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Abstract 

We examine the period of national lockdown beginning in March 2020 using an integrated 
epidemiological-econometric framework in which health and economic outcomes are jointly determined. 
We augment a state-level compartmental model with behavioral responses to non-pharmaceutical 
interventions (NPIs) and to local epidemiological conditions. To calibrate the model, we construct daily, 
county-level measures of contact rates and employment and estimate key parameters with an event study 
design. We have three main findings: First, NPIs introduced by state and local governments explain a 
small fraction of the nationwide decline in contact rates but nevertheless reduced COVID-19 deaths by 
almost 30% percent---saving about 33,000 lives---over the first 3 months of the pandemic. However, 
NPIs also explain nearly 15% of the decline in employment---around 3 million jobs---over the same 
period. Second, NPIs that target individual behavior (such as stay-at-home orders) were more effective at 
reducing transmission at lower economic cost than those that target businesses (shutdowns). Third, an 
aggressive and well-designed response in the early stages of the pandemic could have improved both 
epidemiological and economic outcomes over the medium-term. 
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The COVID-19 pandemic led to an unprecedented collapse in social and economic activity in the 

United States. Widespread social distancing – undertaken voluntarily and in response to 

government interventions – succeeded in containing the initial outbreak, but at a significant cost. 

Over the course of the middle two weeks of March 2020, employment fell by 30 million, 

triggering the deepest recession of the postwar period. 

This paper attempts a comprehensive assessment of the early response to COVID-19. We 

address three key questions: 

• How big a role did government mandates play relative to voluntary action in the shift to 

social distancing and the collapse in employment? 

• How effective were the major non-pharmaceutical interventions (NPIs) deployed in 

response to the pandemic – stay-at-home orders, school closures, and non-essential 

business closures – at reducing disease transmission while minimizing economic costs? 

• How could the policy response to COVID-19 have been improved and, more broadly, 

how should NPIs be used in response to pandemic?  

To answer these questions, we extend a state-level compartmental model of the pandemic 

with behavioral responses to NPIs and to local epidemiological conditions. To calibrate the 

model, we develop novel measures of daily social contact rates and employment at the county 

level and estimate key parameters directly with a difference-in-differences approach. We then 

use our empirical estimates and simulations of the model to assess the determinants of 

epidemiological and economic outcomes from March through the end of May. 

We find that NPIs account for only 9% of the sharp fall in contact rates over this period. This 

relatively modest effect, however, led to a reduction of nearly 30% in deaths from COVID-19 by 

May 31st. At the same time, we estimate that NPIs reduced employment by about 3 million, 

nearly 15% of the total decline. We also find significant differences in the effectiveness of 

different NPIs, with interventions that target businesses delivering less epidemiological benefit at 

greater economic cost than those that target individual behavior. 

This paper joins a growing literature on the epidemiology of COVID-19 and the effects of 

NPIs.1 We make three main contributions. First, we relax the conventional assumption in 

epidemiological models that contact rates are independent of dynamics of the epidemic and 

                                                           
1 See, for example, Goolsbee and Syverson (2020), Gupta, Simon, and Wing (2020) and the literature cited therein. 



allow agents to respond endogenously to local infection risk by changing their social behavior. 

Second, we extend the model with an explicit role for NPIs, so that our empirical specification 

arises directly from the model. Third, we combine data from a many different sources to 

construct comprehensive daily measures of contact rates and employment. With these measures, 

we are able frame our analysis directly in terms of the key outcomes (for example, total 

employment) rather than rely on the idiosyncratic proxies commonly used for high-frequency 

analysis of COVID-19. 

 

Figure 1. The response to COVID-19 by county 

Log difference from March 1st, 7-day average 

  Contact rate Employment 

  
Source: Authors’ calculations; see section V. 

Notes: The contact rate is the probability of being in close physical proximity to someone who is not a member of 
the same household. Employment is the number of people working on a given day.  
Each thin blue line represents one US county. The solid black line is the population-weighted US average. 

 

 

I. Background  

In response to exponential growth in the number of COVID-19 cases, social and economic 

activity in the US collapsed in the second and third weeks of March. The average social contact 

rate – defined as the probability of being in close physical proximity to someone who is not a 

member of the same household – declined more than 80% by the end of the month, while total 

US employment fell by 30 million. Figure 1 plots the evolution of contact rates and employment 

at the county level over the course of March and April, expressed as log changes relative to the 



beginning of March.2 Both the contact rate and employment fell in almost every US county, 

though the magnitude of the declines varied widely.  

State and local governments largely sought to encourage social distancing and to that end, 

implemented an array of non-pharmaceutical interventions – policies that attempt to reduce 

disease transmission by changing behavior. While most individual government actions were 

idiosyncratic and limited (for example, closing casinos or limiting certain close-contact person 

serves), three broadly restrictive NPIs were eventually enacted in most of the country: stay-at-

home (or shelter-in-place) orders, school closures, and non-essential business closures.3 Figure 2 

plots the share of the share of the US population covered by each the three NPIs over time. 

 

Figure 2. Share of US population covered by NPIs, by level of government 

        School closure Stay-at-home order Non-essential business closure 

 
Sources: Fullman and others (2020); Keystone Strategy; authors’ calculations. 

Notes: Substate governments include school districts, municipal governments, and county governments. 

NPI = non-pharmaceutical intervention 

 

School closures expanded rapidly beginning in the second week of March to cover more than 

90% of the population by March 20th. The number of non-essential business closures and stay-at-

                                                           
2 We discuss the construction of these measures in section V.  
3 Stay-at-home orders are mandates that individuals remain at home for all “non-essential” activities. Both stay-at-
home orders and non-essential business closures were typically – though not always – issued with a listing of the 
activities or businesses considered “essential.” 



home orders grew rapidly from the third week of March, extending over more than 70% of the 

population by the end of the month. Notably, though NPIs issued by state governments would 

eventually cover more of the population, the earliest NPIs were generally issued by county or 

municipal governments. 

 

II. Model 
This section presents the augmented epidemiological framework that forms the basis of our 

empirical analysis. Because of the nonlinear and spatial dynamics of infectious spread, direct 

estimation of the epidemiological effects of NPIs using conventional methods is impractical. 

Instead, we extend a compartmental model of infectious disease with behavioral responses to 

health outcomes and an explicit role for NPIs. We model each state-level epidemic 

independently, allowing for heterogeneity in epidemiological and behavioral parameters.  

 

II.A. Epidemiological Framework 

We begin with the canonical Susceptible-Exposed-Infected-Removed (SEIR) model. To 

account for the significant role of pre-symptomatic and asymptomatic transmission in the spread 

of COVID-19, we divide the infected group into symptomatic (I) and asymptomatic (A). A 

fraction of symptomatic cases become terminal (T), at which point effective infectiousness 

ceases (because they are isolated and can no longer infect members of S). After some period, all 

terminal cases die and transition to group D. Non-terminal symptomatic cases and all 

symptomatic cases eventually recover and transition to group R.  

The following system of ordinary differential equations governs population (the total of 

which is represented by N) movement between compartments S, E, I, A, R, T, and D for US state 

i at time t: 

 

𝑑𝑑𝑆𝑆𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝑖𝑖𝑖𝑖(𝛼𝛼𝐴𝐴𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑖𝑖𝑖𝑖)
𝑆𝑆𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖

 

𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑖𝑖𝑖𝑖(𝛼𝛼𝐴𝐴𝑖𝑖𝑖𝑖 +  𝐼𝐼𝑖𝑖𝑖𝑖)
𝑆𝑆𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖

− 𝜎𝜎𝐸𝐸𝑖𝑖𝑖𝑖 

𝑑𝑑𝐴𝐴𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

= (1 − 𝜓𝜓)𝜎𝜎𝐸𝐸𝑖𝑖𝑖𝑖 − 𝛾𝛾𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 



𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜓𝜓𝜎𝜎𝐸𝐸𝑖𝑖𝑖𝑖 − 𝛾𝛾𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 

𝑑𝑑𝑅𝑅𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 �1 −
𝜇𝜇𝑖𝑖(𝑖𝑖−1/𝛾𝛾𝐼𝐼)

𝜓𝜓
� + 𝛾𝛾𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 

𝑑𝑑𝑇𝑇𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 �
𝜇𝜇𝑖𝑖(𝑖𝑖−1/𝛾𝛾𝐼𝐼)

𝜓𝜓
� 

𝑑𝑑𝐷𝐷𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

=
𝜇𝜇𝑖𝑖(𝑖𝑖+𝜏𝜏𝐹𝐹+1/𝛾𝛾𝐼𝐼)

𝜓𝜓
�

𝐼𝐼𝑖𝑖𝑖𝑖
𝜏𝜏𝐹𝐹 − (𝛾𝛾𝐼𝐼)−1

� 

 

𝛽𝛽𝑖𝑖𝑖𝑖 is the transmission rate (secondary infections caused per primary infection per day). αit 

represents the ratio of symptomatic to asymptomatic transmission rates. σ is the inverse of the 

COVID-19’s latent period – the duration between infection and onset of infectiousness. Ψ is the 

share of infections during which the infected person will at some point show symptoms. γI and γA 

represent the rate at which symptomatic and asymptomatic infections lose infectiousness, 

respectively.  

Note that the latent period σ differs from the incubation period – the duration between 

infection and onset of symptoms – which conventionally appears in the SEIR framework in its 

place. The incubation period is appropriate when only symptomatic cases are infectious and is 

preferred because it is, in principle, observable. Given the significant role of pre-symptomatic 

infectiousness in COVID-19 transmission, however, the latent period is the relevant concept for 

epidemic dynamics. In our model, the timing of symptom onset plays no role in disease 

transmission, all else equal, and only affects the eventual outcome of an infection.  

A share of symptomatic infections are fatal. The infected population transitions into the 

terminal (T) group according to the infection fatality ratio μit (scaled by Ψ because asymptomatic 

infections are non-fatal by definition). After a period, these terminal infections end in death. τF 

represents the number of days between symptom onset and death in fatal cases. Note that the T 

and D compartments are used only to calculate the death toll with the appropriate lag between 

infection and death; these populations do not feed back into other parts of the system.  

 

II.B. Behavioral Responses 

We extend the traditional compartmental model by relaxing the assumption that the 

transmission rate is independent of the dynamics of an epidemic. Motivated by the strong 



empirical evidence of a fear-driven behavioral response to local outbreaks4 – which we confirm 

in section 7 – we allow agents in the model to adjust their exposure risk based on the progression 

of their local epidemic. This extension of the model is important for generating plausible policy 

counterfactuals, as we attempt to do in section 9. Successful interventions to lower disease 

transmission improve epidemiological outcomes but consequently reduce the fear of infection, 

inducing an offsetting behavioral response. Ignoring this offset leads to overstatement of the 

effects of interventions. 

The transmission rate 𝛽𝛽𝑖𝑖𝑖𝑖 is the product of the contact rate 𝜅𝜅𝑖𝑖𝑖𝑖 and the infection rate 𝜁𝜁𝑖𝑖𝑖𝑖: 

 

𝛽𝛽𝑖𝑖𝑖𝑖 = 𝜅𝜅𝑖𝑖𝑖𝑖𝜁𝜁𝑖𝑖𝑖𝑖 (1) 

 

We define 𝜅𝜅𝑖𝑖𝑖𝑖 as the daily probability that two persons residing in state i at time t will be in 

sufficiently close physical proximity to each other for a sufficient period of time to enable 

disease transmission – an event we refer to as a contact. We define 𝜁𝜁𝑖𝑖𝑖𝑖 as the probability that 

disease transmission actually occurs in one contact between a susceptible person and an 

infectious person. The effective reproduction number ℛ𝑖𝑖𝑖𝑖 – the number of secondary infections 

per infection – is given by: 

 

ℛ𝑖𝑖𝑖𝑖 =
𝛽𝛽𝑖𝑖𝑖𝑖
𝛾𝛾𝑖𝑖𝑖𝑖

(2) 

 

where 𝛾𝛾𝑖𝑖𝑖𝑖 is the duration of infectiousness weighted by state i’s relative proportion of 

compartments A and I at time t.  

We model the contact rate as a function of an endogenous response to local infection risk and 

two exogenous behavioral factors: precautionary social distancing and the response to NPIs. The 

precautionary component captures changes in the contact rate driven by general fear and 

uncertainty about the pandemic, as opposed to specific concerns about local infection risk. The 

NPI component captures the impact of state and local social distancing mandates and other 

interventions. 

We assume the contact rate takes the following functional form: 

                                                           
4 See Goolsbee and Syverson (2020). 



 

𝜅𝜅𝑖𝑖𝑖𝑖 = exp(Ω𝑖𝑖𝑖𝑖 ⋅ Φ𝑖𝑖𝑖𝑖 ⋅ (𝐶𝐶𝑖𝑖𝑖𝑖)𝜌𝜌) (3) 

 

where Ω𝑖𝑖𝑖𝑖 is the precautionary component of behavior, Φ𝑖𝑖𝑖𝑖 is the response to NPIs, and 𝐶𝐶𝑖𝑖𝑖𝑖 is the 

total number of confirmed COVID-19 cases. The parameter 𝜌𝜌 determines the responsiveness of 

the contact rate to perceptions of infection risk. We assume agents assess infection risk on the 

basis of confirmed cases rather the true number of infections, which is unknown to agents in the 

model.5 The relationship between the underlying epidemiological dynamics and the observed 

dynamics of confirmed cases Cit is given by, 

 

𝐶𝐶𝑖𝑖𝑖𝑖 =  �𝜆𝜆𝑖𝑖𝑖𝑖𝜎𝜎𝐸𝐸𝑖𝑖(𝑖𝑖−𝜏𝜏𝑆𝑆−𝜏𝜏𝑃𝑃)

𝑇𝑇

𝑖𝑖=0

 

 

where 𝜆𝜆𝑖𝑖𝑖𝑖 measures the share of new infections that are eventually confirmed through a 

diagnostic test, τS is the duration from the onset of infectiousness to the onset of symptoms, and 

τP is the duration from symptom onset to a positive test result.6  

The precautionary response Ω𝑖𝑖𝑖𝑖 varies over time and across states as a function of the 

characteristics of the local population. For example, older populations may respond more 

strongly to news of a novel infectious respiratory disease. The response to NPIs Φ𝑖𝑖𝑖𝑖 depends on 

the set of interventions that have been implemented in a state and on parameters governing the 

impact of different NPIs on the contact rate. We define, 

 

Ω𝑖𝑖𝑖𝑖 = 𝝎𝝎𝑖𝑖𝑋𝑋𝑖𝑖 

Φ𝑖𝑖𝑖𝑖 = 𝝓𝝓𝑃𝑃𝑖𝑖𝑖𝑖 

 

                                                           
5 We considered several alternatives for which observed outcome drives perceptions of local infection risk: new 
cases (instead of or in addition to total cases), including total or new deaths, and normalizing by population. We 
view this an empirical question. In our empirical estimates (see section VI.B) we found that all choices imply 
roughly the same aggregate response. We therefore select the most straightforward option: total confirmed cases. 
6 Note that α-1 + τS is equal to the incubation period – the time between infection and the onset of symptoms. 



where 𝑋𝑋𝑖𝑖 is a set of fixed attributes characterizing the local population and 𝑃𝑃𝑖𝑖𝑖𝑖 is a set of 

indicators characterizing the set of NPIs in effect in i. Taking logs of (1) and substituting for Ω𝑖𝑖𝑖𝑖 

and Φ𝑖𝑖𝑖𝑖 yields, 

 

ln 𝜅𝜅𝑖𝑖𝑖𝑖 = 𝝎𝝎𝑖𝑖𝑋𝑋𝑖𝑖 + 𝝓𝝓𝑃𝑃𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑐𝑐𝑖𝑖𝑖𝑖 (4) 

 

Relating behavior back to disease transmission, substituting (1) and (3) into (2) and taking 

logs yields the following expanded definition of the reproduction number: 

 

lnℛ𝑖𝑖𝑖𝑖 = 𝝎𝝎𝑖𝑖𝑋𝑋𝑖𝑖 + 𝝓𝝓𝑃𝑃𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑐𝑐𝑖𝑖𝑖𝑖 + ln 𝜁𝜁𝑖𝑖𝑖𝑖 − ln 𝛾𝛾𝑖𝑖𝑖𝑖 (5) 

 

Throughout our analysis, we take the infection rate 𝜁𝜁𝑖𝑖𝑖𝑖 as exogenous and given. In practice, 

𝜁𝜁𝑖𝑖𝑖𝑖 is likely affected by the same kinds of precautionary and endogenous responses as 𝜅𝜅𝑖𝑖𝑖𝑖. While 

the NPIs we consider below explicitly target the contact rate, other significant interventions 

(such as mask mandates) target the infection rate. Ideally, we would specify an expression 

analogous to (4) for 𝜁𝜁𝑖𝑖𝑖𝑖 and estimate its parameters explicitly. This is not possible, however, due 

to the limitations of available epidemiological data from the early stages of the pandemic. These 

limitations also pose serious challenges for direct estimation of (5). We discuss these data issues 

in section VI.B. 

 

II.C. Employment 

The necessity of physical proximity for a wide range of economic activities means that 

voluntary or governmental efforts to limit contacts in response to a pandemic impose 

unavoidable economic costs. Indeed, many studies of the effects of COVID-19 use measures of 

economic behavior, such as visits to retail establishments, as proxies for the contact rate. More 

broadly, there is some tradeoff between epidemiological gains and economic costs. The response 

to COVID-19 provides ample evidence that policymakers view this tradeoff as a meaningful 

constraint on their ability to deploy NPIs to combat a pandemic.  

No analysis of this tradeoff can answer the question of whether the economic costs of a 

particular intervention are “worth it” given some epidemiological benefits, which is not an 

analytical question. However, understanding the relative tradeoffs offered by different types of 



interventions allows policymakers to design a pandemic response that maximizes the ratio of 

gains to costs. In order to assess these tradeoffs, we incorporate local employment outcomes into 

our behavioral SEIR framework. Reasoning that the same factors that drive 𝜅𝜅 – precautionary 

behavior, NPIs, and local infection risk – are also the key determinants of economic behavior, we 

posit an analogous relationship to (2) for employment, which we denote by 𝑊𝑊𝑖𝑖𝑖𝑖 and define as the 

number of people working in state i at time t: 

 

ln𝑊𝑊𝑖𝑖𝑖𝑖 = 𝝎𝝎𝑖𝑖
𝑊𝑊𝑋𝑋𝑖𝑖 + 𝝓𝝓𝑾𝑾𝑃𝑃𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑊𝑊𝑐𝑐𝑖𝑖𝑖𝑖 (6) 

 

The addition of (3) allows us to assess the epidemiological and the economic effects of 

interventions in a single, integrated framework. In addition, (3) takes into account the 

relationship between local infection risk fears and economic outcomes, which – like the 

relationship with contact measures – emerges clearly in empirical studies. This allows for the 

possibility that effective suppression of an epidemic with economically costly NPIs may yield 

economic benefits over the long run. 

 

III. Data 
This section provides an overview of the data underlying our analysis. We rely on mainly three 

types of data: daily counts of COID-19 cases, tests, and deaths; daily measures of social behavior 

and employment; and information on NPIs implemented by state and local governments. 

 

III.A. Epidemiological Data  

Confirmed COVID-19 cases and deaths form the starting point of our epidemiological 

estimates. A number of organizations track the spread and death toll of COVID-19 in the United 

States over time. Rather than rely on a single source for our analysis, we draw on four separate 

sources: Johns Hopkins’s Center for Systems Science and Engineering, the New York Times, the 

COVID Tracking Project, and USAFacts. These sources employ different data collection 

methods and assumptions and often differ in terms of the number and timing of new cases or 

deaths. We obtain counts of the number of COVID-19 tests from the COVID Tracking Project. 



We correct for data reporting anomalies resulting from changes in states’ standards for 

reporting of deaths, causing large single-day spikes.7 On those days, the value for deaths is 

linearly interpolated across previous and future observations, and the number of deaths in excess 

of this value reported on that day are distributed to all previous days in proportion to measured 

deaths. To avoid potential bias from idiosyncrasies in one source’s estimates, we isolate the 

common trend in confirmed cases and deaths by taking the first principle component of all four 

sources’ estimates. 

 

III.B. Contact and Employment Data 

Our model requires state-level, daily data on contact rates and employment. To estimate 

parameters reliably, we require greater geographic detail than the state level. However, there are 

no standard, high-frequency measures of population contact rates, let alone official statistics. 

Official measures of employment, meanwhile, are available only at monthly frequency and 

geographic detail only with a long lag. We therefore rely on a range of nontraditional data 

sources. We collect a dozen daily, county-level measures derived primarily from mobile device 

location data, business and financial services software, payroll service providers, and web search 

activity. As we describe in section V, we combine these various indicators to construct 

composite indexes of the contact rate and employment. Here we provide an overview of our 

sources and the measures underlying those indexes. 

 

Couture and others (2020)/PlaceIQ We use a county-level measure of mobile device 

“exposure” developed by Couture and others (2020) based on mobile device location data from 

PlaceIQ. The device exposure index (DEX) reflects the average number of devices that visited 

locations also visited by residents of a county. It is an indirect measure of the extent to which 

individuals are congregating in common locations.  

SafeGraph We construct county-level measures of time spent at home, time spent at a fixed 

location outside the home during regular workday hours (a proxy for work), and distance 

                                                           
7 For New Jersey, an anomaly appears on June 25th in the New York Times and COVID Tracking Project data, and on 
June 27th for USAFacts. For New York, an anomaly appears on June 30th in the New York Times and USAFacts data. 
For Texas, all sources report an anomaly on July 27th. 



travelled using mobile device location data from SafeGraph.8 SafeGraph assigns each device a 

“home” based on “common nighttime location.” Data are available at the census block group-

level. We aggregate to county-level weighting by number of devices. 

Google Mobility We use county-level measures of time spent at residential locations and 

time spent at workplace locations from the Google Community Mobility Reports.9  

Unacast We use county-level measures of “encounter density” and distance travelled derived 

from mobile device location data from Unacast.10 Encounter density is a measure of physical 

proximity between persons defined as average number of times an individual is within 50 meters 

another person, normalized by a county’s physical size and relative to the pre-COVID national 

average. 

Homebase We construct county-level measure of small business employment using data 

from Homebase, an employee scheduling and time-tracking software company. Homebase 

provides anonymized daily data at individual worker level. We limit our sample to workers at 

firms with at least 200 hours worked between January 12 and February 22.11 We define 

employment as the number of workers with positive hours and aggregate to the county level 

based on firm zip code. 

Opportunity Insights We use a county-level measure of employment workers from the 

Opportunity Insights Economic Tracker developed by Chetty and others (2020).12 This measure 

is based on data from payroll service providers Paychex and Intuit; Earnin, a personal financial 

management company with access to clients’ payroll information; and Kronos, which provides 

employee time management services to business. We obtain this measure as a seven-day average 

and estimate daily values based on the pseudoinverse of the moving average matrix. 

Google Trends We construct daily proxies for job loss and hiring based on web search 

intensity from Google Trends.  For job loss, we obtain data on searches that contain any of the 

                                                           
8 https://www.docs.safegraph.com/docs/social-distancing-metrics 
9 https://www.google.com/covid19/mobility 
10 https://www.unacast.com/covid19/social-distancing-scoreboard 
11 We define a “firm” as the aggregate of all of a single company’s establishments in the same industry and county. 
12 https://www.tracktherecovery.org 

https://www.docs.safegraph.com/docs/social-distancing-metrics
https://www.google.com/covid19/mobility/
https://www.unacast.com/covid19/social-distancing-scoreboard
https://www.tracktherecovery.org/


terms, “file for unemployment,” “unemployment benefits,” or “unemployment insurance.” For 

hiring we obtain data on searches that contain any of the terms, “W-4,” “W-9,” or “I-9” (with or 

without hyphens). Google Trends provides indexes of search intensity by Nielsen designated 

market area (DMA), which are considerably broader than counties. We use the same index for all 

counties within a DMA.  

III.C. Non-Pharmaceutical Interventions 

We use information on NPIs issued by state governments from Fullman and others (2020) 

and NPIs issued by county, municipal, or other substate government entities from Keystone 

Strategy.13 We extend the Fullman and others (2020) state data to the county level for state 

government NPIs that applied only to specified counties. We exclude advisory policies and 

recommendations, as well as mandates that apply to specific subpopulations (typically 

“vulnerable” persons or those above a certain age). 

State and local governments enacted a wide range of NPIs in response to COVID-19. We 

focus on three major interventions: school closures, stay-at-home (or shelter-in-place) orders, 

and closures of all non-essential businesses. While most individual government actions were 

idiosyncratic and limited (for example, closing casinos or limiting indoor restaurant service), 

these three NPIs were widely adopted (see Figure 2) and imposed meaningful constraints on a 

broad range of social and economic activities. Although there is some variation in the procedures 

for closing schools, the types of activities permitted under stay-at-home orders, and the 

classification of businesses as essential or non-essential, the key features of each NPI are 

consistent across jurisdictions and across data sources.  

 

IV.  Case Confirmation Rate and Infections 
The number of confirmed COVID-19 cases understates the true number of infections. 

Asymptomatic cases are unlikely to be detected in the absence of widespread preventative testing 

and individuals experiencing mild COVID-19 symptoms may choose not to seek a test, 

especially when testing capacity is limited and restricted to severe cases (as in the early days of 

the outbreak in the US). If underreporting of infections is constant over time, it does not affect 

our modeling outside of herd immunity dynamics, which are not important in the early months of 

                                                           
13 https://www.keystonestrategy.com/coronavirus-covid19-intervention-dataset-model 

https://github.com/COVID19StatePolicy/SocialDistancing
https://www.keystonestrategy.com/coronavirus-covid19-intervention-dataset-model/


an epidemic (the focus of this paper). But variation over time in the extent of underreporting 

leads to spurious changes in transmission rates inferred from case counts even if growth in actual 

infections is unchanged. Such variation is almost certainly present in the period we examine, 

which saw a rapid increase in the number of people being tested for COVID-19.  Estimates of the 

spread of SARS-CoV-2 over this period based on case counts alone are therefore likely to be 

biased upwards.  

Confirmed COVID-19 deaths are less likely than cases to suffer from time-varying 

mismeasurement. For that reason, some COVID-19 modelers eschew confirmed cases altogether 

and rely entirely on counts of confirmed deaths (Gu 2020). Our approach lies somewhere in the 

middle and draws from both case and death data.  

First, for each state i at time t, we estimate the case confirmation rate λit: 

 

𝜆𝜆𝑖𝑖𝑖𝑖 =
𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖(𝑖𝑖−1)

�𝐷𝐷𝑖𝑖(𝑖𝑖+𝜏𝜏𝐹𝐹−𝜏𝜏𝑃𝑃) −  𝐷𝐷𝑖𝑖(𝑖𝑖−1+𝜏𝜏𝐹𝐹−𝜏𝜏𝑃𝑃)�𝜇𝜇𝑖𝑖−1
 

 

where Cit is cumulative confirmed cases, Dit is cumulative confirmed deaths, τF is the average 

number of days from symptom onset to death in fatal cases, τP is the average number of days 

from symptom onset to a positive test result, and μt is the current infection fatality ratio. 

Following clinical evidence, we assign a value of 19 days to τF and a value of 7 days for τP. We 

assume the infection fatality ratio begins at 0.8 percent and falls linearly to 0.025 percent from 

mid-April to mid-August. See Section VI.A for further details on parameter selection.  

Using state-level data on cases, deaths, and tests, we model the case confirmation rate as a 

function of national-level variation over time (reflecting nationwide trends in testing 

infrastructure and capacity) and the test positivity rate (the share of tests with a positive result). 

When testing capacity is limited relative to the size of the current outbreak, tests are reserved for 

the most severe cases, leading to high positivity rates. As relative capacity expands, we expect to 

positivity rate to fall as the eligibility criteria for testing broadens. 

We estimate the following regression: 

 

ln 𝜆𝜆𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 + 𝜃𝜃
𝐶𝐶𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖𝑖𝑖

+ 𝜀𝜀𝑖𝑖𝑖𝑖 



 

Where the wt are calendar week fixed effects, 𝑇𝑇𝑖𝑖𝑖𝑖 is the number of tests performed, and 𝐶𝐶𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖𝑖𝑖

 is the 

test positivity rate. We smooth both λit and  𝐶𝐶𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖𝑖𝑖

 with a centered two-week moving average.14 We 

estimate a value (standard error) of -0.57 (0.06) for 𝜃𝜃, which represents the semi-elasticity of 

confirmation rate with respect to the positivity rate. To estimate the true number of new 

infections, we fit values of 𝜆𝜆𝑖𝑖𝑖𝑖 for each state over time and scale the number confirmed new 

cases by its inverse. We then shift values backwards in time by 𝜏𝜏𝑃𝑃 (set to one week) to reflect the 

date of symptom onset rather than the date of case confirmation.  

 

Figure 3. Estimated daily case confirmation rate 

 
Source: Authors’ calculations. 

 

In the initial days of the epidemic, the true number of new infections was nearly 20 times the 

number of new confirmed cases. This figure fell rapidly as testing infrastructure expanded: by 

early June, the ratio was around 5, with the median state confirming 22 percent of new 

                                                           
14 In reality, time from symptom onset to death follows a wide distribution of outcomes rather than a deterministic 
average; using a moving average allows us to pool deaths and positive tests across a broader span and thus 
capture some of that variation.  



infections.15 To illustrate the common trend in reporting rates and deviations from that trend 

arising from local conditions, Figure 3 plots our estimates of case confirmation rate for New 

York (a state with a severe early outbreak) and Florida (a state with a severe, more recent 

outbreak).  

 

V. Contact Rate and Employment Indexes 
To specify the parameters and historical inputs of the model in section II, we require 

geographically detailed, daily data on the contact rate 𝜅𝜅𝑖𝑖𝑖𝑖 and employment 𝑊𝑊𝑖𝑖𝑖𝑖. To our 

knowledge, no such data exists. Instead, we have an array of unconventional indicators described 

in section III.B. Rather than consider each of these individually, we divide them into two sets, 

one containing measures related to the contact rate and the other containing measures related to 

employment. We then take the first principal component of each set of related indicators and 

interpret the resulting indexes as direct proxies for the daily contact rate and daily employment.  

Underlying measures related to the contact rate include frequency of close physical proximity 

to other mobile devices, time spent at home, and distance travelled. Underlying measures related 

to employment include time spent at workplaces, web searches related to job loss and hiring, and 

direct measures of the number of persons working. For measures derived from mobile device 

data, we generally have multiple versions based on different samples of mobile devices.  

Principal components is a convenient means of summarizing information from multiple 

indicators and extracting common variation.16 Each of our measures captures only one 

dimension of the outcomes we are actually interested in and on its own may contain a misleading 

signal. Moreover, daily measures at the county level are inevitably noisy. Taking the first 

principal component of several measures filters out both misleading idiosyncratic patterns and 

noise using information from all of the inputs. It also allows for geographic variation in the 

relevance of particular indicators, which might depend on place characteristics.17 We construct 

indexes independently for each county, so the weight assigned to any one underlying measure is 

determined by its relationship to the other measures in that county alone.  

 

                                                           
15 Our estimates show a similar though more pronounced trend compared with those of Gu (2020), who estimates 
a national “prevalence ratio” that fell from about 18 on March 1st to 7 on August 1st.  
16 See Lewis, Mertens, and Stock (2020) for a recent application to weekly economic activity. 
17 For example, distance travelled is more closely related to time spent at home in less dense counties. 



Figure 4. Daily employment index and monthly official employment: US total 

Millions 

 
Sources: Bureau of Labor Statistics (BLS); authors’ calculations. 

Notes: Daily employment index values are aggregated from county-level indexes. Monthly official employment 

through July is aggregated from county-level employment from the BLS Local Area Unemployment Statistics. The 

value for August is from the BLS news release. Monthly official employment values are placed on the 12th of each 

month to align with the BLS reference week. 

 

Before constructing the indexes, we normalize all measures relative to their average for the 

same day of the week in early 2020 – generally the 6-week period from January 12 to February 

22, 2020.18 For series with sufficient historical data to identify seasonal patterns, we normalize 

relative to the same day one year earlier. Not all measures are available for counties with small 

populations. We aggregate counties with incomplete data into a single residual county unit by 

state, using whatever data is available and weighting by population.19  

                                                           
18 Measures from Unacast and Google Mobility Reports are already normalized relative to the same day of the 
week over different base periods in early 2020. Measures from SafeGraph are available only from January 20th. 
19 For some small states, the residual “county” is the entire state, for which data is always available. Excluding all 
aggregated counties with incomplete data has no discernible impact on any of the results presented below. 



To construct the contact rate index, we take the first principal component of two measures of 

physical proximity, two measures of time spent at home, and two measures of distance travelled. 

Given these inputs, we interpret the index as reflecting contacts between persons who do not live 

together. To construct the employment index, we use two direct measures of the number of 

persons working, two measures of time spent at workplaces, and measures of unemployment- or 

hiring-related web searches. We then scale the indexes into interpretable units by adjusting the 

(county-level) mean and standard deviation to match those of a series expressed in the desired 

unit. For the contact rate, no such series exists, so we use the measure of encounter density from 

Unacast, which is the closest of our available indicators to a direct measure of contacts. For 

employment, we scale indexes to monthly employment by county in 2020 from the Local Area 

Unemployment Statistics (LAUS). We have sufficient data to construct both indexes beginning 

in late January. 

Figure 1 plots the evolution of the two indexes across counties during the early stages of the 

pandemic. While there is no external data source against which to validate our measure of the 

contact rate, our employment index is effectively a daily proxy for the official monthly estimates 

of county employment. Figures 4 and 5 compare our employment index with official estimates 

from LAUS. Figure 4 plots total US daily employment aggregated from our county employment 

indexes against actual monthly employment since January. Figure 5 plots county-level monthly 

changes in the log of the daily employment index (using the mean for the official employment 

reference week) against actual monthly changes in the log of employment from LAUS. Although 

the underlying indicators are all indirect and partial measures of overall employment, the 

combined index tracks the dynamics of the official series over the first half of 2020 both in 

aggregate and at the county level. 

 



Figure 5. Daily employment index and monthly official employment: monthly log change in 

county employment, February-July 2020 

 
Sources: Bureau of Labor Statistics (BLS); authors’ calculations. 

Notes: To align with the BLS reference week, monthly changes in the daily employment index are calculated based 

on the weekly average for week containing the 12th of each month. 

 

VI.  Parameters 
This section reviews the selection and estimation of the epidemiological and behavioral 

parameters of the model in section II. For the former, we draw on the clinical literature on 

COVID-19 as well as methods from empirical epidemiology. For the latter, we adopt a 

difference-in-differences approach using county-level data. 

 

VI.A. Epidemiological Parameters 

We first select values for parameters that are largely biological in nature – that is, least likely 

to vary according to behavior or policy. We draw on the early and developing clinical COVID-

19 literature where available. Parameter values and sources are shown in Table 1. 

 

 



Table 1. Exogenous parameter definitions and values 

Parameter Definition   Value Source 

 
𝜶𝜶 ratio of asymptomatic to symptomatic 

transmission rates 1 Lee and others (2020), Tan 
and others (2020) 

 
𝝈𝝈 1 𝜏𝜏𝐸𝐸⁄ , where 𝜏𝜏𝐸𝐸 is the noninfectious latent 

period in days 1/2 Peng and others (2020) 

 
𝝍𝝍 symptomatic share of new infections 0.84 He and others (2020) 

 
𝜸𝜸𝑨𝑨 1 𝜏𝜏𝐴𝐴⁄ , where 𝜏𝜏𝐴𝐴 is the infectious period for 

asymptomatic cases in days 1/7 Peng and others (2020) 

 
𝜸𝜸𝑰𝑰 1 𝜏𝜏𝐼𝐼⁄ , where 𝜏𝜏𝐼𝐼 is the infectious period for 

symptomatic cases in days 1/7 Peng and others (2020) 

 
𝝉𝝉𝑺𝑺 duration from infectiousness onset to 

symptom onset 3 Lauer and others (2020), 
Peng and others (2020)  

 
𝝉𝝉𝑭𝑭 duration from symptom onset to death for 

severe cases in days 19 Zhou and others (2020) 

 
𝝉𝝉𝑷𝑷 duration from symptom onset to positive test 

result for confirmed cases 7 Assumed 

 
𝝁𝝁𝒕𝒕 infection fatality ratio 0.008-0.025 Gu (2020)  

 

We assume that transmission rates and duration of infectiousness parameters are the same for 

symptomatic and asymptomatic cases. In reality, it is likely that infected persons who are not 

experiencing symptoms transmit the virus as different rates, but the sign of any such difference is 

ambiguous. Some COVID-19 symptoms – such as coughing – directly increase the probability 

the transmission. However, symptomatic individuals may exhibit greater precautionary behavior, 

voluntarily limiting their contacts. Clinical evidence so far does not resolve this ambiguity; see 

Lee and others (2020) and Tan and others (2020). We retain the division of the infected 

population into these two groups to allow for extension of the model as additional evidence 

becomes available.  

Of the parameters included in Table 1, only the infection fatality ratio μt is time-dependent. 

The infection fatality ratio depends not just on the biology of the disease but also on policy, 

medical advances, and epidemic dynamics. We base our assumption on the work of Gu (2020), 



one of the most consistently accurate COVID-19 forecast models.20 We assume the infection 

fatality rate was 0.8 percent through mid-April and then declined linearly to a terminal value of 

0.025 percent in mid-August. This decline reflects improvements in COVID-19 outcomes over 

time due to a number of factors, including compositional shifts in the demography of new 

infections, improved treatments, and expanded hospital capacity.  

μt is used to estimate case confirmation rates as described in Section IV. Recall that 

infections are imputed using estimated case confirmation rates, which capture averages of time- 

and positivity rate effects across states. This means that effective infection fatality ratios, 

calculated as actual new deaths divided by estimated new infections, vary slightly by state (hence 

the indexation by i in the differential equations presented in Section 3). When calculating 

marginal deaths in counterfactual scenarios, we use the simple average of the overall headline 

infection fatality ratio and the state-specific effective infection fatality ratio. 

The final SEIR parameter is the daily transmission rate 𝛽𝛽𝑖𝑖𝑖𝑖. This parameter varies with 

behavior and is responsive to local epidemiological conditions, and thus varies widely across 

time and place. To obtain historical estimates of 𝛽𝛽𝑖𝑖𝑖𝑖, we first estimate the effective reproduction 

number ℛ𝑖𝑖𝑖𝑖. From (2), 𝛽𝛽𝑖𝑖𝑖𝑖 is given by, 

 

𝛽𝛽𝑖𝑖𝑖𝑖 = ℛ𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖 

 

We estimate ℛ𝑖𝑖𝑖𝑖 using the method described in Cori and others (2013) and implemented 

using the authors’ software package EpiEstim. The estimation framework is parsimonious and 

only requires data on new infections and an estimate of the distribution of serial intervals (the 

time between symptom onset in successive cases) for the virus. For each state, we iterate over 

hundreds of possible combinations of gamma-distributed serial interval means and standard 

deviations. We then simulate the SEIR model for each possible path of Rit, choosing the serial 

interval distribution that best matches the observed trajectory of each state-level epidemic.21  

 

                                                           
20 See https://www.covid19-projections.com/about/#historical-performance for a review of model accuracy.  
21 The loss function minimizes the weighted mean of absolute error in two measures of infections: cumulative 
infections for the most recent date of data (80 percent weight) and new cases over the most recent three days of 
data (20 percent weight). This arbitrary weighting scheme is chosen to target both the level and slope of the 
epidemic curve.  

https://www.covid19-projections.com/about/%23historical-performance


VI.B. Behavioral Parameters 

We now turn to the estimation of the behavioral parameters 𝝓𝝓, 𝜌𝜌, and 𝝎𝝎𝑖𝑖 from sections II.B 

and II.C. We adopt an event study design to estimate the effects of policy interventions 𝝓𝝓, using 

variation in the implementation of NPIs across counties and over time to capture the dynamic 

response during the month following an intervention. We estimate the response to local infection 

risk 𝜌𝜌 directly based on the number of confirmed COVID-19 cases by county. The time path of 

precautionary behavior 𝝎𝝎𝑖𝑖 is captured by calendar date fixed effects interacted with county 

characteristics. 

Ideally, we would estimate the relationship between behavior and COVID-19 transmission 

directly based on county-level ℛ𝑖𝑖𝑖𝑖 and (5). However, the limitations of our data make this 

impractical. The procedure for obtaining historical estimates of ℛ𝑖𝑖𝑖𝑖 (described in sections IV and 

VI.A) is only feasible given a sufficient number of confirmed cases. For many counties, this 

threshold is not reached until late March – by which time most NPIs had already been 

implemented – and for a substantial number it is never reached.22 Altogether, our sample for 

estimates on ℛ𝑖𝑖𝑖𝑖 is less than half the size of the full sample and drops most school closure and 

non-essential business closure events and many stay-at-home order events. We therefore estimate 

𝝓𝝓, 𝜌𝜌, and 𝝎𝝎𝑖𝑖 using the contact rate 𝜅𝜅𝑖𝑖𝑖𝑖 and (4) instead and include estimates from (5) only for 

comparison. 

Reformulating the policy component in equations (4) and (6) as event studies of the three 

NPIs – and adding superscript 𝜅𝜅 to the parameters in (4) – leads to the following estimating 

equations for the contact rate and employment, 

 

ln𝜅𝜅𝑖𝑖𝑑𝑑 = 𝜂𝜂𝑖𝑖
𝜅𝜅 + �𝜔𝜔𝑥𝑥𝑑𝑑

𝜅𝜅 𝑋𝑋𝑥𝑥𝑖𝑖
𝑥𝑥
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𝑗𝑗𝑗𝑗
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 𝑗𝑗≠−1

�
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+ 𝜌𝜌𝜅𝜅𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜐𝜐𝑖𝑖𝑖𝑖𝜅𝜅 (7) 
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22 This problem is much less severe for the state-level estimates of ℛ𝑖𝑖𝑖𝑖  we use in the SEIR model. 



𝜅𝜅𝑖𝑖𝑖𝑖 is the contact rate index and 𝑊𝑊𝑖𝑖𝑖𝑖 is the employment index for county i on day t (see 

section V). 𝜂𝜂𝑖𝑖 and 𝜔𝜔𝑥𝑥𝑖𝑖 are county and calendar date fixed effects, respectively. 𝑋𝑋𝑥𝑥𝑖𝑖 contains a 

column of ones and a set of county characteristics indexed by x. The three NPIs are indexed by j. 

The number of days before or after an NPI is issued is indexed by k. 𝑃𝑃𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗 is an indicator equal to 

one if NPI j is in effect in county i on date t, which is k days from the date issued. For 𝑘𝑘 ≥ 0, the 

coefficients 𝜙𝜙𝑗𝑗𝑗𝑗 trace out the dynamic response to j over the 30 days following announcement of 

the NPI. For 𝑘𝑘 < 0, the coefficients 𝜙𝜙𝑗𝑗𝑗𝑗 capture systematic differences between counties that 

issued NPIs and those that did not over the month immediately before the NPI was issued. Dates 

more than 31 days from the issuance of the NPI are binned in k = -31 and k = 31 and reflected in 

the coefficients 𝜙𝜙𝑗𝑗,−31 and 𝜙𝜙𝑗𝑗,31. 𝑐𝑐𝑖𝑖𝑖𝑖 is the inverse hyperbolic sine of 𝐶𝐶𝑖𝑖𝑖𝑖, the total number of 

confirmed COVID-19 cases in county i.23  

𝑋𝑋𝑥𝑥𝑖𝑖 contains information on the demographic, economic, and political characteristics of 

counties. In our main estimates, it includes the shares of the population aged 5 to 17 and aged 65 

or over; the shares of workers in leisure and food services, in essential industries, and in 

educational services; and the Republican Party vote share in the 2016 presidential election.24 The 

precautionary behavior terms 𝜔𝜔𝑥𝑥𝑖𝑖𝑋𝑋𝑥𝑥𝑖𝑖 capture nationwide common variation as well as county-

specific patterns driven by heterogeneity across the characteristics in 𝑋𝑋𝑥𝑥𝑖𝑖. These terms also 

absorb the average effects of all government actions not in Φ𝑖𝑖𝑖𝑖, the event study component. This 

includes non-mandatory guidance and an array of restrictions on particular social and economic 

activities (such as public events or close-contact personal services). Unlike the broad mandated 

closures we consider in our analysis of NPIs, the details of these limited actions vary widely 

across jurisdictions and generally defy classification into distinctive treatments, and so cannot be 

separately identified. Though we will refer to the estimated 𝜔𝜔𝑥𝑥𝑖𝑖𝑋𝑋𝑥𝑥𝑖𝑖 simply as “precautionary 

behavior” in our discussion, it is important to keep in mind that our concept of “precaution” 

encompasses a range of government actions. 

                                                           
23 The inverse hyperbolic sine 𝑐𝑐 = ln�𝐶𝐶 + √1 + 𝐶𝐶2� has similar properties to a log transformation but is defined at 
zero.   
24 Demographic and employment data are from the American Community Survey. Essential industries are defined 
based on guidance from the Department of Homeland Security. Election data are from the MIT Election Data and 
Science Lab. 



Figure 5. Event study estimates: contact rate 

 
Source: Authors’ calculations. 

Notes: This figure shows coefficient estimates and 95% confidence intervals for 𝜙𝜙𝑗𝑗𝑗𝑗𝜅𝜅  from (7). 
Standard errors are clustered at the county level. 

 



Figure 5 reports NPI event study estimates for the contact rate from (7).25 Over the week 

following an order to close schools, the contact rate declined between 5 and 10%. Stay-at-home 

orders had larger and more immediate effects, with a sharp fall in contacts of more than 10% two 

days after the order was issued – generally corresponding to the day after the order went into 

effect. For both school closures and stay-at-home orders, roughly half the decline persisted after 

30 days. The effects of non-essential business closures were smaller – a decline of around 5% – 

but somewhat more persistent. 

 

Figure 6. Event study estimates for stay-at-home orders 

Contact rate Reproduction number (R) 

 
Source: Authors’ calculations. 

Notes: The left panel shows coefficient estimates and 95% confidence intervals for 𝜙𝜙𝑗𝑗𝑗𝑗𝜅𝜅  from (7) for j = stay-at-
home order. The right panel shows analogous estimates based on (5) instead of (4).  
Standard errors are clustered at the county level. 

 

Figure 6 compares the response to stay-at-home orders estimated from the contact rate and 

(4) with estimates from the reproduction number and (5). Because stay-at-home orders were 

typically enacted later than the other two NPIs, the sample available for estimates using ℛ𝑖𝑖𝑖𝑖 is 

larger than for the other two NPIs, though still much smaller than the full sample.26 For 

readability, we limit the plot to 10 pre periods, as the standard errors of the ℛ𝑖𝑖𝑖𝑖 estimates become 

                                                           
25 Appendix Figure A1 reports estimates from the model excluding county characteristics, i.e. 𝑋𝑋𝑥𝑥𝑖𝑖 = 𝟏𝟏��⃗ . 
26 We report estimates for ℛ𝑖𝑖𝑖𝑖  for all three NPIs in Appendix Figure A3. 



very large in earlier periods. We estimate that ℛ𝑖𝑖𝑖𝑖 declined about 10% over the weeks following 

a stay-at-home order – roughly the same magnitude as the estimated response of 𝜅𝜅𝑖𝑖𝑖𝑖, though with 

a different time pattern.27 Given the degree of uncertainty, which makes it impossible to assess 

prior trends in the estimates for ℛ𝑖𝑖𝑖𝑖, this comparison is at best suggestive, but is nevertheless 

reassuring.  

Figure 7 reports NPI event study estimates for employment.28 Employment fell gradually 

following the announcement of school closures, eventually reaching a persistent decline of 

around 1% after two weeks. Stay-at-home orders had somewhat larger effects, with employment 

falling nearly 1.5% in the days following an order, though one third of the decline was reversed 

after three weeks. Non-essential business closures had the largest employment effects, inducing a 

persistent decline of 2%. 

The estimates for non-essential business closures indicate that employment began falling in 

the days before an order was issued. We attribute this to the effectively phased introduction of 

the policy in many jurisdictions. State and local governments issued a broad range of restrictions 

on businesses and public venues that were more limited than blanket non-essential business 

closures, including highly targeted interventions affecting only a handful of businesses (such as 

closing casinos or fairgrounds), restrictions on particular activities (such as in-person dining), 

and mandated closure of entire classes of business (such as beauty salons, hairdressers, and other 

close-contact personal services). In most cases, implementation of the full non-essential business 

closures we consider in our analysis was immediately preceded by one or more of these more 

limited restrictions. For example, Connecticut issued a statewide non-essential business closure 

on March 20th. This followed three prior orders closing particular types of businesses: on March 

16th, fitness studios and movie theaters were ordered to close; on March 18th, this was expanded 

to shopping malls, bowling alleys, and other public venues; on March 19th, this was expanded to 

hairdressers, estheticians, and other personal services. This example is typical. In the 

jurisdictions for which we have reliable data on all forms of business restriction, three quarters of 

non-essential business closures were preceded by lesser restrictions.  

                                                           
27 The difference in timing arises at least in part from the construction of historical values for ℛ𝑖𝑖𝑖𝑖 , which are based 
on a rolling time window. 
28 Appendix Figure A2 reports estimates from the model excluding county characteristics, i.e. 𝑋𝑋𝑥𝑥𝑖𝑖 = 𝟏𝟏��⃗ . 



Figure 7. Event study estimates: employment 

 
Source: Authors’ calculations. 

Notes: This figure shows coefficient estimates and 95% confidence intervals for 𝜙𝜙𝑗𝑗𝑗𝑗𝑊𝑊 from (8). 
Standard errors are clustered at the county level. 

  



Table 2 reports estimates for 𝜌𝜌𝜅𝜅 and 𝜌𝜌𝑊𝑊, the elasticity of the contact rate and of employment 

with respect to local infection risk.  

 

Table 2. Estimated response to local infection risk 

 Estimate Std. Err. 

Contact rate (𝜌𝜌𝜅𝜅) -0.0541 0.0045 

Employment (𝜌𝜌𝑊𝑊) -0.0048 0.0011 

 

Here we note only that these estimates have the expected sign and the magnitudes are plausible. 

We discuss the implied local infection risk response in the next section.  

 

VII. The Response to COVID-19 
In this section, we assess the initial policy response to COVID-19 using the epidemiological and 

empirical framework described above. We have two objectives: First, to estimate what benefits 

and harms can reasonably be attributed to government as opposed to voluntary action. Second, to 

provide useful insights to policymakers managing the current and any future infectious disease 

outbreaks. 

 

VII.A. Social and Economic Responses to the Pandemic 

Using the estimated coefficients from (7) and (8), we decompose the aggregate declines in 

the contact rate and employment since the beginning of March into contributions from the three 

behavioral components: state and local NPIs, response to local infection risk, and precautionary 

behavior.29 Figure 8 shows the results of this decomposition. We find that the early declines in 

the contact rate and employment in mid-March were primarily precautionary.30 The contact rate 

fell rapidly before there were substantial numbers of confirmed cases and before the introduction 

of most NPIs. We estimate that these precautionary changes in behavior explain 80% of the total 

decline in the contact rate in the middle two weeks of March. 

                                                           
29 Aggregated values for the contact rate are weighted by county population. Aggregated vales for employment are 
weighted by average county employment from December 2019 to February 2020. 
30 Recall that the precautionary component also includes the effects of state and local government actions other 
than three major NPIs considered explicitly in the analysis, such as issuing warnings and advice or imposing narrow 
restrictions on commercial activity.  



As the number of COVID-19 cases surged in the second half of March and the geographic 

concentration of cases became apparent, the behavioral response shifted from nationwide fears to 

localized concerns reflecting the severity of local outbreaks. When the contact rate reached its 

lowest point in mid-April – a fall of almost 85% from the beginning of March – about 73% of 

the cumulative decline was attributable to precautionary behavior and 20% to local infection risk. 

The final component, state and local NPIs, explains only 7% of the change in the contact rate 

through mid-April.  

 

Figure 8. Decomposition of the response to COVID-19 

Contribution to log difference from March 1st, 7-day average 

Contact Rate Employment 

 
Source: Authors’ calculations. 

 

The decline in employment initially followed a pattern similar to the contact rate, lagging a 

few days behind. Precautionary behavior explains about 80% of the 11% fall in employment 

between March 8th and March 22nd.  The two outcomes diverge beginning in late March due to 

the effects of NPIs – in particular, the employment impact of mandated business closures. By 

mid-April, employment was 20% below its level in early March. The response to local infection 

risk explains one fifth of this decline, the same as its contribution to the fall in the contact rate. 

State and local NPIs explains nearly 15%, more than double their contribution to the fall in the 



contact rate. Thus, on average NPIs appear to have been somewhat inefficient in terms of 

employment loss relative to social distancing gains. We return to this subject below. 

 

Figure 9. Decomposition of the contact rate response to COVID-19 by state 

Average contribution to log difference from March 1st  

 
Source: Authors’ calculations. 

 

 

Figures 9 and 10 present the same decomposition of the contact rate and employment at the 

state level, averaging contributions over the period March 1st to May 31st. In general, plains 

states and the south central region experienced the smallest declines, while northeastern states – 

along with Nevada, Colorado, and Hawaii – experienced the largest. Cross-state variation in the 

magnitude of decline in contact rates and, to a lesser extent, employment is driven largely by 



differences in the precautionary component. Variation in the contribution of NPIs is much 

greater for employment than for the contact rate. This difference reflects the role of non-essential 

business closures, which were less widely adopted than the other NPIs (see Figure 2) and had 

small effects on the contact rate but large effects on employment.  

 

Figure 10. Decomposition of the employment response to COVID-19 by state 

Average contribution to log difference from March 1st  

 
Source: Authors’ calculations. 

 

Figures 11 and 12 highlight two key drivers of heterogeneity in precautionary behavior: 

political preferences and industry mix. Figure 11 plots the average (county-level) contribution of 

precautionary behavior to the change in the contact rate by quartile of Republican Party vote 

share in the 2016 presidential election. The initial precautionary decline in contact rates in mid-



March occurred at roughly the same rate nationwide but diverged along political lines beginning 

in the last week of March. The most Republican-leaning counties experienced no further declines 

after mid-March, while the least Republican-leaning counties continued reducing contacts 

through early April. Precautionary concerns began to recede across all counties in the second 

half of April, with recovery proceeding somewhat faster in more Republican-leaning counties. 

By the end of May, the precautionary effect on contact rates had largely dissipated in the most 

Republican-leaning counties even as it depressed contact rates by around 50% in the least 

Republican-leaning.  

 

Figure 11. Political preferences and precautionary changes in the contact rate 

Contribution to log difference from March 1st, 7-day average  

 
Source: Authors’ calculations. 

 

Figure 12 plots the average precautionary behavior contribution to the change in the 

employment by quartile of the share of county employment in leisure and food services. Because 

these industries provide largely discretionary services that typically require physical proximity, 

they are particularly likely to suffer as a result of voluntary social distancing. We find that the 

precautionary decline in employment was indeed substantially larger and more persistent in 

counties with more workers in leisure and food services. The importance of these industries to 

the economies of Nevada and Hawaii in particular explains the unusually large contribution of 

precautionary behavior the decline in employment in those states in Figure 10. 



 

Figure 12. Industry composition and precautionary changes in employmenta 

Contribution to log difference from March 1st, 7-day average  

 
Source: Authors’ calculations. 

 

Appendix Figures A4 and A5 show variation in precautionary behavior across the five other 

county characteristics we include in our analysis. Figures A6 and A7 shows analogous plots for 

the contribution of NPIs. In general, we do not find strong patterns in the size of the policy 

response. The response was somewhat slower, smaller, and less persistent in the most 

Republican-leaning districts, but these differences are small compared with political variation in 

precautionary behavior. 

 

VII.B. The Impact of NPIs 

Narrowing our focus to the role of policy, we now consider the three types of intervention 

separately and review their epidemiological and economic effects. Figure 1 decomposes the 

estimated effect of state and local NPIs on the contact rate from the previous subsection into 

contributions from each of the three NPIs. The initial policy response consisted largely of school 

closures, which expanded rapidly to cover more than 90% of the population by March 20th. By 

the end of March, more than 70% of the population was also under either a stay-at-home-order, 

non-essential business closure, or both (see Figure 2). We estimate that together these policies 

reduced the daily contact rate by an average of 9% between early March and the end of May, 



accounting for 12% of the total fall in the contact rate. Of this, half was explained by stay-at-

home orders, 28% by school closures, and 22% by non-essential business closures.  

 

Figure 13. Effect of NPIs on the contact rate 

(Log index, March 1st = 0) 

  Total effect of NPIs Decomposition by NPI 

 
 

Source: Authors’ calculations. 

 

To estimate the epidemiological effects of these responses, we use the SEIR model described 

in section II to simulate each state’s epidemic under a counterfactual path for the contact rate 

(and thus for the transmission rate 𝛽𝛽𝑖𝑖𝑖𝑖) that removes the effects of one or more NPIs. Figure 14 

shows the results for daily COVID-19 deaths. In the absence of NPIs, we estimate daily deaths 

would have reached a peak of nearly 3,000 in mid-April instead of the actual peak of 2,500. In 

total, we estimate that NPIs lowered confirmed COVID-19 deaths through May 31st by more 

than 33,000, 29% of the actual cumulative total of nearly 115,000. Taking into account the lag 

between infection and death, we estimate that policy-induced changes in behavior through May 

31st lowered confirmed deaths through mid-June by 48,000, or 37% of the actual total. School 



closures and stay-at-home orders each explain about 40% of these reductions; non-essential 

business closures account for 21%  

 

Figure 14. Effect of NPIs on daily COVID-19 deaths 

(Daily deaths) 

  Total effect of NPIs Decomposition by NPI 

 
 

Source: Authors’ calculations. 

 

Comparing results for the contact rate and for deaths, we note two significant differences. 

First, the 9% decline in contacts in response to NPIs is considerably smaller than the resulting 

decline in deaths of about one third. Second, school closures accounted for a larger share of the 

reduction in the deaths than the reduction in contact rates (41% vs. 28%), with a corresponding 

and opposite difference in the contributions of stay-at-home orders (37% vs. 50%). Both 

outcomes reflect the nonlinear dynamics of infectious disease transmission. Reductions in 

contacts in the early stages of an epidemic may prevent long chains of transmission from ever 

emerging, leading to disproportionate reductions in infections and deaths. The relatively greater 

effect of school closures on deaths than contacts is thus explained by their relatively early 



enactment (on average, one week before non-essential business closures and ten days before 

stay-at-home orders). 

 

Figure 15. Effect of NPIs on employment 

(Millions) 

  Total effect of NPIs Decomposition by NPI 

 
 

Source: Authors’ calculations. 

 

 Figure 15 shows the impact of NPIs on employment. We estimate that the policy response to 

COVID-19 reduced employment by an average of 3 million between early March and the end of 

May – 13% of the total fall employment. Almost half of this decline was attributable to non-

essential business closures, 30% to stay-at-home orders, and 22% to school closures. Notably, 

business closures account for a much larger share of the decline in employment than of the fall in 

contact rates (48% vs. 22%), while the opposite is true of stay-at-home orders (30% vs. 50%). 

This suggests large cost-benefit differences across the different NPIs. We discuss these 

differences in the next section. 

 

 



VIII. Counterfactuals 
In this section, we use the augmented SEIR model to examine alternative responses to the 

pandemic. We first present a set of illustrative scenarios to help calibrate expectations of what 

NPIs can plausibly accomplish. We then consider alternative policy responses to the outbreak of 

COVID-19. Drawing on the results from the previous sections, we ask what could have been 

gained by responding more aggressively and deploying a more efficient mix of NPIs. 

 

VIII.A. Seven Days 

Figure 16 compares actual daily COVID-19 deaths with simulated paths for two illustrative 

scenarios. First, we assume that state and local governments adopt the same set and sequencing 

of NPIs but implement them all seven days earlier than they actually did. Second, we assume a 

precautionary response to the pandemic of the same magnitude as actually occurred but 

beginning seven days earlier. We find that a faster policy response would have reduced daily 

deaths by around 200 through much of April, preventing a cumulative 8,000 deaths by May 31st. 

By the end of the period, however, the epidemic largely converges back to its original path. A 

faster precautionary response, by contrast, dramatically alters the dynamics of the epidemic. The 

initial surge in deaths between late March and mid-April is substantially muted, and daily deaths 

never exceed 1500. In total, COVID-19 deaths are lower by 47,000 – or 40% – at the end of 

May. 

We next consider the opposite scenarios, assuming that either the policy response or the 

precautionary response occurred seven days later than it actually did. Figure 17 reports the 

results. The effects of a one week delay in the introduction of NPIs are roughly symmetrical with 

those of faster action, leading a cumulative increase in deaths of 8,100. The effects of a slower 

precautionary response are of a different order of magnitude entirely. An additional week of 

effectively unabated transmission in mid-March dramatically increases the death rate over the 

subsequent months. Daily deaths reach a peak of more than 13,000 in mid-April, almost five 

times the actual peak. In total, COVID-19 deaths are higher by 242,000 – or 111% – at the end of 

May. 

These results highlight the qualitative difference in the impact of marginal changes in 

voluntary behavior and that of marginal changes in policy. While NPIs produce meaningful 

gains, it is unlikely that any policy response based on the set of interventions we consider here – 



which are the most stringent enacted in the US – could have altered the fundamental 

epidemiological dynamics of COVID-19. Effective suppression of the pandemic would have 

required either earlier voluntary action or substantially more coercive government interventions. 

 

Figure 16. Daily COVID-19 deaths given 7 days faster response 

 
Source: Authors’ calculations. 

 

VIII.B. Efficient Pandemic Response 

We now consider the potential gains from a more efficient policy response to the outbreak of 

COVID-19. We define policy efficiency in terms of the reduction in deaths attributable to an NPI 

relative to the corresponding reduction in employment. Our analysis of the actual response in 

section VII suggests two principles to guide the deployment of NPIs: first, action should be taken 

as early as possible; second, the interventions with the highest benefit-to-cost ratios should be 

prioritized. 

 



Figure 17.  Daily COVID-19 deaths given 7 days slower response 

 
Source: Authors’ calculations. 

 

On the second principle, we noted above that non-essential business closures accounted for a 

markedly larger share of the decline employment than of the decline in contact rates, while the 

reverse was true for stay-at-orders. Figure 18 highlights the reason for this difference, plotting 

the average effect of each intervention on the two outcomes estimated from (7) and (8). Non-

essential business closures are the costliest of the three NPIs in terms of employment while 

delivering the smallest reduction in contacts. For stay-at-home orders and school closures, the 

tradeoff is similar, though stay-at-home orders have substantially larger effects. Given the 

nonlinear benefits of earlier reductions in contact, as well as the negative externalities of 

removing children from schools, we view stay-at-home orders as preferred over school closures. 

Thus, we argue that the NPI of first resort should be a stay-at-home order, followed first by 

closing schools and then by closing businesses. 

 



Figure 18. Average change in the contact rate and employment by NPI 

 Contact Rate Employment 

 
Source: Authors’ calculations. 

Notes: The plotted values are averages of the estimated effect of each NPI over the 31 days after the NPI is 
issued.  

 

With this in mind, we construct two sets of alternative policy response scenarios. First, we 

consider a federal, nationwide response on March 13th, the date on which the president declared 

COVID-19 a national emergency. We simulate this scenario for responses consisting of only a 

stay-at-home order, a stay-at-home order and school closure, and all three NPIs issued on the 

same date. Second, we consider a local government (county-level) response based on the number 

of confirmed cases in a county. We calculate confirmed cases per capita on the date a state or 

substate government issued its first, second, and third NPI.31 We take the 25th percentile of each 

and use the three values as thresholds to specify when a county government issues (first) a stay-

at-home order, (second) an order closing schools, and (third) an order closing non-essential 

businesses. Hence, this scenario represents a relatively aggressive response to local outbreaks, 

with NPIs reordered based on efficiency. As with the federal response, we run simulations 

adding each of the NPIs incrementally.  

 

                                                           
31 For NPIs issues by state governments, we use state-level cases per capita. For NPIs issues by substate 
governments, we use county-level cases per capita. 



Table 3. Counterfactual policy response simulation results 

    
Cumulative COVID-19 

deaths through May 31st a   
Difference in employment 

from March 1st b 

  Deaths  

Difference 
from 
actual  Millions  

Difference 
from 
actual 

         
Actual 114,423    -20.5   
         
No NPIs 147,661  33,238  -17.8  2.67 
         

Seven days        
 Seven days slower 122,569  8,146  -20.3  0.17 
 Seven days faster 106,375  -8,048  -20.7  -0.15 
         

Federal response on March 13th        
 Stay-at-home order 120,314  5,891  -18.9  1.62 
 Stay-at-home order and school closure 110,037  -4,386  -19.5  1.01 

 
Stay-at-home order, school closure, and 
non-essential business closure 102,293  -12,130  -21.6  -1.08 

         
Local response to confirmed cases        

 Stay-at-home order 120,385  5,962  -18.8  1.76 

 Stay-at-home order and school closure 112,798  -1,625  -19.3  1.21 

 
Stay-at-home order, school closure, and 
non-essential business closure 107,102  -7,321  -21.1  -0.62 

                  
Source: Authors’ calculations. 

a. Excludes differences in deaths after May 31st attributable to differences in infections through May 31st. 
b. March 1st – May 31st average. 

 

Table 3 presents our results for cumulative confirmed COVID-19 deaths through May 31st 

and for the change in employment relative to March 1st, averaged over the period March 1st to 

May 31st. The first two rows show historical values and our estimates of what would have 

happened in the absence of any NPIs at all. The next two rows report results for the illustrative 

policy scenarios discussed in VIII.A, which we include for comparison. The remainder of the 

table reports results for the federal response and local response scenarios.   

We highlight three main results. First, the most aggressive response we consider – 

nationwide enactment of all three NPIs on March 13th – leads to a reduction in deaths of more 

than 12,000 relative to the actual response, as well as an additional employment loss of 1.1 



million. Though the number of lives is significant, it reflects a marginal change in the epidemic 

curve, confirming that contact-reducing NPIs alone are not sufficient to manage the epidemic.  

Second, enactment of non-essential business closures led to economic costs that could have 

been avoided while actually improving epidemiological outcomes. Compared with the actual 

policy response, we estimate that wider implementation of stay-at-home orders and school 

closures – without any non-essential business closures – could have delivered a larger reduction 

in deaths while sustaining at least an additional one million jobs.   

Third, we find that there is no significant advantage to geographic targeting of NPIs based on 

local epidemic conditions compared with blanket issuance of NPIs. Comparing the federal and 

local response scenarios, we estimate that the epidemiological benefits of applying interventions 

nationwide are roughly proportional to the economic costs. This outcome is partly attributable to 

the low case confirmation rate in the early stages of the epidemic. Policymakers relying on 

confirmed case counts to assess whether NPIs should be enacted will generally underestimate the 

progression of their local epidemic and react too slowly. Early, universal enactment of NPIs 

counters this bias, offsetting the economic losses suffered by counties with few actual infections. 
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Appendix 
Figure A1. Event study estimates without county characteristics: contact rate 

 
Source: Authors’ calculations. 

Notes: This figure shows coefficient estimates and 95% confidence intervals for 𝜙𝜙𝑗𝑗𝑗𝑗𝜅𝜅  from (7) with 𝑋𝑋𝑥𝑥𝑖𝑖 = 𝟏𝟏��⃗ . 
Standard errors are clustered at the county level. 

 



Figure A2. Event study estimates without county characteristics: employment 

 
Source: Authors’ calculations. 

Notes: This figure shows coefficient estimates and 95% confidence intervals for 𝜙𝜙𝑗𝑗𝑗𝑗𝑊𝑊 from (7) with 𝑋𝑋𝑥𝑥𝑖𝑖 = 𝟏𝟏��⃗ . 
Standard errors are clustered at the county level. 

 

 



Figure A3. Event study estimates: reproduction number (R) 

 
Source: Authors’ calculations. 

 

 



Figure A4. Precautionary changes in the contact rate by county characteristics 

Contribution to log difference from March 1st, 7-day average 

 
Source: Authors’ calculations. 

 



Figure A5. Precautionary changes in employment by county characteristics 

Contribution to log difference from March 1st, 7-day average 

 
Source: Authors’ calculations. 

 



Figure A6. Contribution of NPIs to changes in the contact rate by county characteristics 

Contribution to log difference from March 1st, 7-day average 

 
Source: Authors’ calculations. 

 



Figure A7. Contribution of NPIs to changes in employment by county characteristics 

Contribution to log difference from March 1st, 7-day average 

 
Source: Authors’ calculations. 

 


