Discussion of "The Sustainability of State and Local Government Pensions: A Public Finance Approach" by Lenney, Lutz, Scheule, and Sheiner (LLSS)

Discussion by Prof. Joshua Rauh, Ph.D.

Hoover Institution

Stanford University Graduate School of Business

March 25, 2021

Overview

- Paper studies sustainability of pension promises
- Goal is stabilization of pension debt to GDP
- Hard question: requires projections of annual pension fund cash flows and accruals in landscape of heterogeneous plan design
- Relies on modeling of new entrants into the system under current pension deals that new entrants receive

> which in many cases are different from earlier tiers due to reforms

Main Comments

- Stabilization goal is reasonable to consider
- However, public sector's approach to funding with risk assets creates additional issues for this type of debt (unfunded pension liabilities) relative to government bonds
- Instability due to market risk isn't in the model, because the model is deterministic: no distribution of possible outcomes
 > Higher expected return you target, the greater the distribution of outcomes
- Only meaningful scenario is r=d=0% → fiscal adjustment is 14.9% of payroll vs. current 29%. So a 51% increase.

> I will provide some reasons I think this might still be too low

State and Local Pensions in the Federal Reserve Financial Accounts of the U.S. (1)

State and Local Pensions in the Federal Reserve Financial Accounts of the U.S. (2)

deas Defining A Free Socie

Standard Finance Market Model: E[R]=7%, MRP=4%, B=1.5

Beta	_	1.5					
Sigma	-	0.17					
Risk-Free Return (RF) MRP Years (T)							
						Number of Draws	1,000
						Y axis max	_
Set new shocks Show all draws							
After 30 years:	Dollar Value	Annualized Return					
95th Pct.	\$29.74	11.97%					
75th Pct.	\$7.62	.62 7.00%					
Mean	\$7.54	6.97%					
Mean Median	\$7.54 \$3.09	6.97% 3.83%					

Black-Scholes-Merton assumptions: lognormal returns

$$S_T = S_0 e^{[R_T T]}$$
$$R_T \sim \phi \left(r + MRP - \frac{\sigma^2}{2}, \frac{\sigma}{\sqrt{T}} \right)$$

Standard Finance Market Model: E[R]=6%, MRP=5%, B=1

Beta	-	1.0)							
Sigma	_	0.1	17							
Risk-Free Return (RF) MRP Years (T)										
						Number of Draws				
						Y axis max	-	10	.0	
Get new shocks	c	Show all draws								
After 30 years:	Dollar Value	Annualized Return								
95th Pct.	\$16.95	9.89%								
75th Pct.	\$6.42	6.39%								
Mean	\$5.72	5.99%								
Median	\$3.57	4.33%								
	\$1.93	2.21%								
25th Pct.	41100									

Black-Scholes-Merton assumptions: lognormal returns

$$S_T = S_0 e^{[R_T T]}$$
$$R_T \sim \phi \left(r + MRP - \frac{\sigma^2}{2}, \frac{\sigma}{\sqrt{T}} \right)$$

Implications of Modelling Stochastic Process Deterministically

- Agree that **d** and **r** can and should play distinct roles
 - d measures liability
 - **r** is determined by asset allocation
 - It may be optimal to fund less <100%, effectively borrowing to invest in risk assets, expose to distribution of outcomes with higher mean
- But what does it mean to separate **d** and **r** in a deterministic analysis?
- Costrell and McGee (2020) analyze steady state of this paper
 - Steady state contribution rate ultimately becomes independent of ${\bf d}$

$$contributions = benefits - (r - g) \frac{a}{(1 + g)}$$
 $a \equiv \frac{Assets}{GDP}$

• Relying on earning above risk-free profits with certainty

Only meaningful Scenario: r=d=r_f

- Accounting definition of stability in level dollars: must pay
 - PV of new benefit accruals ("normal cost" or "NC");
 - Plus interest on unfunded liability
- Rauh (2017) found <u>83% increase</u> in employer contributions necessary to cover these quantities as of 2017
- LLSS are looking for stability as share of nominal GDP, so benefit from **g**
- They find 14.9% of pay increase on 29% of pay baseline -> <u>51% increase</u>

	Increase in contribution rate required if changes are made (percent of payroll):				
Real rate of return	Start Today	Start In 10 years	Start In 20 years	Start In 30 years	
0%	14.91%	12.71%	10.71%	8.82%	

• But it is LOWER if you wait 30 years (8.82% of pay, or 30% increase)

Comments About Adjustments

- 1. 15 plans (37.5% of plans) are insolvent before 30 years (Table 2)
 - Authors rely on idea that plans can issue debt to "smooth through the period of peak benefit outflows"
 - Add any volatility and there is a chance more could become insolvent
- 2. Waiting would stabilize the funding ratio at a much lower level
 - Still less costly as share of payroll because GDP higher and NCs much lower(?)
 - However, it again adds risk that due to volatility the plan becomes insolvent and must have big contribution increase to afford PAYGO
- 3. To really understand mechanics, need some more info:
 - NC at stated rate, t=0 and t=30
 - NC at risk-free rate, t=0 and t=30
 - Calculated PAYGO rate, t=0 and t=30
 - Funding ratio if start increasing contributions at t=0 vs t=30

Conclusions

- Interesting paper, asking good question and taking on difficult modeling
- Appreciate "public finance" goal of stabilization of pension debt/GDP
- But not advisable to ignore the "finance" insight of distributions of outcomes
- In talking about this paper, I will emphasize r=d=r_f scenario until stochastic analysis is introduced
- Much potential to learn something from $r=d=r_f$, namely how much the new tiers have reduced necessary contribution increases

