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Motivation: People-based policies or place-based polices?

• Should the government help poor people or poor places?
• “Creating moves to opportunity” vs. subsidizing investment to low-opportunity areas

• Arguments against place-based policies
• Help landowners, might hurt renters
• Distort migration decisions

• There are economic arguments for place-based policies as well:
• Internalize local externalities
• Targets aid with less distortion

• Does the Opportunity Zones program do these things?
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Institutional background

• Opportunity Zones (OZ)
• Governors nominate 25% of eligible tracts
• Provide deferral, reduction, or elimination of capital gains taxes for investment

• Signed into law on December 22, 2017; selection finalized on July 9, 2018
• To end of 2019, $75B private capital investment (CEA)
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Mechanisms of OZ effect on residential housing prices
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(Strengths of dashed arrows depend on respective elasticities: e.g. perfectly inelastic
residential supply would turn off downward price movements due to increased
residential supply.)

• Hypothesis 1: OZ tax credits increase property value
• Hypothesis 2: OZ tax credits increase property value more so in commercial areas
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Preview and related work

• Hypothesis 1: OZ tax credits increase property value

We produce a range of treatment effects estimates which, mostly, do not reject
zero and rule out effects of >1.5pp per annum on price growth

• Hypothesis 2: OZ tax credits increase property value more so in commercial areas
Estimates indicate a 0.5 to 1.4pp difference in effects with standard errors of 0.5

• Non-academic work conducted by Zillow and ATTOM Data Solutions using
proprietary data

• Both conclude home price increases in OZs, but inferences are dubious since
• Non-repeated sales price data fail to control for quality
• Imperfect control group / parallel trends violations in the pre-periods

• CEA report replicates our initial work with only 2018 data. Their estimate of
+0.5pp (0.2pp) with the 2019 data is in the range of our estimates, though on
the higher end
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Data

• Outcome variable: Growth in FHFA housing price index (weighted, repeat-sales
index of single-family house prices): Yit ≡ Pit/Pi,t−1

• Separate analyses for unit i at census tract level or at ZIP code level

• OZ information (i.e. treatment status D) from the Urban Institute
• Tract and ZIP characteristics (covariates X) from 2012–2016 ACS 5-year

estimates and County Business Patterns in 2016
• Include demographics, economic, and housing related covariates
• Full list: log median household income, total housing units, percent white, percent with

post-secondary education, percent rental units, percent covered by health insurance among
native-born individuals, percent below poverty line, percent receiving supplemental income,
and percent employed
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Methodology

Standard differences in differences setup:

• Let i denote the unit of analysis and let t = 1, . . . , t0, . . . ,T
• Potential outcomes Yit(1),Yit(0)
• Treatment Di ∈ {0, 1} for being selected as OZ and Dit = 1(t > t0)Di
• Observe outcome Yit = Yit(Dit)

• Assume that Zi ≡ (Yi,Di,Xi) are i.i.d. over units.

Estimand of interest is the ATT averaged over post periods:

τ =
1

T − t0 + 1
∑
t≥t0

E[Yit(1)− Yit(0)|Di = 1].

Identification assumption: (conditional-on-X) parallel trends

For all x, E[Yit(0) − Yi,t−1(0) | Xi = x,Di = 1] = E[Yit(0) − Yi,t−1(0) | Xi = x,Di = 0]
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Tract-level estimation

• Strategy 1: Assume eligible, but not selected tracts are sufficiently similar to
selected tracts for parallel trends to hold

• Two-way FE estimation, s.e. clustered at state-level
• Without covariates: 0.39 [0.08, 0.7], pretest rejected [CEA estimates 0.53 (0.2)]

• Strategy 2: Strategy 1, but controlling for covariates flexibly
• Take a propensity-score weighting (Callaway and Sant’Anna, 2018) or a

doubly-robust estimation method (Sant’Anna and Zhao, 2018)
• Valid and efficient when assuming conditional-on-X parallel trends
• Both strategies yield estimates ≈ 0.3 [-0.1, 0.8]

• Strategy 3: Match each treated unit to its nearest untreated geographical
neighbor.

• Without trend adjustment: 0.65 [0.17, 1.1]
• adjusting for a linear trend: 0.5 [-0.1, 1.1]
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ZIP-level estimation

• Only about half of selected tracts covered by the FHFA tract level data.
• Define the ZIP level OZ exposure as

Dz =
∑

i
(Proportion of z addresses in tract i) · Di

• Treatment is now continuous, estimation and interpretation is somewhat more
delicate

• Interpretation of the coefficient is now “treatment effect of the OZ designation if
the entire ZIP is included in an OZ vs. none of it is included in an OZ.”
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ZIP-level estimation

• Strategy 1:
• 0.95 [0.5,1.4] without covariates (rejects pretest)
• 0.12 [-0.4, 0.6] with covariates

• Strategy 2:
• 0.1 [-0.5, 0.7]

• All results rule out >1.5pp effects (95%); most specifications rule out 0.9pp
effects. The treatment effect is small if at all positive

• The time horizon of the effects should be second half of 2018 and all of 2019
• There seems to be little possibility that home buyers anticipated that inclusion in

an OZ would have a dramatic impact on the character of the neighborhood
• This fact does not imply that the OZ program was a mistake, but rather that it is

anticipated to have little effect on the neighborhood.
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Heterogeneity

• Hypothesis 2: TE for residential areas < TE for commercial areas
• Split on the median of employed population in z

residential population in z

No Covariates Few Covariates All Covariates
(1) (2) (3)

Treatment × Post 1.680 [1.070, 2.290] 0.066 [−0.571, 0.702] 0.332 [−0.297, 0.961]
(0.311) (0.325) (0.321)

Treatment × Post × Residential −1.391 [−2.340, −0.442] −0.887 [−1.838, 0.065] −0.584 [−1.526, 0.357]
(0.484) (0.486) (0.480)

Pretest p-value 0.009 0.439 0.948

• Sign consistent with the hypothesis, but effect size not large enough to be
dispositive
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Conclusion

• Point estimates for treatment effects are generally positive, but small in
magnitude.

• Estimates are insufficiently precise to rule out effects of zero, but sufficiently
precise to rule out large positive effects (>1pp)

• Point estimates for commercial areas are indeed larger than those for residential
areas, but the difference is not large enough to reject zero
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