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ABSTRACT    We examine the period of national lockdown beginning in 
March 2020 using an integrated epidemiological-econometric framework in 
which health and economic outcomes are jointly determined. We augment  
a state-level compartmental model with behavioral responses to non- 
pharmaceutical interventions (NPIs) and to local epidemiological conditions. 
To calibrate the model, we construct daily, county-level measures of contact 
rates and employment and estimate key parameters with an event study design. 
We have three main findings: First, NPIs introduced by state and local govern
ments explain a small fraction of the nationwide decline in contact rates but 
nevertheless reduced COVID-19 deaths by about 25 percent—saving about 
39,000 lives—over the first three months of the pandemic. However, NPIs also 
explain nearly 15 percent of the decline in employment—around 3 million 
jobs—over the same period. Second, NPIs that target individual behavior 
(such as stay-at-home orders) were more effective at reducing transmission 
at lower economic cost than those that target businesses (shutdowns). Third, 
an aggressive and well-designed response in the early stages of the pandemic 
could have improved both epidemiological and economic outcomes over the 
medium term.
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The COVID-19 pandemic led to an unprecedented collapse in social and 
economic activity in the United States. Widespread social distancing—

undertaken voluntarily and in response to government interventions— 
succeeded in containing the initial outbreak, but at a significant cost. Over 
the course of the middle two weeks of March 2020, employment fell by 
30 million, triggering the deepest recession of the postwar period.

This paper attempts a comprehensive assessment of the early response 
to COVID-19. We address three key questions: How big a role did gov
ernment mandates play relative to voluntary action in the shift to social 
distancing and the collapse in employment? How effective were the 
major non-pharmaceutical interventions (NPIs) deployed in response to the  
pandemic—stay-at-home orders, school closures, and nonessential business  
closures—at reducing disease transmission while minimizing economic 
costs? How could the policy response to COVID-19 have been improved 
and, more broadly, how should NPIs be used in response to a pandemic?

To answer these questions, we extend a state-level compartmental model 
of the COVID-19 pandemic with behavioral responses to NPIs and to local 
epidemiological conditions. To calibrate the model, we develop novel mea-
sures of daily social contact rates and employment at the county level and 
estimate key parameters directly with a difference-in-differences approach. 
We then use our empirical estimates and simulations of the model to assess 
the determinants of epidemiological and economic outcomes from the 
beginning of March through the end of May.

We find that NPIs account for only 9  percent of the sharp fall in  
contact rates over this period. This relatively modest effect, however, led to 
a 25 percent reduction in deaths from COVID-19 by May 31. At the same 
time, we estimate that NPIs reduced employment by about 3 million, nearly 
15 percent of the total decline. We also find significant differences in the 
effectiveness of different NPIs, with interventions that target businesses 
delivering less epidemiological benefit at greater economic cost than those 
that target individual behavior. Based on simulations from our model, we 
argue that enacting NPIs earlier and prioritizing the least costly NPIs could 
have saved more lives than the actual policy response with substantially 
lower economic costs.

This paper joins a growing literature on the epidemiology of COVID-19 
and the effects of NPIs.1 We make three main contributions. First, we relax 

1.  See, for example, Goolsbee and Syverson (2020), Baqaee and others (2020), Gupta, 
Simon, and Wing (2020), and the literature cited therein.
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the conventional assumption in epidemiological models that contact rates 
are independent of dynamics of the epidemic and allow agents to respond 
endogenously to local infection risk by changing their social behavior. 
Second, we extend the model with an explicit role for NPIs, so that our 
empirical specification arises directly from the model. Third, we combine 
data from many different sources to construct comprehensive daily mea-
sures of contact rates and employment. With these measures, we are able 
to frame our analysis directly in terms of the key outcomes (for example, 
total employment) rather than rely on the idiosyncratic proxies commonly 
used for high-frequency analysis of COVID-19.

I.  Background

In response to exponential growth in the number of COVID-19 cases, 
social and economic activity in the United States collapsed in the second 
and third weeks of March. The average social contact rate—defined as the 
probability of being in close physical proximity to someone who is not a 
member of the same household—declined more than 80 percent by the end 
of the month, while total US employment fell by 30 million. Figure 1 plots 
the evolution of contact rates and employment at the county level over the 
course of March and April, expressed as log changes relative to the begin-
ning of March.2 Both the contact rate and employment fell in almost every 
US county, though the magnitude of the declines varied widely.

State and local governments responded to the pandemic with an array  
of non-pharmaceutical interventions—policies that aim to prevent disease 
transmission through social distancing and other behavioral changes. By 
reducing the frequency of physical proximity between potentially infected 
and susceptible persons, social distancing limits opportunities for the virus 
to spread. While most individual government actions were idiosyncratic 
and limited (for example, closing casinos or limiting certain close-contact 
personal services), three broadly restrictive NPIs were eventually enacted 
across most of the country: school closures, stay-at-home (or shelter-in-
place) orders, and nonessential business closures.3

2.  We discuss the construction of these measures in section V.
3.  School closures are orders to cease in-person teaching at public schools (at least) in a 

county. Stay-at-home orders are mandates that individuals remain at home for all “nonessential” 
activities. Both stay-at-home orders and nonessential business closures were typically—though 
not always—issued with a listing of the activities or businesses considered essential.
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Figure 2 plots the share of the US population residing in a county covered 
by each of these three NPIs over time. School closures expanded rapidly 
beginning in the second week of March to cover more than 90 percent of the 
population by March 20. The number of nonessential business closures and 
stay-at-home orders grew rapidly from the third week of March, extend-
ing over more than 70 percent of the population by the end of the month. 
Notably, though NPIs issued by state governments would eventually cover 
a greater share of the population, the earliest NPIs were generally issued by 
county or municipal governments.

II.  Model

This section presents the augmented epidemiological framework that 
forms the basis of our empirical analysis. Because of the nonlinear and 
spatial dynamics of infectious spread, direct estimation of the epidemio-
logical effects of NPIs using conventional methods is impractical. Instead, 
we extend a compartmental model of infectious disease with behavioral 
responses to health outcomes and an explicit role for NPIs. We model each 
state-level epidemic independently, allowing for heterogeneity in epidemio-
logical and behavioral parameters.

Contact rate Employment
Log difference from March 1,
seven-day average
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Source: Authors’ calculations.
Notes: Each thin line represents one US county. The solid black line is the weighted US average. The 

contact rate is the probability of being in close physical proximity to someone who is not a member of 
the same household; the US average is weighted by county population. Employment is the number of 
people working in a county on a given day; the US average is weighted by the average of county 
employment in December 2019, January 2020, and February 2020.
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Figure 1.  The Response to COVID-19 by County
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Nonessential business closure

Sources: Data from COVID19StatePolicy and Keystone Strategy; authors’ calculations.
Note: Substate governments include school districts, municipal governments, and county governments.
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Figure 2.  Share of the US Population Covered by NPIs, by Level of Government
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II.A.  Epidemiological Framework

We begin with the canonical susceptible-exposed-infected-removed 
(SEIR) model. A fraction of the population is susceptible (S), and this group 
interacts with those who are infectious (I ).4 Those who are infected with the 
virus but not yet infectious—that is, able to transmit the virus—are said to 
be exposed (E). A fraction of cases become terminal (T ), at which point 
effective infectiousness ceases (because they are isolated and can no longer 
infect members of S). After some period, all terminal cases die and transi-
tion to group D. Nonterminal cases eventually recover and transition to 
group R and are assumed to be immune to the virus.

The following system of ordinary differential equations governs popula-
tion (the total of which is represented by N ) movement between compart-
ments S, E, I, R, T, and D for US state i at time t:
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The transmission rate (secondary infections caused per primary infec-
tion per day) is βit. The inverse of COVID-19’s latent period is s; that is, the 
duration between infection and onset of infectiousness. Note that the latent 
period is distinct from the incubation period—the duration between infec-
tion and onset of symptoms—which conventionally appears in the SEIR 

4.  Our framework assumes homogeneous population mixing wherein every individual is 
equally likely to come into contact with every other individual. See the online appendix for 
the results of a stylized experiment where we relax this assumption using a two-group SEIR 
model with heterogeneous contact rates and NPI effects.
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framework in its place. The incubation period is appropriate when only 
symptomatic cases are infectious and is preferred because it is, in principle, 
observable. Given the significant role of presymptomatic infectiousness in 
COVID-19 transmission, however, the latent period is the relevant concept 
for epidemic dynamics. In our model, the timing of symptom onset plays 
no role in disease transmission, all else being equal, and only affects the 
eventual outcome of an infection.

The recovery rate, the inverse of the average infectious period, is 
represented by γ. A share of symptomatic infections are fatal. The infected 
population transitions into the terminal (T ) group according to the infec-
tion fatality ratio µit. After a period, these terminal infections end in death. 
The number of days between symptom onset and death in fatal cases is  
represented by tF. Note that the T and D compartments are used only to 
calculate the death toll with the appropriate lag between infection and death; 
these populations do not feed back into other parts of the system.

II.B.  Behavioral Responses

We extend the traditional compartmental model by relaxing the assumption  
that the transmission rate is independent of the dynamics of an epidemic. 
Motivated by the strong empirical evidence of a fear-driven behavioral  
response to local outbreaks—which we confirm in section VII—we allow 
agents in the model to adjust their exposure risk based on the progres-
sion of their local epidemic.5 This extension of the model is important 
for generating plausible policy counterfactuals, as we attempt to do in 
section VIII. Successful interventions to lower disease transmission improve 
epidemiological outcomes but consequently reduce the fear of infection, 
inducing an offsetting behavioral response. Ignoring this offset leads to 
overstatement of the effects of interventions.

The transmission rate βit is the product of the contact rate kit and the 
infection rate zit:

it it itβ = κ ζ(1) .

We define kit as the daily probability that two persons residing in state i  
at time t will be in sufficiently close physical proximity to each other for a 
sufficient period of time to enable disease transmission—an event we refer 
to as a contact. We define zit as the probability that disease transmission 

5.  See Goolsbee and Syverson (2020).



68	 Brookings Papers on Economic Activity, Fall 2020

actually occurs in one contact between a susceptible person and an infectious 
person. The effective reproduction number R it—the number of secondary 
infections per infection—is given by:

it
it

it

=
β
γ

R(2) ,

where γit is the duration of infectiousness.
We model the contact rate as a function of an endogenous response to 

local infection risk and two exogenous behavioral factors: precautionary 
social distancing and the response to NPIs. The precautionary component 
captures changes in the contact rate driven by general fear and uncertainty 
about the pandemic, as opposed to specific concerns about local infection 
risk. The NPI component captures the impact of state and local social dis-
tancing mandates and other interventions.

We assume the contact rate takes the following functional form:

Cit it it it( )( )κ = Ω Φ• • ρ(3) exp ,

where Wit is the precautionary component of behavior, Fit is the response 
to NPIs, and Cit is the total number of confirmed COVID-19 cases. The 
parameter r determines the responsiveness of the contact rate to percep-
tions of infection risk. We assume agents assess infection risk on the basis of 
confirmed cases rather than the true number of infections, which is unknown 
to agents in the model.6 The relationship between the underlying epidemio-
logical dynamics and the observed dynamics of confirmed cases Cit is 
given by

C Eit it i tt

T

S P∑= λ σ ( )−τ −τ=
,

0

where lit measures the share of new infections that are eventually confirmed 
through a diagnostic test, tS is the duration from the onset of infectiousness 

6.  We considered several alternatives for which observed outcome drives perceptions 
of local infection risk: new cases (instead of or in addition to total cases), including total 
or new deaths, and normalizing by population. We view this as an empirical question. 
In our empirical estimates (see section VI.B) we found that all choices imply roughly 
the same aggregate response. We therefore select the most straightforward option: total 
confirmed cases.
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to the onset of symptoms, and tP is the duration from symptom onset to a 
positive test result.7

The precautionary response Wit varies over time and across states as a 
function of the characteristics of the local population. For example, older 
populations may respond more strongly to news of a novel infectious respi-
ratory disease. The response to NPIs Fit depends on the set of interventions 
that have been implemented in a state and on parameters governing the 
impact of different NPIs on the contact rate. We define Wit = wtXi and  
Fit = φPit, where Xi is a set of fixed attributes characterizing the local popu-
lation and Pit is a set of indicators characterizing the set of NPIs in effect 
in i. Taking logs of equation (1) and substituting for Wit and Fit yields

X P cit t i it itκ = ω + φ + ρ(4) ln .

Relating behavior back to disease transmission, substituting equations (1) 
and (3) into equation (2), and taking logs yields the following expanded 
definition of the reproduction number:

X P cit t i it it it it= ω + φ + ρ + ζ − γR(5) ln ln ln .

Throughout our analysis, we take the infection rate zit as exogenous and 
given. In practice, zit is likely affected by the same kinds of precautionary 
and endogenous responses as kit. While the NPIs we consider below explic-
itly target the contact rate, other significant interventions (such as mask 
mandates) target the infection rate. Ideally, we would specify an expression 
analogous to equation (4) for zit and estimate its parameters explicitly. This 
is not possible, however, due to the limitations of available epidemiological 
data from the initial stages of the pandemic.

Data limitations also pose serious challenges for direct estimation of 
equation (5), as daily R it is not observed and must be estimated historically. 
We therefore focus our empirical analysis on equation (4). We discuss these 
issues in more detail in section VI.

II.C.  Employment

The necessity of physical proximity for a wide range of economic acti
vities means that voluntary or governmental efforts to limit contacts lead 
to unavoidable economic disruption. Indeed, many studies of the effects 

7.  Note that α–1 + tS is equal to the incubation period—the time between infection and 
the onset of symptoms.
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of COVID-19 use measures of economic behavior, such as visits to retail 
establishments, as proxies for the contact rate. More broadly, there is some 
trade-off between epidemiological gains and economic costs. The response 
to COVID-19 provides ample evidence that policymakers view this trade-
off as a meaningful constraint on their ability to deploy NPIs to combat 
a pandemic.

No analysis of this trade-off can answer the question of whether the 
economic costs of a particular intervention are “worth it” given some 
epidemiological benefits, which is not an analytical question. However, 
understanding the relative trade-offs offered by different types of inter
ventions allows policymakers to design a pandemic response that maximizes 
the ratio of gains to costs. In order to assess these trade-offs, we incorporate 
local employment outcomes into our behavioral SEIR framework. Reasoning  
that the same factors that drive k—precautionary behavior, NPIs, and local 
infection risk—are also the key determinants of economic behavior, we posit 
an analogous relationship to equation (2) for employment, which we denote 
by Wit and define as the number of people working in state i at time t:

W X P cit t
W

i
W

it
W

it= ω + φ + ρ(6) ln .

The addition of equation (3) allows us to assess the epidemiological and 
the economic effects of interventions in a single, integrated framework. 
In addition, equation (3) takes into account the relationship between local 
infection risk fears and economic outcomes, which—like the relationship 
with contact measures—emerges clearly in empirical studies. This allows 
for the possibility that effective suppression of an epidemic with economi-
cally costly NPIs may yield economic benefits over the long run.

III.  Data

This section provides an overview of the data underlying our analysis. 
We rely mainly on three types of data: daily counts of COVID-19 cases, 
tests, and deaths; daily measures of social behavior and employment; and 
information on NPIs implemented by state and local governments.

III.A.  Epidemiological Data

Confirmed COVID-19 cases and deaths form the starting point of our 
epidemiological estimates. A number of organizations track the spread and 
death toll of COVID-19 in the United States over time. Rather than rely on 
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a single source for our analysis, we draw on four separate sources: Johns 
Hopkins Center for Systems Science and Engineering, the New York Times, 
the COVID Tracking Project, and USAFacts. These sources employ different 
data collection methods and assumptions and often differ in terms of the 
number and timing of new cases or deaths. We obtain counts of the number 
of COVID-19 tests from the COVID Tracking Project.

We correct for data reporting anomalies resulting from changes in 
states’ standards for reporting of deaths, causing large single-day spikes.8 
On those days, the value for deaths is linearly interpolated across previous 
and future observations, and the number of deaths in excess of this value 
reported on that day are distributed to all previous days in proportion  
to measured deaths. To avoid potential bias from idiosyncrasies in any  
one source’s estimates, we isolate the common trend in confirmed cases 
and deaths by taking the first principal component of all four sources’ 
estimates.

III.B.  Contact and Employment Data

Our model requires state-level, daily data on contact rates and employ-
ment. To estimate parameters reliably, we require greater geographic detail 
than the state level. However, there are no standard, high-frequency mea-
sures of population contact rates, let alone official statistics. Official measures 
of employment, meanwhile, are available only at monthly frequency and 
geographic detail only with a long lag. We therefore rely on a range of non-
traditional data sources. We collect a dozen daily, county-level measures 
derived from mobile device location data, business and financial services 
software, payroll service providers, and web search activity. As we describe 
in section V, we combined these various indicators to construct composite 
indexes of the contact rate and employment. Here we provide an overview 
of our sources and the measures underlying those indexes.

PLACEIQ  We use a county-level measure of mobile device “exposure” 
developed by Couture and others (2020), based on mobile device location 
data from PlaceIQ. The device exposure index (DEX) reflects the average  
number of devices that visited locations also visited by residents of a county. 
It is an indirect measure of the extent to which individuals are congregating 
in common locations.

8.  For New Jersey, an anomaly appears on June 25 in the New York Times and COVID 
Tracking Project data and on June 27 for USAFacts. For New York, an anomaly appears on 
June 30 in the New York Times and USAFacts data. For Texas, all sources report an anomaly 
on July 27.
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SAFEGRAPH  We construct county-level measures of time spent at home, 
time spent at a fixed location outside the home during regular workday 
hours (a proxy for work), and distance traveled using mobile device loca-
tion data from SafeGraph.9 SafeGraph assigns each device a “home” based 
on “common nighttime location.” Data are available at the census block 
group-level. We aggregate to county-level weighting by number of devices.

GOOGLE MOBILITY  We use county-level measures of time spent at resi-
dential locations and time spent at workplace locations from the Google 
Community Mobility Reports.10

UNACAST  We use county-level measures of “encounter density” and  
distance traveled derived from mobile device location data from Unacast.11 
Encounter density is a measure of physical proximity between persons 
defined as average number of times an individual is within 50 meters of 
another person, normalized by a county’s physical size and relative to the 
pre-COVID-19 national average.

HOMEBASE  We construct a county-level measure of small business 
employment using data from Homebase, an employee scheduling and time-
tracking software company. Homebase provides anonymized daily data at 
individual worker level. We limit our sample to workers at firms with at 
least 200 hours worked between January 12 and February 22.12 We define 
employment as the number of workers with positive hours and aggregate 
to the county level based on firm zip code.

OPPORTUNITY INSIGHTS  We use a county-level measure of employment 
workers from the Opportunity Insights Economic Tracker developed by 
Chetty and others (2020).13 This measure is based on data from payroll 
service providers Paychex and Intuit; Earnin, a personal financial manage
ment company with access to clients’ payroll information; and Kronos, 
which provides employee time management services to business. We obtain 
this measure as a seven-day average and estimate daily values based on the 
pseudoinverse of the moving average matrix.

  9.  SafeGraph, Social Distancing Metrics, https://docs.safegraph.com/docs/social- 
distancing-metrics.

10.  Google, COVID-19 Community Mobility Reports, https://www.google.com/covid19/
mobility.

11.  Unacast, COVID-19 Toolkit, Social Distancing Scoreboard, https://www.unacast.com/
covid19/social-distancing-scoreboard.

12.  We define a “firm” as the aggregate of all of a single company’s establishments in the 
same industry and county.

13.  Opportunity Insights Economic Tracker, https://www.tracktherecovery.org.
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GOOGLE TRENDS  We construct daily proxies for job loss and hiring based 
on web search intensity from Google Trends. For job loss, we obtain data on 
searches that contain any of the terms “file for unemployment,” “unemploy-
ment benefits,” or “unemployment insurance.” For hiring we obtain data 
on searches that contain any of the terms “W-4,” “W-9,” or “I-9” (with or 
without hyphens). Google Trends provides indexes of search intensity by 
Nielsen designated market area (DMA), which are considerably broader than 
counties. We use the same index for all counties within a DMA.

III.C.  Non-pharmaceutical Interventions

We use information on NPIs issued by state governments from 
COVID19StatePolicy and NPIs issued by county, municipal, or other sub-
state government entities from Keystone Strategy.14 We extend the state data 
to the county level for state government NPIs that applied only to specified 
counties. We exclude advisory policies and recommendations, as well as 
mandates that apply to specific subpopulations (typically “vulnerable” 
persons or those above a certain age).

State and local governments enacted a wide range of NPIs in response 
to COVID-19. We focus on three major interventions: school closures, 
stay-at-home (or shelter-in-place) orders, and closures of all nonessential 
businesses. While most individual government actions were idiosyncratic 
and limited (for example, closing casinos or limiting indoor restaurant 
service), these three NPIs were widely adopted (see figure 2) and imposed 
meaningful constraints on a broad range of social and economic activities. 
Although there is some variation in the procedures for closing schools, the 
types of activities permitted under stay-at-home orders, and the classifica-
tion of businesses as essential or nonessential, the key features of each NPI 
are consistent across jurisdictions and across data sources.

IV.  Case Confirmation Rate and Infections

The number of confirmed COVID-19 cases understates the true number of 
infections. Asymptomatic cases are unlikely to be detected in the absence 
of widespread preventative testing, and individuals experiencing mild 
COVID-19 symptoms may choose not to seek a test, especially when 
testing capacity is limited and restricted to severe cases (as in the early 

14.  COVID19StatePolicy, State-Level Social Distancing Policies in Response to the 2019 
Novel Coronavirus in the US, https://github.com/COVID19StatePolicy/SocialDistancing; 
Keystone Strategy, City and County Non-pharmaceutical Intervention Rollout Dates, https://
www.keystonestrategy.com/coronavirus-covid19-intervention-dataset-model.
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days of the outbreak in the United States). If underreporting of infections is 
constant over time, it does not affect our modeling outside of herd immu-
nity dynamics, which are not important in the early months of an epidemic 
(the focus of this paper). But variation over time in the extent of under
reporting leads to spurious changes in transmission rates inferred from case 
counts even if growth in actual infections is unchanged. Such variation 
is almost certainly present in the period we examine, which saw a rapid 
increase in the number of people being tested for COVID-19. Estimates of 
the spread of SARS-CoV-2 over this period based on case counts alone are 
therefore likely to be biased upward.

Confirmed COVID-19 deaths are less likely than cases to suffer from 
time-varying mismeasurement. For that reason, some COVID-19 modelers 
eschew confirmed cases altogether and rely entirely on counts of confirmed 
deaths (Gu 2020). Our approach lies somewhere in the middle and draws 
from both case and death data.

First, for each state i at time t, we estimate the case confirmation rate lit:

( )λ =
−

− µ( ) ( )

( )−

+τ −τ − +τ −τ
−

,1

1
1

C C

D D
it

it i t

i t i t tF P F P

where Cit is cumulative confirmed cases, Dit is cumulative confirmed deaths, 
tF is the average number of days from symptom onset to death in fatal 
cases, tP is the average number of days from symptom onset to a positive 
test result, and µt is the current infection fatality ratio. Following clinical 
evidence, we assign a value of 19 days to tF and a value of 7 days for tP.  
We assume the infection fatality ratio begins at 0.8 percent and falls linearly 
to 0.025  percent from mid-April to mid-August. See section VI.A for 
further details on parameter selection.

Using state-level data on cases, deaths, and tests, we model the case con-
firmation rate as a function of national-level variation over time (reflecting 
nationwide trends in testing infrastructure and capacity) and the test posi-
tivity rate (the share of tests with a positive result). When testing capacity 
is limited relative to the size of the current outbreak, tests are reserved for 
the most severe cases, leading to high positivity rates. As relative capacity 
expands, we expect the positivity rate to fall as the eligibility criteria for 
testing broaden.

We estimate the following regression:

w
c

T
it t

it

it

itλ = + θ + εln ,
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where the wt are calendar week fixed effects, Tit is the number of tests 

performed, and 
C

T
it

it

 is the test positivity rate. We smooth both lit and 
C

T
it

it  
with a centered two-week moving average.15 We estimate a value (standard 
error) of −0.57 (0.06) for q, which represents the semi-elasticity of confir-
mation rate with respect to the positivity rate. To estimate the true number 
of new infections, we fit values of lit for each state over time and scale the 
number of confirmed new cases by its inverse. We then shift values backward 
in time by tP (set to one week) to reflect the date of symptom onset rather 
than the date of case confirmation.

In the initial days of the epidemic, the true number of new infections 
was nearly twenty times the number of new confirmed cases. This figure 
fell rapidly as testing infrastructure expanded: by early June, the ratio was 
around five, with the median state confirming 22 percent of new infections.16 
To illustrate the common trend in reporting rates and deviations from that 
trend arising from local conditions, figure  3 plots our estimates of case 
confirmation rate for New York (a state with a severe early outbreak) and 
Florida (a state with a severe outbreak later).

V.  Contact Rate and Employment Indexes

To specify the parameters and historical inputs of the model in section II, 
we require geographically detailed, daily data on the contact rate kit and 
employment Wit. To our knowledge, no such data exist. Instead, we have an 
array of unconventional indicators described in section III.B. Rather than 
consider each of these individually, we divide them into two sets, one 
containing measures related to the contact rate and the other containing 
measures related to employment. We then take the first principal component 
of each set of related indicators and interpret the resulting indexes as direct 
proxies for the daily contact rate and daily employment.

Underlying measures related to the contact rate include frequency of 
close physical proximity to other mobile devices, time spent at home, and 
distance traveled. Underlying measures related to employment include 
time spent at workplaces, web searches related to job loss and hiring, and 

15.  In reality, time from symptom onset to death follows a wide distribution of outcomes 
rather than a deterministic average; using a moving average allows us to pool deaths and 
positive tests across a broader span and thus capture some of that variation.

16.  Our estimates show a similar though more pronounced trend compared with those 
of Gu (2020), who estimates a national “prevalence ratio” that fell from about eighteen on 
March 1 to about seven on August 1.
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direct measures of the number of persons working. For measures derived 
from mobile device data, we generally have multiple versions based on 
different samples of mobile devices.

Principal components is a convenient means of summarizing informa-
tion from multiple indicators and extracting common variation.17 Each of 
our measures captures only one dimension of the outcomes we are actually 
interested in and on its own may contain a misleading signal. Moreover, 
daily measures at the county level are inevitably noisy. Taking the first 
principal component of several measures filters out both misleading idio-
syncratic patterns and noise using information from all of the inputs. It also  
allows for geographic variation in the relevance of particular indicators, 
which might depend on place characteristics.18 We construct indexes inde-
pendently for each county, so the weight assigned to any one underlying 

Source: Authors’ calculations.
Note: The figure compares the estimated daily case confirmation rate in states with different epidemic 

curves.
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Figure 3.  Estimated Daily Case Confirmation Rate in Florida and New York

17.  See Lewis, Mertens, and Stock (2020) for a recent application to weekly economic 
activity.

18.  For example, distance traveled is more closely related to time spent at home in less 
dense counties.
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measure is determined by its relationship to the other measures in that 
county alone.

Before constructing the indexes, we normalize all measures relative to 
their average for the same day of the week in early 2020—generally the 
six-week period from January 12 to February 22.19 For series with suffi-
cient historical data to identify seasonal patterns, we normalized relative to 
the same week one year earlier. Not all measures are available for counties 
with small populations. We aggregate counties with incomplete data into a 
single residual county unit by state, using whatever data are available and 
weighting by population.20

To construct the contact rate index, we take the first principal compo-
nent of two measures of physical proximity, two measures of time spent 
at home, and two measures of distance traveled. Given these inputs, we 
interpret the index as reflecting contacts between persons who do not live 
together. To construct the employment index, we use two direct measures of 
the number of persons working, two measures of time spent at workplaces, 
and measures of unemployment- or hiring-related web searches. We then 
scale the indexes into interpretable units by adjusting the (county-level) mean 
and standard deviation to match those of a series expressed in the desired 
unit. For the contact rate, no such series exists, so we use the measure of 
encounter density from Unacast, which is the closest of our available indi-
cators to a direct measure of contacts. For employment, we scale indexes to 
monthly employment by county in 2020 from the Bureau of Labor Statistics 
Local Area Unemployment Statistics (LAUS). We had sufficient data to 
construct both indexes beginning in late January.

Figure 1 plots the evolution of the two indexes across counties during 
the early stages of the pandemic. While there is no external data source 
against which to validate our measure of the contact rate, our employment  
index is effectively a daily proxy for the official monthly estimates of county 
employment. Figure 4 plots total US daily employment aggregated from  
our county employment indexes against official estimates of monthly 
employment. Figure B1 in the online appendix compares county-level 
monthly changes in the daily employment index against actual monthly 
changes from LAUS. Although the underlying indicators are all indirect 

19.  Measures from Unacast and Google Mobility Reports are already normalized relative to 
the same day of the week over different base periods in early 2020. Measures from SafeGraph 
are available only from January 20.

20.  For some small central states, the residual “county” is the entire state, for which data 
are always available. Excluding all aggregated counties with incomplete data has no discernible 
impact on any of the results presented below.
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and partial measures of overall employment, the combined index tracks the 
dynamics of the official series over the first half of 2020 both in aggregate 
and at the county level.

VI.  Parameters

This section reviews the selection or estimation of the epidemiological  
and behavioral parameters of the model in section II. For the former, 
we draw on the clinical literature on COVID-19 as well as methods from 
empirical epidemiology. For the latter, we estimate behavioral responses 
with a difference-in-differences approach using county-level data.

VI.A.  Epidemiological Parameters

We first select values for parameters that are largely biological in nature—
that is, least likely to vary according to behavior or policy. We draw on the 

Sources: Bureau of Labor Statistics (BLS); authors’ calculations.
Notes: Daily employment index values are aggregated from county-level indexes. Monthly official 

employment through July is aggregated from county-level employment from the BLS Local Area 
Unemployment Statistics. The monthly value for August is from the BLS news release. Monthly official 
employment values are placed on the 12th of each month in the plot to align with the BLS reference week.
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Figure 4.  Daily Employment Index and Monthly Official Employment
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early and developing clinical COVID-19 literature where available. Parameter 
values and sources are shown in table 1.

Of the parameters included in table 1, only the infection fatality ratio µt 
is time-dependent. The infection fatality ratio depends not just on the 
biology of the disease but also on policy, medical advances, and epidemic 
dynamics. We base our assumption on the work of Gu (2020), one of the 
most consistently accurate COVID-19 forecast models.21 We assume the 
infection fatality rate was 0.8 percent through mid-April and then declined 
linearly to a terminal value of 0.025 percent in mid-August. This decline 
reflects improvements in COVID-19 outcomes over time due to a number  
of factors, including improved treatments, expanded hospital capacity, and 
possible compositional shifts in the demography of new infections (Boehmer 
and others 2020).

The variable µt is used to estimate case confirmation rates as described 
in section IV. Recall that infections are imputed using estimated case confir
mation rates, which capture averages of time and positivity rate effects 
across states. This means that effective infection fatality ratios, calculated 
as actual new deaths divided by estimated new infections, vary slightly by 
state (hence the indexation by i in the differential equations presented in 
section III). When calculating marginal deaths in counterfactual scenarios, 
we use the simple average of the overall headline infection fatality ratio 
and the state-specific effective infection fatality ratio.

The final SEIR parameter is the daily transmission rate βit. This param-
eter varies with behavior and is responsive to local epidemiological condi-
tions, and thus it varies widely across time and place. To obtain historical 

Table 1.  Exogenous Parameter Definitions and Values

Parameter Definition Value

s 1/tE, where tE is the noninfectious latent period in days 1/2
γ 1/tI, where tI is the infectious period in days 1/7
tS Duration from infectiousness onset to symptom onset 3
tF Duration from symptom onset to death for severe cases 

in days
19

tP Duration from symptom onset to positive test result for 
confirmed cases (assumed)

7

µt Infection fatality ratio 0.0025–0.008

Sources: Peng and others (2020); Lauer and others (2020); Zhou and others (2020); Gu (2020).

21.  See COVID-19 Projections Using Machine Learning, “About /Historical Performance,” 
https://covid19-projections.com/about/#historical-performance, for a review of model accuracy.
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estimates of βit, we first estimate the effective reproduction number R it. 
From equation (2), βit is given by βit = R itγit.

We estimate R it using the method developed by Cori and others (2013) 
and implemented using the authors’ software package EpiEstim. The esti-
mation framework is parsimonious and only requires data on new infec-
tions and an estimate of the distribution of serial intervals (the time between 
symptom onset in successive cases) for the virus. For each state, we iterate 
over hundreds of possible combinations of gamma-distributed serial interval  
means and standard deviations. We then simulate the SEIR model for each 
possible path of Rit, choosing the serial interval distribution that best matches 
the observed trajectory of each state-level epidemic.22

VI.B.  Behavioral Parameters

We now turn to the estimation of the behavioral parameters φ, r, and wt 
from sections II.B and II.C. We adopt a daily event study design to estimate 
the effects of policy interventions φ, using variation in the implementation 
of NPIs across counties and over time to capture the dynamic response 
during the month following an intervention. We estimate the response to 
local infection risk r directly based on the number of confirmed COVID-19 
cases by county. The time path of precautionary behavior wt is captured by 
calendar date fixed effects interacted with county characteristics.

Ideally, we would estimate the relationship between behavior and 
COVID-19 transmission directly based on county-level R it and equation (5). 
However, the limitations of our data make this impractical. The procedure 
for obtaining historical estimates of R it (described in sections IV and VI.A) 
is only feasible given a sufficient number of confirmed cases. For many 
counties, this threshold is not reached until late March—by which time 
most NPIs had already been implemented—and for a substantial number it 
is never reached.23 Altogether, our sample for estimation of equation (5) is 
less than half the size of the full sample and drops most school closure and 
nonessential business closure events and many stay-at-home order events. 
In addition, historical estimation of R it is based on an arbitrary time window 
and imposes a degree of smoothing, making it difficult to identify the timing 
of responses in a daily event study. We therefore estimate φ, r, and wt using 

22.  The loss function minimizes the weighted mean of absolute error in two measures 
of infections: cumulative infections for the most recent date of data (80 percent weight) and 
new cases over the most recent three days of data (20 percent weight). This arbitrary weighting 
scheme is chosen to target both the level and slope of the epidemic curve.

23.  This problem is much less severe for the state-level estimates of R it that we use in 
the SEIR model.
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the contact rate kit and equation (4) instead. Where feasible, we also show 
estimates from equation (5) for comparison.

Reformulating the policy component in equations (4) and (6) as event 
studies of the three NPIs—and adding superscript k to the parameters in 
equation (4)—leads to the following estimating equations for the contact 
rate and employment:
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The contact rate index is kit, and Wit is the employment index for county i  
on day t. The county and calendar date fixed effects are hi and wxt, respec-
tively. The variable Xxi contains a column of ones and a set of county char-
acteristics indexed by x. The three NPIs are indexed by j. The number of 
days before or after an NPI is issued is indexed by k. The variable Pit

jk is 
an indicator equal to one if NPI j is in effect in county i on date t, which 
is k days from the date issued. For k ≥ 0, the coefficients φjk trace out the 
dynamic response to j over the thirty days following announcement of the 
NPI. For k < 0, the coefficients φjk capture systematic differences between 
counties that issued NPIs and those that did not over the month immediately 
before the NPI was issued. Dates more than thirty-one days from the issuance 
of the NPI are binned in k = −31 and k = 31 and reflected in the coefficients 
φj,−31 and φj,31. The variable cit is the inverse hyperbolic sine of Cit, the total 
number of confirmed COVID-19 cases in county i.24

The variable Xxi contains information on the demographic, economic, 
and political characteristics of counties. In our main estimates, it includes 
the shares of the population age 5 to 17 and age 65 or over; the shares of 
workers in leisure and food services, in essential industries, and in educa-
tional services; and the Republican Party vote share in the 2016 presiden-
tial election.25 The precautionary behavior terms wxtXxi capture nationwide 

24.  The inverse hyperbolic sine ( )= + +ln 1 2c C C  has similar properties to a log 
transformation but is defined at zero.

25.  Essential industries are defined based on guidance from the Department of Homeland 
Security. Election data are from the MIT Election Data and Science Lab.
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common variation as well as county-specific patterns driven by hetero
geneity across the characteristics in Xxi. These terms also absorb the average 
effects of all government actions not in Fit, the event study component. 
This includes non-mandatory guidance and an array of restrictions on 
particular social and economic activities (such as public events or close-
contact personal services). Unlike the broad mandated closures we consider 
in our analysis of NPIs, the details of these limited actions vary widely 
across jurisdictions and generally defy classification into distinctive treat-
ments, and so cannot be separately identified. Though we will refer to the 
estimated wxtXxi simply as “precautionary behavior” in our discussion, it is 
important to keep in mind that our concept of “precaution” encompasses a 
range of government actions.

The event study coefficients φjk reflect the direct impact of NPIs on 
opportunities for social contact or economic activity as well as any other 
changes in behavior indirectly induced by NPIs. Both the announcement 
of NPIs and observation of their effects convey information to the public 
about the importance of social distancing.26 Individuals may respond to this 
information by adjusting their behavior in ways that are not directly related 
to specific limitations imposed by NPIs. For example, an announcement 
that all nonessential businesses must close may lead some households to 
purchase groceries online for delivery instead of at a store, even if grocery 
stores are considered essential businesses and remain open.

The relationship between the contact rate kit and COVID-19 cases Cit 
described in section II implies potential simultaneity in equation (7) and—
to the extent employment Wit is related to kit—in equation (8). Identification 
of the causal parameters φjk and r depends on the lag between kit (or Wit) 
and Cit. Given the disease’s incubation period and the time from symptom 
onset to a positive test result, the effects of a change in behavior are not 
reflected in the number of cases for more than a week. Hence, we treat 
the contemporaneous case count as exogenous with respect to behavioral 
outcomes.

Figure  5 reports NPI event study estimates for the contact rate from 
equation (7).27 Over the week following an order to close schools, the 
contact rate declined between 5 and 10 percent. Stay-at-home orders had 
larger and more immediate effects, with a sharp fall in contacts of more than 

26.  Gupta, Simon, and Wing (2020) highlight the informational aspect of NPIs and 
provide a detailed discussion.

27.  We report estimates from the model excluding county characteristics (i.e., Xxi = 1


) in 
figures B2 and B3 in the online appendix.
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Nonessential business closure

Source: Authors’ calculations.
Notes: The figure shows coefficient estimates and 95 percent confidence intervals for φk

jk, the effect of 
each NPI on the log of the contact rate. Standard errors are clustered at the county level.
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Figure 5.  NPI Event Study Estimates: Contact Rate
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10 percent two days after the order was issued—generally corresponding  
to the day after the order went into effect. For both school closures and 
stay-at-home orders, roughly half the decline persisted after thirty days. 
The effects of nonessential business closures were smaller—a decline of 
around 5 percent—but somewhat more persistent.

Figure 6 compares the response to stay-at-home orders estimated from 
the contact rate and equation (4) with estimates from the reproduction 
number and equation (5). Because stay-at-home orders were typically enacted 
later than the other two NPIs, the sample available for estimates using R it 
is larger than for the other two NPIs, though still much smaller than the 
full sample.28 For readability, we limit the plot to ten pre periods, as the 
standard errors of the R it estimates become very large in earlier periods.  
We estimate that R it declined about 10 percent over the weeks following a 
stay-at-home order—roughly the same magnitude as the estimated response 
of kit, though with a different time pattern.29 Given the degree of uncertainty, 
which makes it impossible to assess prior trends in the estimates for R it, 
this comparison is at best suggestive but is nevertheless reassuring.

Contact rate

–0.1

Source: Authors’ calculations.
Notes: The left panel shows coefficient estimates and 95 percent confidence intervals for φk

SAH,k, the 
effect of stay-at-home orders on the log of the contact rate. The right panel shows analogous estimates 
based on equation (5) instead of equation (4): the effect of stay-at-home orders on the log of the 
reproduction number. Standard errors are clustered at the county level.
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Figure 6.  NPI Event Study Estimates for Stay-at-Home Orders

28.  We report estimates for R it for all three NPIs in figure B4 in the online appendix.
29.  The difference in timing arises at least in part from the construction of historical 

values for R it, which are based on a rolling time window of arbitrary width.
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Figure 7 reports NPI event study estimates for employment. Employment 
fell gradually following the announcement of school closures, eventually 
reaching a persistent decline of around 1 percent after two weeks. Stay-at-
home orders had somewhat larger effects, with employment falling nearly 
1.5 percent in the days following an order, though one-third of the decline 
was reversed after three weeks. Nonessential business closures had the 
largest employment effects, inducing a persistent decline of 2 percent.

The estimates for nonessential business closures indicate that employ-
ment began falling in the days before an order was issued. We attribute this 
to the effectively phased introduction of the policy in many jurisdictions. 
State and local governments issued a broad range of restrictions on busi-
nesses and public venues that were more limited than blanket nonessential 
business closures, including highly targeted interventions affecting only a 
handful of businesses (such as closing casinos or fairgrounds), restrictions 
on particular activities (such as in-person dining), and mandated closure 
of entire classes of business (such as beauty salons, hairdressers, and other 
close-contact personal services). In most cases, implementation of the full 
nonessential business closures we consider in our analysis was imme-
diately preceded by one or more of these more limited restrictions. For 
example, Connecticut issued a statewide nonessential business closure on 
March 20. This followed three prior orders closing particular types of busi-
nesses: on March 16, fitness studios and movie theaters were ordered to 
close; on March 18, this was expanded to shopping malls, bowling alleys, 
and other public venues; on March 19, this was expanded to hairdressers,  
estheticians, and other personal services. This example is typical. In the 
jurisdictions for which we have reliable data on all forms of business 
restriction, three-quarters of nonessential business closures were preceded 
by lesser restrictions.

Table 2 reports estimates for rk and rW and the elasticity of the contact 
rate and of employment with respect to local infection risk.

Here we note only that these estimates have the expected sign and the 
magnitudes are plausible. We discuss the implied response to local infec-
tion risk in the next section.

VII.  The Response to COVID-19

In this section, we assess the initial policy response to COVID-19 using 
the epidemiological and empirical framework described above. We have 
two objectives: first, to estimate what benefits and harms can reasonably be 
attributed to government as opposed to voluntary action; second, to provide 
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Nonessential business closure

Source: Authors’ calculations.
Notes: The figure shows coefficient estimates and 95 percent confidence intervals for φw

jk, the effect of 
each NPI on the log of the employment. Standard errors are clustered at the county level.
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useful insights to policymakers managing the current and any future infec-
tious disease outbreaks.

VII.A.  Social and Economic Responses to the Pandemic

Using the estimated coefficients from equations (7) and (8), we decom-
pose the aggregate declines in the contact rate and employment since the 
beginning of March into contributions from the three behavioral components: 
state and local NPIs, response to local infection risk, and precautionary 
behavior.30 Figure 8 shows the results of this decomposition. We find that 
the early declines in the contact rate and employment in mid-March were 
primarily precautionary.31 The contact rate fell rapidly before there were 
substantial numbers of confirmed cases and before the introduction of most 
NPIs. We estimate that these precautionary changes in behavior explain 
80 percent of the total decline in the contact rate in the middle two weeks 
of March.

As the number of COVID-19 cases surged in the second half of March 
and the geographic concentration of cases became apparent, the behavioral 
response shifted from nationwide fears to localized concerns reflecting the 
severity of local outbreaks. When the contact rate reached its lowest point 
in mid-April—a fall of almost 85 percent from the beginning of March—
about 73 percent of the cumulative decline was attributable to precautionary 
behavior and 20 percent to local infection risk. The final component, state 
and local NPIs, explains only 7 percent of the change in the contact rate 
through mid-April.

The decline in employment initially followed a pattern similar to the 
contact rate, lagging a few days behind. Precautionary behavior explains 

Table 2.  Estimated Response to Local Infection Risk

Estimate Std. Err.

Contact rate (rk) −0.0541 0.0045
Employment (rW) −0.0048 0.0011

Source: Authors’ calculations.

30.  Aggregated values for the contact rate are weighted by county population. Aggregated 
vales for employment are weighted by average county employment from December 2019 to 
February 2020.

31.  Recall that the precautionary component also includes the effects of state and local 
government actions other than three major NPIs considered explicitly in the analysis, such as 
issuing warnings and advice or imposing narrow restrictions on commercial activity.



88	 Brookings Papers on Economic Activity, Fall 2020

about 80 percent of the 11 percent fall in employment between March 8  
and March 22. The two outcomes diverge beginning in late March due to 
the effects of NPIs—in particular, the employment impact of mandated 
business closures. By mid-April, employment was around 20  percent 
below its level in early March. The response to local infection risk explains 
about one-fifth of this decline, the same as its contribution to the fall in 
the contact rate. State and local NPIs explain nearly 15 percent, more than 
double their contribution to the fall in the contact rate. Thus, on average 
NPIs appear to have been somewhat inefficient in terms of employment 
loss relative to social distancing gains. We return to this subject below.

Figures B5 and B6 in the online appendix present the same decompo-
sition of the contact rate and employment at the state level. In general, 
plains states and the south central region experienced the smallest declines, 
while northeastern states—along with Nevada, Colorado, and Hawaii—
experienced the largest. Cross-state variation in the magnitude of decline 
in contact rates and, to a lesser extent, employment is driven largely by 
differences in the precautionary component. Variation in the contribution 
of NPIs is much greater for employment than for the contact rate. This 
difference reflects the role of nonessential business closures, which were 

Source: Authors’ calculations.
Notes: The figure shows the impact of the three components of behavior on the contact rate and 

employment. The solid black lines show actual changes relative to March 1. The difference between the 
actual change and the sum of the three components is the regression residual.
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less widely adopted than the other NPIs (see figure 2) and had small effects 
on the contact rate but large effects on employment.

Figures  9 and 10 highlight two key drivers of heterogeneity in pre
cautionary behavior: political preferences and industry mix. Figure 9 plots 
the average (county-level) contribution of precautionary behavior to the 
change in the contact rate by quartile of Republican Party vote share in the 
2016 presidential election. The initial precautionary decline in contact  
rates in mid-March occurred at roughly the same rate nationwide but 
diverged along political lines beginning in the last week of March. The 
most Republican-leaning counties experienced no further declines after 
mid-March, while the least Republican-leaning counties continued reduc-
ing contacts through early April. Precautionary concerns began to recede 
across all counties in the second half of April, with recovery proceeding 
somewhat faster in more Republican-leaning counties. By the end of May, 
the precautionary effect on contact rates had largely dissipated in the most 
Republican-leaning counties even as it depressed contact rates by around 
50 percent in the least Republican-leaning.

Contribution to log difference from March 1, seven-day average

Source: Authors’ calculations.
Note: The figure shows the county-level contribution of precautionary behavior to the change in the 

contact rate relative to March 1, averaged by quartile of county-level Republican vote share in the 2016 
presidential election.
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Figure 9.  Republican Vote Share and Precautionary Changes in the Contact Rate
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Figure 10 plots the average precautionary behavior contribution to the 
change in the employment by quartile of the share of county employment in 
leisure and food services. Because these industries provide largely discre-
tionary services that typically require physical proximity, they are particu-
larly likely to suffer as a result of voluntary social distancing. We find that 
the precautionary decline in employment was indeed substantially larger 
and more persistent in counties with more workers in leisure and food ser-
vices. The importance of these industries to the economies of Nevada and 
Hawaii in particular explains the unusually large contribution of precau-
tionary behavior to the decline in employment in those states in figure 10.

Figures B7 and B8 in the online appendix show variation in precaution-
ary behavior across the five other county characteristics we include in our 
analysis. Figures B9 and B10 show analogous plots for the contribution 
of NPIs. In general, we do not find strong patterns in the size of the policy 
response. The response was somewhat slower, smaller, and less persistent 
in the most Republican-leaning districts, but these differences are small 
compared with political variation in precautionary behavior.

Contribution to log difference from March 1, seven-day average

Source: Authors’ calculations.
Note: The figure shows the county-level contribution of precautionary behavior to the change in the 

employment relative to March 1, averaged by quartile of county-level share of employment in leisure and 
food services.

0

–0.05

–0.15

–0.10

Mar JunMay

First quartile

Second quartile

Third quartile

Fourth quartile

Apr

Figure 10.  Employment in Leisure and Food Services and Precautionary Changes  
in Employment



ARNON, RICCO, and SMETTERS	 91

VII.B.  The Impact of NPIs

Narrowing our focus to the role of policy, we now consider the three 
types of interventions separately and review their epidemiological and 
economic effects. Figure 11 decomposes the estimated effect of state and 
local NPIs on the contact rate from the previous subsection into contribu-
tions from each of the three NPIs. The initial policy response consisted 
largely of school closures, which expanded rapidly to cover more than 
90 percent of the population by March 20. By the end of March, more than  
70 percent of the population was also under either a stay-at-home-order, 
nonessential business closure, or both (see figure  2). We estimate that 
together these policies reduced the daily contact rate by an average of 
9 percent between early March and the end of May, accounting for 12 percent 
of the total fall in the contact rate. Of this, half was explained by stay-at-
home orders, 28 percent by school closures, and 22 percent by nonessential 
business closures.

To estimate the epidemiological effects of these responses, we use the 
SEIR model described in section II to simulate each state’s epidemic under 
a counterfactual path for the contact rate (and thus for the transmission 
rate βit) that removes the effects of one or more NPIs. Figure 12 shows the 

Source: Authors’ calculations.
Notes: The left panel shows the actual change in the contact rate (solid line) and the estimated change 

in the absence of any NPIs (dashed line). The right panel decomposes the difference between the two into 
contributions from the three NPIs.
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Figure 11.  Effect of NPIs on the Contact Rate
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results for daily COVID-19 deaths. In the absence of NPIs, we estimate 
daily deaths would have reached a peak of roughly 3,000 in mid-April 
instead of the actual peak of 2,500. In total, we estimate that NPIs lowered 
confirmed COVID-19 deaths through May 31 by more than 39,000, bringing 
the cumulative total down by about 25 percent to its actual level of nearly 
115,000. Taking into account the lag between infection and death, we 
estimate that policy-induced changes in behavior through May 31 lowered 
confirmed deaths through mid-June by 55,000. School closures and stay-
at-home orders each explain about 40  percent of these reductions; non
essential business closures account for 21 percent.32

Comparing results for the contact rate and for deaths, we note two 
significant differences. First, the 9 percent decline in contacts in response 

Source: Authors’ calculations.
Notes: The left panel shows actual daily COVID-19 deaths (solid line) and estimated deaths in the 

absence of any NPIs (dashed line). The right panel decomposes the difference between the two into 
contributions from the three NPIs.
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Figure 12.  Effect of NPIs on Daily COVID-19 Deaths

32.  Note that our homogeneous-mixture framework assumes that the NPI-driven change 
in the overall contact rate is consistent across population subgroups. To illustrate how this 
assumption has a directional impact on our headline epidemiological results, we conduct a 
stylized experiment using a two-group SEIR model that allows for heterogeneous contact 
rates and heterogeneous responses to NPIs. See the online appendix for details.
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to NPIs is considerably smaller than the resulting decline in deaths of 
about one-quarter. Second, school closures accounted for a larger share of 
the reduction in the deaths than the reduction in contact rates (41 percent 
vs. 28 percent), with a corresponding and opposite difference in the contri-
butions of stay-at-home orders (37 percent vs. 50 percent). Both outcomes 
reflect the nonlinear dynamics of infectious disease transmission. Reduc-
tions in contacts in the early stages of an epidemic may prevent long chains  
of transmission from ever emerging, leading to disproportionate reductions 
in infections and deaths. The relatively greater effect of school closures on 
deaths than contacts is thus explained by their relatively early enactment 
(on average, one week before nonessential business closures and ten days 
before stay-at-home orders).

Figure 13 shows the impact of NPIs on employment. We estimate that 
the policy response to COVID-19 reduced employment by an average  
of 3 million between early March and the end of May—13 percent of  
the total fall employment. Almost half of this decline was attributable  
to nonessential business closures, 30 percent to stay-at-home orders, and 
22 percent to school closures. Notably, business closures account for a 

Source: Authors’ calculations.
Notes: The left panel shows actual employment (solid line) and estimated employment in the absence 

of any NPIs (dashed line). The right panel decomposes the difference between the two into contributions 
from the three NPIs.
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much larger share of the decline in employment than of the fall in contact 
rates (48 percent vs. 22 percent), while the opposite is true of stay-at-
home orders (30 percent vs. 50 percent). This suggests large cost-benefit 
differences across the different NPIs. We discuss these differences in the 
next section.

VIII.  Counterfactuals

In this section, we use the augmented SEIR model to examine alternative 
responses to the pandemic. We first present a set of illustrative scenarios 
to help calibrate expectations of what NPIs can plausibly accomplish. We 
then consider alternative policy responses to the outbreak of COVID-19. 
Drawing on the results from the previous sections, we ask what could 
have been gained by responding more aggressively and deploying a more 
efficient mix of NPIs.

VIII.A.  Seven Days

Figure  14 compares actual daily COVID-19 deaths with simulated 
paths for two illustrative scenarios. First, we assume that state and local 
governments adopt the same set and sequencing of NPIs but implement 
them all seven days earlier than they actually did. Second, we assume a  

Source: Authors’ calculations.
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Figure 14.  Daily COVID-19 Deaths Given Seven Days Faster Response
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precautionary response to the pandemic of the same magnitude as actu-
ally occurred but beginning seven days earlier. We find that a faster policy 
response would have reduced daily deaths by around 200 through much 
of April, preventing a cumulative 11,000 deaths by May 31. By the end  
of the period, however, the epidemic largely converges back to its ori
ginal path. A faster precautionary response, by contrast, dramatically 
alters the dynamics of the epidemic. The initial surge in deaths between 
late March and mid-April is substantially muted, and daily deaths never 
exceed 1,000. In total, COVID-19 deaths are lower by 62,000 at the  
end of May.

We next consider the opposite scenarios, assuming that either the policy 
response or the precautionary response occurred seven days later than it 
actually did. Figure 15 reports the results. The effects of a one-week delay 
in the introduction of NPIs are roughly symmetrical with those of faster 
action, leading to a cumulative increase in deaths of nearly 10,000. The 
effects of a slower precautionary response are of a different order of magni
tude entirely. An additional week of effectively unabated transmission in  
mid-March dramatically increases the death rate over the subsequent 
months. Daily deaths reach a peak of more than 13,000 in mid-April, almost 
five times the actual peak. In total, COVID-19 deaths are higher by 242,000 
at the end of May.

Figure 15.  Daily COVID-19 Deaths Given Seven Days Slower Response

Source: Authors’ calculations.
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These results highlight the qualitative difference in the impact of 
marginal changes in voluntary behavior and that of marginal changes in 
policy. While NPIs produce meaningful gains, it is unlikely that any policy 
response based on the set of interventions we consider here—which are 
the most stringent enacted in the United States—could have altered the 
fundamental epidemiological dynamics of COVID-19. Effective suppres-
sion of the pandemic would have required either earlier voluntary action or 
substantially more coercive government interventions.

VIII.B.  Efficient Pandemic Response

We now consider the potential gains from a more efficient policy 
response to the outbreak of COVID-19. We define policy efficiency in 
terms of the reduction in deaths attributable to an NPI relative to the cor-
responding reduction in employment. Our analysis of the actual response 
in section VII suggests two principles to guide the deployment of NPIs: 
first, action should be taken as early as possible; second, interventions 
with the largest effect on the contact rate relative to employment should 
be prioritized.

On the second principle, we noted above that nonessential business 
closures accounted for a markedly larger share of the decline in employment 
than of the decline in contact rates, while the reverse was true for stay-at-
home orders. The reason for this difference is clear from the event study 
estimates of equations (7) and (8) shown in figures 5 and 7. Of the three  
NPIs, nonessential business closures have the largest estimated effect  
on employment while delivering the smallest reduction in contacts. The 
trade-off is similar for stay-at-home orders and school closures, though 
stay-at-home orders have substantially larger overall effects. Given the 
nonlinear benefits of earlier reductions in contact, as well as the negative 
externalities of removing children from schools, we view stay-at-home orders 
as preferred over school closures. Thus, we argue that the NPI of first resort 
should be a stay-at-home order, followed first by closing schools and then 
by closing businesses.

With this in mind, we construct two sets of alternative policy response 
scenarios. First, we consider a federal, nationwide response on March 13, 
the date on which the president declared COVID-19 a national emergency. 
We simulate this scenario for responses consisting of only a stay-at-home 
order, a stay-at-home order and school closure, and all three NPIs issued  
on the same date. Second, we consider a local government (county-level) 
response based on the number of confirmed cases in a county. We calculate 
confirmed cases per capita on the date a state or substate government issued  
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its first, second, and third NPI.33 We take the 25th percentile of each and use 
the three values as thresholds to specify when a county government issues 
(first) a stay-at-home order, (second) an order closing schools, and (third) 
an order closing nonessential businesses. Hence, this scenario represents a 
relatively aggressive response to local outbreaks, with NPIs reordered based 
on efficiency. As with the federal response, we run simulations adding each 
of the NPIs incrementally.

Table 3 presents our results for cumulative confirmed COVID-19 deaths 
through May 31 and for the change in employment relative to March 1, 
averaged over the period March 1 to May 31. The first two rows show his-
torical values and our estimates of what would have happened in the absence 
of any NPIs at all. The next two rows report results for the illustrative policy 

Table 3.  Counterfactual Policy Response Simulation Results

 
Cumulative COVID-19 
deaths through May 31a

Difference in 
employment from 

March 1b

Deaths
Difference 
from actual Millions

Difference 
from actual

Actual 114,423 −20.5

No NPIs 153,667 39,244 −17.8 2.67

Seven days
    Seven days slower 124,341 9,918 −20.3 0.17
    Seven days faster 103,364 −11,059 −20.7 −0.15

Federal response on March 13
    Stay-at-home order 121,866 7,443 −18.9 1.62
    Stay-at-home order and school  

    closure
109,318 −5,105 −19.5 1.01

    Stay-at-home order, school closure,  
    and nonessential business closure

99,835 −14,588 −21.6 −1.08

Local response to confirmed cases
    Stay-at-home order 120,695 6,272 −18.8 1.76
    Stay-at-home order and school  

    closure
111,374 −3,049 −19.3 1.21

    Stay-at-home order, school closure,  
    and nonessential business closure

104,484 −9,939 −21.1 −0.62

Source: Authors’ calculations.
a.  Excludes differences in deaths after May 31 attributable to differences in infections through May 31.
b.  March 1–May 31 average.

33.  For NPIs issued by state governments, we use state-level cases per capita. For NPIs 
issued by substate governments, we use county-level cases per capita.



98	 Brookings Papers on Economic Activity, Fall 2020

scenarios discussed in section VIII.A, which we include for comparison. 
The remainder of the table reports results for the federal response and local 
response scenarios.

We highlight three main results. First, the most aggressive response we 
consider—nationwide enactment of all three NPIs on March 13—leads to 
a reduction in deaths of nearly 15,000 relative to the actual response, as 
well as an additional employment loss of 1.1 million. Though the number 
of lives is significant, it reflects a marginal change in the epidemic curve, 
confirming that contact-reducing NPIs alone are not sufficient to manage 
the epidemic.

Second, enactment of nonessential business closures led to economic 
costs that could have been avoided while actually improving epidemio-
logical outcomes. Compared with the actual policy response, we estimate 
that wider implementation of stay-at-home orders and school closures—
without any nonessential business closures—could have delivered a larger 
reduction in deaths while sustaining at least an additional 1 million jobs.

Third, we find that there is no significant advantage to geographic target-
ing of NPIs based on local epidemic conditions compared with blanket 
issuance of NPIs. Comparing the federal and local response scenarios, we  
estimate that the epidemiological benefits of applying interventions nation-
wide are roughly proportional to the economic costs. This outcome is partly 
attributable to the low case confirmation rate in the early stages of the  
epidemic. Policymakers relying on confirmed case counts to assess whether 
NPIs should be enacted will generally underestimate the progression of 
their local epidemic and react too slowly. Early, universal enactment of 
NPIs counters this bias, offsetting the economic losses suffered by counties 
with few actual infections.
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Comment and Discussion

COMMENT BY
ALESSANDRA FOGLI    In 2020, the world as we knew it has been swept 
away in a few weeks by a major pandemic. Governments across the globe 
have introduced policies with the objective of reducing social interactions 
to save lives. Such policies have spanned from national lockdowns of all 
economic activities, to stay-at-home orders, to measures aimed at specific 
businesses or geographic regions. The combined effect of mitigation poli-
cies and the pandemic has been a dramatic fall in employment and produc-
tion. Economists and epidemiologists started working together to design 
policies that can save the most lives at the least cost for the economy, and in 
a matter of a few months, a large body of literature on the topic developed.

This paper belongs to this recent and growing literature and investi-
gates to what extent non-pharmaceutical interventions (NPIs) contribute to 
saving lives after controlling for the endogenous behavior of individuals 
who independently reduce their interactions in response to high local infec-
tion rates. Earlier research in the area (Flaxman and others 2020; Hsiang 
and others 2020) found a very large impact of NPIs on infection dynamics,  
while recent work (Goolsbee and Syverson 2020) finds a more muted 
impact of NPIs and a larger role for behavioral responses. The authors 
exploit the variation across US regions in the implementation of mitigation 
policies by local governments and make some important contributions. On 
the modeling side, they fully integrate a standard epidemiological model of 
disease progression in an econometric framework designed to identify the 
causal impact of NPIs on the contact rate and on the employment rate. On 
the empirical side, they combine a lot of interesting data sets to generate 
proxies for unobserved variables such as the contact rate, the reproduc-
tion number, and the employment rate at the daily frequency and at the 
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county level. The main finding is that NPIs introduced by state and local 
governments explain only a small fraction of the observed decline in con-
tact rates when the endogenous response of individuals to epidemiological 
conditions is taken into account. This is an important message since it may 
inform the policies of national and local governments as they face a second 
wave of infections possibly even more intense and widespread than the 
first one.

Although I am sympathetic to the overall message of the paper and the 
careful analysis of rich daily-by-county data, I think there are some chal-
lenges in interpreting the results. These challenges stem from the reduced 
form approach of the estimation that does not take into account the role 
played by heterogeneity. I will first describe the model and then explain 
why heterogeneity matters and how its exclusion may drive the results and 
may lead to underestimating the role of NPIs in mitigating the pandemic.

The model developed in the paper is summarized in figure 1. NPIs 
directly affect the number of contacts among individuals, and the effect 
is captured by the parameter φk. Using a standard epidemiological model, 
contacts translate into infections according to the effective reproduction 
number, and a fraction of infections eventually end up in deaths. In turn, 
the infection rate affects contacts as individuals endogenously reduce their 
interactions in response to more infections. This effect is what the authors 
call the “fear-driven behavioral response” and is captured by the parameter 
rk. A similar relationship holds for employment, as employment is affected 
by NPIs (φW) and by fear (rW).

As the estimation of the employment equation follows closely the esti-
mation of the contacts equation, from here on I will focus on the latter. 
In order to estimate the impact of NPIs and of fear on contacts the paper 
adopts an event study design exploiting the variation over time and across 

Source: Author.
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Figure 1.  A Sketch of the Model
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counties in the implementation of three different NPIs. Equation (1) links 
contacts kit in county i at time t directly to individual fear and to the effect 
of a given type of NPI:

(1) ln ,
31

31

X P c vit i t i k
k

it
k

it it∑( )κ = η + ω + φ + ρ +
=−

where hi is a county fixed effect, wtXi is a time varying precautionary 
motive, φk is the effect of an NPI implemented at time t on contacts at 
time t + k, Pk

it is an indicator function that captures whether the NPI is in 
place at time t + k, r represents the endogenous individual response to local 
confirmed cases (in logs) cit, and vit is a random shock to the contact rate. 
The inclusion of the individual fear factor in the estimation of the effect of 
NPIs on contacts is a nice feature of the paper. Estimates that do not take 
into account the endogenous response of agents are likely to overestimate 
the contemporaneous impact of NPIs on contacts and, at the same time, 
underestimate their lagged impact. Since NPIs are typically implemented 
when cases are high (and hence fear is high), estimates that do not take into 
account the role of fear typically attribute to NPIs the decline in contacts due 
to individuals reducing their interactions in response to fear. In a dynamic 
sense, ignoring the effect of fear can lead to underestimating the role of 
NPIs in reducing contacts since, when epidemiological conditions improve, 
individuals perceive less fear and consequently increase their interactions, 
partially offsetting the effect of NPIs.

The inclusion of the fear factor in the model is definitely useful to sepa-
rately identify the role of NPIs. However, I am concerned that the empirical 
approach employed by the authors might underestimate the causal effects 
of NPIs on contacts. My concern stems from the role played by heteroge-
neity which is dismissed in the model but is likely to matter in the estima-
tion for two reasons. First, it is reasonable to expect significant variation in 
the local responses to NPIs since we observe large differences in the degree 
of compliance across regions. Second, it is also likely that various types of 
contacts affect the infection rate differently. I will show how ignoring these 
sources of heterogeneity can lead to significantly underestimating the true 
importance of policies.

HETEROGENEITY IN LOCAL RESPONSES  A key assumption in equation (1) is 
that the effect of NPIs φk is constant across locations. The precautionary  
motive, on the other hand, is modeled as a time varying factor wt that 
depends on local fixed characteristics Xi. This component is the most flexible 
and therefore is able to explain more variation than the other components.  
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As a result, the estimation could understate the impact of NPIs and overstate 
the importance of the precautionary effect. For instance, if NPI effective-
ness varies by political affiliation (because of different compliance rates 
or degree of enforcement), this variation would be incorrectly absorbed 
by the precautionary behavior. Similarly, the effect of other mitigation 
policies that are not included in the model (such as mask mandates or test 
availability) would also be absorbed by the precautionary component.

In order to illustrate to what extent unobserved heterogeneity in local 
responses can lead to underestimating the effect of NPIs, I report the results 
of a simple simulation where the contact rate is determined according to 
equation (1) except that in the true model the response to NPIs is allowed 
to vary across locations, so that the φk in equation (1) are also indexed by i.

Consider a panel of 3,000 regions (approximately the number of US 
counties) for twenty periods. Regions are assumed to vary across a single 
dimension Xi which is drawn from a normal distribution with mean 0.5 and 
standard deviation 0.75. The observed level of infections in each region 
follows a simple auto-regressive process:

c cit it it itln .1 e( )= γ κ + δ ++

This implies that, on average, γ contacts will turn into confirmed cases 
and (1 − d) cases will resolve themselves, each period.1 NPIs are assumed 
to go into effect at a random time t0 and continue until the end of the 
sample.2

The response to the NPI (governed by φi) has two components: one is 
drawn uniformly from [−1.2, 0.3] and the other is assumed to be −Xi. This 
results in the response to NPI usage being correlated with the regional char-
acteristic. Larger draws of Xi result in a higher initial level of contacts but 
also translate into a larger decrease when an NPI is implemented.3 In the 
true model the elasticity of contacts to confirmed cases r (the fear factor) is 
set equal to −0.8 while the precautionary motive wt is assumed to be con-
stant and equal to w = 2.2. This implies that any estimated reduction in wt 
is a consequence of misspecification.

Ignoring the heterogeneity in local responses leads to significantly 
underestimating the true importance of both policies and fear: the estimates 

1.  In the simulation γ = 0.5 and d = 0.95. Additionally, νit ∼ N(0, sν
2) and it ∼ N(0, ν

2) 
with sν = 0.1 and s = 0.05.

2.  The implementation date for each region is a random draw between 3 and 13.
3.  Occasionally, φi will be drawn to have a positive value. To enforce the notion that 

NPIs reduce contacts, positive values of φi are set equal to zero.
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of the effects of NPIs and fear are respectively one-third and one-fourth of 
their true values.4

To get a sense of the magnitudes, figure 2 shows the share of the decline 
in contacts attributed to each component in the true model and in the mis-
specified model.

In the true model the precautionary motive plays no role in the decline 
in contacts. Fear plays a large role at the beginning of the pandemic, when 
no NPIs are in effect but, by the last period, NPIs account for about 60 per-
cent of the decline. However, in the misspecified model, the precautionary 
motive accounts for around 65 percent of the decline in contacts, while 
the effect of fear and NPIs is cut by roughly two-thirds. While in the true 
model NPIs are very effective in reducing contacts, ignoring heterogeneity 
leads to mistakenly concluding that their impact is marginal.

Interestingly, the extent to which abstracting from heterogeneity in 
local responses leads to underestimating the effect of NPIs depends on the 
strength of the correlation between the effectiveness of NPIs (φi) and local 
characteristics. Since the model includes the share of Republican voters 
as one of the regional controls, which has been shown to be strongly cor-
related with NPI compliance (Amuedo-Dorantes, Kaushal, and Muchow 
2020), there is a concern that the authors significantly underestimate the 
role played by NPIs in reducing contacts.

Another important source of heterogeneity in the impact of policies on 
contacts simply stems from the heterogeneity in the initial contact struc-
ture across regions. Many NPIs (stay-at-home orders or caps on social 
gatherings) impose an absolute limit on the number of contacts. When 
these policies are introduced in regions with very different numbers of 
initial contacts, their implementation, even abstracting from compliance 
issues, leads to different reduction in contacts.

HETEROGENEITY IN THE TYPE OF CONTACTS  Another important dimension 
of heterogeneity that the authors abstract from is the one in the type of 
contacts. In the model, all contacts have the same impact on infections, 
while recent network-based epidemiological research has highlighted that 
different types of contacts can have very different impacts on infections 
(Akbarpour and others 2020; Azzimonti and others 2020; Baqaee and 
others 2020). In particular contacts that are close and repeated (like those 
with friends and family) typically have a small effect on infections, while 

4.  The true r is equal to −0.8, but ignoring the heterogeneity results in an estimate of 
r̂ = −0.22. The mean φ is −1.0, but the model estimate is −0.33.
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Misspecified Model (Homogeneous φ)

Source: Author’s calculations.
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Figure 2.  Implied Share of Contact Decline
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contacts that are far and random (like those happening, for example, at a 
concert or at the mall) can have a much larger impact on infections. This 
heterogeneity can be of crucial importance when evaluating the effects of 
different NPIs. For example, a policy like nonessential business closure 
can itself have a very small reduction of contacts but by eliminating a large 
fraction of the far and random contacts can have a substantial impact on 
infection.

The implementation of NPIs during the COVID-19 epidemic has been 
proven very costly, both politically and economically, and even more so 
during the second wave when pandemic fatigue has kicked in. For these 
reasons, a precise assessment of the impact of NPIs on infection reduc-
tion is of paramount importance. This paper makes important steps toward 
this goal and finds a limited role for NPIs. In this comment I argue that 
heterogeneity in the impact of NPIs across counties in the United States 
is likely large, and it should be taken into account when performing these 
evaluations. First, heterogeneity can lead to significant underestimation of 
the effect of NPIs. Second, heterogeneity implies that the most important 
question is not whether or not a central authority should implement NPIs 
but rather where and when NPIs should be used and where and when they 
should not.
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GENERAL DISCUSSION    Olivier Blanchard began the discussion by 
complimenting the authors on their work and encouraging them to recon-
cile their findings on the relation between formal measures and change in 
behavior with the findings presented by the discussant, Alessandra Fogli. 
Blanchard then brought up how the government at all levels had begun 
scaling back some of these formal measures. He asked if we should assume 
symmetry and that the removal of formal measures would not make a large 
difference in lowering the infection rate. Blanchard noted that this might 
be difficult to answer at that point but hoped that the authors would be able 
to offer some thoughts.

Ben Friedman then asked the authors how they identified the difference 
between NPIs and behavioral precautionary actions that people would have 
taken regardless of the mandates. He stated that in his community, he saw 
schools and nonessential businesses being ordered to close, therefore he 
chose to act in a way he otherwise would not have acted if it were not for 
the NPIs. He asks whether this endogenous response to NPIs affects the 
estimate of the NPIs’ effect in the model.

Jim Stock praised the authors for their paper and then asked them to 
refine the assumptions being made on the endogeneity of responses to NPIs 
and even recommended fleshing out some sort of instrumentation in their 
further research beyond this study. Furthermore, he continued to raise con-
cerns about whether the NPIs or endogenous behaviors were responsible 
for causing the decline in infection rates. Stock brought up how, at the 
Summer BPEA conference, Gupta, Simon, and Wing and Bartik and col-
leagues concluded that the endogenous responses were a major piece of the 
decline, while the two Nature papers discussed by Fogli simply excluded 
them.1 Stock said that the exclusion of the endogenous response in the 

1.  Sumedha Gupta, Kosali Simon, and Coady Wing, “Mandated and Voluntary Social 
Distancing during the COVID-19 Epidemic,” Brookings Papers on Economic Activity,  
Summer (2020), 269–315; Alexander W. Bartik, Marianne Bertrand, Feng Lin, Jesse  
Rothstein, and Matthew Unrath, “Measuring the Labor Market at the Onset of the COVID-19 
Crisis,” Brookings Papers on Economic Activity, Summer (2020): 239–68.
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Nature papers led him to have less confidence in them compared to some 
of the more finely tuned papers seen at BPEA.

Mervyn King also reverted to Friedman’s point and questioned how 
cross-country differences would help disentangle the endogeneity problem, 
pointing to Sweden as an example where the government did not mandate 
as many NPIs but households took a degree of caution. Furthermore, King 
noted the importance of Fogli’s point on heterogeneity and brought up how 
the level of caution associated with events and actions varies across indi-
viduals and locations, so having only a single parameter could be poten-
tially misleading.

Alexander Arnon then addressed the question on the symmetry of 
reopening. He mentioned the preliminary work the authors had done and 
discussed how difficult it is to match a given reopening event across dif-
ferent jurisdictions. He noted that, to the extent the authors can estimate, 
they do not expect it to be symmetrical.

Moving on to address Friedman’s question, Arnon said that endogenous 
changes in behavior will be picked up as a response to NPIs and noted that 
there is a lack of enforcement of these NPIs across the country, so even 
though the policies were mandates that were required by law, they were 
viewed more as information advisories or as an aggressive information 
push by the government.

Kent Smetters mentioned that the model will allow for heterogeneity 
by location and that the paper will focus on the marginal effects of NPIs. 
Arnon then continued by mentioning that there are a number of studies that 
examine stay-at-home orders in the United States and that those studies’ 
estimates are similar to the estimates arrived at by the authors.
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