Where is the Opportunity in Opportunity Zones

Alan Sage, Mike Langen & Alex Van de Minne

February 19, 2021

Introduction
What are we Interested in?
NPV of Investment
Size of the Benefit
Methodology and Data

Results

Concluding Remarks

Introduction

What are we Interested in?

Introduction

- What are we Interested in?
- NPV of Investment
- Size of the Benefit
- Methodology and Data
- Results
- **Concluding Remarks**

- We are interested in the following;
- \Box It is obvious there is direct tax benefit.
- □ However, there might also be some positive spillover effects (gentrification).
- More general, is the law simply a tax pass-trough to existing landowners, or is there actually some value creation?
- We analyze **prices** and **liquidity** of commercial real estate.
 - □ Any expected future rent growth, should be priced in now.
 - We argue that young properties cannot enjoy the tax breaks, thus any effect measured here, must come from the fact that positive gentrification effects are expected.
 - We also analyze older properties and vacant land sales. We compare any possible price increases here and compare it with the total maximum tax break possible. (A bit back-of-the-envelope.)

NPV of Investment

Introduction What are we Interested

NPV of Investment

Size of the Benefit

Methodology and Data

Results

in?

Concluding Remarks

Consider the following two Eqs;

no OZ:
$$I_0 = \sum_{t=1}^{T} \frac{CF_t}{(1+c)^t} + \frac{TV}{(1+c)^T} - I_0 x - \frac{(TV - I_0)x}{(1+c)^T}$$

OZ: $I_0 = \sum_{t=1}^{T} \frac{CF_t}{(1+c)^t} + \frac{TV}{(1+c)^T} - \frac{(1-0.15)I_0x}{(1+c)^{t_i}}$

where we assume;

 $\Box \quad TV = I_0 \times (1+g)^T.$

□ The initial investment is funded entirely from (past) capital gains.

□ Cash flow and discount rates are **after-tax**.

We can compute the difference between the two;

$$\Delta OZ = x \left(1 - \frac{0.85}{(1+c)^{t_i}} + \frac{(1+g)^T - 1}{(1+c)^T} \right).$$

Size of the Benefit

NPV of Investment

Size of the Benefit

Methodology and Data

Results

Introduction
Methodology and Data
Design Philosophy
OZ location Propensity Score Matching (PSM)
Real Capital Analytics Data Kaplan-Meyer To
CAPEX

Results

Concluding Remarks

Methodology and Data

Design Philosophy

Introduction

Methodology and Data

```
Design Philosophy
```

OZ location

- Propensity Score
- Matching (PSM)
- Real Capital Analytics Data
- Kaplan-Meyer To CAPEX

```
Results
```

- Many census tracts were chosen by the federal government to be potential OZ. Out all these eligible census tracts, the individual states designated about 25% of these.
- In essence we perform a Difference-in-Differences (DiD) setup exploiting this designation process.
 - First we perform Propensity Score Matching (PSM) to closely match 1 on 1 designated census tracts with eligible (but not designated) census tracts, based on poverty and income levels.
 - We only look at a relative tight band around the treatment (which happened early 2018), to alleviate any non-parallel trend issues (2017 2019). We also look within counties.
 - □ We run a OLS (for pricing) and Logit (for liquidity) which includes a treatment dummy.
 - □ Given that we believe age might have an effect, we also break the sample in age cohort and do rolling regressions.
 - □ Finally, we also look at how persistent/consistent the designation effect has been.

OZ location

Introduction

Methodology and Data

Design Philosophy

OZ location

Propensity Score Matching (PSM) Real Capital Analytics Data

Kaplan-Meyer To CAPEX

Results

Introduction	•
	•
Methodology and Data	•
Design Philosophy	•
OZ location	•
Propensity Score	•
Matching (PSM)	•
Real Capital Analytics	•
Data	•
Kaplan-Meyer To	•
CAPEX	•
	•
Results	•

Panel A: Before Propensity Score Matching						
	Eligible	OZ				
Avg. median income	\$ 44,604	\$ 35,252				
Std.	\$ 14,560	\$ 13,405				
Poverty rate	0.198	0.283				
Std.	0.114	0.135				
Ν.	10,994 (79%)	2,979 (21%)				

		_
	Eligible	OZ
Avg. median income	\$ 35,481	\$ 35,252
Std.	\$ 12,755	\$ 13,405
Poverty rate	0.277	0.283
Std.	0.135	0.135
N.	2,979 (50%)	2,979 (50%)

Real Capital Analytics Data

Introduction

- Methodology and Data
- Design Philosophy
- OZ location
- Propensity Score Matching (PSM)
- Real Capital Analytics Data Kaplan-Meyer To
- CAPEX
- Results
- Concluding Remarks

- For this research we use data provided to us by Real Capital Analytics (RCA).
- RCA is the premier transaction data provider world-wide.
- According to their numbers, they "catch" 95% of all transactions in the US.
- The property needed to have been sold for at least \$2.5M in its history once. (So no mom and pop stores.)
- We got the full dataset, meaning 100% of their transaction prices, plus a full set of characteristics, like size, age, property type, location, etc.
- After only looking at the OZ properties + control group between 2017 and 2019, we end up with <u>12,111 observations</u> for the **existing properties**, and 1,129 observations of **vacant land** transactions.

Kaplan-Meyer To CAPEX

Introduction
Methodology and Data
weinouology and Data
Results
Model I
Model II (Prices)
Model II (Liquidity)
Other Models

Concluding Remarks

Results

Model I

ntroduction			/11)	/111)		
Methodology and Data		(I) [1 100]	(II) [1 20]	(III) [24 00]	(IV) [01 100]	(V)
Results		[1 – 120]	[1 – 30]	[31 – 60]	[01 - 120]	Lanu
Model I		Transaction Prices				
Model II (Prices)	07 area	-0.061***	-0.043	-0.081***	-0 075*	-0 1/13*
Model II (Liquidity)			-0.043		-0.075	
Other Models	(1=yes)	[-3.51]	[-1.63]	[-2.91]	[-1.83]	[-1./5]
Concluding Remarks	OZ designation	0.001	-0.014	-0.014	<mark>0.066*</mark>	<mark>0.320***</mark>
• • •	(1=yes)	[0.07]	[-0.61]	[-0.57]	[1.75]	[3.19]
	Liquidity					
• • •	OZ area	-0.013	0.146***	-0.058***	-0.011	-0.049
	(1=yes)	[-0.82]	[1.82]	[-2.61]	[1.38]	[-0.46]
• •	OZ designation	0.020	-0.048	0.092	0.054	<mark>0.285**</mark>

•

Model II (Prices)

oduction			(11)	(111)	(IV)	(V)
thodology and Data		[1 – 120]	[1 – 30]	[31 – 80]	[81 – 120]	Land
sults		Tr:	ansaction	Prices		I
odel II (Prices)						1
odel II (Liquidity)	OZ area (θ_z)	-0.061***	-0.045*	-0.081***	-0.073*	-0.134
her Models	(1=yes)	[-3.49]	[-1.67]	[-2.86]	[-1.77]	[-1.61]
cluding Remarks	$\mu_{t=2018.I\&t>t_d,z}$	-0.004	-0.054	-0.008	0.125	0.330*
•	(1=yes)	[-0.11]	[-0.92]	[-0.13]	[1.27]	[1.73]
	$\mu_{t=2018.II,z}$	0.068**	0.035	0.079*	<mark>0.141**</mark>	<mark>0.375**</mark>
•	(1=yes)	[2.53]	[0.85]	[1.86]	[2.29]	[3.04]
	$\mu_{t=2019.I,z}$	0.048	0.017	0.022	<mark>0.182**</mark>	<mark>0.271*</mark>
•	(1=yes)	[1.58]	[0.35]	[0.47]	[2.43]	[1.91]
	$\mu_{t=2019.II,z}$	0.064**	0.048	0.082*	0.028	0.223
• • •	(1=yes)	[2.12]	[1.04]	[1.76]	[0.36]	[1.45]

Model II (Liquidity)

tion blogy and Data		(l) [1 – 120]	(II) [1 – 30]	(III) [31 – 80]	(IV) [81 – 120]	(V) Land
		<u>.</u>	Liquidit	y		
II (Prices) II (Liquidity) Models	OZ area (θ_z) (1=yes)	0.014 [0.47]	0.102*** [3.37]	0.009 [0.30]	0.069 [1.29]	-0.086 [-0.79]
ing Remarks	$\mu_{t=2018.I\&t \ge t_d,z}$ (1=yes)	-0.090** [-2.23]	-0.063 [-1.00]	-0.049 [-0.85]	<mark>-0.199**</mark> [-1.96]	-0.053 [-0.23]
	$\mu_{t=2018.II,z}$ (1=yes)	-0.059* [-1.92]	-0.075 [-1.58]	-0.024 [-0.55]	-0.069 [-0.88]	0.192 [1.21]
	$\mu_{t=2019.I,z}$ (1=yes)	-0.058 [-1.63]	-0.136** [-2.44]	-0.039 [-0.77]	<mark>0.171*</mark> [1.80]	<mark>0.683***</mark> [3.75]
	$\mu_{t=2019.II,z}$ (1=yes)	0.078** [2.24]	0.124** [2.34]	0.078 [1.59]	-0.109 [-1.08]	0.314 [1.63]

Other Models

Introduction
Methodology and Data
Results
Model I
Model II (Prices)
Model II (Liquidity)
Other Models

- We also estimated a couple of other ("robustness") models;
 - □ **Breaking up by property type.** We find the biggest effects in office and apartment.
 - □ **Breaking up by major metros vs non-major metros.** The biggest effect is in the non-major metros, but still large in the major metros.
 - □ **By size of the real estate.** Most of the price effect in the smaller properties, but liquidity increase mostly for large properties.
 - Directly measure spillover effects. We find no spillover effects.

- 1	ntr	\sim	du	oti	or	۱
	нu	U	uu	ωu	UI.	

Methodology and Data

Results

Concluding Remarks

How Large is The Effect?

How Large is The Effect?

and a state of the

- For the existing older properties;
 - Assuming investors put exactly the same amount of capital expenditures in the property, the total maximum benefit is approximately 32%.
 - \Box The largest price effect we find is 21%.
- For the vacant land;
 - Assuming the average Land Value Fraction (LVF) is 20% for commercial real estate in the US, we find the maximum theoretical benefit is 80%.
 - \Box Our largest estimate is 53%.
- For new properties (needed to find the indirect effect) we do not find a price increase, however we do see that liquidity is up in (late) 2019.