Discussion of "The Sustainability of State and Local Government Pensions: A Public Finance Approach" By Jamie Lenney, Byron Lutz, Finn Schuele, and Louise Sheiner

Deborah Lucas MIT

Prepared for Brookings BPEA conference, March 25, 2021

Main points

- 1. The values of r considered here are not the best choices, even in this risk-free paradigm
 - Basic theory suggests r > g is a natural assumption in any analysis of a long-run steady state
 - The assumption about the risk free rate and its future value is contrary to what financial markets are telling us, and inconsistent with long-run historical data
- 2. Defining sustainability as a long-run equilibrium with a constant debt-to-GDP ratio is unsatisfactory for both conceptual and practical reasons
- 3. "r" (on assets) is likely higher, and much more volatile, than assumed here
- 4. Under a more reasonable definition of sustainability and more realistic parameter choices, funding levels matter a lot, and a larger number of plans would be classified as unsustainable

Basic theory suggests r > g in a long-run steady state

A standard utility maximization framework suggests r > g in deterministic framework where r clears debt market:
Max U(C₁) + βU(C₂)

s.t. $C_{1} = Y_{1} - S$ $C_{2} = Y_{2} + S(1 + r)$ Optimal choice of S => $(1) \qquad \frac{1}{1+r} = \beta U'(C_{2}) \frac{U'(C_{2})}{U'(C_{1})}$ Say U(C) = In(C), endowment economy so C = Y, and Y_{2}/Y_{1} = (1+g). Then (1) implies that (1 + r) = (1 + g)/\beta. If $\beta < 1$, then r > g e.g., $\beta = .98$, g = 1% implies r = 3.06% In the steady state r – g is roughly the rate of time preference.

- Casts doubt on the most controversial conclusions in this paper that depend on r = 0 and g > 0
- Also see Viscusi (2006) "Rational Discounting for Regulatory Analysis" for related paradoxes when the social discount rate is taken to be 0 (e.g., no cost to delaying action).

Market data => r expected to rise, but very uncertain how much

Note: Implied forward rate between 2026 and 2051 is 4.4%

What constitutes sustainability?

- Paper focus is on *stability* of "steady state" debt-to-GDP ratio
- Size also matters for debt-to-GDP ratio sustainability
 - Compare debt service burden at 100% vs 500% GDP (at r=3%, cost goes from 3% to 15% of GDP)
 - Pension debt is on top of federal debt
 - No indication we'll converge to steady state

Federal Debt Held by the Public, 1900 to 2050

Percentage of Gross Domestic Product

What constitutes sustainability?

- More fundamental considerations arise from political and institutional constraints
- <u>Alternative definition</u>: A fund is sustainable if it can meet its contractual obligations with a high probability
 - Analogy to Social Security and exhaustion of trust fund: crisis occurs if budget authority runs out
 - Steady state or very long run is largely irrelevant
 - Uncertainty, particularly in asset returns, is critical to the conclusions

What are realistic assumptions about asset returns?

- Can group assets into two broad classes, risky stocks and a risk-free bond
- Then asset returns are reasonably approximated by:
 - risk-free rate of 2.5% (nominal)
 - expected stock returns of 7.5% percent, std. dev. of 20%, normally distributed (nominal)
 - Inflation rate of 2%
- Expected return and variance of outcomes will vary with investment choices
 - Typical fund is 60-80% in risky assets
- For a given funding ratio, this affects the likelihood of exhaustion in two ways
 - Higher expected returns than suggest even less likelihood of insolvency than in paper
 - Volatility implies there is a chance of running out of funds
- Importantly, the likelihood of exhaustion increases with underfunding

Are most public pension plans sustainable?

- By my definition of sustainability, which requires shortfalls to be unlikely, the answer appears to be "no"
- A related result (from Lucas and Smith, 2020)
 - Model features realistic demographic, vesting, asset returns, contribution rates of 20%
 - We ask, what is the highest level of sustainable "scheduled benefits" (replacement rates) in a standalone collective defined contribution system, in the stochastic steady state?
 - "Sustainable" means chance of realized benefit falling short of the scheduled benefit is less than 10%, and the chance of it falling short of 80% of the scheduled benefit is less than 2%.
 - Realized benefit < scheduled benefit when extended period of low returns that exhausts asset holdings
 - The maximum replacement rate is about 30%, and the share invested in stocks is about 70%
 - In a DB world, this loosely suggests a crisis in about 10% of years, even with modest benefits
- Authors are encouraged to simulate exhaustion date distributions for individual plans when returns are risky

Appendix: More on whether prefunding matters

Indeterminacy of optimal funding rules

- The economic decision to incur future pension obligations is made at the time of contractual commitment to an incremental worker
 - Does the value of the contracted services justify the total costs incurred?
 - Total cost includes current wages and benefit accruals
- As a first approximation, the degree to which a pension system is funded is irrelevant to government cost and risk
 - Modigliani-Miller for pension accounting
 - The do-it-yourself policy option for taxpayers; they can undo risk in own portfolios
 - If taxpayers are borrowing constrained may prefer government to borrow more and take risk

Indeterminacy of optimal funding rules

• Pension contributions need not crowd out other spending

- When they appear to do so, it is a political phenomenon, not an economic one
- A local gov't can borrow in the muni bond market to cover asset purchases; this simply swaps explicit debt for implicit debt
- This is illustrated on the following slides taking a balance sheet approach
- For more details see Lucas, 2017, "Towards Fair Value Accounting for Public Pensions: The Case for Delinking Disclosure and Funding Requirements"
- Bottom line: Whether or not a plan is funded, and whether or not borrowing is used to buy assets, the cost of pension accruals is ultimately paid for through current or future tax increases and/or reductions in other spending. The distributional consequences can be significant, and should not be neglected

Figure 1: Government and citizen balance sheets

Government		Citizens	
Assets	Liabilities	Assets	Liabilities
Current Taxes	Current Spending	Current Spending	Current Taxes
PV(Future Taxes)	PV(Accrued Pension Benefits)	PV(Accrued Pension	PV(Future Taxes to
PV(Pension Assets)	Denentsj	Benefits)	Pay for Non-Debt Expenses)
	PV(Gov't Debt)	PV(Gov't Debt)	
			PV(Future Taxes to Repay Gov't Debt)
PV(Other Assets)	PV(Other Liabilities and Owners Equity)	PV(Other Assets)	PV(Other Liabilities and Owners Equity)
From: D. Lucas (2017) "	Towards Fair Value Accounting	for Public Pensions: The C	ase for Delinking Disclosu

From: D. Lucas (2017), "Towards Fair Value Accounting for Public Pensions: The Case for Delinking Disclosure and Funding Requirements"

<u>Figure 2</u>: Government and citizen balance sheets with **fully funded** incremental pension benefits and no immediate change in tax collection or other spending

Gover	lillent		:115
Assets	Liabilities	Assets	Liabilities
Current Taxes	Current Spending	Current Spending	Current Taxes
PV(Future Taxes) + Δ(Accrued Pension Benefits)	PV(Accrued Pension Benefits) + Δ(Accrued Pension Benefits)	PV(Accrued Pension Benefits) + Δ(Accrued Pension Benefits)	PV(Future Taxes to Pay for Non-Debt Expenses) + Δ(Accrued Pension Benefits)
PV(Pension Assets) +∆(Accrued Pension Benefits)	PV(Gov't Debt) + Δ(Accrued Pension Benefits)	PV(Gov't Debt) +Δ(Accrued Pension Benefits)	PV(Future Taxes to Repay Gov't Debt) +Δ(Accrued Pension Benefits)

Citizons

• Gov't funds increased pension assets by issuing gov't debt.

Government

• New debt is paid with future taxes, pension liabilities increase.

<u>Figure 3</u>: Government and citizen balance sheets with **no incremental funding** of pension benefits and no immediate change in tax collection or other spending

Covornmont

Citizone

Government		Citizens	
Assets	Liabilities	Assets	Liabilities
Current Taxes	Current Spending	Current Spending	Current Taxes
PV(Future Taxes) + Δ(Accrued Pension Benefits) PV(Pension Assets)	PV(Accrued Pension Benefits) + Δ(Accrued Pension Benefits)	PV(Accrued Pension Benefits) + Δ(Accrued Pension Benefits)	PV(Future Taxes to Pay for Non-Debt Expenses) + Δ(Accrued Pension Benefits)
(PV(Gov't Debt)	PV(Gov't Debt)	PV(Future Taxes to Repay Gov't Debt)

• New pension liabilities are a type of government debt. Obligation will be paid with future taxes.

<u>Figure 4</u>: Government and citizen balance sheets with **fully funded** incremental pension benefits and an **immediate change in other spending**

Government

		0.0120	
Assets	Liabilities	Assets	Liabilities
Current Taxes	Current Spending - Δ(Accrued Pension	Current Spending - Δ(Accrued Pension	Current Taxes
PV(Future Taxes)	Benefits) + Δ (Accrued Pension Benefits)	Benefits)	PV(Future Taxes to Pay for Non-Debt Expenses)
PV(Pension Assets)		PV(Accrued Pension	
+Δ(Accrued Pension	PV(Accrued Pension	Benefits) +	PV(Future Taxes to Repay
Benefits)	Benefits) +	Δ(Accrued Pension	Gov't Debt)
	Δ(Accrued Pension Benefits)	Benefits)	
		PV(Gov't Debt)	
	PV(Gov't Debt)		

Citizens

• Government cuts other spending to buy pension assets. Pension liabilities increase.