nordhaus 1982).1

But the relevance and application of the SCC go well beyond its role in 
determining an optimal Pigouvian tax. As political leaders and stakeholders 
debate both the broad outlines and the fine details of policies to reduce carbon 
dioxide emissions, the SCC lies in the background as a remarkably impor-
tant calculation, used by the US federal government for more than a decade 
for developing vehicle fuel economy standards and power plant emissions 
rules. Such analyses have been a mainstay of the regulatory rule-making pro-
cess since Executive Order 12291 was issued more than forty years ago.2

1. This result derives from a simple model lacking many real-world complications such
as leakage, tax interaction effects, and other market distortions like research and development 
(R&D) spillovers, but it represents a reasonable approximation.

2. Executive Order 12291 was the original Reagan-era guidance for benefit-cost analysis,
later superseded by Executive Order 12866 in 1993.



The SCC has also been the basis for the value of federal tax credits for  
carbon capture technologies, beginning in 2018 (Rodgers and Dubov 2021), 
and zero-emissions credits for nuclear power in New York State.3 The power 
grid operator for New York is working to include the SCC as a cost adder 
on top of energy supply bids submitted by power plants, thereby reflect-
ing social costs into market prices and plant dispatch.4 Many other states 
have used the SCC as the basis for climate policies and as a benchmark 
against which proposed carbon prices are compared.5 Proposed applications 
include federal procurement decisions and royalties on oil and gas leases 
on federal land (Prest 2021; Prest and Stock 2021; White House 2021b, 
sec. 5[b][ii]).6

Construction of the SCC and the benefits of reducing emissions are also 
somewhat distinct from the distribution of benefits. That is, because the 
consequences of climate change will be different for different communi-
ties (country, region, income, social identity), the benefits of mitigating  
climate change will similarly vary. For example, rising temperatures are 
likely to create heavier burdens on already hot (and often poor) countries 
like Bangladesh than on cold (and often rich) countries like Norway. Putting  
greater weight on dollar-value effects in poorer communities—that is, equity 
weighting (Errickson and others 2021)—is not the current standard prac-
tice, however. Rather, the distribution of effects (when available) is presented 
alongside the aggregate, unweighted summary. Weighting becomes impor-
tant as we gain understanding of the distribution of effects.

Estimation of the SCC goes back to William Nordhaus (1982) and  
has recently seen increasing prominence. In 2018, the Sveriges Riksbank 
Prize in Economic Sciences in Memory of Alfred Nobel was awarded 
to Nordhaus (alongside Paul Romer) for his work incorporating climate 

3. State of New York Public Service Commission, Case 15-E-0302 and Case 16-E-0270, 
“Order Adopting a Clean Energy Standard,” https://documents.dps.ny.gov/search/Home/
ViewDoc/Find?id=<44C5D5B8-14C3-4F32-8399-F5487D6D8FE8>&ext=pdf, page 131.

4. New York ISO, “Carbon Pricing,” https://www.nyiso.com/carbonpricing.
5. Institute for Policy Integrity, The Cost of Carbon Pollution, “States Using the SCC,”

https://costofcarbon.org/states; Resources for the Future, “Carbon Pricing 101,” https://
www.rff.org/publications/data-tools/carbon-pricing-bill-tracker/; see also Johnson (2009).

6. Many aspects of climate policy decisions are not necessarily tied to the SCC. Essen-
tially, these include all policy design issues beyond measuring benefits and balancing with 
costs, such as optimal R&D spending amid knowledge spillovers, cost-effective policy design  
(e.g., uniform standards versus flexible incentive-based policies), interactions between policies 
(Goulder 1995; Barrage 2020a, 2020b; Borenstein and others 2019), and differences in the 
distribution of the costs (and in certain cases government revenues) associated with different 
policy approaches. These are distinct from the question of estimating the marginal benefits 
of reducing emissions.



change into economic analysis, including the role of the SCC in inform-
ing policy.7

The SCC is typically estimated using integrated assessment models, 
such as the Dynamic Integrated Climate Change (DICE) model developed 
by Nordhaus. Integrated assessment models couple climate and economic 
models to estimate the economic effect of an incremental pulse of CO2 
emissions (in tons) on climate and economic outcomes. The net present 
value of changes in economic outcomes, divided by the number of tons in 
the pulse, delivers the SCC. However, many integrated assessment models 
used in SCC estimates have not kept up with rapidly evolving climate, 
economic, and demographic science. Moreover, as Nordhaus (1982) noted, 
many of the factors underlying the SCC are deeply uncertain—notably,  
our understanding of Earth’s climate, the effect of climate change on 
economic outcomes, and future socioeconomic conditions that capture the 
discounted consequences from changes in emissions today. The need for 
robust policy decisions implies we should update the SCC over time to 
refine central estimates and the range of uncertainty as our scientific under-
standing progresses.

In this paper, we review efforts to update determinants of the SCC to 
reflect the best available science, based on the recommendations of a 2017 
committee report by the National Academies of Sciences, Engineering, 
and Medicine (NASEM 2017). This updating is particularly relevant in 
light of Executive Order 13990 (January 20, 2021), which reestablished 
the Obama-era Interagency Working Group (IWG) on the Social Cost of 
Greenhouse Gases and directed it to update the SCC. We also note other 
research efforts on updating the SCC.

The NASEM report recommended creating an integrated framework 
comprising four components (“modules”) underlying the SCC calculation: 
socioeconomics—probabilistic projections of population, gross domestic 
product (GDP), and emissions over multiple centuries; climate—an improved 
model of Earth’s climate system and climate change; damages—the economic 
consequences of climate change, based on recent studies; and discounting—
aggregated present-value marginal damages and stochastic discount factors 
that correctly reflect the uncertain socioeconomic drivers.

Figure 1 shows how the modules fit together, including how socio-
economics affects emissions trajectories, which are input into the climate 

7. The Nobel Prize, “The Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel 2018,” https://www.nobelprize.org/prizes/economic-sciences/2018/summary/.



Source: National Academies of Sciences, Engineering, and Medicine (2017). Adapted and reproduced 
with permission from the National Academy of Sciences, courtesy of the National Academies Press, 
Washington, DC.

Note: The damages module may require regional and/or sectoral socioeconomic and climate data either 
as direct inputs or for calibration.
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Figure 1. Modularized Approach to Estimating SCC



module to project future temperatures. These temperatures are converted 
into a stream of future economic losses in the damages module (also influ-
enced by socioeconomic trajectories), which are then discounted to a present 
value in the discounting module.

Because the SCC represents the marginal effect of an incremental ton of 
emissions, this entire model is run twice—once as a baseline and once with 
a small pulse of additional emissions (figure 2). The resulting change in the 
stream of economic damages per ton from this emissions pulse, in present 
value, is the SCC. More generally, when inputs to a module are uncertain 
(e.g., because of uncertainty about the climate’s response to emissions or 
about future economic growth), modelers have incorporated that uncertainty 
through Monte Carlo analyses by taking draws of (potentially correlated) 
probability distributions of each random variable. The result is a distribution 
of SCCs, often summarized by its expected value. For example, the federal 
government’s current interim value of $51/ton CO2 (IWG 2021) reflects 
the expected value of the SCC over uncertainty in the climate’s warming 
response and scenarios of economic growth and population, at a 3 percent 
constant discount rate.

Source: Authors’ calculations.
Note: Estimation involves a baseline case (solid and shaded area) versus a pulse of emissions (dashed 

lines and shaded area). Shading depicts probability distributions on projections.
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The NASEM report noted that the IWG’s estimates of the SCC, includ-
ing the current interim $51/ton SCC value, used somewhat dated and often 
simplistic modules. For example, five socioeconomic scenarios were not 
developed with formal probabilities attached but were treated as equally 
likely. The scenarios did not incorporate the work done by economists,  
demo graphers, and statisticians to estimate and quantify uncertainty around 
long-term economic and population growth. Also, the discounting approach 
used a constant discount rate rather than treating the discount rate as sto-
chastic; that choice becomes increasingly important as the decision horizon 
extends into the future. The IWG noted the potential for a declining term 
structure and correlation between the discount rate and damage outcomes 
but did not consider an explicit stochastic discount factor that accounts for 
both future discount rate uncertainty and, through uncertain socioeconomic 
outcomes, correlation with the damages being discounted. To address such 
shortcomings, the NASEM report issued recommendations for improve-
ment, which Executive Order 13990 specifically directed the IWG to consider.

This paper documents recent work that has improved the scientific basis 
for the modules so that the IWG can update the SCC to reflect the best 
available science. Section I discusses the improved socioeconomic module,  
with long-term probabilistic projections of population, economic growth, 
and emissions. Section II illustrates how an incremental ton of emissions 
translates into climate and economic effects (damages). Section III discusses 
the crucial role of the discount rate, given recent research on declining 
equilibrium interest rates, plus the importance of using stochastic discount 
factors and the shadow price of capital for valuing effects on investment. 
Section IV then combines these elements into a simplified model of the 
SCC, with associated uncertainty bounds for the socioeconomic, climate, 
damages, and discounting components. Finally, section V concludes and 
raises issues that await future research.

I. Economic and Demographic Drivers of Climate Effects

Assessments of damages from climate change are influenced by projec-
tions of population, economic growth, and emissions. Population growth can 
drive emissions and increase or decrease total economic exposure to the 
health effects of climate change. Economic growth similarly affects both 
the level of expected emissions and the resulting damages, which are often 
estimated to scale with economic activity (Diaz and Moore 2017). For 
example, the monetization of mortality consequences typically depends on 
per capita income (Robinson, Hammitt, and O’Keeffe 2019). Economic 



growth projections can also influence the SCC through the discount rate if 
estimates are calculated using Ramsey-like discounting, where the discount 
rate is a function of the rate of economic growth: higher (lower) growth 
scenarios will yield a higher (lower) discount rate. Finally, projections of 
global emissions determine the background state of the climate system against 
which damages from an additional pulse of emissions are measured.

Estimates of the SCC are highly sensitive to socioeconomic and physical 
projections (Rose, Diaz, and Blanford 2017), but revised estimates have been 
based primarily on changes in socioeconomic projections, not on improved 
understanding of the climate system (Nordhaus 2017b). Explicitly consid-
ering realistic, probabilistic socioeconomic projections is thus important 
for improving the characterization of both the central tendency and the 
uncertainty in the SCC.

A robust characterization of socioeconomic contributions to SCC 
estimates would ideally incorporate probabilistic projections of population, 
economic growth, and emissions. The particular requirements of SCC esti-
mation, however, pose significant challenges for generating such projections. 
One is the time horizon: given the long-lived nature of greenhouse gases 
in the atmosphere, the SCC needs to account for discounted damages two 
hundred to three hundred years into the future (NASEM 2017). Yet nearly 
all projections, such as the scenarios previously used by the IWG (2010) 
and the shared socioeconomic pathways used by the IPCC (Riahi and 
others 2017), end at year 2100 and are often scenario-based rather than 
probabilistic. New probabilistic projections that extend well into the future 
are required.

Another challenge is that although climate change can be projected from 
emissions scenarios consistent with globally aggregated projections of 
economic activity and population growth, the resulting climate damages are 
most appropriately estimated at a regional (or even local) scale. Thus, they 
require geographically disaggregated estimates of GDP and population.

A third challenge is that the future path of emissions likely depends 
on uncertain improvements in technology and on the scale and success 
of policy interventions outside the range of the historical record. That is, 
whereas historical data may be a reasonable guide to forecast population 
and economic activity, the same is not true for emissions. The SCC should 
be measured against our best estimate of future emissions, inclusive of 
future mitigation policies except the one under analysis.

The fourth issue is the interrelated nature of these variables: the projec-
tions for each variable must be consistent with one another. For example, 



emissions intensity might be lower with higher economic growth (and its 
associated wealth and technological improvements).

I.A. Past Approaches to Socioeconomic Projections

In lieu of using fully probabilistic socioeconomic projections, researchers
have typically turned to socioeconomic scenarios, which can provide con-
sistency across analyses and still incorporate specific narratives. The IWG 
adopted a scenario approach in its initial estimates (IWG 2016), and these 
same scenarios support the interim estimates put forward by the Biden admin-
istration in January 2021 (IWG 2021). The five socioeconomic scenarios 
were drawn from the Energy Modeling Forum 22 exercise (Clarke and 
Weyant 2009), selected to span roughly the range of emissions outcomes 
in the full set of the forum’s scenarios and thus represent uncertainty across 
potential socioeconomic projections. Only one of the scenarios represented 
future climate policy. The IWG extended the five scenarios to 2300 by 
assuming that GDP and population growth each decreased linearly to zero 
in 2300. The five scenarios were assigned equal probability for computing 
an expected value for the SCC (no such probabilistic interpretation existed 
for the work by the Energy Modeling Forum 22).

The IWG scenarios were critiqued for not spanning the uncertainty in 
a full set of relevant socioeconomic variables (e.g., GDP, population) or 
reflecting the broader scenario literature overall (Rose and others 2014; 
Kopp and Mignone 2012). The resulting SCC estimates, then, may not 
reflect damage calculations based on the full range of expected variation. 
The NASEM panel noted that the IWG did not provide a rationale for its 
scenario weighting or the choice to extend the scenarios from 2100 to 2300 
by assuming that GDP and population growth each decreased linearly to 
zero. The panel recommended using a combination of statistical methods 
and expert elicitation to generate a set of probabilistic long-term projections 
for each variable.

Subsequently, a multidisciplinary research effort developed the shared 
socioeconomic pathways (SSPs) (Riahi and others 2017), scenarios intended 
primarily to support the assessment efforts of the Intergovernmental Panel on  
Climate Change (IPCC). Each of the five SSPs consists of quantified mea-
sures of development and an associated narrative describing plausible future 
conditions that drive the quantitative elements. The SSPs end in 2100, but 
researchers have offered extensions to 2300 (Nicholls and others 2020; 
Kikstra and others 2021). The SSPs are freely available and comprehen-
sive, have an extensive publication record, and are expected to be used in 



the IPCC’s Sixth Assessment Report. For these reasons, we use the SSPs as 
our primary point of comparison.

Scenarios in general, and the SSPs in particular, do not come (as the IWG 
assumed) with associated probabilities. That limits their utility in evaluating 
uncertainty. Although the SSP authors have themselves cautioned against 
using the SSPs in a probabilistic fashion, Ho and others (2019) sought to 
address this limitation through an expert survey assessing the likelihood of 
each SSP. Others have sought to guide scenario usage by characterizing the 
plausibility of various scenarios (Stammer and others 2021). Even without 
formal probabilities, in practice, the SSPs are often interpreted in modeling 
exercises as representing the uncertainty between high-emissions (SSP5) 
and low-emissions (SSP1) futures, at times with the implication that the 
difference represents a “no policy” counterfactual versus a “likely policy” 
scenario. This has led to a recent debate over the viability of the high-
emissions scenario, given the current pace of technology evolution, among 
other factors (Hausfather and Peters 2020).

Previous efforts to quantify the uncertainty of socioeconomic projec-
tions over a century are limited. Raftery and others (2017) used a statistical 
approach to generate density functions of country-level economic growth 
per capita, population, and carbon intensity (CO2/GDP) to project a density 
of future emissions trajectories via the IPAT equation (Commoner 1972), 
similar to our socioeconomic approach.8 Müller, Stock, and Watson (2020) 
employed a Bayesian latent factor model that projects long-run economic 
growth based on low-frequency variation in the historical data of country-
level GDP per capita.9 Christensen, Gillingham, and Nordhaus (2018) 
conducted an expert survey of economists to quantify the 10th, 50th, and 
90th percentile ranges of economic growth for six groupings of countries. 
Comparing results with the SSP ranges, they found that the SSPs under-
estimated the range of uncertainty expected by the experts and that using the 
increased range for economic growth with the DICE model suggested that 
emissions were also underrepresented by the SSPs.

The NASEM (2017) report noted that statistical models based solely on 
historical data are unlikely to fully inform the variability of future projec-
tions over centuries, suggesting caution in using raw outputs from statistical 

8. The IPAT equation is Impact = Population × Affluence × Technology, a heuristic for
thinking about the impact of humans on the environment.

9. The method used by Müller, Stock, and Watson (2020) extends the approach provided 
in Müller and Watson (2016), which was suitable only for global estimates of economic 
growth, to generate internally consistent growth projections at the country level.



models over long time scales. This concern led the NASEM panel to rec-
ommend using formal expert elicitation to quantify the uncertainty around 
future long-run projections, which can then be used to augment projections 
from statistical models.

We next describe efforts undertaken by the Resources for the Future’s 
(RFF) Social Cost of Carbon Initiative and collaborators to build on both 
statistical and expert-based approaches to generate distributions of projec-
tions of population and GDP per capita at the country level, plus distribu-
tions of the three primary greenhouse gases (CO2, CH4, and N2O) at the 
global level. The resulting probabilistic distributions, collectively referred 
to as the RFF Socioeconomic Projections (RFF-SPs), fully incorporate the 
NASEM recommendations for generating an improved socioeconomic 
module for SCC estimation.

I.B. Probabilistic Population Projections to 2300

METHODS To develop probabilistic, country-level population projec-
tions through 2300, we start with the fully probabilistic statistical approach 
that has been used since 2015 by the United Nations (UN) for its offi-
cial population forecasts to 2100 (United Nations 2019). We then extend 
the statistical model to 2300, incorporating feedback and improvements 
suggested by a panel of nine leading demographic experts that we con-
vened to review preliminary results. This work is detailed in Raftery and 
Ševčíková (2021).

The UN uses a probabilistic method built on the standard deterministic 
cohort-component method of population forecasting (Preston, Heuveline, 
and Guillot 2001). This method projects forward the three components of 
population change: fertility, mortality, and migration, broken down by age 
and sex. The probabilistic method builds Bayesian hierarchical models for 
each of the three components and projects them forward probabilistically 
using a Markov chain Monte Carlo method, which produces a large number 
of trajectories (typically 1,000–2,000) of future numbers of births, deaths, 
and migration events in each country by age and sex. Each trajectory of 
fertility, mortality, and migration is then combined to give a trajectory 
of future population by age and sex in each country. These trajectories of 
population numbers in turn approximate a probability distribution for any 
population quantity of interest (Raftery and others 2012; Raftery, Alkema, 
and Gerland 2014; Gerland and others 2014).

Fertility is projected by focusing on each country’s total fertility rate 
(TFR), which is the expected number of children a woman would have in 
a given period if she survived the reproductive period (typically to age 50) 



and at each age experienced the age-specific fertility rates of that period. 
The UN models the evolution of fertility in all countries using a Bayesian 
hierarchical model that divides it into three phases depending on where 
it lies in the fertility transition from high to low fertility (pre-transition, 
transition, post-transition). It then fits a time series model to each phase, 
accounting for spatial correlation between countries (Alkema and others 
2011; Raftery, Alkema, and Gerland 2014; Fosdick and Raftery 2014; 
United Nations 2019; Liu and Raftery 2020).10 Mortality is similarly pro-
jected by focusing on life expectancy at birth.11 This is projected by another 
Bayesian hierarchical model for all countries for both sexes (Raftery and 
others 2013; Raftery, Lalic, and Gerland 2014). The UN has traditionally 
projected net international migration for each country deterministically 
by assuming that it would continue in the future at the same rate as cur-
rently (United Nations 2019).

We extended the UN’s method, designed for projections to 2100, out 
to 2300 and preliminary results were reviewed by a panel of nine expert 
demographers that we convened.12 While broadly supportive, the panelists 
were in agreement that the resulting uncertainty bounds for TFR in 2300 
were too narrow and that in particular the lower bound of the 95 percent 
prediction interval for world TFR in 2300 (1.66) was too high. A lower 
bound of 1.2 children per woman for the world TFR in 2300 was suggested 
as a more plausible lower bound. We incorporated this recommendation by 
adding a worldwide random walk component to the TFR model.

Experts on the panel also suggested that international migration should 
be projected probabilistically, in line with the general approach, rather than 
deterministically as done by the UN. We implemented this by projecting 
net international migration using a Bayesian hierarchical model (Azose 

10. The TFR has evolved in a similar way in all countries. In preindustrial times, the TFR
for a typical country was high (in the range of 4–8 children per woman). Then, usually after 
the onset of industrialization, it started to decrease. After a bumpy decline lasting several  
decades to a century, the TFR flattened out at a level below the replacement rate of about 
2.1 children per woman. This decline is called the fertility transition. After the end of the  
fertility transition, the TFR fluctuated without a clear trend, mostly staying below the replace-
ment rate. For example, in the United States, the TFR was around 7 children per woman in 
1800 and then declined, reaching 1.74 in 1976 and thereafter fluctuating up and down; it is 
now 1.64, close to the level it was at in 1976 (Raftery 2021).

11. The general trend since 1840 has been that life expectancy has increased steadily
(Oeppen and Vaupel 2002), with slower increases for countries with the lowest and highest 
life expectancy and the fastest increases for countries in the middle.

12. Each panelist provided written reviews of the preliminary projections and methodol-
ogy, and all except Tomáš Sobotka presented them as part of a virtual workshop convened by 
Resources for the Future on October 4, 2018. Panelists are listed in the acknowledgments.



and Raftery 2015; Azose, Ševčíková, and Raftery 2016). We additionally 
implemented the final panel recommendation to impose constraints on 
population density to prevent unrealistically high or low population numbers 
in some age groups in some countries.

RESULTS The resulting population projections for 2300 for the world as 
a whole and for the continents are shown in figure 3. They show that total 
world population is likely to continue to increase for the rest of the twenty-
first century, albeit at a decreasing rate, to level off in the twenty-second 
century, and to decline slightly in the twenty-third century. Uncertainty for 
2300 is considerable, appropriately, reflecting the very long forecast time 
horizon, with a median forecast of 7.5 billion, but a 90 percent interval 
from 2.8 to 20.5 billion. The results agree closely with the UN forecasts for 
the period to 2100 (United Nations 2019).

Figure 3 also shows the results for each major continental region. The 
populations of Asia, Europe, and Latin America are likely to peak well 
before the end of this century and then decline substantially. The popula-
tions of Africa and North America are also likely to peak and then decline 
but much later, in the twenty-second century. In the case of Africa this is due 
to population momentum (with a high fraction of the population currently 
in reproductive ages) and current high fertility. In the case of North America 
it is due to a combination of modest population momentum, fertility that 
is closer to replacement level than in other continents, and immigration. 
Uncertainty for each region in 2300 is high.

In comparison to the population projections from the SSPs, our popu-
lation projections are centered around a peak of slightly over 10 billion 
people globally reached late this century, lying closest to SSP2, although 
SSP2 levels off at a higher level than our median projection after 2200. 
Through 2300, the 90 percent confidence distribution around our median 
is narrower than the range indicated by the SSPs and considerably narrower 
through 2200. SSP1 and SSP5 lie below the 5th percentile of our distribu-
tion through almost the entire time horizon to 2300. SSP3 features a very 
aggressive population projection in the top tail of the distribution, at about 
the 99th percentile in 2300. In sum, none of the SSPs has a central tendency 
for population in line with our fully probabilistic projections, and the range 
of population given by SSP1–SSP5 is wide relative to ours.

We are aware of only three other detailed efforts to project world popu-
lation to 2300, all of them deterministic, in contrast with our probabilistic 
method described here. One was carried out by the United Nations (2004) 
and was deterministic but containing several scenarios. The range of these 
projections for 2300 from the different scenarios went from 2.3–36.4 billion, 



Source: Authors’ calculations based on Raftery and Ševčíková (2021).
Note: Data prior to 2020 are from the UN’s World Population Prospects 2019. The predictive medians 

are shown as solid curves; the shaded areas show the 90 percent and 98 percent predictive intervals. The 
world population projections from the extended SSPs are shown for comparison.
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compared with our 98 percent prediction interval of 1.7–33.9 billion. 
Although using different methodologies and carried out over fifteen years 
apart, the two sets of projections give results that are compatible with one 
another, perhaps to a surprising extent.13

Another such exercise was carried out by Vallin and Caselli (1997), also 
deterministic with three scenarios corresponding to different long-term 
trajectories of world TFR. Two of the scenarios led to world population 
stabilizing at around 9 billion, while the other resulted in 4.3 billion people 
in 2300. All three of these scenarios give world population in 2300 well 
within our 80 percent interval, though with a range that is much narrower 
than either ours or that of United Nations (2004). Gietel-Basten, Lutz, and 
Scherbov (2013) also performed a projection exercise to 2300, with a very 
wide range of scenarios for long-term world TFR. They obtained projections 
of global population yielding anything from zero to 86 billion in 2300.14

I.C.  Probabilistic Economic Growth Projections to 2300
and Economic Growth Survey

METHODS The probabilistic projections of economic growth often used 
in analyses by governments and the private sector have not incorporated 
the time scale of centuries, as is needed to support SCC estimates and other 
economic analyses of climate change. Müller, Stock, and Watson (2020) 
took a significant step forward by providing probabilistic econometric 
projections over long periods. Their methodology involves a multifactor 
Bayesian dynamic model in which each country’s GDP per capita is based 
on a global frontier of developed economies (countries in the OECD) and 
country-specific deviations from that frontier. Correlations between coun-
tries are also captured in a hierarchical structure that models countries in 
“covariance clubs,” in which country-level deviations from the frontier 
vary together. The hierarchical structure also permits pooling information 
across countries, an approach that tightens prediction intervals. This model 
is then estimated on data for 113 countries over 118 years (1900 to 2017). 
The model yields 2,000 sets of trajectories of country-level GDP per capita 
from 2018 to 2300. Each can be considered an equally likely uncertain 
future. Each is characterized by a path for the global factor and 113 country-
specific deviations from that pathway. The results are described more 

13. The very high upper bound for the UN (2004) projections is likely an artifact of the
perfect correlation implied by the deterministic scenarios and the aggregation of such results.

14. As in the UN (2004) projections, these very extreme outcomes are likely due in part
to the perfect correlation between countries implied by the deterministic scenarios and the 
aggregation of such results.



fully below; for more information about the model, see Müller, Stock, and 
Watson (2020).

As noted earlier, however, NASEM (2017) recommended augmenting 
statistical models with formal expert elicitation to quantify uncertainty, 
especially for long-term projections. But surveying experts on long-term 
uncertainty of economic growth at the country level is impractical because 
of time constraints and the difficulty of accounting for intercountry cor-
relations. Consequently, our study was designed to work in tandem with an 
econometric model that provides country-level projections and represents 
the intercountry dynamics. The RFF Economic Growth Survey focused on 
quantifying uncertainty for a representative frontier of economic growth in 
the OECD countries. The results informed econometric projections based 
on the model by Müller, Stock, and Watson (2020) of an evolving frontier 
(also based on the OECD), in turn providing country-level, long-run proba-
bilistic projections.

The methodology we applied is the “classical model” (Cooke 1991, 2013) 
of structured expert judgment, analogous to classical hypothesis testing. 
In essence, the experts are treated as statistical hypotheses: they are scored 
on their ability to assess uncertainty based on their responses to calibration 
questions whose true values are known to us but unknown to the experts. 
This scoring allows us to weight the experts’ judgments, and the scores of 
combinations of experts serve to gauge and validate the combination that is 
adopted. The ability to performance-weight experts’ combined judgments 
has generally been shown to provide the advantages of narrower overall 
uncertainty distributions with greater statistical accuracy and improved 
performance both in and out of sample (Colson and Cooke 2017, 2018; 
Cooke, Marti, and Mazzuchi 2021).

Ten experts, selected for their expertise in macroeconomics and eco-
nomic growth and recommended by their peers, were elicited individually 
by videoconference in roughly two-hour interviews in 2019–2020. They 
received an honorarium where appropriate. The full elicitation protocol 
is available in the online appendix; the general process was as follows. 
First, experts quantified their uncertainty for several initial questions, after 
which answers were provided for self-assessment; this step was intended 
to familiarize them with the process and alert them to potential biases. The 
experts then provided a median and 90 percent confidence range for eleven 
calibration questions for which the true values were known to us.

Experts next provided their 1st, 5th, 50th, 95th, and 99th quantiles for 
the variables of interest: levels of OECD GDP per capita for 2050, 2100, 
2200, and 2300. For experts more comfortable working with growth rates 



(rather than levels), we provided a spreadsheet tool that translated average 
growth rates into GDP per capita levels. The experts were informed that 
their combined quantiles of GDP levels would be further combined with 
country-level econometric projections, as described below, but they were 
not shown the results. They were given historical data on economic growth 
to provide a consistent baseline of information across the panel, and they 
were permitted to consult outside sources if desired. The experts provided 
additional rationale for their quantiles verbally throughout the elicitation 
and concluded the survey by formally identifying the primary factors driv-
ing their low and high future growth scenarios.

Given that the projections were being used as an input to the estimation 
of climate change damages, which would reduce economic activity below 
the projected level, the experts were specifically asked to provide quantiles  
of economic growth absent the effects of further climate change as well 
as absent further policy efforts to reduce emissions. Two of the ten experts 
provided a pair of modified base quantiles to reflect the absence of effects 
from climate damages and climate policy that are utilized here, but in gen-
eral the proposed modifications to their original distributions were minor. 
Moreover, several experts noted that although climate change was a primary 
factor underlying their probability of low growth projections, the complexity 
of the multiple uncertain factors represented in their base quantiles precluded 
systematic removal, and they deemed their base quantiles appropriate for 
assessing uncertainty in the SCC and other analyses assessing the economic 
damages from climate change.

The results of the expert elicitations were combined by first fitting each 
expert’s five quantiles for each year, in log GDP per capita, with a Johnson 
SU distribution (Johnson 1949) to generate a continuous cumulative distri-
bution function specific to each expert. We next combined the cumulative 
distribution functions in two ways: averaging across the set of expert func-
tions with equal weight, and performance-weighting the experts according 
to their performance on the calibration questions. This process yielded a 
pair of final combined elicited values of OECD GDP per capita for each 
elicited year and quantile.15

RESULTS OF ECONOMIC GROWTH SURVEY On the calibration questions (see 
online appendix), the experts demonstrated an overall high level of statistical 
accuracy compared with other structured expert judgment studies and results 
that are robust against expert loss. As shown by their individual quantiles 
(figure 4) and as expressed in comments during the videoconferences, most  

15. See online appendix for further detail.



participants’ median forecast was that long-term growth would be lower 
than the growth rate of the past one hundred years. The responses show 
considerable diversity in their characterization of uncertainty around the 
median, however, with some of the widest ranges being driven by their 
explicit inclusion of events that are not present or fully realized in the his-
torical record of economic growth on which statistical growth projections 
are based.16 When asked to identify the primary drivers of the low-growth 
quantiles, the experts most commonly responded with climate change, 
followed by world conflict, natural catastrophes, and global health crises. 
Rapid advancement of technology was cited most often as the primary 
driver of high growth, followed by regional cooperation and advances in 
medical science. Many experts expected that technology breakthroughs in 

Sources: RFF Expert Growth Survey; Müller, Stock, and Watson (2020); and authors’ calculations.
Note: For each bar, the circle shows the median and the lines show the 1st, 5th, 95th, and 99th percentiles 

of the relevant distribution.
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16. The quantiles from one expert included global civilization-ending events that were
outside the scope of the survey and incompatible with assumptions for US federal policy 
analysis; they unreasonably distorted the combined distributions toward extreme values. 
Quantiles from this expert were excluded in the final survey.



clean energy would dramatically lower global emissions. Implicit in this 
narrative is a negative correlation between economic growth and carbon 
dioxide emissions.

As shown in figure 4, both the performance-weighted and the equal-
weighted combinations of the experts’ distributions yield narrower ranges 
as well as lower medians than do the statistical trajectories for all four years 
(2050, 2100, 2200, and 2300). The median of the equal-weighted combina-
tion is consistently higher than the median based on performance weight-
ing, but the difference shrinks throughout the period until the medians 
nearly converge in 2300. Overall, the experts viewed sustained long-term 
growth rates above 4 percent or even slightly below zero percent as highly 
unlikely but not impossible.

RESULTS OF ECONOMETRIC GROWTH PROJECTIONS AUGMENTED WITH EXPERT 

JUDGMENT We used the survey results to modify econometric projections 
of GDP per capita based on the methodology of Müller, Stock, and Watson 
(2020) and to generate density functions of internally consistent projec-
tions of economic growth at the country level. As indicated in Müller, 
Stock, and Watson (2020), economic growth 100–300 years into the future 
is highly uncertain, well beyond that captured in typical scenario projections 
(see figure 5).

The tails of the Müller, Stock, and Watson (2020) distribution are quite 
wide, leading to some implausibly small or implausibly high long-term 
average growth rates in the extreme tails (e.g., below the 1st percentile or 
above the 99th percentile). These extreme tails correspond to extremes of 
persistent economic growth beyond what has been observed historically 
over long periods (e.g., below –1 percent or above +5 percent annually 
on average through 2300). Specifically, according to the Maddison Project 
data set—one of two data sets used by Müller, Stock, and Watson (2020)—
which includes country-level GDP per capita data as far back as 1500 for 
some countries, no country has experienced such extreme growth for such 
long periods.17 In their model, those extreme tail simulated outcomes are 
driven by the structure of the Bayesian model with its embedded distri-
butional assumptions rather than by the historical data used to estimate 
the model.

Further, the 1st and 99th percentiles of the combined distribution of long-
run growth rates based on our economic growth survey are –0.6 percent 

17. For example, no country in Maddison Project data has observed 100-year growth
rates below –1 percent or above +3 percent. Maddison Project data are available at Clio Infra, 
“GDP per Capita,” https://clio-infra.eu/Indicators/GDPperCapita.html.



and +4.4 percent, indicating that long-run growth rates are unlikely to fall 
outside this range. For these reasons, and in consultation with James Stock, 
we omit some projections in the extreme tails of Müller, Stock, and Watson’s 
(2020) distribution that are outside the range of historical experience and 
also outside the long-run range implied by our survey (see online appendix 
for our approach).

Our survey provides quantiles of economic growth for the OECD for 
four discrete years. To maintain the rich country-level information of the 
econometric model while incorporating the information from the experts, 
we reweight the probability of occurrence of each of the 2,000 draws from 
Müller, Stock, and Watson (2020) to satisfy the experts’ combined distri-
bution over the long run. The underlying projections from Müller, Stock, 
and Watson (2020) remain unchanged (aside from the omission of extreme 
tails described above), but the likelihood of drawing a given trajectory is 
modified such that the quantiles of OECD growth reflect the distribution 
produced by the survey.

Sources: Authors’ calculations and Müller, Stock, and Watson (2020).
Note: Shaded areas and dashed/dotted lines represent 5th to 95th (darker, dashed) and 1st to 99th (lighter, 

dotted) percentile ranges.
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We accomplish this reweighting in two steps. First, we generate a set of 
target quantiles for the years 2030, 2050, 2100, 2200, and 2300 by calcu-
lating weighted averages of the combined cumulative distribution func-
tions from the experts and the corresponding functions from the raw data 
in Müller, Stock, and Watson (2020). NASEM (2017) recommended giving 
expert judgment increasing weight for longer horizons, so the near-term 
weighting is governed more by historical evidence and that of the long-
term future more by the experts. For this reason, we increase the weight of 
the survey quantiles versus Müller, Stock, and Watson’s (2020) quantiles 
linearly over time from zero percent in 2030 to 100 percent in 2200 and 
thereafter.

We then use iterative proportional fitting (Csiszar 1975) to impose the 
target quantiles for OECD growth on the 2,000 trajectories of the frontier 
from Müller, Stock, and Watson (2020) for each of the four benchmark 
years. For each range of values between each elicited quantile, this algo-
rithm reassigns probabilities to each trajectory whose value falls within that 
range by minimizing a penalty for nonequal weights, subject to matching 
the target quantiles. Because there are four years for which we have a com-
bined expert distribution to satisfy, the algorithm iterates between each year 
until all years’ distributions are satisfied. Figure 5 compares the resulting 
distributions from Müller, Stock, and Watson (2020) with those reweighted 
according to our economic growth survey.

We next generate a distribution of projected global GDP per capita rates 
by taking 10,000 independent samples from the population and survey pro-
jections, taking the product of population and GDP per capita at the country 
level, summing to yield global GDP, and dividing by the global population 
for that draw.18 Figure 6 shows that the resulting median global GDP growth 
rates from the RFF-SPs track slightly higher than SSP3, with SSP1, SSP2, 
and SSP5 also falling within the 90th percentile range. The SSPs do not span 
the full range of potential growth paths, especially below the median for 

18. The raw data set from Müller, Stock, and Watson (2020) provides growth projections 
for 113 countries. Here we expand on that scope of coverage to include all 184 countries 
represented in the SSPs by undertaking the following steps to impute each country omitted 
in Müller, Stock, and Watson (2020): (1) identify the country within the same continent 
and within 30 degrees latitude with the closest matching log(GDP/capita) for the year 2020  
(or, for eleven countries missing data for 2020, we use the most recent year available, typically 
2019); (2) calculate a scaling factor based on the ratio between the respective 2020 GDP/
capita values; and (3) apply the scaling factor to each trajectory for the matched country to 
generate corresponding trajectories for the omitted country. Matches for omitted countries 
from Oceania were identified from within Asia. The countries imputed represent a total of 
3 percent of global GDP for the year used for the match.



the RFF-SP growth trajectories. As will be discussed in section IV, these 
relatively low-growth potential paths contribute substantially to the SCC.

I.D.  Projected Emissions to 2300 Based on Economic Growth:
Future Emissions Survey

METHODS To generate very long run distributions of global emissions of 
CO2, CH4, and N2O, the RFF Future Emissions Survey elicited ten experts 
in socioeconomic projections and climate policy who were nominated by 
their peers or by members of the RFF Scientific Advisory Board. The experts 
surveyed were based at universities, nonprofit research institutions, and 
multilateral international organizations. They have expertise in and have 
undertaken long-term projections of the energy-economic system under a 
substantial range of climate change mitigation scenarios.

Like our economic growth survey, the future emissions survey employed 
the classical model of structured expert judgment: experts first quantified 
their uncertainty about variables for which true values were known, for 
calibration and performance weighting. Experts next provided quantiles 

Source: Authors’ calculations.
Note: The solid line represents the median value, and dark and light shading represent the 5th to 95th 

(darker) and 1st to 99th (lighter) percentile ranges of the RFF-SPs.
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of uncertainty (minimum, 5th, 50th, 95th, maximum, as well as additional 
percentiles at the expert’s discretion) for four variables for a case we called 
Evolving Policies, which incorporates views about changes in technology, 
fuel use, and other conditions and is consistent with the expert’s views on 
the evolution of future policy. The Evolving Policies case corresponds to 
the US federal government’s approach to benefit-cost analysis, which eval-
uates US regulations as incremental against a more expansive backdrop of 
other policies and conditions and is responsive to NASEM recommenda-
tions for including future background policy in the uncertain distributions 
of socioeconomic projections.

Experts provided quantiles of uncertainty for (1) fossil fuel and process-
related CO2 emissions, (2) changes in natural CO2 stocks and negative 
emissions technologies, (3) CH4, and (4) N2O for five benchmark years: 
2050, 2100, 2150, 2200, and 2300. For category 1, they were also asked to 
indicate the sensitivity of emissions to five GDP per capita trajectories.19

For each expert we generate a set of cumulative distribution functions, 
one for each benchmark year, emissions source, and economic growth tra-
jectory, by piecewise linear interpolation between the quantiles provided. 
Then, as in the economic growth survey, we generate a corresponding set 
of combined equal-weight cumulative distribution functions by averaging 
the functions in equal measure, and a set of performance-weighted cumu-
lative distribution functions by averaging in accordance with the experts’ 
relative performance on the calibration questions. Quantile values from the 
combined functions were linearly interpolated in time between each of the 
benchmark years to yield a distribution of piecewise linear, nonoverlapping 
trajectories for each emissions source and sink.

Based on the future emissions survey, we developed a distribution of 
emissions scenarios to pair, one to one, with our economic growth scenarios. 
First, we sampled from one of 10,000 economic growth trajectories, described 
above. Second, we sampled a value (q) on the continuous interval [0,1] to 
determine the percentile of the expert’s emissions trajectory to evaluate. 
Third, at five-year intervals from 2025 to 2300 we generated an interpolated 
value of the qth percentile of emissions based on the realized GDP level 
corresponding to that GDP trajectory in that year and the qth percentile of 
the experts’ emissions distributions for the bounding GDP values elicited. 
Net emissions of CO2 were generated by sampling independent q values 
for direct emissions (category 1) and natural carbon stocks and negative 

19. See online appendix for a more-detailed discussion of the survey methodology and
the full elicitation protocol.



emissions technologies (category 2) and summing the resulting trajectories, 
thereby including the possibility of net negative emissions.20

RESULTS OF THE FUTURE EMISSIONS SURVEY Experts’ performance on the 
calibration questions was high, as measured by statistical accuracy, informa-
tiveness, and robustness of results (see online appendix). Experts described  
their rationale and the conditions supporting their distributions of emis-
sions, often citing the same factors. For direct CO2 emissions (category 1), 
experts viewed low economic growth as likely to reduce emissions overall 
but also lead to reduced global ambition in climate policy and slower prog-
ress to decarbonization. For median economic growth conditions, experts 
generally viewed policy and technology evolution as the primary driver of 
their emissions distributions, often offering a median estimate indicating 
reductions from current levels but with a wide range of uncertainty. Several 
experts said high economic growth would increase emissions through at 
least 2050, most likely followed by rapid and complete decarbonization, 
but with a small chance of substantial continued increases in emissions. In 
general, the distributions were inconsistent with keeping global temperature 
increases below 1.5 degrees Celsius, even when considering the potential 
for negative emissions.

Though their rationales were often similar, experts’ interpretation of those 
narratives, as shown in their quantiles of emissions, differed substantially 
(figure 7). For example, for the median growth trajectory to 2050, the median 
emissions ranged from 15 to 45 Gt CO2, a span encompassing a decrease of 
more than 50 percent to an increase of more than 30 percent from today’s 

20. The experts received real-time feedback about the implications of their prescribed
distributions for future outcomes. After each had provided a full set of quantiles, we followed  
the same sampling process described above to generate distributions of emissions trajec-
tories, except that the emissions distributions were based on input provided by only that 
expert rather than the full set of experts and that for expediency we presented results based 
on 100 to 1,000 samples at the discretion of the expert. Experts were shown their full 
distributions of emissions trajectories, the economic growth paths sampled, population, 
emissions intensity, and the resulting climate outcomes from the FaIR 2.0 climate model 
(described in section II) for their verification. They were permitted to modify their quantiles 
after seeing their distributions and resulting climate outputs, but in general they found 
the results to be in agreement with the intent of their quantiles and consistent with their 
supporting rationale.

For each emissions trajectory generated, we used a cubic spline to interpolate between 
2020 emissions and 2050 (the first quantiles provided by the experts) based on the slope of 
the global emissions trajectories over the 2010–2020 period and the emissions trajectory 
post-2050. We also used a cubic spline to interpolate trajectories between the additional years 
for which quantiles were provided by the experts.



levels. Experts often provided highly skewed distributions, with significant 
chances that direct CO2 emissions (category 1) would be exactly or near 
zero while allowing for much higher emissions in the middle and upper 
quantiles of their distribution.

The experts’ narratives support an evolution of the combined distribu-
tions. Over time, emissions distributions for all growth trajectories exhibit  
a shift, particularly evident for the median and high-growth trajectories, 
with median emissions approaching zero in and after 2150. Emissions 
distributions for the lower-growth trajectory show a decreased range of 
emissions overall compared with the higher-growth trajectories, but the 
temporal trend toward lower emissions is not as strong. Higher-growth 
trajectories show relatively greater probabilities of increased emissions 
in the near term, followed by greater chances of full decarbonization in the 

Source: Authors’ calculations.
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next century, while also allowing for the possibility of much higher emis-
sions over the long term.21

RESULTING GLOBAL GREENHOUSE GAS EMISSIONS PROJECTIONS Figure 8 shows 
the resulting distribution of projected net CO2 emissions based on the future 
emissions survey. The median emissions trajectory is a roughly 50 percent 
decrease from today’s levels by 2100, followed by slowly decreasing levels 
that approach but do not reach net zero. The median of our CO2 emissions 
and concentrations paths is similar to SSP2, and the 98 percent confidence 
interval spans a range similar to that of SSP1 through SSP3, at least through 
2140.22 The magnitude of CO2 emissions associated with SSP5, however, 
is considerably higher than the upper end (99th percentile) of our distribu-
tion through the middle of the next century, consistent with the findings of 

Source: Authors’ calculations.
Note: Lines represent median values, and dark and light shading represent the 5th to 95th (darker) and 

1st to 99th (lighter) percentile ranges of the RFF-SPs.

Gigatons of CO2 per year

125

100

75

50

25

0

2200

SSP3-7.0

SSP2-4.5

SSP1-2.6

SSP5-8.5

RFF-SPs

2050 225021502100
Year

Figure 8. Net Annual Emissions of CO2 from RFF-SPs and SSPs

21. See online appendix for results for all emission source and sink categories and
additional discussion of the experts’ rationales across all categories.

22. For comparison of emissions consistent with the SSPs beyond 2100, we adopt the
commonly used extensions provided by the Reduced Complexity Model Intercomparison 
Project (Nicholls and others 2020).



Raftery and others (2017) and Liu and Raftery (2021). Beyond the middle 
of the next century, all the SSP emissions trajectories increasingly lie well 
within our distribution because their extension beyond 2100 is constructed 
to achieve zero emissions by 2250. This is a weakness of the SSPs as a 
basis for SCC estimation, even if a subset of the SSPs spans a “reasonable 
range” during this century.

For CH4 (figure OA-9 in the online appendix), the emissions distribu-
tion resulting from the future emissions survey is centered between SSP2 
and SSP5 and spans a range similar to that of SSP1–SSP5, at least through 
2100. After that point, as with CO2, the emissions range spanned by the 
SSPs narrows, whereas the CH4 emissions from the survey maintain a rela-
tively wide distribution, similar to that in 2100. For N2O (online appendix 
figure OA-10), the median of the emissions paths is between SSP2 and SSP5 
through roughly 2200, and the full distribution from the survey spans a 
range wider than all the SSPs.

In sum, no single SSP is centered similarly to the median emissions 
paths across all three major greenhouse gases. The full range of emissions 
represented by the SSPs is higher than for the future emissions survey for 
CO2 through 2140; by construction the range narrows to zero for CO2 after 
that point and is narrower than the survey results for both CH4 and N2O 
for nearly the full period.

II. From Emissions to Monetized Climate Damages

II.A. Climate System Methods

The second step in estimating the SCC is using a climate model to cal-
culate changes in the climate system corresponding to changes in greenhouse 
gas emissions. Climate models vary in their representation of the underlying 
physics, in their spatial and temporal resolution, and in their computational 
requirements. Earth system models, such as those used for IPCC analyses, 
require supercomputers, but SCC calculations, typically generated from 
tens to hundreds of thousands of samples to characterize their uncertainty, 
preclude use of full-scale earth system models. SCC models are designed 
to emulate the response of full earth system models across a subset of 
relevant climate outputs, such as globally averaged surface temperature.

Previous SCC calculations from the federal government used three 
integrated assessment models: DICE, the Climate Framework for Uncer-
tainty, Negotiation and Distribution (FUND), and Policy Analysis of the 
Greenhouse Effect (PAGE), each of which employs its own reduced-form 



climate model. These integrated assessment models can deliver substantially 
different temperature increases for the same pulse of emissions (Rose and 
others 2014), leading to inconsistency when results are averaged to calculate 
the SCC. The NASEM report therefore recommended adopting a uniform 
climate model that met certain criteria, including that it generates a distri-
bution of outputs across key climate metrics comparable to distributions 
of outputs from the full earth system models.

The Finite Amplitude Impulse Response (FaIR) model (Millar and others 
2017) was highlighted in the NASEM report as a reduced-form model that 
met the criteria. To assess the changes in global mean surface temperatures 
resulting from the RFF-SPs, we ran the latest version, FaIR 2.0 (Leach and 
others 2021), using 10,000 draws from the emissions trajectories of CO2, 
CH4, and N2O while also sampling across FaIR’s native uncertainty in 
climate variables.23

II.B. Resulting Temperature Change from RFF-SPs

Figure 9 shows the median temperature trajectory associated with the
RFF-SPs: increases reaching nearly 2.6 degrees Celsius above the average 
global temperature for 1850–1900 (the standard IPCC preindustrial bench-
mark) through 2100 and continued increases through 2300. The low end 
of the distribution indicates a roughly 20 percent chance that the increase 
will remain below 2 degrees Celsius through 2100. Our experts’ expecta-
tions for negative emissions technologies lead to an increasing chance of 
drawing down atmospheric CO2 to yield temperatures at current levels and 
below by the late 2100s.

The RFF-SP median temperature trajectory tracks closely with SSP2 
through 2150, thereafter continuing to increase slightly. SSP1 is largely con-
sistent with the 5th percentile results throughout the period. Temperatures 
resulting from SSP3 emissions are consistent with the 95th percentile of  
the RFF-SPs through the middle of the next century, at which point tem-
peratures stop increasing, by construction. The median temperature from 
SSP5 is roughly consistent with the 99th percentile of temperatures from the 
RFF-SPs through 2100, at which point it begins to level off to meet the 
imposed requirement for net zero emissions by 2250.

In this comparison, uncertainty in the climate system itself, as represented 
by the uncertain distributions of climate parameters in the FaIR model, 
contributes significant uncertainty to the range of projected temperatures. 
The temperature distributions for the RFF-SPs include climate uncertainty 

23. Trajectories for non-CO2, CH4, and N2O were drawn from SSP2.



from FaIR, but for clarity we omit climate system uncertainty in presenting 
projected temperatures from the SSPs. For a sense of scale, the 90th per-
centile range in temperatures from FaIR in 2300 for SSP5 is about –2.5 to 
+7 degrees Celsius about the median.

METHODS FOR CLIMATE DAMAGE ESTIMATION The third step in estimating
the SCC is translating changes in the climate system, such as temperature, 
into total economic damages over time. Damages can be calculated by 
estimating costs for various sectors (e.g., human health and mortality, agri-
culture, energy usage, coastal flooding) and summing them, or by taking an 
aggregate approach to estimate damages across the economy as a whole.

Recent advances in methodologies for damage estimation are not 
reflected in the integrated assessment models used by the federal govern-
ment to calculate the SCC (NASEM 2017; Diaz and Moore 2017). The 
NASEM report made recommendations on improving sectoral damage 
estimation, finding sufficient peer-reviewed research to support updates on 
human health and mortality, agriculture, coastal inundation, and energy 

Source: Authors’ calculations.
Note: Temperature change is relative to the standard 1850–1900 preindustrial average. Solid lines 

represent median values. Dark and light shading represent the 5th to 95th (darker) and 1st to 99th (lighter) 
percentile ranges based on the RFF-SPs. For clarity of presentation, uncertainty in the climate system is 
reflected in the uncertainty range only for the RFF-SPs (and not the SSPs).
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demand. Since the report was issued, the literature addressing specific 
sectors has grown.

Nevertheless, few studies meet the full requirements (e.g., global coverage 
with regional detail, translation into economic damages) put forward by 
Diaz and Moore (2017) or Raimi (2021) to serve as the basis for an updated 
damage function for the SCC. For example, two independent, comprehen-
sive reviews (Bressler 2021; Raimi 2021) found just three suitable studies 
(World Health Organization 2014; Gasparrini and others 2017; Carleton 
and others 2018). Our own further assessment of the damages literature 
found two candidates for agricultural damages (Moore and others 2017; 
Calvin and others 2020), two for energy demand (Clarke and others 2018; 
Ashwin and others 2021), and one for coastal damages (Diaz 2016).

Among the notable additions, the Climate Impact Lab has developed 
a methodology to generate empirically derived, hyper-localized damage 
functions accounting for adaptation. The Climate Impact Lab in its research 
has been applying its methodology across a comprehensive set of sectors 
including health, agriculture, labor, energy, conflict, coastal, and migration 
(Carleton and others 2018). Upon completion, this full set of sectors is 
intended to support fully empirically based climate damage estimates.

Much of the new sectoral damages research identified here is currently 
under peer review for publication, and efforts to implement the existing 
peer-reviewed studies will similarly be completed on a timeline that is 
compatible with the IWG process to update the SCC. As described below, 
for the purposes of this paper we have deployed the aggregate global climate 
damage function from the widely used DICE model (Nordhaus 2017b) to 
develop illustrative SCC estimates, coupled with the RFF-SPs, the FaIR 
climate model, and the stochastic discounting approach described in the 
next section.

III.  Discounting Approaches for the Social Cost
of Greenhouse Gases

The long residence time of CO2 in the atmosphere implies that today’s 
emissions will have consequences for centuries. This time horizon makes 
the discount rate a major factor for the SCC. For example, the IWG’s 
2021 interim SCC estimate is $51/ton with a 3 percent discount rate (IWG 
2021) but would be about $121/ton at a 2 percent discount rate (RFF and 
NYSERDA 2021). That 1 percentage point difference alone would more 
than double the SCC and, by implication, greatly strengthen the economic 
rationale for substantial emissions reductions.



The discount rates used in federal regulatory analysis are guided by 
Circular A-4, issued by the Office of Management and Budget (OMB) in 
2003, which endorses rates of 3 percent and 7 percent reflecting, respec-
tively, consumption and investment rates of return (White House 2003). 
OMB guidance also allows for additional sensitivity analysis in cases with 
intergenerational consequences, such as climate change. However, this 
guidance runs counter to current economic thought and evidence, for three 
reasons: (1) a constant deterministic discount rate becomes increasingly 
problematic for long-horizon problems (Weitzman 1998); (2) benchmarks 
for the consumption rate of interest (currently 3 percent) have declined 
substantially over the past two decades (CEA 2017; Bauer and Rudebusch 
2020, 2021); and (3) the rationale for 7 percent—to address possible policy 
effects on capital—is flawed in ways that are magnified for very long term 
decisions (Li and Pizer 2021).

The NASEM (2017) report and recent technical guidance on the SCC 
(IWG 2021) acknowledged those concerns. A 2021 executive order directed 
the OMB to reassess existing practice and consider “the interests of future 
generations” in revisions to Circular A-4 (White House 2021a, sec. 2). 
Alongside issues related to empirical discount rate uncertainty over long 
time horizons, the comparison of welfare across generations creates an 
ethical concern dating back at least as far as Ramsey (1928): Do we discount 
the welfare of future generations simply because they are born later?

One rationale for changing the government’s discounting approach is 
the systemic decline in observed interest rates over at least the past two 
decades (Kiley 2020; Del Negro and others 2017; Johannsen and Mertens 
2016; Laubach and Williams 2016; Caballero, Farhi, and Gourinchas 2017; 
Christensen and Rudebusch 2019; CEA 2017; Rachel and Summers 2019; 
Bauer and Rudebusch 2020, 2021), which along with other research on 
discount rates for very long-run horizons (Giglio, Maggiori, and Stroebel 
2015; Giglio and others 2021; Drupp and others 2018; Carleton and 
Greenstone 2021) has led to calls for using a lower discount rate; 2 percent 
is often suggested.

The second argument for a modified discounting approach stems from 
uncertainty in the discount rate, which tends to lead to declining future 
discount rates. Weitzman (1998) showed that if one is uncertain about 
the future trajectory of (risk-free) discount rates, and uncertain shocks to 
the discount rate are persistent, the certainty-equivalent (risk-free) discount 
rate declines with the time horizon toward the lowest possible rate. This 
result stems from a straightforward application of Jensen’s inequality to 
a stochastic discount factor, leading to declining (risk-free) discount rates 



(Arrow and others 2014). At the same time, if the payoffs to investments in 
emissions reductions are correlated with future income, the effective risk-
adjusted rate could be higher if the correlation is positive or lower if it is 
negative (Gollier 2014). This correlation is often termed the “climate beta,” 
but it is not clear ex ante whether the beta is positive, as in Nordhaus’s 
work and as argued by Dietz, Gollier, and Kessler (2018), or negative, as in 
Lemoine (2021).

The third issue is the need, in light of recent research (Li and Pizer 2021), 
to rethink the use of the higher discount rate (7 percent) reflecting the 
return to capital. Several decades ago, researchers suggested that when 
taxes create a wedge between consumption and investment interest rates, 
the alternative rates could be used to bound a benefit-cost analysis, as a short-
hand version of the shadow price of capital (SPC) approach (Harberger 
1972; Sandmo and Drèze 1971; Marglin 1963a, 1963b; Drèze 1974; Sjaastad 
and Wisecarver 1977). However, the assumptions underlying the soundness 
of that approach are quite restrictive: costs are assumed to occur entirely in  
the first period; benefits are constant and occur either in a single period or 
in perpetuity; and benefits displace only consumption while costs displace  
either investment or consumption. Li and Pizer (2021) extend Bradford 
(1975), showing that the traditional approach of using 7 percent as a short-
hand means for representing investment impacts of regulatory costs becomes 
increasingly very inaccurate the farther one looks into the future.

The NASEM (2017) report foreshadowed those results and recommended 
using a central consumption rate estimate along with sensitivity cases. 
Newell, Pizer, and Prest (2021) provide some guidance, examining central 
values of 2 percent and 3 percent and a range of values between 1.5 percent 
and 5 percent (though they do not recommend those particular values). 
Their discussion of discount rates is based primarily on questions about the 
most appropriate near-term consumption rate and does not address the 
SPC approach. Pizer (2021) details how the SPC approach could be imple-
mented, suggesting sensitivity cases that employ the consumption discount 
rate, with costs and benefits alternately multiplied by the SPC to reflect the 
possibility that the entirety of each of these impact streams falls on invest-
ment: an SPC of 1.2 is proposed as a conservative value. Alternatively, 
simply multiplying regulatory costs by the SPC provides a sensitivity case 
that is consistent with an (extreme) scenario where all costs fall on invest-
ment. Conceptually, this is equivalent to what is being sought with the 
traditional approach of discounting benefits at the higher 7 percent rate, but 
it has the advantage of both being analytically correct and allowing for a 



consistent discounting approach across different elements of benefit-cost 
analysis. The consumption discount rate would be employed in all cases, and 
the SPC approach would apply generally, not just in the context of the SCC.

Each of these discounting ideas (including stochastic growth discount-
ing, discussed below) could be incorporated in a revision to Circular A-4, 
with relevance to both SCC estimation and other contexts. This would 
harmonize SCC discounting and broader US government guidance on 
benefit-cost analysis.

III.A. Stochastic Growth Discounting with Economic Uncertainty

One rationale for discounting, generally, is the concept of declining mar-
ginal utility of consumption. Intuitively, a $100 cost in a future in which 
society has grown dramatically wealthier should be valued less, from today’s 
perspective, than the same $100 cost in a relatively poor future with stagnant 
economic growth. This result is often embodied by the classic equation 
derived in Ramsey (1928) that relates the consumption discount rate (rt) to 
the rate of consumption growth (gt) over time:

= ρ + ηr gt t(1) .

In equation (1), ρ represents the rate of pure time preference (how 
much utility is discounted over time) and η represents the curvature of an 
isoelastic utility function.24 We use time subscripts to refer to the compound 
average value of the indicated variable from today (time 0) to year t. If 
average consumption growth to year t, gt, is uncertain, as it is given the 
probabilistic socioeconomic scenarios discussed earlier, then the average 
discount rate to year t, rt, is also uncertain. This leads to a stochastic dis-
count factor, which is used to discount stochastic marginal damages from 
an incremental ton of emissions (MDt) to a present value (PV ) equivalent:

[ ]( ) = −PV MD E e MDt
r t

t
t(2) ,

where rt is determined by equation (1) based on the uncertain growth rate gt. 
An alternative is to base the discount rate on some market proxy for the 
discount rate as in Bauer and Rudebusch (2021). Either way, the discount 
rate is considered uncertain, and the first term inside the expectation, e–rtt, 

24. u(c) = c1–η/(1 – η).



represents a stochastic discount factor. In our treatment, the discount factor 
and rate are uncertain due to the stochastic growth rate. The importance 
of a stochastic discount factor is well established in the finance literature, 
and its importance is increasingly recognized in the literature at the nexus 
of macro and climate economics (Cai and Lontzek 2019; Barnett, Brock, 
and Hansen 2020, 2021). A stochastic discount rate leads to a declin-
ing certainty-equivalent risk-free rate (Weitzman 1998). To clearly see the 
derivation of this result, suppose for the moment that the discount rate is 
normally distributed, rt ∼ N(µt, σ2), and that it is uncorrelated with marginal 
damages, corr(e–rtt, MDt) = 0, which corresponds to a climate beta of zero. 
Then it is easy to show that the certainty-equivalent rate, which is denoted 
rt

ce and represents the rate at which to discount expected marginal damages 
(as in e–rccetE[MDt]), declines with the time horizon of the impacts being 
discounted, t:25

= µ − σr tt
ce

t(3) 1
2

.2

Of course, equation (3) represents a special case. More generally, absent 
these two specific assumptions, the risk-free rate given by this equation 
does not account for the risk profile of the benefits of emissions reductions, 
namely, through the climate beta, which reflects the potential correlation of 
the stochastic discount rate with marginal damages. If one wants to retain 
the certainty-equivalent approach to discounting, Gollier (2014) shows that 
a risk adjustment is necessary to account for any such correlation, but the 
form of this adjustment depends on the potentially complex nature of the joint 
uncertainties. We instead take a more general approach to account for these 
issues by directly using the more general equations (1) and (2) to implement 
stochastic discounting as part of the Monte Carlo estimation of the SCC, 
which explicitly accounts for any such correlation. Accounting for this cor-
relation is important in theory (Barnett, Brock, and Hansen 2021) and also, 

25. A version of this result is shown in Newell and Pizer (2003), but for clarity of exposition
we explain it briefly here. Starting with the definition that the certainty-equivalent rate yields 
the same present value of equation (2), we have e–rt

cetE[MDt] = E[e–rttMDt] = E[e–rtt] E[MDt], 
where the last equality follows by the assumption of zero correlation. Solving for rt

ce yields 
rt

ce =  1–––t log(E[e–rtt]). A well-known property of the exponential function, ex, applied to a

normally distributed variable, x ∼ N(µ, σ2), is that E[eax] = eaµ+1–2a2σ2

.Applying this formula
with x = rt and a = –t yields the result.



as our results show, matters greatly in practice when the climate beta is 
not zero. Indeed, the climate beta in most integrated assessment models 
is implicitly taken to be close to one.

For example, in the DICE model, damages are assumed to be a percent-
age of GDP (where that percentage depends on global temperature), and the 
discount rate is a linear function of economic growth, as in a Ramsey-like 
framework (Nordhaus and Sztorc 2013). This implies a beta of essentially 
one, since higher income (and, in turn, greater discounting) is perfectly cor-
related with higher undiscounted damages. That is, a positive beta implies 
that undiscounted damages are largest when economic growth is largest, 
and smallest when growth is smallest. Mirroring this, with η > 0, the dis-
count factor is smallest when growth is largest and largest when growth is 
smallest. Using a stochastic discount factor as in equation (2) will therefore 
discount damages most in states of the world where they accrue to rich 
future generations and correspondingly discount them least in states where 
the future is poor. Amid uncertainty about socioeconomic trajectories, 
ignoring this stochastic discount factor (and its correlation with climate 
impacts) could severely bias estimates of the SCC. The magnitude of this 
bias depends on the climate beta and on the nature of the uncertainty in 
socioeconomic and emissions trajectories; Newell, Pizer, and Prest (2021) 
and our illustrative results (below) show that this bias could change the 
SCC by a factor of two or more.

Despite the importance of stochastic discounting, federal government 
benefit-cost analysis has historically not treated the discount rate as explic-
itly uncertain, nor has the discount rate been connected to growth as in the 
Ramsey framework. Instead, the consumption discount rate used in past 
government estimates of the SCC has been a constant rate of 3 percent.26 
This is equivalent to implicitly choosing the discounting parameters ρ = 
3 percent and η = 0, corresponding to a linear utility function. Yet this 
approach effectively eliminates any consideration of declining discount 
rates, as in Weitzman (1998), and risk premia, as in Gollier (2014). More 
intuitively, it also treats a $100 cost to a member of a wildly rich future 
generation the same as a $100 cost to a poor one, which is incorrect from 

26. Although 3 percent was the central rate, the IWG also previously used constant rates 
of 2.5 and 5 percent as sensitivity cases. Because those values were estimated to roughly 
approximate the effects of explicitly accounting for uncertainty in risk-free and risk-adjusted 
rates (Newell, Pizer, and Prest 2021), those motivations are no longer appropriate when 
stochastic discounting can be captured explicitly in integrated assessment models, as we 
propose.



a welfare perspective. Correspondingly, such parameter values receive little 
support from economists working in this field (Drupp and others 2018).

Although the case for using stochastic discounting as in equation (1) is 
strong, the choice of the parameters in that equation is not a simple matter, 
and their values can lead to very different effective discount rates (Stern 
2007; Nordhaus 2017a) and their connection to economic growth and 
climate damages. One recent paper surveyed economists about their pre-
ferred values of ρ and η (Drupp and others 2018). This is valuable, but the 
federal government has a long tradition of relying on descriptive, empirical  
approaches to informing discounting guidance, as in other aspects of 
benefit-cost analysis. In particular, Circular A-4 refers to observed interest  
rates in selecting 3 and 7 percent (White House 2003). A choice of ρ and η 
might therefore sensibly start with the constraint that the associated near-
term rate match the consumption rate used elsewhere in benefit-cost analy-
sis, as recommended in NASEM (2017). However, a continuum of (ρ, η) 
combinations can match any particular near-term rate, so another constraint 
is needed.

Newell, Pizer, and Prest (2021) provide such an approach. They cali-
brate the values of (ρ,η) such that, when applied to the Müller, Stock, and 
Watson (2020) growth distribution, the implied discount rate term struc-
ture starts at a specified rate in the near term (say, 3 or 2 percent) before 
declining with the time horizon in a manner consistent with evidence from 
the empirical literature on future interest rate term structures (Bauer and  
Rudebusch 2020, 2021).27 Figure 10 illustrates the calibrated combina-
tions of (ρ, η) yielding implied (fitted) term structures when applied to 
the RFF-SPs (dashed lines). These parameters were calibrated to be as 
consistent as possible with those implied by the Bauer and Rudebusch 
(2021) model initialized to given targeted near-term rates of 1.5, 2, or 
3 percent (solid lines). For example, using the estimated model from Bauer 
and Rudebusch (2021) and starting with a near-term rate of 2 percent, 
we construct a target term structure (solid black curve). We then find the 
combination, (ρ, η) = (0.2 percent, 1.24), that best fits the target term 
structure.

27. The parameters shown here differ slightly from those in Newell, Pizer, and Prest
(2021) because we calibrate them to the full RFF-SPs, corresponding to the Müller, Stock, 
and Watson (2020) distribution weighted based on our economic growth survey. The method-
ology developed in Newell, Pizer, and Prest (2021) was demonstrated on the raw distribution, 
before the weights were applied.



The calibration procedure in Newell, Pizer, and Prest (2021) can be 
implemented for any specified near-term rate. Here we present three cases: 
1.5 percent, 2 percent, and 3 percent:28
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= +
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t t
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0% 1.02

0.2% 1.24

0.8% 1.57
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These ρ and η parameters lie in the middle of the range often used 
in the literature, particularly for target near-term rates of 3 percent and 
2 percent. Implementing them simultaneously with the socioeconomic 
trajectories discussed in section I produces a declining term structure of 

Source: Authors’ calculations based on Bauer and Rudebusch (2021) and Müller, Stock, and Watson 
(2020).
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Figure 10. Calibrated Certainty-Equivalent Risk-Free Term Structures and Target 
Term Structure

28. See Newell, Pizer, and Prest (2021, sec. 3.2) for the rationale behind each rate, and
that paper’s appendix for additional alternative near-term rates.



certainty-equivalent, risk-free rates consistent with the empirical literature 
(Bauer and Rudebusch 2020, 2021). Importantly, implementing the stochas-
tic discount rate alongside stochastic damages via equation (2) explicitly 
captures risk aversion and the correlation between the discount rate and 
climate damages, meaning no ex post risk adjustment to the discount rate 
is necessary.

This calibrated stochastic discounting rule can now be used with the 
undiscounted damage estimates (discussed above) to estimate the SCC in 
an internally consistent manner.

IV. Illustrative Calculations of the Social Cost of Carbon

We present illustrative estimates of the SCC based on our socioeconomic 
projections (the RFF-SPs), the FaIR climate model, and our discount-
ing methodology—all of which speak directly to the NASEM (2017)  
recommendations—and apply them using the DICE damage function 
(Nordhaus 2017a). This approach is directly responsive to three of the four 
NASEM recommendations. The fourth recommendation is to update the 
damage functions with the best available science on sectoral damages, 
rather than using an aggregate damage function such as that in DICE. 
We will include more recent sector-specific damage estimates, reflecting 
the best available science, in future work, but for the moment we use the 
DICE damage function to produce illustrative SCC estimates. Although 
the values we present here should be considered illustrative, they highlight 
the importance of socioeconomic uncertainty and stochastic growth dis-
counting, and the interaction of these two important drivers of the SCC.

We also compare our SCC estimates with those from SSPs 1, 2, 3,  
and 5. Because of the lack of socioeconomic uncertainty in each SSP—
and the lack of relative probabilities across them—we cannot meaning-
fully calibrate ρ and η parameters for those scenarios to deliver comparable 
near-term rates. We therefore apply constant discount rates of 2 percent and 
3 percent to the SSPs.29

The results are shown in figure 11, leading to our first major conclusion: 
a quantitative probabilistic accounting of socioeconomic uncertainty matters 

29. As an additional comparison, figure OA-13 in the online appendix presents an
analogous figure to figure 11 but applying our RFF-SP-calibrated discounting parameters 
(ρ, η) to the SSPs. This is purely for presentational purposes, and we caution that our dis-
counting parameters were not calibrated to the SSPs. Because the SSPs have no uncertainty 
within them, it is not possible to calibrate discounting parameters to them as we can do to the 
socioeconomic distributions (Newell, Pizer, and Prest 2021).



SSP3: $43 Avg.
SSP1: $51 Avg.

SSP2: $67 Avg.
SSP5: $188 Avg.

SSP3: $118 Avg.
SSP1: $127 Avg.

SSP2: $197 Avg.
SSP5: $726 Avg.

Source: Authors’ calculations.
Note: The SCC estimates should be considered illustrative because they are based on alternative 

socioeconomic inputs, discounting approaches, the FaIR 2.0 climate model, and the DICE damage 
function.
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Figure 11. Illustrative Probability Distributions of Social Cost of Carbon (2020$/ton CO2)



greatly for the SCC. Panel A of figure 11 shows the distributions of our 
illustrative SCC values calibrated to 2 percent and 3 percent discount 
rates in the near term (means are also in the left columns of table 1). The 
other two panels show the SCC distributions under each SSP at 3 percent 
(panel B) and 2 percent (panel C) discount rates. Panel A reflects socio-
economic uncertainty implicitly, leading to central SCC estimates of $61  
and $168/ton CO2 under 3 percent and 2 percent near-term stochastic dis-
counting, respectively. The distribution underlying those means reflects both 
socioeconomic and climate uncertainty. We disaggregate that distribution 
below, but the bottom panel shows the importance of socioeconomic uncer-
tainty explicitly by comparing across the SSPs. SSP5 (high income growth) 
produces mean SCC values three to six times higher than the other SSPs. 
Hence, if one were to use a weighted combination of the SSPs, the resulting 
average SCC would reflect the relative weight given to each SSP, espe-
cially SSP5—a choice with no clear empirical basis. This result highlights the 
importance of incorporating a quantitative accounting of economic uncer-
tainty, as in the RFF-SPs.

Next, figure 12 demonstrates the effect of stochastic versus constant 
discounting on the mean SCC, leading to our second major conclusion: 
stochastic growth discounting is crucially important to SCC estimation in 
the context of socioeconomic uncertainty. In table 1, the first two columns 
of the first row show mean SCCs under the RFF-SPs for stochastic growth 
discounting approaches consistent with 3 percent and 2 percent near-
term rates (both in 2020 dollars), producing mean SCC estimates of $61.4 
and $168.4/ton CO2, respectively. These estimates, reflecting the updated 
socioeconomic, emission, climate, and discounting modules (three of the four 

Table 1. Effects of Discounting and Growth Distribution Tails on Illustrative 
SCC Estimates (2020$/ton CO2)

Stochastic growth 
discounting

Constant discounting3 percent 
near-term 
ρ = 0.8% 
η = 1.57

2 percent 
near-term 
ρ = 0.2% 
η = 1.24

3 percent 
constant

2 percent 
constant

Mean SCC, full distribution $61.4 $168.4 $194 $1,557
Mean SCC, drop top and bottom  

1 percent global income draws
$60.6 $167.9 $96 $450

Source: Authors’ calculations.
Note: The SCC estimates should be considered illustrative because they are based on alternative socio-

economic inputs, discounting approaches, the FaIR 2.0 climate model, and the DICE damage function.



NAS recommendations), are 33 percent and 50 percent higher than the 
corresponding DICE-only SCC estimates from the 2016 IWG ($46 and 
$112/ton CO2 in 2020 dollars; RFF and NYSERDA 2021).

We also present the results from the RFF-SPs with constant discount-
ing to illustrate the importance of stochastic discounting, but as previously 
discussed, constant discounting is inappropriate when uncertainty in eco-
nomic growth is considered, as here. When constant discounting is coupled 
with uncertain growth, the mean SCC is higher than is appropriate by a 
factor of three to nine, $194 and $1,557/ton CO2 for 3 percent and 2 per-
cent discount rates, respectively, because it ignores the correlation between 
damages and growth (the climate beta) and hence the discount rate. In 
other words, ignoring the risk profile of the SCC threatens to overstate 
the mean SCC in this example by a factor of three or more ($194 versus 

Figure 12. Illustrative SCC Estimates versus Average GDP per Capita Growth Rate 
(2020 to 2300)

Source: Authors’ calculations.
Note: The values plotted correspond to estimates of the SCC and long-run cumulative growth rates 

using a 3 percent near-term stochastic growth discounting (ρ = 0.8%, η = 1.57), the RFF-SPs, the FaIR 2.0 
climate model, and the DICE damage function.
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$61/ton with 3 percent discounting, and $1,557 versus $168/ton with 
2 percent discounting).

More specifically, the high expected values reflect a right-skewed dis-
tribution of damages. It is well known that skewed distributions and tail 
events can influence the expected value of the benefits of mitigating climate 
change (Gollier 2008; Weitzman 2011, 2014). Under constant discounting, 
such tail events are very rich futures with associated large amounts of 
consumption at risk from climate change. Yet constant discounting treats 
each dollar of cost to those wealthy future generations the same as a dollar 
of cost to a relatively poor future. Hence, with constant discounting, the 
effects on the future rich inappropriately dominate the expected value of the 
SCC, leading to a strong upward bias in the SCC estimate.

This problem is recognized in the finance literature as the result of 
ignoring the risk properties of an investment—namely, the correlation of 
an uncertain payoff with the stochastic discount rate. Stochastic growth 
discounting addresses this by discounting the high-growth, high-damage 
states at a higher rate. By discounting high-growth states more, stochastic 
discounting stabilizes the mean and variance of the SCC, as documented in 
Newell, Pizer, and Prest (2021).

The second row of table 1 highlights this greater stability under stochastic 
discounting by showing a sensitivity case in which we drop the top and 
bottom 1 percent of the global average income trajectories.30 Under constant 
discounting, the mean SCC is quite sensitive to dropping these 1 percent 
extremes, falling from $194 to $96/ton at a 3 percent discount rate and from 
$1,557 to $450/ton at a 2 percent discount rate. By contrast, the mean SCC 
is virtually unchanged under stochastic discounting, changing by less than 
1.5 percent for each of the stochastic rates that are consistent with 2 percent 
and 3 percent near-term rates. More generally, the SCCs with stochastic 
discounting change only negligibly even when much larger percentiles 
are dropped from the tails. For example, with stochastic discounting, the 
mean SCCs also change by less than 1.5 percent even when the top and 
bottom 10 percent of draws of global average income trajectories are 
dropped, whereas under constant discounting, the mean SCCs fluctuate by  
factors of 3 to 11. This result highlights the stabilizing effect of properly 
incorporating stochastic growth discounting, as anticipated in the NASEM 
(2017) report.

30. Specifically, we drop the draws with global average GDP per capita in 2300 in the
top 1 percent and bottom 1 percent of draws, before taking the average SCC.



This stability with stochastic discounting is apparent in figure 12, which 
plots the individual Monte Carlo SCC draws against each draw’s long-
run (2020–2300) global GDP per capita growth rate, under the 3 percent  
near-term stochastic discounting parameters (ρ = 0.8%, η = 1.57).31 Roughly 
speaking, the vertical spread of SCC values in the figure largely reflects 
climate uncertainty for each given level of growth in GDP per capita, 
whereas the horizontal spread of SCC values reflects uncertainty in long-
run income growth. Because the DICE damage function is proportional 
to GDP, undiscounted marginal damages scale roughly one-for-one with 
income growth, but with η > 1 they are discounted somewhat more than 
one-for-one with stochastic discounting, leading to a modest negative 
relationship between the SCC and GDP per capita growth. In other words, 
the SCC is higher when income growth is lower, and vice versa.

V. Conclusion

Since the SCC is a vitally important metric guiding climate policy, its 
calculation must be supported by the best available science, including an 
explicit incorporation of uncertainty. Our results demonstrate that socio-
economic uncertainty and stochastic discounting are important drivers 
of the SCC, and our work presents an opportunity to incorporate those 
uncertainties into ongoing updates.

Although the SCC estimates presented here are meant to be illustrative 
and use a highly simplified estimate of climate damages, they nonetheless 
highlight two major conclusions. First, socioeconomics matter significantly 
to the SCC, highlighting the importance of a quantitative accounting of 
socioeconomic uncertainty. Whereas scenario-based socioeconomic pro-
jections like the SSPs have no formal probabilities attached to them, our 
approach to quantifying uncertainties in future trajectories of population, 
GDP, and emissions helps account for these uncertainties in the SCC. 
Second, when incorporating socioeconomic uncertainty, stochastic growth 
discounting is crucial to account for the correlation of climate damages and 
the discount rate, whereas ignoring it leads to a large upward bias in the 
SCC estimate. Our work represents an advance in uncertain socioeconomic 
trajectories and discounting approaches based on empirically based explic-
itly probabilistic methods. Nevertheless, potentially important components 

31. The shape of the curve is similar under the 2 percent near-term parameters (ρ = 0.2%, 
η = 1.24) but shifted up to a higher level.



have not yet been fully incorporated into officially adopted SCC values. 
Recent work has begun to account for how the risk of tipping points influ-
ences the SCC (Dietz and others 2021). Other important factors include 
climate-related migration, conflict, and loss of at-risk species. Another 
conceptual issue is equity weighting, wherein effects on poorer regions of 
the world could be weighted more than equivalently sized dollar value to 
rich regions (Errickson and others 2021). Future research in these areas 
could be incorporated into official SCC values over time.

More generally, the SCC should be continually updated as the scientific 
frontier advances, as recommended by NASEM (2017). Our work speaks 
directly to those NASEM recommendations and presents an opportunity 
for the US government to improve on simple, deterministic approaches to 
socioeconomic projections and discounting methodologies to better reflect 
the interrelated uncertainties about future population, income, emissions, 
climate, and discount rates.
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