Comments on

"Advanced Cognitive Skill Deserts in the U.S."

by Caroline Hoxby

Brookings Papers on Economic Activity Spring 2021 Conference

Brian Jacob, University of Michigan

There is a lot to like in this paper!

- Focus on adolescence
 - Useful antidote to the recent focus on early children
 - I looked forward to reading the "predecessors" to this paper
- Focus on the importance of geography
 - In line with other work emphasizing place (e.g., Opportunity Insights)
- Focus on "advanced" cognitive skills
 - Interesting and different than related work. But necessary?

Are "advanced cognitive skills" the key, conceptually or empirically?

- Cognitive skills?
 - How highly correlated is county-level % BA with county-level PIACC measure?
 - How about other proxies for socioeconomic status?
- Is the distinction "advanced" important empirically?
 - How important is it to consider the proportion in the <u>top</u> of the (national) distribution?
 - Empirically, the correlation between the average test scores in an area and the proportion scoring "advanced" is <u>extremely</u> high (e.g., NAEP, SEDA).
- Conceptually, what exactly do we mean by "advanced"?
 - How does this intersect with what we describe as general versus specific skills?
 - Does the argument require the return to cognitive skill to be nonlinear?

PIAAC – Example low difficulty numeracy item

Respondents are asked to type in a numerical response based on the graphic provided.

PIAAC – Example medium difficulty item

PIAAC – Example medium (level 4?) difficulty

item

Wind Power Stations

In 2005, the Swedish government closed the last nuclear reactor at the Barsebäck power plant. The reactor had been generating an average energy output of 3,572 GWh of electrical energy per year.

Section

Work continues in Sweden on installing large offshore wind farms using wind power stations. Each wind power station produces about 6,000 MWh of electrical energy per year.

For your information:

Electrical energy is measured in Watt hours (Wh)

l kWh	= 1 kilo Wh	=	1,000 Wh
l MWh	= 1 Mega Wh	=	1,000,000 Wh
l GWh	= 1 Giga Wh	-	1,000,000,000 Wh

What happens in adolescence?

- The paper establishes that
 - 1. Cognitive ability is malleable
 - 2. There is substantial variation in children's advanced skills across counties as early as age 8 (grade 3)
 - 3. At the geographic level, variation in child skill is associated with measures of adult cognitive skill (and likely other measures like BA attainment, etc.)
 - 4. Correlation between child and adult skill increases during adolescence
- I agree with these findings at a broad level, but suggest caution with regard to some details

Statistical challenges of quantifying cognitive test score relationships

- Measurement error and scaling make it difficult to interpret magnitudes
 - change in variation of child ability
 - change in correlation btw child-adult skill
- Greater measurement error in early age exams would lead to larger measured correlation at older ages
- We use test scores as interval scales when they are really ordinal
 - Any monotonic transformation of the test score scale can be valid
 - Prior research suggests this could make a big difference in applied settings (Bond and Lang, 2013)

An simple example of scaling and the Black-White test score gap (Bond & Lang, 2013)

- As diff(a,b) gets smaller, test score gap goes to 0
- Even worse when one considers changes over time
- Using ECLS-K, Bond and Lang (2013) study change in the B-W test score gap from K to Gr3
- Can range from 0 to 0.6 SD under reasonable transformations

Fest of 3 progressively difficult skills (a, b and c)						
Child	Race	Score, t=1	Score, t=2			
1	Black	0	1			
2	Black	2	3			
3	White	1	2			
4	White	2	3			
Gan	Raw	0 5	05			
Gap	St Dev	0.60	0.5			

Yet, relative to other countries, U.S. academic performance declines with age (consistent with paper)

9-year-olds (TIMMS)

						30016					
	0	250	300	350	400	450	500	550	600	650	1,000
Education system	-//	, 1		1		1					//
Singapore									602	625	
Hong Kong-CHN									600		
Korea, Republic of									500		
Chinese Taipei									503		
Japan Masaaw City DUS									593		
Pussion Endoration ¹									67		
Northorn Iroland GPP1								5	66		
England-GBR ¹								556			
Ireland								548			
Latvia ¹								546			
Dubai-UAE ¹								544			
Norway (5) ¹											
Lithuania ¹								542			
Austria								539			
Netherlands *								538			
United States ¹							535	i 🔶			
Czech Republic								•			
Belgium (Flemish)-BEL ¹							532	9			
Quebec-CAN							532	9			
Cyprus							532	9			
Finland							532	9			
Portugal ¹							525	Н			
Denmark ¹							525	Ч			
Hungary								1			
Turkey (5) '							521	1			
Sweden							521	7			
Germany							521				
Poland							518				
Madrid-ESP							516				
Australia							515				
Rulaaria							515	_			
Italy							515	_			
Kazakhstan ¹							512	-			
Ontario-CAN							512	-			
Canada ¹							512	-			
Slovak Republic ¹							510 🛑 🗕	-			
Croatia							509	-			
Malta							509 🗨 🗕 🗕				
Serbia ¹							508 🗨 🗕				
Spain							502 🛑 🔤				
TIMSS scale centerpoint							500 🗨 🗕				
Armenia							498 🔴 🗕 🚽	-			
Albania							494 🔴 🗕 🚽	-			
New Zealand ¹							37				

15-year-olds (PISA)

	\$D.*	Meas score	
B-S-J-Z (China)	80	591	7
Singapore	94	569	S.
Macao (China)	en	559	2
Hong Kong (China) ¹	94	55	
Chinese Taipei	100	53	
Japan	85	517	
Korea	100	516	
Estonia	#2	523	
Netherlands ¹	93	519	
Poland	50	516	
Switzerland	94	515	
Canada	92	512	
Denmark	82	509	
Slovenia	89	509	
Belgium	95	509	
Finland	#2	507	
Sweden	91	502	
United Kingdom	93	502	Ω.
Norway	50	501	a a
Germany	95	500	-
Ireland	78	500	
Czech Republic	93	100	
Austria	93	199	
Latvia	80	496	
France	93	405	
Iceland	90	495	
New Zealand	93	404	
Portugal1	96	492	
Australia	92	10	
Russia	85	400	
haly	94	15	
Slovak Republic	100	495	
Luxembourg	59	483	
Spain		491	
Lithuania	<u>\$1</u>		
Hungary		491	
United States ¹	92	<i>0</i> 1	
Contract US	93	Ø2	

What causes the correlation to increase in adolescence?

- Factors in the school system
 - Teacher quality, accountability, funding
 - Note: assumes these factors have differential "effect" on older vs. younger children
- Factors outside the school system
 - Lots of changes taking place in adolescence beyond pruning of synapses in the frontal lobe and myelination ③
 - James Coleman, The Adolescent Society (1961)
 - "...an adolescent culture which shows little interest in education and focuses the attention of teenagers on cars, dates, sports, popular music, and other matters just as unrelated to school"

How can we learn more about this critical period?

- Look at developmental trajectories separately by gender, socioeconomic status, race and region
 - Evidence that boys are more susceptible to environmental influences
 - Separate in-home vs. out-of-home factors?
- Deeper dive into certain geographic areas exhibiting unexpected patterns
 - Southern border
- Experimental evaluations of interventions targeted on adolescents

Some exploratory analyses with county-level data

Outcome = gaps in mean scores, standardized metric, common across all counties (source: SEDA)

	Male-Female Gap		White-Black Gap		
	Math	ELA	Math	ELA	
Fraction with BA+	0.017	-0.17	1.24	1.15	
	(0.001)	(0.038)	(0.19)	(0.20)	
Grade	-0.015	-0.016	-0.009	0.001	
	(0.041)	(0.002)	(0.003)	(0.004)	
Grade * BA+	0.011	0.016	0.027	-0.003	
	(0.007)	(0.007)	(0.017)	(0.018)	
Constant	0.06	-0.11	0.46	0.42	
	(0.01)	(0.01)	(0.04)	(0.04)	

- Boys performance declines relative to girls from grades 3-8
- Decline is largest in counties with lower educational attainment
- White-Black gap is larger in counties with higher educational attainment
- No clear patterns by grade

Potential Solutions

- Consider interventions outside as well as inside formal schooling
- Think harder about how we define advanced skills, and how this intersects with what we think of as general versus specific skills
- Growing evidence on the benefits of career-technical education in high school (in short-to-medium run)