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Comments and Discussion

COMMENT BY
MICHAEL GREENSTONE    For a century, large temperature increases 
have been observed and have had a significant impact on the overall cli-
mate (IPCC 2021). Greenhouse gas emissions, including largely CO2, play 
a deterministic part in rising temperatures. While reduced greenhouse gas 
emissions can be costly, associated mitigation in rising temperatures can 
lead to significant reductions in climate damages and net improvements 
to welfare.

The social cost of carbon (SCC) is a critical input into assessing whether 
potential climate policies have benefits that exceed their costs. The SCC 
is the monetized value of all future net damages associated with the release 
of an additional ton of CO2. The SCC, therefore, provides a measure of 
how much society should be willing to pay for a one-ton reduction in CO2 
emissions and allows policymakers to conduct a comparison of a regula-
tion’s benefits and costs, both measured in dollars. The SCC became a key 
part of US climate policy in 2010 (Greenstone, Kopits, and Wolverton 
2013; IWG 2013) and has been used extensively in the United States and 
internationally since then. The basis for the US government’s estimate of 
the SCC is derived from William Nordhaus’s seminal research estimating 
the costs of climate damages and the SCC, as well as the Climate Frame-
work  for Uncertainty, Negotiation and Distribution (FUND) and Policy 
Analysis of the Greenhouse Effect (PAGE) integrated assessment models 
(Nordhaus 1992; Anthoff and Tol 2014; Hope 2011). To bastardize Winston  
Churchill’s famous quote about democracy—as of 2010, the integrated 
assessment models were the worst approach to estimating climate dam-
ages, except for all the others that have been tried. (Churchill’s quote is 
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“Democracy is the worst form of Government except for all those other 
forms that have been tried from time to time.”)1

It is my great pleasure to discuss this paper by Rennert and others that 
suggests a new approach for the US government to update the SCC. The 
authors’ approach emphasizes socioeconomic uncertainty and its correlation 
with damages. My goal in this comment is to situate their contribution in 
the broader context of a holistic approach to updating the US government’s 
SCC, underline drawbacks of the previous approach, and suggest criteria 
for the SCC calculation that makes it consistent with advances in the litera-
ture, economic theory, and policy objectives.

Overall, my conclusion is that the authors have taken an important step 
in fixing what ails the SCC, but their improvements need to be digested and 
examined by the scientific community. Further, to this point, their solutions 
fail to exploit the advances in damage estimation, which many believe to be  
the area where the most progress has been made in the last ten to fifteen 
years. Overall, this is an important contribution but more is needed to return 
the US government’s SCC to the frontier of scientific understanding about 
climate damages.

BACKGROUND

The SCC in climate policy.  In the United States, most major legislation 
requires agencies to conduct cost-benefit analyses. For policies aimed to 
reduce CO2 emissions, such analysis heavily relies on the SCC. During the 
Obama administration, the SCC was set at $51 by the Interagency Working 
Group (IWG 2013). Setting out to roll back environmental regulations, 
the Trump administration lowered this number to $1–$8 by restricting 
damages to domestic ones and applying higher discount rates (Plumer 2018). 
Currently, the Biden administration has returned the SCC to $51 as an 
“interim” value and is actively working to update it.

The SCC extensively influences public policy. Through 2017, it had 
been used in analyzing the value of more than eighty regulations with gross 
benefits exceeding a trillion dollars (Nordhaus 2017). Moreover, at least 
eleven state governments, including Illinois and New York, use the SCC to 
value zero-emissions credits paid to clean energy producers (Rennert and 

1.  International Churchill Society, “Quotes,” https://winstonchurchill.org/resources/quotes/
the-worst-form-of-government/.
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Kingdon 2019). The SCC had also been implemented internationally—
countries like Canada, France, Germany, Mexico, Norway, and the United 
Kingdom all implemented the SCC to some extent (Institute for Policy 
Integrity 2014). Finally, meaningful US mitigation efforts facilitate inter
national climate negotiations and lead to significant reductions in emissions 
from other countries (Houser and Larsen 2021).

The US government’s SCC is no longer on the frontier of understanding.  
I co-led the IWG in 2009–2010 along with Cass Sunstein. Nordhaus (1992) 
was incredibly influential in shaping the economics profession’s thinking 
and giving us a framework to think about the SCC and climate damages.  
This was achieved through the Dynamic Integrated Climate Change (DICE) 
model, which is generically referred to as an integrated assessment model 
along with PAGE and FUND. These three models all date back to the 1990s 
and formed the basis of the SCC. Even though all three models were some-
what dated by 2010, it was reasonable to conclude that the SCC reflected 
the frontier of understanding because the economics profession had not done 
much to update them since their creation.

In the intervening dozen years, these three integrated assessment models, 
and the resulting SCC, have fallen behind this frontier in several key areas. 
First, the set of models is highly reliant on expert judgment; there is a 
limited set of people with knowledge of what goes on inside the models, 
making replication, validation, and improvements challenging. This kind 
of small-club approach is not the best way to make scientific progress. 
Second, when these three models were created, computational resources 
were relatively limited, which forced researchers to make several simplify-
ing assumptions. For example, the estimated relationship between human 
well-being and changes in temperature in these models is based on quite 
limited data and a heavy reliance on functional form assumptions. In this 
respect, they generally have not taken advantage of the robust and rapidly 
growing climate damages literature (Deschênes and Greenstone 2011) that 
has emerged in the past two decades (see figure 1). Similarly, the under
lying climate models are dated and fail to capture many climate dynamics. 
Third, integrated assessment models used deterministic models in most 
cases, and hence such models incompletely accounted for uncertainty in 
their estimates. Finally, these models produced highly aggregated estimates 
of climate impacts. Even the most disaggregated model, FUND, has only  
sixteen regions, assuming, for instance, that climate change will affect 
Miami and Minneapolis identically. Recent research has established that 
the impacts of climate change are highly heterogeneous, and this hetero-
geneity matters for the SCC calculation. For instance, Hsiang and others 
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(2017) demonstrate that the projected end-of-century climate damages are 
nine times greater in the poorest 5 percent of US counties than in the richest 
5 percent. Consistent with these findings, Carleton and others (2020) find 
significant differences in the projected change in mortality risk both across 
and within countries.

Given the amount of time that has passed, it is not surprising that the 
SCC is due for an update. Indeed, the original IWG suggested that the SCC 
should be updated regularly to reflect advances in the understanding of 
key components of the calculation (IWG 2010). The need for the update 
was pointed out again seven years later by the National Academies of 
Sciences, Engineering, and Medicine (NASEM 2017). Further, Carleton and 
Greenstone (2021) lay out a detailed plan for updating it. Finally, the SCC’s 
legal durability relies on the estimation that is based on frontier science and 
economics.

UPDATING THE US GOVERNMENT’S APPROACH TO SCC ESTIMATION  NASEM 
(2017) and Carleton and Greenstone (2021) explain that there are four key 
modules or ingredients in constructing the SCC. This section describes the 
authors’ efforts in the paper in each of these areas, providing some context 
for their contributions.

Socioeconomic and emissions pathways.  The current (as of March 2022) 
and past SCC calculations, which were developed using Energy Modeling 
Forum (EMF 22) scenarios (Clarke and others 2009), do not reflect the last 
decade of work in probabilistic scenario development. A specific concern 
has been that the SCC relied on five socioeconomic scenarios, which were 
equally weighted, and that they did not span the full uncertainty about 
economic growth, increases in greenhouse gas emissions, and population  
growth (NASEM 2017). Each of these socioeconomic variables is a key 
input into the SCC, meaning that it may not reflect the full range of expected 
variation in these variables.

For all three variables, the authors combined statistical projections of 
these variables with expert elicitation to generate probabilistic projections 
through 2300. These probabilistic projections are referred to as the RFF 
Socioeconomic Projections (RFF-SPs) and allow for substantially more 
socioeconomic uncertainty than was being captured previously.

In the case of economic growth, the authors rely on Müller, Stock, and 
Watson’s (2019) statistical model of economic growth extended out to 2300. 
The model is derived from a data set that covers 113 countries from 1900  
to 2017. Müller, Stock, and Watson’s (2019) projections were coupled 
with formal expert elicitation about the “frontier of economic growth.” The 
ten experts—Daron Acemoglu, Erik Brynjolfsson, Jean Chateau, Robert 
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Gordon, Lant Pritchett, Melissa Dell, Mun Ho, Chad Jones, Dominique 
van der Mensbrugghe, and Pietro Peretto—were interviewed separately for 
roughly two hours each. It is worth noting that the authors “omit some 
projections in the extreme tails of Müller, Stock, and Watson’s (2019) 
distribution that are outside the range of historical experience” and outside 
the range specified by the experts. This choice is motivated by the fact— 
as the authors notice—that “such low or high sustained growth rates would 
lead to global GDP/capita either falling by more than 90% between 2021 
and 2300 (e.g., 0.99279) or rising by a factor of more than 800,000 (1.05279) 
implying a global average income of more than $10 billion per person” 
(online appendix).

With respect to population, the authors replaced EMF 22 projections 
with a probabilistic UN statistical model extended to 2300. Like with eco-
nomic growth, due to expert disagreement concerning the projected lower 
bound on the total fertility rate, the model was further altered to account for 
population growth experts’ views. Finally, to incorporate the uncertainty 
of emissions, greenhouse gas emissions projections from ten experts were 
paired with economic growth scenarios. In the case of population, nine 
experts were surveyed, while ten were surveyed for emissions trends.

Climate model.  The integrated assessment models used in the SCC cal-
culation represented economists’ interpretation of climate change and did 
not reflect the last decade of modeling. The primary input into each model is 
equilibrium climate sensitivity, which represents the total warming realized 
from doubling CO2 concentrations in the atmosphere. While equilibrium 
climate sensitivity has a tremendous impact on the interim SCC calculation, 
its actual value is not known with scientific precision.

Accounting for the best science available at the time, the IWG com-
bined the equilibrium climate sensitivity estimates across all models by 
employing a probability distribution reflecting the likelihood of different  
possible climate outcomes at the end of the century adapted from the 
Intergovernmental Panel on Climate Change’s fourth assessment report 
(IPCC 2007). Even so, integrated assessment models fail to precisely mea-
sure multiple links in the causal chain from CO2 emissions to tempera-
ture change (Dietz and others 2021; Hänsel and others 2020; Montamat 
and Stock 2020; NASEM 2017). Particularly, these models significantly 
understated the speed of warming (Montamat and Stock 2020). For instance, 
increased carbon concentrations lead to warmer and more acidic oceans, 
which in turn makes them less effective at removing CO2 from the atmo-
sphere. The resulting positive feedback loop is missing from both the DICE 
and PAGE models (Dietz and others 2021). Furthermore, delayed warming 
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projected in these models likely results in a downward biased estimate of 
the SCC as warming further into the future is discounted more heavily.

The authors address this problem by incorporating the Finite Amplitude 
Impulse Response (FaIR) climate model (Millar and others 2017). This 
choice is consistent with NASEM’s key climate module criteria for the SCC 
calculation (NASEM 2017). The model chosen by the authors generates 
climate projections consistent with comprehensive, frontier science models, 
such as the set of models composing the CMIP6 ensemble (Eyring and 
others 2016), and can be used to quantify uncertainty surrounding the impact 
of an additional metric ton of CO2 on global mean surface temperature. 
Moreover, the FaIR model is computationally feasible, transparently docu-
mented, and is commonly used in the SCC updates (Carleton and others 
2020; Dietz and others 2021; Hänsel and others 2020; Rode, Baker and 
others 2021; Rode, Carleton and others 2021). FaIR’s main limitation is that 
it does not capture changes in global mean sea level rise. One promising, but 
imperfect, way to overcome this limitation is to use semiempirical models 
that enable the inclusion of damages due to projected sea level changes 
(Kopp and others 2016).

Damage functions.  The next step in calculating the SCC is to make 
changes in the physical climate (e.g., temperature) and determine their impact 
on net economic damages. The relationship between economic damages and 
temperature change is known as a damage function. The previous gen-
eration of damage functions, which includes the FUND, DICE, and PAGE 
models, was developed in the 1990s and hence omits a rapidly growing 
literature (see figure 1). Indeed, my judgment is that this is the area with the 
greatest advances in understanding in the last few decades.

There are several shortcomings in the damage function used for the 
SCC calculation. First, the older models rely heavily on data from wealthy 
countries with temperate climates. This means that these models had to rely 
on ad hoc assumptions to create global damage functions because there 
simply was no support in the available data for the hot, poor, and hot and 
poor places where much of the world’s population lives. Given the tremen-
dous progress in data availability over the last few decades, there is no need 
to rely on ad hoc assumptions any longer; instead, there are now opportuni-
ties to rely on large-scale and globally representative data.

Second, there is substantial heterogeneity around the planet—what 
happens in Accra when hot temperatures arrive is vastly different from the  
effect of these temperatures in Oslo, for example (figure 2). This hetero
geneity can in part be explained by nonlinear relationships between tempera-
ture, mortality, and adaptation. The DICE model currently used by the authors 
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Panel B. Change in temperature, 2020 to 2099 (RCP8.5)

Panel A. Temperature and mortality

Source: Adapted with permission from Carleton and Greenstone (2021), also available at SSRN: 
https://ssrn.com/abstract=3764255.

Note: The figure shows estimated mortality-temperature relationships for age 65 and older (panel A), 
as well as projected changes in temperature distribution, for Oslo, Norway, and Accra, Ghana (panel B).
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Figure 2.  Climate Change Consequences Are Heterogeneous
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as a placeholder ignores distributional impact by dividing the planet into no 
more than sixteen regions. To capture local nonlinearities, updated damage  
functions should be more granular, for example, Climate Impact Lab employs 
distributed computing using 24,378 regions.2

Third, even within a given region, economic and climate uncertainty is 
substantial in every aspect of damage function estimation: mortality, coastal, 
labor, agriculture, electricity, and other fuels, as can be seen in figure 3. Thus, 
updated damage function should account for heterogeneous effects of 
temperature across sectors, as well as econometric uncertainty.

Damage functions are the engine that drives the determination of the 
SCC, and the authors’ reliance on older DICE damage functions means 
that their approach is behind the frontier. This is the case in three specific 
ways. First, it is now possible to rely on damage functions that are empiri-
cally founded and represent plausibly causal impacts of climate change on 
socioeconomic outcomes. Second, recent work has demonstrated that data 
representative of the global population, not just rich or temperate regions, 
are now available and can be used to estimate damage functions. Finally, 
damage functions should account for both estimated benefits and costs of 
future adaptive investments, and this is a hallmark of the Climate Impact 
Lab’s estimation of damage functions represented in figure 3. See Carleton 
and Greenstone (2021) for a fuller discussion of these issues.

Discounting.  CO2 added to the atmosphere causes a stream of damages 
and benefits associated with a given trajectory of warming spanned over 
centuries. The choice of a discount rate is therefore highly consequential 
for determining the SCC. To date, the SCC relied on a central constant dis-
count rate of 3 percent, following US government’s guidance on the conduct 
of cost-benefit analysis.

This approach fails to account for several features of current economic 
thinking about discounting that are especially important in the climate 
context where greenhouse gases can influence the climate for centuries after 
their release. These features include: (1) the 3 percent figure is intended 
to reflect the riskless rate but that rate is now likely 2 percent or lower 
(Bauer and Rudebusch 2020, 2021); (2) uncertainty in the riskless discount 
rate would lead the discount rate to decline with the time horizon (Weitzman 
1998), which constant discount rates do not capture; and (3) payoffs to 
emissions mitigation could be correlated with future income realizations,  

2.  As a disclosure, I am a codirector of Climate Impact Lab, which is a team of more than 
thirty researchers who aim to quantify the real-world costs of climate change. For details, 
visit https://impactlab.org/.
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Sources: Panel A adapted with permission from Carleton and others (2020); panel B adapted with 
permission from Depsky and others (forthcoming); panel C adapted with permission from Rode, Baker, 
and others (2021); panel D adapted with permission from Hultgren and others (forthcoming); panels E 
and F from Rode, Carleton, and others (2021), adapted by permission from Springer Nature.

Note: Black dots represent projected possible damages by the end of the century under the RCP 4.5 
scenario (solid line represents the density of change in global mean surface temperature). Similarly, gray 
dots represent projected possible damages by the end of the century under the RCP 8.5 scenario (dashed 
line represents the density of change in global mean surface temperature). The change in temperature is 
in degrees Celsius above 2001–2010 average. The horizontal axis for coastal damages represents change 
in sea level in centimeters relative to 2005.
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in which case there is effectively a “climate beta” and riskless rates are 
inappropriate (Gollier and Hammitt 2014).

The Ramsey (1928) equation provides a standard way to think about the 
intertemporal problem of discounting that can accommodate these limitations 
of constant discounting. It is:

rt = ρ + ηgt,

where rt represents the discount rate at time t, ρ is the pure rate of time pref-
erence, η is the coefficient of relative risk aversions, and gt is the per capita 
growth in consumption at time t. When the growth rate is uncertain, as is the 
case with the RFF-SP probabilistic growth scenarios, then the average discount 
rate in year t, rt, is also uncertain. Following Weitzman (1998), the present 
value of damages from an additional ton of emissions, MDt, is then given by:

PV(MDt) = E[e–(ρ+ηgt)tMDt].

This means that there is a stochastic discount factor (due to gt) and that 
produces a declining certainty-equivalent risk-free rate.

An appealing feature of this approach is that it incorporates the climate 
beta because when η > 0, the discount factor is smallest when growth is 
largest and largest when growth is smallest. This captures the idea that a 
dollar of damages is more meaningful when we are relatively poor. To apply 
these insights and connect them to the current riskless rates, the authors fol-
low Newell, Pizer, and Prest (2021) and choose values of (ρ, η) that are 
disciplined by the current riskless rate. In so doing, they ignore the available 
evidence of the values of these parameters and instead use observed interest 
rates to govern the choice of the parameters. This creates an inconsistency 
between their approach and the large body of literature that has, for example, 
estimated values for η that range from 1 to 4 but are generally centered around  
2 (Gollier and Hammitt 2014). So this aspect of their approach has practical 
appeal, but it is not built on an especially solid foundation of evidence.

The authors apply this approach and demonstrate its value. An especially 
important finding is that when uncertainty in economic growth is incorpo-
rated (as the RFF-SPs do), then constant discounting produces values of the 
SCC that appear inappropriately high. This is because it places a relatively 
greater weight on damages that occur in good times, which does not fit 
the widespread evidence on the declining marginal utility of consumption. 
Put another way, it ignores the climate beta and leads to an upward bias 
in the SCC.

COMMENTS AND CONCLUSIONS  The SCC has been overdue for a revision 
probably for almost a decade but certainly for at least five years since 
the 2017 NASEM report was issued. In many respects, this paper is a 
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response to the near-term items that NASEM outlined. It updates the cli-
mate model, characterizes the uncertainty in projections about economic 
growth, population, and emissions, and implements a Ramsey-style approach 
to discounting that takes advantage of the characterization of uncertainty 
in the socioeconomics and that climate damages may be correlated with 
the overall economy. These are important accomplishments.

The straw that stirs this drink and this work’s primary contribution are 
the socioeconomic projections. As a reminder, these boil down to projections 
of how these variables will evolve for the next three hundred years. This 
is a terribly difficult task but nevertheless a critical one for getting climate  
economics and policy right. The choice for developing multi-century esti-
mates of how growth, population, and emissions will evolve essentially boils 
down to relying on expert judgment in one form or another (e.g., the prob-
abilistic scenarios or the deterministic shared socioeconomic pathways), 
using statistical models to make projections, or some combination as the 
authors do in this paper.

I will confess to skepticism about the value of relying on responses from 
prominent researchers to a two-hour survey that in many instances does 
not relate to the core of their scientific work. The penalty of being wrong 
is essentially zero and internal consistency in answers across questions is 
not assured. Further, I think there is little disciplining the replies besides 
personal opinions, prejudices, and incomplete recollections of statistical 
models. And yet, the academic reputation of the respondents provides cred-
ibility to the entire exercise—credibility that I think is unwarranted given 
the challenges I have outlined here. In contrast, good statistical projections 
are disciplined in transparent ways. We may argue about the statistical 
approach, but it is at least clear what it was.

In this vein, the following figures plot statistical features of the distribu-
tion of future global CO2 emissions from 10,000 joint population-GDP-
emissions trajectories up to 2300 simulated in the paper. These trajectories 
are derived by sampling from the Resources for the Future distributions 
of future population, GDP, and emissions, which are constructed using a 
combination of prior studies and expert elicitation. In particular, emissions 
are paired one-to-one with each of 10,000 population-GDP trajectories 
based on a distribution constructed through a survey of experts. I note that 
separate distributions were specified for direct emissions and CO2 removal 
through negative emissions technologies and that the authors generated 
net emissions by independently sampling from these distributions and 
summing. These figures are designed to show the basic statistical proper-
ties of the authors’ projections, and they highlight some surprising features 
that at least partially arise due to the use of expert elicitation to shape prob-
ability distributions.
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In figure 4, the solid line is the median across these 10,000 simulations, 
dark gray shading shows the 5th–95th percentile range, and light gray 
shading shows the 1st–99th percentile range. For comparison, the plots 
also show projections from the RCP/SSPs (dashed lines), which are the 
deterministic scenarios of socioeconomics and emissions used in the IPCC’s 
Sixth Assessment Report (IPCC 2021).3

There are several noteworthy features of this figure. It is certainly inter-
esting, and perhaps reassuring, that the median falls in the middle of the 
SSP-RCP combinations. However, I was especially struck by some of the 
patterns in the tail. For example, 4 percent of the projections have cumu-
lative emissions that are negative by 2300. This can only be the case if 

Source: Author’s calculations.
Note: For each year indicated on the horizontal axis, the solid line represents the median value of 

cumulative emissions across 10,000 simulations given in the paper; dark gray and light gray shaded areas 
respectively show the 5th–95th and 1st–99th percentile ranges across these simulations. For comparison, 
dashed lines represent cumulative emissions trajectories under the deterministic scenarios used in the 
IPCC’s Sixth Assessment Report (IPCC 2021).
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Figure 4.  Cumulative Emissions through 2300, Alternative Scenarios

3.  The five shared socioeconomic pathways (SSPs) (Riahi and others 2017) each contain 
a narrative of future conditions along with associated projections of future socioeconomic 
variables. In the IPCC’s Sixth Assessment Report (IPCC 2021), these SSPs are paired with 
emissions pathways—representative concentration pathways (RCPs)—to generate combined 
socioeconomic and emissions scenarios.
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economically and technically feasible carbon dioxide removal technologies  
arrive and are used so extensively that more CO2 is removed from the 
atmosphere than was ever emitted since 1850. In effect, these projections 
assume that the optimal global temperature must be colder than preindus-
trial temperatures and societies continue to fund the operation of carbon 
dioxide removal machines until this colder optimum is reached. A not 
quite as astounding, but still surprising, feature of the projections is that 
11.4 percent of them have cumulative emissions that are lower than current 
cumulative emissions. This too can only be explained by a massive use of  
carbon dioxide removal technologies. As a point of comparison, there are 
approximately zero technically and economically scalable examples of these 
technologies currently.

Figures 5 and 6 report histograms of the year that annual CO2 emissions 
peak and the year that cumulative emissions peak (i.e., the sum of all future 
emissions is negative), which is also the year net-zero CO2 emissions are 
achieved, respectively. In figure 5, annual global emissions peak by 2035 
in 68 percent of the projections, by 2050 in 79 percent, and by 2100 in 
95.7 percent. In figure 6, less than 1 percent of the projections have peak 

Source: Author’s calculations.
Note: The histogram represents the distribution of the year of peak annual emissions across the 10,000 

simulations given in the paper. The height of bars indicates the percent of simulations that reach their 
peak annual emissions within a given year span.
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Figure 5.  Histogram of Year of Peak Annual Emissions
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cumulative emissions occur before 2050. By 2100, 13.7 percent of the 
projections have reached peak cumulative emissions. Without revealing my 
own expert judgments, I will note that this is at great odds with the Paris 
Climate Accords, which set a target of achieving net-zero by the middle 
of the twenty-first century. It is especially striking that 71.8 percent of the 
projections have not reached peak cumulative emissions by 2300, which 
would put any of the frequently discussed temperature change targets (e.g., 
1.5 or 2.0 degrees Celsius) far out of reach. Personally, I am not quite sure 
what to make of these findings, but it would be instructive to have them inter-
rogated by the academic community and to be explicit about the roles of the 
underlying statistical models and the expert judgment in producing them.

Overall, several of the findings from these figures surprised me. Does 
that mean that they are wrong? No. However, I think there is a strong case 
for opening these projections up to the research community so that they can 
be analyzed carefully. It would be especially interesting to compare them to 
projections that are based entirely on statistical models. Regardless of what 
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conclusions are reached, the seriousness of the climate problem demands 
that such peer review be a part of the process of inserting expert elicitation–
based projections into policy-relevant models of climate change.

Ultimately, my judgment is that all approaches to developing long-run 
socioeconomic projections are going to be unsatisfactory, but they are never
theless necessary for devising a socially desirable policy to confront the 
climate change problem. The authors have made a careful effort to develop 
these projections. They should be carefully scrutinized with an eye toward 
how much weight, if any, to place on expert judgment. Regardless of what 
is chosen, the paper also deserves credit for demonstrating how to integrate 
uncertainty about these projections and recognizing that climate damages 
may be correlated with the overall economy into discounting through Ramsey- 
style discounting. Both of these contributions align with key near-term 
recommendations from the 2017 NASEM report.

I will close by noting that NASEM’s 2017 medium- or long-run recom-
mendations extended beyond the contributions in this paper and involved 
the incorporation of empirically founded damage functions into the cal-
culation of the SCC. This NASEM recommendation came from the rapid 
advances in estimation techniques, data access, and computing that have 
made it possible to ground damage function estimation in data, rather than 
assumptions.

It is now possible to achieve these long-run NASEM goals. Trevor Houser, 
Solomon Hsiang, Robert Kopp, and I cofounded the Climate Impact Lab 
in 2014 to build climate damage functions empirically and use them to cal-
culate the SCC. The guiding principles were a ruthless belief that the SCC 
should be based on the best available econometric evidence and that it must 
account for adaptation costs and benefits, be globally representative, rely 
on the best available climate models, and value uncertainty and unequal 
impacts. The result of this work is the development of the Data-driven 
Spatial Climate Impact Model (DSCIM), which is a modular system for 
computing the SCC and the global impacts of climate change at the level 
of 25,000 regions (e.g., a US county) around the world using data. DSCIM 
is built to be very flexible—for example, it can incorporate characteriza-
tions of econometric, climate, and socioeconomic uncertainty (including 
the authors’ projections), value this uncertainty, implement essentially any 
approach to discounting, including the one the authors outline, and deliver 
estimates of climate damages where people live rather than at the global or 
country level.

What is ahead for SCC research? The to-do list is long but it certainly 
includes building out damage functions for more sectors (e.g., damages from 
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altered labor productivity, alterations in ecosystem services, migration, etc.), 
improving understanding of the costs and benefits of adaptation, understand-
ing the interaction of impacts in sectors (e.g., agriculture and migration), 
and so much more. This is an exciting area of research with enormous 
implications for policy.
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