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During the first half of the Twentieth Century, Americans enjoyed tremendous gains in 

health and life-expectancy as infectious diseases were drastically curtailed thanks to major medical 

advances and massive investments in sanitation and public health. Annual mortality rates from 

infectious disease in the United States fell by an order of magnitude: from nearly 800 per 100,000 

in 1900 to under 50 per 100,000 by 1960, in a steady downward trend, interrupted, dramatically, 

by the 1918-1919 outbreak of the Spanish Flu.i But as the HIV/AIDS pandemic made evident, and 

the COVID-19 pandemic reinforced, infectious diseases are far from vanquished.ii In fact, the risk 

that we experience another pandemic in the not too distant future is considerable. For example, 

according to a September of 2019 estimate by WKe PUeVLdeQW¶V CRXQcLO Rf EcRQRPLc AdYLVRUV, there 

is a four percent probability at an annual rate of a pandemic influenza that, at the high end, would 

cause in the United States nearly $4 trillion in economic damage and over half a million deaths.iii 

Given that we are likely to see significant outbreaks of infectious disease in the future, this 

seems an opportune time to re-examine our models of disease dynamics. What dynamics of 

infections and deaths should we expect to see from a pandemic? What are our options for 

mitigating the impact of a pandemic on public health? How might this mitigation be done in a 

manner to reduce the negative impact of a pandemic on the economy? These are questions that 

will provoke new research in the light of worldwide data from this COVID pandemic for years to 

come.  

But, after one year of data on COVID, one conclusion seems clear: the endogenous 

response of both public and private behavior to the prevalence of COVID-19 has transformed this 

epidemic from what might have been predicted to be a short, but exceedingly intense, episode into 

a milder but chronic pandemic that will impact public health and the economy over several years, 

until, with luck, the technological solution of vaccination brings this disease under much greater 

control.  



 

In this paper, I use a simple model of our experience with COVID-19 in the United States 

over the past year to explore how the interaction of disease and behavior changes the dynamics of 

an epidemic and constrains our options for mitigating the impact of a pandemic on public health 

absent a technological solution such as vaccines. I then re-examine the goals of public health 

measures to contain a pandemic when there is a decent chance that a technological solution such 

as a vaccine might be found. I conclude with some discussion of examples of policies that might 

allow for better public health with a smaller economic impact over the long term. 

I. Epidemic dynamics with and without behavior 
The public health policies enacted around the world to combat COVID-19 have been 

guided by standard epidemiological models built on the SIR framework developed by Kermack 

and McKendrickiv. These models simulate disease transmission as arising when infected 

individuals (I) interact with others. Through this interaction, a virus or other disease succeeds in 

infecting those who have no immunity and are thus susceptible (S), turning such agents into newly 

infectious individuals (I). Individuals who gain immunity from prior infections or vaccinations are 

said to be removed (R) as they no longer contribute to the transmission of the disease.  

When applied to COVID-19, three quantitative implications of this standard model stand 

out.v First, the model gives dLUe fRUecaVWV fRU WKe SeaN Rf WKe dLVeaVe¶V fLUVW ZaYe --- 10 to 20% of 

Americans were predicted to be sick with COVID-19 simultaneously at the first peak of infections 

absent drastic efforts (such as lockdowns and quarantines) to slow transmission. At current 

estimates of the infection fatality rate for COVID-19, this rate of infection would have 

corresponded to peak death rates on the order of 30,000 to 60,000 per day. Second, this model 

forecast that if efforts to slow transmission were applied early but were only temporary, this 

dramatic first peak would be delayed but not prevented: cases and deaths would explode again 

once efforts to slow transmission were relaxed. Third, this standard model offered dramatic long-

run predictions made famous by Angela Merkel in March of 2020vi ²more than 2/3 of the 

population were forecast to experience infections (if not vaccinated) before the pandemic would 

end through herd immunity. Again, applying current estimates of the average infection fatality rate 

for COVID-19 in the US, this implies a long-run death toll on the order of 1.25 million or more.  

These implication of a standard epidemiological model for the magnitude of the first peak 

and the long-run impact of COVID-19 in terms of infections are driven by a single parameter 

known as the basic reproduction number of the virus (the 𝑅଴)vii. The implications of these 



 

infections for deaths from COVID-19 are determined by the average infection fatality rate across 

the infected population. While we now know that the infection fatality rate from COVID-19 varies 

widely with age and other factors, estimates of the disease burden from COVID-19 from the CDC 

are consistent with an average infection fatality rate of 0.45% across the entire infected population 

in the United States for 2020.viii The emergence of new, more transmissible, virus variants with 

higher basic reproduction numbers make the predictions of standard epidemiological models for 

peak infections and long run impact even more dire. 

It is now clear that the first prediction of standard epidemiological models for the first peak 

of infections and deaths were off by at least an order of magnitude --- it is unlikely that more than 

2 percent of Americans have ever been infected simultaneously, and the peak of daily deaths in 

America from COVID-19 has fortunately stayed in four digits. Looking at data worldwide, it 

appears that the second prediction of standard epidemiological models is also off perhaps by an 

order of magnitude. While many locations within the United States and abroad have suffered 

severe second or third waves of COVID-19 deaths after relaxing costly public measures to control 

disease transmission, these waves have been much smaller than predicted by a standard SIR model.  

In contrast, the standard SIR PRdeO¶V WKLUd SUedLcWLRQ, UeJaUdLQJ ORQJ-run impact, looks to 

be closer to the mark. While the precise threshold of herd immunity²the fraction of the population 

that has to gain immunity through infection or vaccination before the pandemic can end²is not 

yet empirically resolved,  available data from locations such as Manaus, in Brazil, that have 

experienced high rates of infection, and from Israel, which has high vaccination rates, indicate that 

the predictions of a standard epidemiological model for the long-run impact of COVID-19 are 

likely correct: this pandemic will not resolve until high proportions of the population have acquired 

immunity either through infection or vaccination.ix  

I.A. Behavior regulates disease dynamics 

How does consideration of the impact of behavior on the progression of a pandemic help 

us understand this relationship between the standard SIR model predictions and observed 

outcomes?  

Within economics, Tomas Philipson pioneered the study of the interaction of behavior and 

the spread of disease in his work on the HIV/AIDS pandemic. In a 1999 handbook chapterx 

summarizing work on that pandemic, Philipson argued that epidemiological models should 



 

incorporate prevalence-elastic private demand for costly measures to prevent of the spread of 

infectious disease. Such models, he maintained, offered two fundamental economic insights.  

The first insight is that costly private efforts to prevent disease transmission are self-

limiting²as disease incidence falls, these costly efforts to control disease spread are relaxed and 

the disease re-emerges. Within the United States, it appears that this observation holds for public 

policies aimed at COVID-19 as well --- state and local disease control measures are often 

conditioned on measures of disease prevalence such as infections or hospitalizations, and these 

public measures aimed at the control of COVID-19 are relaxed as disease prevalence falls. 

The second insight is that the private response to changing disease prevalence partially 

offsets public interventions aimed at disease control. In short, the effect of public interventions is 

limited by their success as private efforts aimed at disease control are relaxed in response. 

That both public and private prevalence-elastic demand for costly measures to control 

disease is self-limiting is a particularly powerful insight for understanding where the standard 

epidemiological model fails as a description of disease dynamics and where it succeeds. In joint 

work with Karen Kopecky and Tao Zha, I findxi that the data on the progression of the COVID-19 

pandemic across many countries and U.S. states throughout 2020 conform strikingly well with a 

core prediction of the standard epidemiological model modified to include prevalence-elastic 

demand for disease prevention²that after the first phase of the pandemic in which disease grows 

rapidly, the growth rates of infections and deaths should remain in a relatively narrow band around 

zero until the pandemic is over.xii  

The intuition for this prediction regarding disease dynamics in the context of a model with 

prevalence-elastic demand for disease prevention is simple. If new infections and daily deaths from 

the disease grow too high, people and governments take costly efforts to avoid interaction and thus 

slow disease spread.  Likewise, if the prevalence of the disease falls, people and government relax 

those costly efforts at disease prevalence and the prevalence of the disease rises again. The reaction 

of behavior, both public and private, to the prevalence of the disease regulates the equilibrium 

prevalence of the disease in the same way that a cruise control regulates the velocity of a car on 

the highway that winds up and down hills. The equilibrium level of daily deaths, corresponding in 

this analogy to the velocity of the car, remains within a relatively narrow band (relative to that 

predicted by a standard SIR model) in response to shocks impacting disease transmission because 

of the stabilizing role of endogenous prevalence-elastic public and private disease avoidance 



 

behavior. The impact of this behavior then is to transform what would otherwise be a short and 

sharp disease episode into a much more slowly evolving and drawn-out phenomenon. 

What are the implications of a model with prevalence-elastic demand for disease 

prevention for the long run impact of an epidemic? Here the insight that the demand for disease 

prevention is self-limiting is particularly relevant. For an epidemic to end, the prevalence of the 

disease must fall towards zero. As disease prevalence falls towards zero, the demand for costly 

disease prevention efforts also falls towards zero, and hence the disease will come back unless the 

population has already achieved herd immunity measured at pre-pandemic levels of behavior. That 

is, the predictions for the long-run impact of COVID-19 using a standard epidemiological model 

should continue to hold. xiii Given estimates of the basic reproduction number in the range of 2.5 

(or now higher with new variants), this herd immunity threshold should kick in when significantly 

less than 40% of the population remains susceptible.  

This logic implies that, absent a vaccine, the implications of a model that includes a 

prevalence-elastic demand for disease prevention for the long-run impact of a pandemic in terms 

of cumulative infections and deaths should be similar to that of a standard epidemiological model. 

In the case of COVID-19 in the United States, this would be a cumulative death toll on the order 

of 1.25 million. 

I.B. A Quantitative Illustration 

To illustrate these points regarding the predictions of a standard epidemiological model 

and one with a prevalence elastic demand for disease prevention for the dynamics of an epidemic, 

I turn to a simple model of the dynamics of deaths from the COVID-19 epidemic in the United 

States that I presented in a recent working paper and which is included as an online appendix to 

this paperxiv. This model accounts for the dynamics of deaths from COVID-19 in the United States 

over the past year with natural shocks to transmission rates due to seasonality, due to the 

emergence of a new, more transmissible, variant of the novel coronavirus, and due to potential 

changes in the prevalence-elasticity of demand for costly measures to mitigate disease 

transmission. (I UefeU WR WKLV WKLUd VKRcN aV ³SaQdePLc faWLJXe´ aV a VKRUW-hand description of a 

decline in the responsiveness of private and public demand for costly disease prevention measures 

to changes in disease prevalence.)  

TKLV PRdeO accRXQWV UePaUNabO\ ZeOO fRU WKe SaQdePLc¶V eYROXWLRQ LQ the United States 

over the past year. A seasonal decline in transmission rates, the model suggests, explains why the 



 

prevalence of COVID-19 dropped to relatively low levels in the summer of 2020. It also suggests 

that a decline in the strength of the behavioral response to disease prevalence in late fall²

³SaQdePLc faWLJXe´²helps explain the large waves of infections and deaths seen in the late fall 

and winter. I use this model to generate forecasts for the pandemic over the next two years for both 

countries, with a new, more contagious variant of COVID-19, arriving in the United States from 

the United Kingdom and/or other sources in December 2020.  

In Figure 1, I show (the prediction (in blue) for daily deaths from COVID-19 in the United 

States from mid-February 2020 to mid-February 2022, and data (red) on the seven-day moving 

average of daily deaths in the United States over the past year dRZQORaded fURP WKe CDC¶V QeZ 

COVID data tracker websitexv. The behavioral model matches the data on deaths over the past year 

quite well, and it forecasts, absent vaccines, a continuation of the pandemic well into 2022. The 

predicted peak of deaths in late Spring of this year shown in this figure is driven by the spread of 

the new, more contagious, virus variant in the model. This new variant becomes the dominant 

variety by summer of 2021 in this forecast. 

The long-run cumulative death toll in this forecast run of the model in Figure 1 is 1.27 

million. The forecast shown in this figure does not include any consideration of the impact of 

vaccines, both to permit comparison with projections from a standard epidemiological model, and 

to serve as a benchmark for the impact of vaccination efforts.  

 



 

 
Figure 1: Behavioral model implications for daily deaths in the United States from mid-

February, 2020 through mid-February 2022 are shown in blue. Transmission rates in the model 

are impacted by seasonal variation, the introduction of a more contagious variant in December of 

2020, and prevalence elastic demand for costly measures to slow disease transmission. The wave 

of deaths forecast to occur later this spring is driven in the model by the introduction of the new, 

more contagious variant of the virus. Data on the seven-day moving average of daily deaths in the 

United States over the past year are shown in red. The forecast for cumulative deaths over the 

long-run implied by this model is 1.27 million. 
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To clarify the importance of the behavioral response in shaping disease dynamics, in Figure 

2, I show the prediction for daily deaths of the same model with the behavioral response to disease 

prevalence turned off (in blue), relative to data on the seven-day moving average of daily deaths 

(in red). As we see in this figure, this standard epidemiological model without a behavioral 

response overstates the first peak of daily deaths by at least an order of magnitude (these peak at 

over 30,000/day), but then the pandemic comes quickly to an end in the fall of 2020. The 

cumulative death toll in this model forecast is 1.5 million. This prediction for the cumulative death 

toll is certainly larger than in the model with a behavioral response, but the gap between the two 

models in this dimension is much smaller than in their predictions for the initial peak and the time 

scale of the pandemicxvi. 

What is evident from these figures is that incorporating a response of public and private 

behavior to disease prevalence gives a dramatically different forecast for the severity of disease 

peaks, and the speed with which this epidemic passes through the population. This is true even 

with a relaxation of mitigation behavior. In this, behavioral model, the pandemic takes two-and-a-

half years to play out rather than six-to-QLQe PRQWKV aV fRUecaVW b\ WKe baVLc PRdeO. TKe PRdeO¶V 

implications, however, for the long-run impact of the disease are not much altered by the 

consideration of behavior. In both basic and behavior variations, the model forecasts that a 

substantial majority of the population must become immune through infection or vaccination for 

the pandemic to end. 

 

 



 

 
 

Figure 2: Standard model implications for daily deaths in the United States from mid-

February, 2020 through mid-February 2023 are shown in blue. Transmission rates in the model 

are impacted by seasonal variation, the introduction of a more contagious variant in December of 

2020, but the model has no prevalence elastic demand for costly measures to slow disease 

transmission. Data on the seven-day moving average of daily deaths in the United States over the 

past year are shown in red. The forecast for cumulative deaths over this three-year period is 1.5 

million. 
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II. Private Behavior and Constraints on Policy 
Given these insights on the impact of prevalence elastic demand for disease prevention on the 

dynamics of an epidemic, what are our options for using public policy to mitigate the impact of a 

pandemic on public health? One insight, that we have already mentioned, is that there is likely to 

be an offsetting private behavioral response to public measures that limit the spread of disease --- 

that is, that public measures to control an epidemic may well be partially undone by private 

responses to declining disease prevalence. The other insight is that public measures at disease 

prevention have to be essentially permanent to result in a meaningful reduction of the long-run 

impact of an epidemic absent a technological solution such as a vaccine or a cure. 

 We can use our simple behavioral model to illustrate the quantitative implications of these 

two insights. Imagine that through public policies facilitating a wide range of disease control 

measures such as masking and social distancing protocols, testing and contact tracing with 

isolation of the infectious, it was possible to reduce the transmission rate of COVID-19 in half, 

holding fixed seasonality and the level of costly disease control measures undertaken by both 

private agents and state and local authorities.  

In Figure 3, I show a simulation of the model with such measures put in place for a two-

year period from May 1, 2020 through May 1, 2022. I show the model implications for daily deaths 

over a five-year period in blue and the data on the seven-day moving average of daily deaths in 

red. As we see in this figure, these disease control measures, when imposed on top of those arising 

in equilibrium from the prevalence-elastic demand of both private agents and public authorities 

for costly measures to control disease, have a significant impact in reducing deaths from the disease 

in the first year. Then, in this simulation, in early 2021, the arrival of the new variant and, in mid 

2022 the abandonment of these disease control measures, leads to significant spikes in forecast 

deaths. A significant level of daily deaths then continues into the first half of 2023 and, over the 

long run, the cumulative death tool is 1.27 --- almost exactly what we found in the simulation in 

Figure 1 that had no such disease control measures imposed.  

 

 

 



 

 
Figure 3: Predictions of the model for the evolution of daily deaths from COVID-19 in a 

version of the model in which disease control measures such as masks, social distancing, testing 

with contact tracing and isolation of the infected cut the transmission rate of the disease in half 

holding fixed the level of private and state and local disease control efforts undertaken in response 

to the prevalence of the disease. These measures are assumed to be in place for two years from 

May 1, 2020 to May 1, 2022. While these disease control measures are effective in reducing deaths 

in the first year, they do not succeed in later years. The data on the seven-day moving average of 

daily deaths are shown in red. The model-implied cumulative death toll is 1.27 million --- the same 

as we found in the simulation in Figure 1. 
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as a vaccine or a cure. How does the analysis of the impact of such measures change when there 

is a good prospect that a vaccine or cure might arrive? Here I use the model to show that such 

measures can have a significant long-run public health benefit in reducing deaths from disease 

while waiting for the arrival of that technological solution. 

In figure 4, I show the implications of the model for the evolution of daily deaths (in blue) 

when a program of vaccination starts on January 1, 2021 at a pace sufficiently fast to succeed in 

protecting half of the United States population by July 1, 2021. This vaccine is assumed to prevent 

both illness and disease transmission by the vaccinated. The data on the seven-day moving average 

of daily deaths is again shown in red. To see the model-implied impact of this vaccination program 

on the epidemic, one can compare the blue lines in Figures 1 and 4. Here we see that in the model, 

this vaccination program significantly reduces the forecast impact of the new variant later this 

Spring and brings the epidemic to an end late this summer or fall. Note that here the vaccination 

program succeeds despite the model-implied relaxation of public and private efforts at disease 

prevention.  

We also see that the model predictions for the long-run death toll with this vaccination 

program is 672 thousand, a bit over half of what is forecast in the absence of a vaccine (in the 

simulations in Figures 1 and 3). In this sense, the vaccination program succeeds in reducing 

cumulative deaths in a manner that a two-year program of disease mitigation absent a vaccine does 

not. 

But now consider the model-implied scenario for cumulative deaths if the temporary 

disease mitigation measures used in the simulation in Figure 3 had been imposed starting May 1, 

2020 and the same vaccination program applied in the simulation in Figure 4 had started on January 

1, 2021. With this combination of temporary disease mitigation measures and a successful 

vaccination program, the cumulative death toll implied by the model would have been only 292 

thousand. Clearly, the combination of temporary disease control measures applied while waiting 

for a technological solution can save many lives. 

 

 

 

 



 

 
Figure 4 Predictions of the model for daily deaths from COVID-19 (in blue) in a simulation 

with a vaccination program starting on Janaury 1, 2021 that proceeds at a rate fast enough to protect 

half of the population by July 1, 2021. In this simulation, the vaccine is assumed to protect against 

illness and to prevent disease transmission by the vaccinated. The data on the seven-day moving 

average of daily deaths are shown in red. To see the predicted impact of the vaccine on the 

dynamics of the epidemic, compare the blue line for model-implied daily deaths 2021 in Figure 1 

to the blue line here. The vaccination program is forecast to significantly mitigate the spread of 

the new variant of the virus and to bring the pandemic to an end in late summer or early fall of 

2021. The long-run cumulative death toll in this simulation is 672 thousand. 
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III. Conclusion  
The global COVID pandemic has clearly demonstrated that the risks from the emergence 

of new infectious diseases that epidemiologists have been speaking about for years is terribly real. 

This pandemic has also posed a severe test of public health strategies and capabilities worldwide. 

In many countries, the associated economic impact has been as severe as any downturn seen since 

the Great Depression. How might we do better next time? 

Based on the lessons about the interaction of behavior and disease dynamics discussed 

here, I suggest the following three-part strategy to improve our public health and economic 

response to emerging infectious disease.  

First, we need to invest in our disease surveillance capabilities worldwide, perhaps using 

the infrastructure developed for worldwide influenza surveillance as a model.xvii It is certainly 

worth a lot of money to have the capacity to contain and eliminate a new infectious disease 

anywhere in the world before it gets going. 

Second, we need to invest in new models for accelerating the development, financing, and 

distribution of vaccines and cures for emergent disease. In the end, it is these technological 

solutions that will allow us to contain the long run impact of new pandemics once they become 

global. 

Third, we must consolidate all that has been learned about the implementation of public 

health measures for disease control over the past year so that we might be able to quickly 

implement those measures that effectively slow disease spread with the least cost to the economy. 

As we have seen from these model simulations, the strategy underlying such measures should be 

to allow us to wait for the development of a technological solution to a global pandemic with 

minimal loss of life and economic damage.  

To illustrate the urgency of addressing these public health priorities, consider one final 

model scenario. There is increasing evidence that, through mutation, COVID-19 might evolve to 

evade the immunity conferred by prior infection and vaccines. In such a scenario, COVID-19 

would be an endemic, seasonal, disease that might require essentially permanent efforts at disease 

control.xviii To illustrate how such a scenario might play out, I simulate the model with vaccines 

shown in Figure 4 but in which immunity from infection and/or vaccination lasts on average for 

only 18 months. I show the resulting forecast path of daily deaths from COVID over a five year 

period in Figure 5. In this simulation, I assume that the vaccination program continues at a constant 



 

rate of roughly 1.3 million vaccinations per day throughout the forecast period. As one can see in 

this figure, the epidemic is forecast in this scenario to settle into a regular seasonal pattern killing 

over 100,000 Americans per year even with new vaccines and a response of public and private 

behavior to the changing prevalence of the disease. Clearly, in such a scenario, we would benefit 

greatly from finding ways to mitigate this disease on an ongoing basis at a lower economic cost. 

 

 
Figure 5: Predictions of the model for daily deaths from COVID-19 (in blue) in a 

simulation with a vaccination program starting on Janaury 1, 2021 that proceeds at a rate fast 

enough to protect half of the population by July 1, 2021. The data on the seven-day moving average 

of daily deaths are shown in red. In this simulation, immunity acquired from prior infection or 

vaccination is assumed to last 18 months on average. The vaccination program is assumed to 

continue at a constant rate throughout the entire period with presumably new booster shots 

conferring immunity against new variants as they occur. Even with this program of booster 
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vaccines and continued prevalence elastic behavior, in this simulation, more than 100,000 

Americans die each year from COVID on a persistent basis. 
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xvi This difference between the cumulative death toll forecast in the model run in Figure 2 and that in Figure 1 is due 
WR ZKaW LV NQRZQ aV ³RYeUVKRRWLQJ´ Rf KeUd LPPXQLW\ LQ WKe PRdeO ZLWKRXW beKaYLRU LQ FLJXUe 2. See 
https://www.nytimes.com/2020/05/01/opinion/sunday/coronavirus-herd-immunity.html for an explanation of this 
concept. 
xvii https://www.who.int/influenza/gisrs_laboratory/en/ 
 
xviii See fRU e[aPSOe CKULVWRSKeU MXUUa\ aQd PeWeU PLRW ³The Potential Future of the COVID-19 Pandemic: Will 
SARS-CoV-2 Become a Recurrent Seasonal Infection?´ JRXUQaO Rf WKe APeULcaQ MedLcaO AVVRcLaWLRQ (JAMA) , 
published online March 3, 2021  doi:10.1001/jama.2021.2828 
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1 Introduction

This appendix presents the model and parameters used in “Behavior and the Dy-

namics of Epidemics” by Andrew Atkeson for the Brookings Panel on Economic

Activity Spring 2021. This model is based closely on that presented in “A Parsimo-

nious Behavioral SEIR Model of the 2020 COVID Epidemic in the United States and

United Kingdom” which is available as NBER working paper 28434 and as Federal

Reserve Bank of Minneapolis Sta↵ Report 619. This appendix discusses the model

extended to include vaccines and the potential for waning immunity. It is applied to

the United States.

This model is a an SEIR model (with compartments for agents who are susceptible,

S, exposed, E, infectious, I, and recovered and hence removed R) modified to include

a compartment for those infected agents who end up with serious disease. I refer to

this compartment as H, for hospitalized. Agents who die from COVID are assumed

to transition from infection I to death, D, through this compartment H. The expected

time that agents spend in this compartment is set to 30 days to capture the delay

between serious illness, death, and the reporting of that death. Behavior in this

model is assumed to respond to daily death rates. It is assumed that behavior does

not respond immediately to new infections as these are not directly observed. As

discussed by John Cochrane1 and Weitz et. al. 20202 the delay between infection

and death introduced by this compartment H implies that this simple behavioral

model has oscillatory endogenous dynamics that are helpful in allowing the model

to reproduce the data with only a few shocks.

The three shocks considered in this paper are as follows. First, I add a standard

seasonal variation in the baseline transmission rate of the virus from a winter peak to

a low in midsummer. Second, I introduce a one-time change in behavior modeled as

1
See https://johnhcochrane.blogspot.com/2020/05/an-sir-model-with-behavior.html

2
Joshua Weitz, Sang Woo Park, Ceyhun Eksin, and Jonathan Dusho↵, “Awareness-driven be-

havior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders,

and oscillations” , Proceedings of the National Academy of Science, vol. 117, no. 51, December 22,

2020

1

https://johnhcochrane.blogspot.com/2020/05/an-sir-model-with-behavior.html


a reduction in the semi-elasticity of the transmission rate with respect to the daily

death rate from an initial level to a new, permanently lower level. I refer to this

second shock as the onset of pandemic fatigue. In the United States, pandemic fatigue

sets in late in 2020. Third, I introduce a more contagious variant of COVID to the

United States on December 1, 2020. The transmissibility of this variant is calibrated

o↵ of the experience in the United Kingdom. The model implies that this new variant

becomes the dominant variant circulating in the United States by summer of 2021.

I discuss the role that these shocks play in allowing the model to match the data on

daily deaths from COVID in the paper “A Parsimonious Behavioral SEIR Model of

the 2020 COVID Epidemic in the United States and United Kingdom” .

I model the impact of vaccines as moving agents from the susceptible compartment

S directly to the removed compartment R at a rate � per day. With this assumption,

I impose that the vaccine blocks both transmission by the vaccinated and disease in

the vaccinated. I model waning immunity as a movement of agents from the removed

compartment R back to the susceptible compartment at a rate ⇠ per day. I do not

consider population growth in the model.

For all model forecasts, I leave the behavioral parameter  which determined the

semi-elasticity of the transmission rate with respect to daily deaths fixed at its final

value at the end of the model estimation period of one year. Thus, I assume that

there are no further changes in behavior going forward.

2 Model and Parameters

The model is as follows.

The SEIHR model extends the SIR model by adding both the exposed state E

and the hospitalized state H. In this version of the model the total population N is

given by the sum of susceptible agents in state S, exposed in state E, infected in I,

hospitalized in H, recovered in R, and dead in D.
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To model the introduction of a new variant, I add separate compartments Ev and

Iv for those exposed to and infectious with the new variant. The transmission rate

of the original variant is denoted by �(t). That for the new variant is denoted by

�v(t).

The dynamics of the model are given by

dS(t)

dt
= �(�(t)I(t) + �v(t)Iv(t))S(t)� �(t)S(t) + ⇠R(t)

dE(t)

dt
= �(t)I(t)S(t)� �E(t)

dEv(t)

dt
= �v(t)Iv(t)S(t)� �Ev(t) + Ēv(t)

dI(t)

dt
= �E(t)� �I(t),

dIv(t)

dt
= �Ev(t)� �Iv(t)

dH(t)

dt
= ⌘�(I(t) + Iv(t))� ⇣H(t)

dR(t)

dt
= (1� ⌫)⇣H(t) + (1� ⌘)�(I(t) + Iv(t))� Ēv(t) + �(t)S(t)� ⇠R(t)

dD(t)

dt
= ⌫⇣H(t),

The reduced-form for the behavioral response of the transmission rate to the level

of daily deaths is given by

�(t) = �̄ exp(�(t)dD(t)

dt
+  (t))

�v(t) = �̄v exp(�(t)
dD(t)

dt
+  (t))

where the parameters �̄ and �̄v control the baseline transmissibility of the normal

and variant of COVID, the parameter  (t) is used to introduce seasonality in trans-
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mission, and (t) is the semi-elasticity of transmission with respect to the level of

daily deaths.

This reduced form response of transmission to daily deaths can be obtained as a

result of a two-equation system in which the transmission rate is given as a function

of activity Y (t) with

�(t) = �̄Y (t)↵ exp( (t))

and activity is given as a declining function of daily deaths

Y (t) = exp(�(t)
↵

dD(t)

dt
)

This decline in activity with daily deaths can be interpreted as arising either from a

change in private behavior or public mandates that are conditioned on the prevalence

of the disease. Seasonality as captured by  (t) is modeled as a shift in the relationship

between activity and transmission.

The new variant is introduced by setting Ēv(t) = 1 for one day on a specified date

tv and equal to zero otherwise. Note that this quantity is subtracted o↵ of the change

in the R compartment simply to keep the population constant. Since this shift is

only one person for one day, it does not impact the quantitative implications of the

model for large populations.

To model seasonality in the transmission of the virus, we set

 (t) = seasonalsize ⇤ (cos((t+ seasonalposition) ⇤ 2⇡/365)� 1)/2

where seasonalsize controls the magnitude of the seasonal fluctuations in trans-

missibility holding behavior fixed and seasonalposition controls the location of the

seasonal peak in transmission. Note that t is indexed to t = 0 on February 15, 2020.

To model pandemic fatigue, we set

(t) = ̄ ⇤ (1� normcdf(t, fatiguemean, fatiguesig))+
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fatiguesize ⇤ ̄ ⇤ normcdf(t, fatiguemean, fatiguesig)

where ̄ sets the initial semi-elasticity of transmission with respect to daily deaths,

fatiguesize sets the percentage reduction in this semi-elasticity in the long run,

normcdf is the normal CDF, fatiguemean sets the date at which the transition in

(t) from its initial to new long run level is halfway complete, and fatiguesig sets

the speed with which that transition occurs.

Initial conditions are E(0) > 0 , Ev(0) = I(0) = Iv(0) = R(0) = H(0) = D(0) = 0,

S(0) = 1�E(0). For the United States, E(0) = 33 on February 15 out of a population

of 330 million.

I set the epidemiological parameters as follows: � = 0.4, � = 0.425, ⌘ = 0.025,

⌫ = 0.2, ⇣ = 1/30. The parameter � corresponds to an expected time before and

exposed agent becomes infectious of 2.35 days and the parameter � corresponds to

an expected time for which an infected individual is infectious of 2.5 days. These

two parameters together imply a generation time of 4.85 days. 3

The parameter ⇣ corresponds to the rate at which those hospitalized flow either

to death or recovery. This rate is chosen to have an average stay in compartment

H of 30 days, which corresponds to an average stay in the hospital of two weeks for

those with serious illness and a reporting delay of deaths of two weeks. The infection

fatality rate is given by ⌘⌫ = 0.005 which is the product of a rate of serious illness

of 2.5% of total infections and a fatality rate of 20% for those with serious illness.4

The basic reproduction number of the virus at peak transmissibility isR0(t) = �̄/�

for the original virus and R0(t) = �̄v/� for the new variant. For the United States,

I set �̄ = 3� giving a peak basic reproduction in Winter of 3. This number is well

within the range of estimates of this parameter from the early phase of the pandemic.

3
See https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html. On that web-

page, the CDC notes a mean time of approximately six days between symptom onset in one person

to symptom onset in another person infected by that individual.
4
See https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html. On that web-

page, the CDC notes a median time from symptom onset to death of approximately two weeks and

a median time from death to reporting just under three weeks.

5

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html


For the new variant of the virus, I set �̄v = 5� giving a basic reproduction in Winter

of 5. This implies that the new variant is 67% more transmissible than the original

variant in the US. Note that the other epidemiological parameters associated with

this new variant are assumed to stay the same, including the infection fatality rate.

To model seasonality of transmission in the United States, I set seasonalsize =

0.35 and seasonalposition = 20. Figure 1 shows the basic reproduction number

corresponding to no reduction in transmission due to a behavioral response (the

transmisibility of the virus with behavior at pre-pandemic patterns) for the United

States. We see that the assumed pattern for seasonality in the US introduces a 35%

reduction in transmissibility of the virus holding behavior fixed from the winter peak

and the summer low.
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Figure 1: Assumed seasonality in the basic reproduction number.

The initial semi-elasticity of transmission with respect to daily deaths (measured as

a fraction of the population) for the United States is ̄ = 250000. To model the onset

of pandemic fatigue in the United States, I set fatiguesize = 0.375, fatiguemean =

285 and fatiguesig = 15. Figure 2 shows the ratio of the semi-elasticity of the

transmission rate with respect to the level of daily deaths relative to its initial level

for the United States. We see in that figure that this semi-elasticity is assumed to

fall to 37.5% of its original level late in the year.
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Figure 2: Assumed pandemic fatigue. The blue line shows the evolution of the semi-elasticity of

transmission with respect to daily deaths relative to its initial level.

In simulations in which I include a vaccine, I set �(t) = 0.004 starting on January 1,

2021. I assume that vaccinations are o↵ered to the general population. This implies

that in a population of 330 million, the daily number of vaccines administered is close

to 1.3 million. In comparing this number to data on vaccinations, one must take into

account that most of the vaccines administered require two doses for full e↵ect. This

assumption implies that roughly 50% of the population is fully vaccinated by July

1, 2021.

In simulations in which I assume waning immunity, I set ⇠ = 1/547.5 which corre-

sponds to an expected time to loss of immunity of 18 months.
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