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ABSTRACT   A model of private and public behavior to mitigate disease 
transmission during the COVID-19 pandemic over the past year in the United 
States addresses two questions: What dynamics of infections and deaths should 
we expect to see from a pandemic? What are our options for mitigating the 
impact of a pandemic on public health? I find that behavior turns what would 
be a short and extremely sharp epidemic into a long, drawn-out one, with, at 
best, a modest impact on the long-run death toll from the disease. Absent the 
development of a technological solution, such as vaccines or life-saving thera-
peutics, additional public health interventions suffer from rapidly diminishing 
returns in improving long-run outcomes. In contrast, rapidly implemented non-
pharmaceutical interventions, in combination with the rapid development of 
technological solutions, could have saved nearly 300,000 lives relative to what 
is now projected as of mid-June 2021 to occur over the long run.

During the first half of the twentieth century, Americans enjoyed tre-
mendous gains in health and life expectancy as infectious diseases 

were drastically curtailed thanks to major medical advances and signifi-
cant investments in sanitation and public health. Annual mortality rates 
from infectious disease in the United States fell by an order of magnitude 
from nearly 800 per 100,000 in 1900 to under 50 per 100,000 by 1960, 
in a steady downward trend interrupted, dramatically, by the 1918–1919 
influenza epidemic (Armstrong, Conn, and Pinner 1999).1 But as the HIV/ 
AIDS pandemic made evident, and the COVID-19 pandemic reinforced, 
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1. To place the mortality from COVID-19 in historical perspective, note that in the 
United States it was roughly 100 per 100,000 in 2020 and may very well reach this level 
again in 2021. So while mortality from COVID-19 will not reach the levels experienced 
during the Spanish flu, it will clearly be the most significant short-term increase in mortality 
from infectious disease in the United States in at least sixty years.
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infectious diseases are far from vanquished (Morens and Fauci 2020). In 
fact, the risk of experiencing another pandemic in the not too distant future 
is considerable. For example, according to a September 2019 estimate by 
the president’s Council of Economic Advisers, there is a 4 percent prob-
ability of an influenza pandemic annually. If such a pandemic were to 
occur it would, at the high end, cause nearly $4 trillion in economic dam-
age and over half a million deaths (Council of Economic Advisers 2019).

Given that we are likely to see significant outbreaks of infectious disease 
in the future, this moment, after a year of COVID-19, seems an opportune 
time to reexamine our models of disease dynamics and the policy options for  
disease control implied by these models. What dynamics of infections and 
deaths should we expect to see from a pandemic? What are our options for 
mitigating the impact of a pandemic on public health? How might this miti-
gation be done in a manner to reduce the negative impact of a pandemic on 
the economy? These are questions that will provoke new research in light 
of worldwide data from this COVID-19 pandemic for years to come.

But, with one year of data on COVID-19 now available, one conclusion 
seems clear: the endogenous response of both public and private behavior 
to the prevalence of COVID-19 has transformed this epidemic from what 
standard epidemiological models predicted to be a short, but exceedingly 
intense, episode into a drawn-out pandemic that will have an impact on 
public health and the economy over several years, until, with luck, the tech-
nological solutions of vaccination and life-saving therapeutics bring this 
disease under much greater control worldwide.2

In this paper, I use a simple model of our experience with COVID-19 
in the United States over the past year to explore how the interaction of  
disease and behavior changes the dynamics of an epidemic and constrains 
our options for mitigating the impact of a pandemic on public health absent 
a technological solution such as vaccines and life-saving therapeutics. 
Based on this model, I present four conclusions.

First, the behavioral responses that we have seen to COVID-19 over 
the past year, both private and public, have had a powerful impact in  
“flattening the curve,” reducing peak levels of daily infections and deaths 
by an order of magnitude relative to predictions of standard epidemiological  
models. These behavioral responses, however, are forecast to have only a 

2. It is clear that the development of vaccines for COVID-19 has been a technological 
marvel. There also appears to be considerable promise for the development of therapeutics 
that could substantially reduce the severity of the disease and thus complement vaccines in 
bringing the pandemic to an end worldwide. See Saelens and Schepens (2021) for a descrip-
tion of such therapeutics.
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modest impact in reducing the long-term death toll from COVID-19 rela-
tive to predictions of standard epidemiological models in the absence of the  
development of technological solutions such as vaccines or life-saving 
therapeutics. Absent such technological solutions, the long-run death toll in 
the United States would approach 1.25 million over a five-year period, even 
with the private and public efforts at mitigation that have been undertaken. 
Thus, without the success of vaccines that we have now experienced here 
in the United States as of mid-March 2021, we would have been halfway 
through this pandemic in terms of cumulative deaths. Moreover, absent the 
development of technological solutions, my model implies sharply dimin-
ishing returns to further non-pharmaceutical interventions in reducing the 
long-run death toll from COVID-19 even if such measures had been imple-
mented early in 2020 and maintained for a long, but finite, length of time. 
Thus, absent a technological solution, we would be faced with few options 
for further mitigating the long-run impact of COVID-19 on public health.

Second, here in the United States, we have been very fortunate with our 
success in developing and now implementing effective vaccines against 
COVID-19. With vaccines, the long-run death toll from COVID-19 is fore-
cast to be roughly 600,000, or about half the level without such a tech-
nological solution. This forecast takes into account both the relaxation of 
private and public efforts at disease control that we have seen in spring 
2021 and the arrival of new, more contagious variants of the virus. Clearly, 
Operation Warp Speed and the associated research effort has been a scien-
tific and public health achievement of historic importance.

Third, in contrast to the case of no technological solutions being devel-
oped, strong non-pharmaceutical interventions implemented early on are 
highly complementary with speedy development of vaccines and life-saving  
therapeutics in that they save lives by delaying illness and death until such 
technological solutions are available. This model forecast that plausible 
additional non-pharmaceutical interventions, applied early on and consis-
tently over time on top of the policies that were implemented at state and 
local levels, could have reduced the long-term death toll from COVID-19  
in the United States to roughly 300,000 over a five-year period. This 
fore cast takes into account the likely countervailing relaxation of private 
and state and local mitigation efforts had such interventions been imple-
mented at a federal level. Based on this forecast, I conclude that here in 
the United States, over the course of the past 14 months, we failed to take 
actions that would have saved hundreds of thousands of lives. Given the 
success of a number of countries in containing COVID-19 over the past 
year while preserving economic activity, it is entirely plausible that such 
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non-pharmaceutical interventions would not have led to high economic 
costs and, in fact, might have led to better economic outcomes.

Fourth, and finally, looking ahead, we face a future in which COVID-19 
will remain a threat as long as it is prevalent elsewhere in the world and 
in which new pandemic threats will likely arise. We should use the world-
wide experience with COVID-19 to guide investments in public health 
infrastructure that will allow us to rapidly identify and react to pandemic 
threats with more effective and less costly non-pharmaceutical interven-
tions. Such investments have a strong “public good” rationale and would 
be highly complementary with increased investments in the scientific and 
clinical research infrastructure to rapidly develop technological solutions 
such as vaccines and life-saving therapeutics for future threats from infec-
tious disease.

I. Epidemic Dynamics with and without Behavior

The public health policies enacted around the world to combat COVID-19  
have been guided by standard epidemiological models built on the  
susceptible-infected-removed (SIR) framework developed by Kermack 
and McKendrick (1927). These models simulate disease transmission as 
arising when infectious individuals (corresponding to the I in SIR) inter-
act with others. Through this interaction, a virus or other pathogen suc-
ceeds in infecting those who have no immunity and are thus susceptible 
(corresponding to the S in SIR), turning such agents into newly infectious 
individuals. Individuals who gain immunity from prior infections or vac-
cinations are said to be removed (corresponding to the R in SIR) as they 
no longer contribute to the transmission of the disease. The progress of the 
epidemic through the population is mechanical as the rate at which infec-
tious people interact with others is assumed to be invariant to the current 
prevalence of the disease.

When applied to COVID-19, three quantitative implications of this stan-
dard model stand out.3 First, the model gives dire forecasts for the peak of 
the disease’s first wave—10 to 20 percent of Americans were predicted 
to be sick with COVID-19 simultaneously at the first peak of infections 
absent drastic efforts such as lockdowns to slow transmission. At current 
estimates of the infection fatality rate for COVID-19, this rate of infection 
would have corresponded to peak death rates on the order of 30,000 to 

3. See Atkeson (2020) and Stock (2020) for expositions of these predictions of standard 
SIR models from one year ago.



ATKESON 71

60,000 deaths per day.4 Second, this standard model forecast that if efforts 
to slow transmission through lockdowns were applied early on but were 
only temporary, this dramatic first peak would be delayed but not pre-
vented: cases and deaths would explode again once efforts to slow trans-
mission were relaxed. Third, this standard model offered dramatic long-run 
predictions of the kind made famous by Angela Merkel in March 2020—
that more than two-thirds of Germany’s population were forecast to experi-
ence infections (if not vaccinated) before the pandemic would end through 
herd immunity.5 Again, applying current estimates of the average infection 
fatality rate for COVID-19 in the United States, this implies a long-run 
death toll on the order of 1.49 million or more.6

These implications of a standard epidemiological model for the mag-
nitude of the first peak and the long-run impact of COVID-19 in terms of 
infections are driven by a single parameter known as the basic reproduc-
tion number of the virus (the R0).7 The implications of these infections for 
deaths from COVID-19 are determined by the average infection fatality 
rate across the infected population. While we now know that the infec-
tion fatality rate from COVID-19 varies widely with age and other factors,  
estimates of the disease burden from COVID-19 from the Centers for  
Disease Control and Prevention (CDC) are consistent with an average infec-
tion fatality rate of 0.5 percent across the entire infected population in the 
United States for 2020.8 The emergence of new, more transmissible virus 
variants with higher basic reproduction numbers makes the predictions of 
standard epidemiological models for peak infections and long-run impact 
even more dire.

4. This estimate for peak deaths is likely understated given that such a wave of infections 
would clearly have overwhelmed the health care system.

5. See Die Bundesregierung [Cabinet of Germany], “An Address to the Nation by Fed-
eral Chancellor Merkel,” n.d., https://www.bundesregierung.de/breg-de/themen/coronavirus/ 
statement-chancellor-1732296; and CNN, “Merkel Believes 60–70% of Germany’s 
Population Will Be Infected,” March 11, 2020, https://edition.cnn.com/world/live-news/
coronavirus-outbreak-03-11-20-intl-hnk/h_ab9bb8236fa91a9bf63cdbc7a69e0f10.

6. This forecast for the cumulative death toll in this model scenario does not take into 
account that the infection fatality rate would likely have risen substantially due to congestion 
in the health care system if the first wave of infections had approached anything close to the 
levels forecast by this standard model.

7. See Randolph and Barreiro (2020) for a description of the calculations and consider-
ations involved.

8. The CDC estimates that 83 million Americans had been infected by the end of 
December 2020. Total COVID-19 deaths reached 445,000 thirty days later, giving an aver-
age estimated infection fatality rate, including the delay from infection to death, of slightly 
over 0.005. See CDC, “Estimated Disease Burden of COVID-19,” https://www.cdc.gov/
coronavirus/2019-ncov/cases-updates/burden.html.
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It is now clear that the first prediction of standard epidemiological  
models for the first peak of infections and deaths was off by at least an 
order of magnitude—it is unlikely that more than 2 percent of Americans 
have ever been infected simultaneously, and the peak of daily deaths in 
America from COVID-19 has fortunately stayed under 4,000. Looking at 
data worldwide, it appears that the second prediction of standard epidemio-
logical models is also off, perhaps by an order of magnitude. While many 
locations within the United States and abroad have suffered severe second 
or third waves of COVID-19 deaths after relaxing costly public measures 
to control disease transmission, these waves have been much smaller than 
predicted by a standard SIR model.

In contrast, the standard SIR model’s third prediction, regarding long-
run impact, looks to be closer to the mark. While the precise threshold of  
herd immunity—the fraction of the population that has to gain immunity 
through infection or vaccination before the pandemic can end—is not yet 
empirically resolved, available data from locations such as Manaus, Brazil, 
which has experienced high rates of infection, and from Israel, the United 
Kingdom, and the United States, each of which have high vaccination 
rates with effective vaccines as of mid-March 2021, indicate that the pre-
dictions of a standard epidemiological model for the long-run impact of 
COVID-19 are likely correct: this pandemic will not resolve until high 
proportions of the population have acquired immunity either through infec-
tion or vaccination.9

I.A. Behavior Regulates Disease Dynamics

How does consideration of the impact of behavior on the progression of 
a pandemic help us understand this relationship between the predictions of 
a standard SIR model and observed outcomes?

Within economics, Tomas Philipson pioneered the study of the inter-
action of behavior and the spread of disease in his work on the HIV/AIDS  
pandemic. In a chapter in Handbook of Health Economics, summarizing  
work on that pandemic, Philipson (2000) argued that epidemiological 
models should incorporate prevalence-elastic private demand for costly 
measures to prevent the spread of infectious disease. Such models, he 
maintained, offered two fundamental economic insights.

9. See Sabino and others (2021) and Mallapaty (2021) regarding data from Manaus 
and Israel on the empirical herd immunity threshold. The CDC COVID-19 data tracker 
site reports on vaccination rates in the United States. Data on vaccination rates in the 
United Kingdom are available at Gov.UK, “Coronavirus (COVID-19) in the UK,” https://
coronavirus.data.gov.uk/details/vaccinations.
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The first insight is that costly private efforts to prevent disease transmis-
sion are self-limiting—as disease incidence falls, these costly efforts to 
control disease spread are relaxed and the disease reemerges.

Within the United States, it appears that this observation holds for  
public policies aimed at COVID-19 as well—state and local disease control  
measures are often conditioned on measures of disease prevalence such 
as infections or hospitalizations, and these public measures aimed at the 
control of COVID-19 are relaxed as disease prevalence falls. In the model 
I present below, I interpret this correlation between public policies and 
disease prevalence as arising from a public behavioral response to shift-
ing political calculations as disease prevalence rises and falls, that is, as 
a social-choice behavioral response that is conceptually similar to private 
behavioral responses. I thus interpret the reduced form behavioral response 
of transmission rates to disease prevalence in my model as resulting from a 
combination of private and public reactions to disease prevalence.

The second insight is that the private and public behavioral response to 
changing disease prevalence partially offsets the impact of additional non-
pharmaceutical interventions aimed at disease control. In short, the effect 
of a specific non-pharmaceutical intervention is limited by its success as 
private and public efforts aimed at disease control are relaxed in response.

That both public and private prevalence-elastic demand for costly mea-
sures to control disease are self-limiting is a particularly powerful insight 
for understanding where the standard epidemiological model fails as a 
description of disease dynamics and where it succeeds. In joint work with 
Karen Kopecky and Tao Zha (Atkeson, Kopecky, and Zha 2021), we find 
that the data on the progression of the COVID-19 pandemic across many 
countries and US states throughout 2020 conform strikingly well to a core  
prediction of the standard epidemiological model modified to include  
prevalence-elastic demand for disease prevention—that after the first phase 
of the pandemic in which disease grows rapidly, the growth rates of infec-
tions and deaths should remain in a relatively narrow band around zero 
until the pandemic is over.10

The intuition for this prediction regarding disease dynamics in the context 
of a model with prevalence-elastic demand for disease prevention is simple. 
If new infections and daily deaths from the disease grow too high, people 
and governments make costly efforts to avoid interaction and thus slow 

10. Joshua Gans (2020) reviews the implications of epidemiological models with a  
prevalence-elastic demand for costly measures to prevent disease transmission and much of 
the work by others on this topic.
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disease spread. Likewise, if the prevalence of the disease falls, people and 
governments relax those costly measures to prevent disease transmission  
and the prevalence of the disease rises again. The reaction of behavior,  
both public and private, to the prevalence of the disease regulates the 
equilibrium prevalence of the disease in the same way that cruise control 
regulates the velocity of a car on a highway that winds up and down hills. 
The equilibrium level of daily deaths, corresponding in this analogy to the 
velocity of the car, remains within a relatively narrow band (relative to 
that predicted by a standard SIR model) in response to shocks having an 
impact on disease transmission because of the stabilizing role of endog-
enous prevalence-elastic public and private disease avoidance behavior. 
The impact of this behavior then is to transform what would otherwise be 
a short and sharp disease episode into a much more slowly evolving and 
drawn-out phenomenon.

What are the implications of a model with prevalence-elastic demand 
for disease prevention for the long-run impact of an epidemic? Here the 
insight that the demand for disease prevention is self-limiting is particu-
larly relevant. For an epidemic to end, the prevalence of the disease must 
fall toward zero. As disease prevalence falls toward zero, the demand for 
costly disease prevention efforts also falls toward zero, and hence the  
disease will come back unless the population has already achieved herd 
immunity measured at prepandemic levels of behavior. That is, the pre-
dictions for the long-run impact of COVID-19 using a standard epide-
miological model should continue to hold.11 Given estimates of the basic 
reproduction number around 3, or now higher with new variants, this herd 
immunity threshold should kick in when significantly less than one-third  
of the population remains susceptible.12

This logic implies that, absent a vaccine or the development of  
life-saving therapeutics, the implications of a model that includes a  
prevalence-elastic demand for disease prevention for the long-run impact of 
a pandemic in terms of cumulative infections and deaths should be similar 

11. More complex models that emphasize heterogeneity and the network structure of 
human interaction potentially offer more optimistic implications for the long-run impact of 
COVID-19. See, for example, Ellison (2020), Akbarpour and others (2020), Azzimonti and 
others (2020), and Boppart and others (2020).

12. On the transmissibility of the UK variant, see Davies and others (2021); for the even 
higher transmissibility of the Indian variant, see “Delta Coronavirus Variant Believed to 
Have 60% Transmission Advantage—UK Epidemiologist,” Reuters, June 9, 2021, https:// 
www.reuters.com/business/healthcare-pharmaceuticals/delta-coronavirus-variant-believed- 
have-60-transmission-advantage-uk-2021-06-09/.
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to that of a standard epidemiological model. The slowing of the epidemic 
that results from a behavioral response to disease prevalence can reduce the 
cumulative death toll by reducing the extent to which cumulative infections 
in the long run overshoot the herd immunity threshold, but this behavioral 
response does not reduce the cumulative impact of the epidemic to a point 
below this threshold. In the case of COVID-19 in the United States, in the 
model I present below, this would be a cumulative death toll on the order 
of 1.24 million.

I.B. A Quantitative Illustration

To illustrate these points regarding the predictions of a standard epi-
demiological model and one with a prevalence-elastic demand for disease 
prevention for the dynamics of an epidemic, I turn to a model of the dynamics  
of deaths from the COVID-19 epidemic in the United States that I pre-
sented in a recent working paper (Atkeson 2021) and which is included as 
an online appendix to this paper. This model accounts for the dynamics of 
deaths from COVID-19 in the United States over the past year with shocks 
to transmission rates due to seasonality, due to the emergence of a new, 
more transmissible variant of the novel coronavirus, and due to potential 
changes in the prevalence-elasticity of demand for costly measures to miti-
gate disease transmission. (I refer to this third shock as “pandemic fatigue” 
as a shorthand description of a decline in the responsiveness of private and 
public demand for costly disease prevention measures to changes in disease  
prevalence. This shock is perhaps a reduced form for a more dynamic 
response of behavior as a pandemic wears on.)

This model accounts remarkably well for the pandemic’s evolution in  
the United States over the past year. In the online appendix, I document that,  
in the model, a seasonal decline in transmission rates explains why the 
prevalence of COVID-19 dropped to relatively low levels in the summer 
of 2020. In the model, a decline in the strength of the behavioral response 
to disease prevalence in late fall—pandemic fatigue—explains the large 
waves of infections and deaths seen in the late fall and winter. The intro-
duction of a more transmissible variant in early December together with 
the start of an aggressive vaccination program explain the progress of the 
epidemic in the spring of 2021.13

13. In the online appendix, I document the specific features of this model that allow it to 
fit the pattern of daily deaths observed over the past 14 months with relatively few shocks 
and discuss the procedure used to choose the model parameters. The fit of the model to the 
data is serendipitous. Further research is needed to develop behavioral models that can fit the 
wide range of experiences with COVID-19 seen across regions and countries of the world.
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In figure 1, I show the model’s prediction for daily deaths from  
COVID-19 in the United States from mid-February 2020 to mid-February 
2022 (the solid line), and data on the seven-day moving average of daily 
deaths in the United States over the past year (the dashed line) downloaded 
from the CDC’s COVID-19 data tracker website.14 The behavioral model 
matches the data on deaths over the past year quite well, and it forecasts, 

Sources: CDC and author’s calculations.
Notes: Behavioral model implications for daily deaths in the United States from mid-February 2020 

through mid-February 2022 are shown in the solid line. Seasonal variation, the introduction of a more 
contagious variant in December 2020, and prevalence-elastic demand for costly measures to slow disease 
transmission have an impact on transmission rates. The onset of pandemic fatigue in late 2020 accounts 
in large part for the peak in deaths in January 2021. Data on the seven-day moving average of daily deaths 
are shown in the dashed line. The forecast for cumulative deaths over a five-year period implied by this 
model is 1.24 million.
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Figure 1. Daily Deaths with a Behavioral Response but No Vaccines

14. CDC, “COVID Data Tracker,” https://covid.cdc.gov/covid-data-tracker/#datatracker-
home. Note that these data on daily deaths omit roughly 14,000 deaths included in the CDC 
estimate of the cumulative death toll from COVID-19 available on the same site as these 
additional deaths were included retroactively due to reclassification of state and local death 
counts.
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absent vaccines, a continuation of the pandemic well into 2022. The pre-
dicted path of daily deaths through 2021 shown in this figure is driven by 
the spread of the new, more contagious virus variant in the model. The 
long-run cumulative death toll over a five-year period in this forecast run of 
the model in figure 1 is 1.24 million. The forecast shown in this figure does 
not include any consideration of the impact of vaccines, both to permit 
comparison with projections from a standard epidemiological model and 
to serve as a benchmark for the impact of vaccination efforts.

To illustrate the impact of the behavioral response to disease prevalence in  
shaping the growth rate of the epidemic, in figure 2 I show the model-
implied growth rate of daily deaths from the simulation of the model shown 
in figure 1. We see in this figure that the growth rate of daily deaths starts 
out at a very high level—above 30 percent per day—and then falls rapidly 
toward zero and hovers around zero even with shocks due to seasonality 

Source: Author’s calculations.
Notes: The growth rate of daily deaths implied by the solution of the model shown in figure 1 shows 

that behavior closely regulates the growth rate of the epidemic after its initial phase of rapid growth.
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Figure 2. Growth Rate of Daily Deaths
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in transmission, pandemic fatigue, and the introduction of new variants. In 
the model, the response of private and public behavior to the level of daily 
deaths acts to slam the brakes on the growth of the epidemic in its initial 
phase and then maintain that growth rate of daily deaths in a narrow band 
around zero in the face of shocks to transmission much as cruise control 
regulates the acceleration of a car on the highway.

To contrast the implications of this model incorporating a behavioral 
response to disease prevalence with the implications of a standard model 
without such a response, in figure 3, I show the prediction for daily deaths 
of the same model with the behavioral response to disease prevalence 
turned off (the solid line), relative to data on the seven-day moving average  
of daily deaths (the dashed line). As we see in this figure, the standard 
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Sources: CDC and author’s calculations.
Notes: Standard model implications for daily deaths in the United States from mid-February 2020 

through mid-February 2022 are shown in the solid line. Seasonal variation and the introduction of a more 
contagious variant in December 2020 have an impact on transmission rates, but this specification of the 
model has no prevalence-elastic demand for costly measures to slow disease transmission. Data on the 
seven-day moving average of daily deaths in the United States over the past year are shown in the dashed 
line. The forecast for cumulative deaths over this five-year period is 1.49 million.

Figure 3. Daily Deaths with No Behavioral Response or Vaccines
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epidemiological model without a behavioral response overstates the first 
peak of daily deaths by at least an order of magnitude (these peak at over 
30,000 per day), but then the pandemic comes quickly to an end in the fall 
of 2020. The cumulative death toll in this model forecast is 1.49 million. 
This prediction for the cumulative death toll is certainly larger than in the 
model with a behavioral response, but the gap between the two models in 
this dimension is much smaller than in their predictions for the initial peak 
and the time scale of the pandemic.15

What is evident from these figures is that incorporating a response of 
public and private behavior to disease prevalence gives a dramatically dif-
ferent forecast for the severity of disease peaks as well as for the speed 
with which this epidemic passes through the population. In this behavioral 
model, absent the introduction of vaccines, the pandemic takes two and 
a half years to play out rather than six to nine months as forecast by the 
standard model without consideration of behavior. The model’s implica-
tions, however, for the long-run impact of the disease are not much altered 
by the consideration of behavior. In both basic and behavior variations, the 
model forecasts that a substantial majority of the population must become 
immune through infection or vaccination for the pandemic to end.

II. Private Behavior and Constraints on Policy

Given these insights on the impact of prevalence-elastic demand for  
disease prevention on the dynamics of an epidemic, what are our options for  
using public policy to mitigate the impact of a pandemic on public health? 
One insight that I have already mentioned is that there is likely to be an off-
setting private behavioral response to public measures that limit the spread 
of disease—that is, that additional non-pharmaceutical interventions to 
control an epidemic may well be partially undone by private responses and 
the responses of other government actors to declining disease prevalence. 
The other insight is that public measures of disease prevention must be 
essentially permanent to result in a meaningful reduction of the long-run 
impact of an epidemic absent a technological solution such as a vaccine or 
the development of life-saving therapeutics.

We can use our simple behavioral model to illustrate the quantitative 
implications of these two insights. Imagine that through public policies 

15. This difference between the cumulative death toll forecast in the model run in fig-
ure 3 and that in figure 1 is due to what is known as “overshooting” of herd immunity in the 
model without behavior in figure 3. See Bergstrom and Dean (2020) for an explanation of 
this concept.
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facilitating a wide range of disease control measures such as mask wearing 
and social distancing protocols, testing and contact tracing with isolation 
of infectious persons, and other measures, it was possible to significantly 
reduce the transmission rate of COVID-19, holding fixed seasonality and 
the level of costly disease control measures undertaken by both private 
agents and state and local authorities. Imagine that these policy interven-
tions are undertaken for a fixed period of time independent of disease 
prevalence. In this sense, I imagine that these interventions are undertaken 
independently of the political process that leads currently observed public 
interventions to rise and fall with disease prevalence. Here, for purposes of 
illustration, I imagine these interventions as being carried out by the federal 
government.

In figure 4, I show a simulation of the model with such measures put 
in place for a two-year period from May 1, 2020, through May 1, 2022. 
Here I assume that these additional mitigation measures are put in place 
independent of the level of daily deaths and that they act to reduce disease 
transmission by 40 percent—a factor of exp(−0.5)—on top of whatever 
reductions in transmission are brought about by private and public changes 
in behavior undertaken in response to disease prevalence. I show the model 
implications for daily deaths over a four-year period as a solid line and the 
data on the seven-day moving average of daily deaths in a dashed line. As 
we see in this figure, these disease control measures, when imposed on top 
of those arising in equilibrium from the prevalence-elastic demand of both 
private agents and public authorities for costly measures to control disease, 
have a significant impact in reducing deaths from the disease in the first 
year. Then, in this simulation, in early 2021, the arrival of the new variant 
and, in mid 2022, the abandonment of these disease control measures leads 
to significant spikes in forecast deaths. Over the long run, the cumulative 
death toll is 1.22 million—almost exactly what we found in the simulation 
in figure 1 that had no such additional disease control measures imposed. 
This simulation indicates sharply diminishing returns to additional non-
pharmaceutical interventions absent a technological solution such as a 
vaccine or life-saving therapeutics.

II.A. Waiting for a Technological Solution

We saw in figure 4 that additional but temporary disease control mea-
sures do not significantly reduce the long-run public health impact of the 
epidemic in the absence of a technological solution such as vaccines or 
life-saving therapeutics. How does the analysis of the impact of such mea-
sures change when there is a good prospect that a vaccine or therapeutics 
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might arrive? Here I use the model to show that such measures can have a 
significant long-run public health benefit in reducing deaths from disease 
while waiting for the arrival of that technological solution.

In figure 5, I show the implications of the model for the evolution of 
daily deaths (the solid line) when a program of vaccination starts on Janu-
ary 1, 2021, at a pace sufficient to succeed in protecting half of the US 
population by July 1, 2021. This vaccine is assumed to prevent both 
illness and disease transmission by the vaccinated. The data on the seven-
day moving average of daily deaths are again shown in a dashed line. To 

Sources: CDC and author’s calculations.
Notes: Predictions of the model for the evolution of daily deaths from COVID-19 in a version in which 

disease control measures—such as masks, social distancing, testing with contact tracing, and isolation of 
the infected—cut the transmission rate of the disease by 40 percent, a factor of exp(−0.5), holding fixed 
the level of private and state and local disease control efforts undertaken in response to the prevalence 
of the disease. These measures are assumed to be in place for two years from May 1, 2020, to May 1, 
2022. While these disease control measures are effective in reducing deaths in the first year, they do not 
succeed in later years. The data on the seven-day moving average of daily deaths are shown in the dashed 
line. The cumulative death toll implied by this model is 1.22 million—nearly the same as shown in the 
simulation in figure 1.
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Figure 4. Daily Deaths with Extra Mitigation but No Vaccines
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see the model-implied impact of this vaccination program on the epidemic, 
one can compare the solid lines in figures 1 and 5. Here we see that, in the 
model, this vaccination program significantly reduces the forecast impact 
of the new variant in late spring 2021 and brings the epidemic to an end late 
by summer or fall 2021. Note that here the vaccination program succeeds 
despite the model-implied relaxation of public and private efforts at disease 
prevention in response to falling daily deaths.

The long-run death toll predicted by the model with this vaccination 
program is 595,000, less than half of what is forecast in the absence of a 
vaccine (in the simulations in figures 1 and 4). In this sense, the vaccination 

Sources: CDC and author’s calculations.
Notes: Predictions of the model for daily deaths from COVID-19 (in the solid line) in a simulation with 

a vaccination program starting on January 1, 2021, that proceeds at a rate fast enough to protect half of 
the population by July 1, 2021. In this simulation, the vaccine is assumed to protect against illness and to 
prevent disease transmission by the vaccinated. The data on the seven-day moving average of daily 
deaths are shown in the dashed line. To see the predicted impact of the vaccine on the dynamics of the 
epidemic, compare the solid line for model-implied daily deaths in 2021 in figure 1 to the solid line here. 
The cumulative death toll over a five-year period in this simulation is 595,000.
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Figure 5. Daily Deaths with a Behavioral Response and Vaccines
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program succeeds in substantially reducing cumulative deaths in a manner 
that a two-year program of disease mitigation absent a vaccine does not.

But now consider the model-implied scenario for cumulative deaths if 
the temporary disease mitigation measures used in the simulation in fig-
ure 4 had been imposed starting May 1, 2020, and the same vaccination 
program applied in the simulation in figure 5 had started on January 1, 
2021. With this combination of temporary disease mitigation measures and 
a successful vaccination program, the cumulative death toll implied by the 
model would have been only 302,000. Clearly, the combination of tem-
porary disease control measures applied while waiting for a technological 
solution can save many lives. The lesson here is that there are tremendous 
complementarities between early and aggressive mitigation and the devel-
opment of a technological solution such as vaccines or life-saving thera-
peutics in terms of reducing the public health impact of a pandemic.

III. Conclusion

The global COVID-19 pandemic has clearly demonstrated that the risks 
from the emergence of new infectious diseases, which epidemiologists 
have been speaking about for years, are terribly real. This pandemic has also 
posed a severe test of public health strategies and capabilities worldwide. 
In many countries, the associated economic impact has been as severe as 
any downturn seen since the Great Depression. How might we do better 
next time?

Based on the lessons about the interaction of behavior and disease 
dynamics discussed here, I suggest the following three-part strategy to 
improve our public health and economic response to emerging infectious 
disease.

First, we need to invest in our disease surveillance capabilities world-
wide, perhaps using the infrastructure developed for worldwide influenza 
surveillance as a model.16 It is certainly worth a lot of money to have the 
capacity to identify the threat from a new infectious disease anywhere in 
the world before it gets going so as to buy time to mount a public health 
and scientific response.

Second, we must consolidate all that has been learned about the imple-
mentation of non-pharmaceutical public health measures for disease control 

16. World Health Organization, “Preventing the Next Human Influenza Pandemic: Cele-
b rating 10 Years of the Pandemic Influenza Preparedness Framework,” https://www.who.int/ 
news/item/21-05-2021-preventing-the-next-human-influenza-pandemic-celebrating-10-years- 
of-the-pandemic-influenza-preparedness-framework.
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over the past year so that we might be able to quickly implement those 
measures that have been proven to effectively slow the spread of an infec-
tious disease with the least cost to the economy. Given the widespread 
discussion of pandemic fatigue in the population, we should also look at 
policies for infectious disease control that have low personal costs and thus 
have a greater chance of enjoying widespread voluntary adherence. A num-
ber of countries, many of them in Asia, have been able to keep COVID-19 
infections and deaths to low levels over the course of the past year with 
effective public health interventions based on travel restrictions, testing, 
contact tracing, and isolation of infected individuals while preserving con-
siderable economic activity and personal autonomy. Several universities in 
the United States have also succeeded at control of COVID-19 infections 
with extensive testing and isolation regimes.17 As we have seen from the 
model simulations in this paper and these real-world experiences, public 
health measures that allow us to wait for the development of a technologi-
cal solution to a global pandemic with minimal loss of life and economic 
damage can be extremely valuable. Given the public-good nature of infec-
tious disease surveillance and public health system preparedness to imple-
ment rapidly scalable countermeasures, it seems a high priority to fund 
these capabilities at the federal level.

Third, we need to invest in new models for accelerating the develop-
ment, financing, and distribution of vaccines and life-saving therapeutics 
for emergent disease. In the end, it is these technological solutions that 
will allow us to contain the long-run impact of new pandemics once they 
become global.18

To illustrate the urgency of addressing these public health priorities 
now, consider one final model scenario. As long as COVID-19 remains 
prevalent worldwide, new mutations of the virus are likely to emerge and 
there is increasing evidence that such mutations might allow COVID-19 
to evade the immunity conferred by prior infection and vaccines. In such 
a scenario, COVID-19 could be an endemic seasonal disease that might 

17. See, for example, the experience of the University of Illinois at Urbana-Champaign 
and that of Georgia Tech: University of Illinois, “On-Campus COVID-19 Testing Data Dash-
board,” https://covid19.illinois.edu/on-campus-covid-19-testing-data-dashboard/; Georgia  
Tech, “Covid-19 Exposure and Health Alerts,” https://health.gatech.edu/coronavirus/health- 
alerts.

18. See Council of Economic Advisers (2019) for a careful analysis of the economic and 
public health rationale for a large federal investment in such technologies. See Angus, Gordon,  
and Bauchner (2021) for a discussion of current difficulties in conducting rapid clinical trials 
of new treatments in the United States.
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require essentially permanent efforts at disease control.19 To illustrate how 
such a scenario might play out, I simulate the model with vaccines shown 
in figure 5 with a version of the virus circulating that is two-thirds more 
transmissible than the original virus, but in which immunity from infection 
or vaccination lasts on average for only 18 months. I show the resulting 
forecast path of daily deaths in the United States from COVID-19 over a 
five-year period in figure 6. In this simulation, I assume that the vaccination 

19. See, for example, Murray and Piot (2021); see also Lavine, Bjornstad, and Antia 
(2021).

Source: Author’s calculations.
Notes: Predictions of the model for daily deaths from COVID-19 (solid line) in a simulation with a 

vaccination program starting on January 1, 2021, that proceeds at a rate fast enough to protect half of the 
population by July 1, 2021. The data on the seven-day moving average of daily deaths are shown in the 
dashed line. In this simulation, immunity acquired from prior infection or vaccination is assumed to last 
18 months on average. The vaccination program is assumed to continue at a constant rate throughout the 
entire period with new booster shots conferring immunity against new variants as they occur. Even with 
a program of booster vaccines and continued prevalence-elastic behavior, in this simulation roughly 
100,000 Americans die each year from COVID-19 on a persistent basis.
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Figure 6. Daily Deaths with Waning Immunity
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program continues at a constant rate of roughly 1.3 million vaccinations 
per day throughout the forecast period. As one can see in this figure, the 
epidemic is forecast in this scenario to settle into a regular seasonal pattern 
killing over 100,000 Americans per year even with new vaccines and a 
response of public and private behavior to the changing prevalence of the 
disease. Clearly, in such a scenario, we would benefit greatly from finding 
ways to mitigate this disease on an ongoing basis at a lower economic cost.
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