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Policies for a Second Wave

ABSTRACT   In the spring of 2020, the initial surge of COVID-19 infections 
and deaths was flattened using a combination of economic shutdowns and 
noneconomic non-pharmaceutical interventions (NPIs). The possibility of a 
second wave of infections and deaths raises the question of what interventions 
can be used to significantly reduce deaths while supporting, not preventing, 
economic recovery. We use a five-age epidemiological model combined with 
sixty-six-sector economic accounting to examine policies to avert and to respond 
to a second wave. We find that a second round of economic shutdowns alone 
are neither sufficient nor necessary to avert or quell a second wave. In contrast, 
noneconomic NPIs, such as wearing masks and personal distancing, increasing 
testing and quarantine, reintroducing restrictions on social and recreational 
gatherings, and enhancing protections for the elderly together can mitigate a 
second wave while leaving room for an economic recovery.

Beginning the third week of March 2020, much of the US economy 
shut down in response to the rapidly spreading novel coronavirus and  

rising death rates from COVID-19. The shutdown triggered the sharpest and  
deepest recession in the postwar period, with just under 30 million new 
claims for unemployment insurance filed in the six weeks starting March 15. 
The economic shutdown, combined with other non-pharmaceutical inter-
ventions (NPIs), slowed and then reversed the national weekly death rate 
and brought estimates of the effective reproductive number of the epidemic 
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to one or less in nearly all states.1 With the epidemic seemingly under 
control, state authorities, urged on by a White House eager to resume 
normal economic activity, began relaxing both economic and noneconomic 
restrictions. Some of the least hard-hit states started reopening in late April 
or early May, while others waited until late May or June. As of the date of 
this conference (June 25), however, the weekly number of confirmed cases 
is rising nationally, especially outside the Northeast, raising the specter of 
a second wave of deaths. If countered by a second round of economic shut-
downs, short-term unemployment could become long-term and firms could 
close, dimming prospects for a robust post-COVID-19 recovery.

This paper examines policy options for avoiding or mitigating a second 
wave of deaths and economic shutdowns. To do so, we use a combined 
epidemiological-economic model that permits considerable granularity in 
NPIs. We distinguish between economic NPIs, which directly constrain 
economic activity (such as closing certain sectors), and noneconomic NPIs, 
which do not (such as wearing masks and personal distancing).

Our main finding is that a second wave can be avoided or, if it starts, 
turned around through the use of noneconomic NPIs, avoiding the need 
for a second round of economic shutdowns. Effective noneconomic NPIs 
include personal distancing and the wearing of masks; limits on sizes of 
group activities, especially indoors; increased testing and quarantine; and 
enhancing protections for the elderly. There is strong evidence that much of 
the decline in economic activity was the result of self-protective behavior 
by individuals, not government shutdown orders, so simply reversing those 
orders will not by itself revive the economy. By using noneconomic NPIs, 
not only can shutdown orders be avoided but, at least as importantly,  
a declining trend in deaths will reassure workers that it is safe to return 
to the workplace and consumers that it is safe to return to shops and 
restaurants.

Strengthening noneconomic NPIs requires a combination of gov ern-
ment guidance and financial support, compliance by firms and retail 
estab lishments, and public acceptance and adoption. Like others, we 
find that increased testing and quarantine can be particularly effective 
in reducing the circulating pool of contagious individuals. But increased 
testing requires wider availability of tests, faster turnaround, and reduced 
test costs. Similarly, additional protections for the elderly, such as regular 

1. See, for example, the estimates on Rt COVID-19, https://rt.live/.
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testing of staff and residents in nursing homes—who to date account for 
an estimated 41 percent of COVID-19 deaths (Kaiser Family Founda-
tion 2020)—require more than just guidelines and mandates to ensure 
that long-term care facilities have the institutional capacity to test and to 
handle the resulting staffing fluctuations. Wearing masks and maintain-
ing personal distancing requires leadership and education at all levels of  
government and, at the level of the individual, a desire not to be the reason 
someone else gets sick. Each of these NPIs is imperfect but together they 
can reduce the probability of transmission sufficiently to make room for 
people to return to working, shopping, and eating out, even if a second 
wave reemerges.

Our main findings are illustrated in figure 1, which shows our baseline 
second wave scenario, and in figure 2, which examines the effectiveness of  
tackling the second wave by an economic lockdown versus tackling it using 
noneconomic NPIs while keeping the economy largely open. Each figure 
shows simulated weekly US deaths, actual deaths (through June 25), and 
the monthly unemployment rate. The bands represent statistical estimation 
uncertainty. Figure 1 (bottom) shows quarterly GDP, although for brevity 
GDP is not shown in subsequent figures. The simulation period begins on 
June 1 (vertical dashed line). As described in section VI, in this second 
wave scenario noneconomic restrictions such as social distancing, wearing 
masks, religious gatherings, and limits on group sizes at social and sports 
events are relaxed to be roughly halfway between their restrictive values  
of mid-May and their prepandemic values of February 2020. In reality, 
during the shutdown and reopening, economic activity is determined by  
a complex interaction between policymakers regulating business openings  
and individuals choosing to shop and work; we model this by a decision  
maker (“governor”) who expands or contracts economic activity in response 
to economic conditions and deaths using a rule based on guidance from the 
Centers for Disease Control and Prevention (CDC). In response to rising 
deaths, in the second wave scenario in figure 1 the governor recloses some 
businesses, and the unemployment rate rises to the mid-teens early in the 
fall, leading to a W-shaped recession. By the end of the year, there will 
have been 482,000 deaths, and GDP remains roughly 5 percent below its 
peak in 2019:Q4.

The top panel of figure 2 examines whether the governor-cum-citizens 
could avoid this scenario through a second economic lockdown with severity 
comparable to April. In short, no: simply closing businesses, unaccompa-
nied by noneconomic NPIs, reduces year-end deaths to 410,000 but does 
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Source: Authors’ calculations.
Notes: Each chart shows the level of weekly COVID-19 deaths, actual (dashed) and simulated. The top 

panel shows the unemployment rate (measured by hours lost) and the bottom panel shows the level of 
quarterly GDP, indexed to February 2020 = 1. Bands denote +/− 1, 1.65, and 1.96 standard deviations 
arising from sampling uncertainty for the estimated parameters. The population-wide IFR is 0.7 percent. 
Total deaths on January 1: 482,000. Simulation begins on June 1 (vertical dashed line).
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Figure 1. Second Wave from Relaxed Social Distancing and Early Reopening:  
Weekly Deaths, the Unemployment Rate, and GDP
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Source: Authors’ calculations.
Notes: Both panels show weekly deaths and the monthly unemployment rate. Total deaths on January 

1: 410,000 (top) and 147,000 (bottom). Bands denote +/− 1, 1.65, and 1.96 standard deviations arising 
from sampling uncertainty for the estimated parameters.
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not prevent the second wave, at the cost of a vast increase in the unemploy-
ment rate. The main reason for this finding is that (as discussed in section II), 
among workers, contacts at the workplace account for only one-half of all 
their contacts; in our second wave scenario, the main driver of infections 
is contacts in nonwork activities, where protections like social distancing 
and wearing masks have been relaxed.

In contrast, as shown in the bottom panel of figure 2, noneconomic 
NPIs—including wearing masks, social distancing, limits on social group 
sizes, protections for the elderly, an achievably higher level of testing, and 
quarantine—combined with judicious use of economic NPIs like requiring 
workers who can work from home to continue to do so, eliminate the 
second wave. In this scenario, the decline in deaths allows the economy to 
return to near-normal levels of employment. Our modeling suggests that 
a second wave can be reversed through the adoption of noneconomic 
NPIs without needing to close either schools or the economy.

Relative to the fast reopening in figure 1, the smart reopening in figure 2 
(bottom panel) saves 335,000 lives. Relative to the second shutdown in 
figure 2 (top panel), the smart reopening increases GDP in the second half 
of 2020 by $115 billion and reduces the year-end unemployment rate by 
14 percentage points.2

RELATED LITERATURE Our model combines epidemiological and eco-
nomic components at a level of granularity that allows us to consider 
NPIs that vary by age (such as school closings) and across economic 
sectors (such as reopenings staggered by sector). The epidemiological 
component is an age-based susceptible-infected-recovered (SIR) model 
with five age bins, mortality rates that vary by age, and exposed and 
quarantined components, which we combine with a sixty-six-sector  
economic model.

2. Subsequent to the conference, as of the time of this writing (July 17), the national 
death rate started to rise again, led by states that reopened early without requiring noneconomic 
NPIs. Currently orders to wear masks and to limit large-group gatherings are being resisted 
by the public and some officials in some states, and in some cases are being litigated. The 
second wave/shutdown scenario in figure 2 (top panel) therefore currently appears to be the 
most likely of these three. The smart reopening simulation in figure 2 (bottom panel) would 
in particular have required earlier and more widespread wearing of masks, more testing, and 
more restrictions on high-risk noneconomic activity (bars, crowded beaches, mass events) 
than actually occurred, and currently actual deaths are on track to surpass, by the end of July,  
the year-end death total in the smart reopening simulation. Of course, the value of these  
noneconomic NPIs does not expire, and politicians and the public still could choose to transi-
tion to a low-death, high-economic-activity path like that in figure 2 (bottom panel).
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There is a rapidly growing literature that merges epidemiological and 
economic modeling to undertake policy analysis for the pandemic.3 Although 
most of the models in the literature are highly stylized, they provide useful 
qualitative guidance.

Broadly speaking, this literature provides six main lessons. First, for 
a virus with a high fatality rate like SARS-CoV-2, the optimal policy is to 
take aggressive action early to drive prevalence nearly to zero (Alvarez, 
Argente, and Lippi 2020; Jones, Philippon, and Venkateswaran 2020; 
Farboodi, Jarosch, and Shimer 2020); doing so not only decreases the 
costs from deaths but also provides an environment in which endogenously 
self-protecting individuals choose to return to economic activity. Second, 
testing combined with quarantine has high value and reduces the need for 
a severe economic lockdown (Alvarez, Argente, and Lippi 2020; Berger, 
Herkenhoff, and Mongey 2020; Eichenbaum, Rebelo, and Trabant 2020b). 
Third, because deaths are highest among the elderly, focusing resources on 
protecting older workers or the most vulnerable can provide large benefits 
(Acemoglu and others 2020; Rampini 2020). Fourth, noneconomic NPIs 
such as masks and social distancing can reduce both economic costs and 
deaths (Bodenstein, Corsetti, and Guerrieri 2020; Farboodi, Jarosch, and 
Shimer 2020). Fifth, nuanced economic NPIs, for example, with sectoral 
or age variation, can facilitate a quicker reopening (Azzimonti and others 
2020; Favero, Ichino, and Rustichini 2020; Glover and others 2020). Sixth, 
a common theme through these papers is that individual self-protective 
behavior both anticipates and reduces the effect of regulatory interventions 
like lockdowns, although because of the contagion and other externalities, 
individual response alone is typically less than socially optimal.

Our modeling underscores many of these conclusions. Additionally, 
we are able to examine the interactions among various NPIs in a setting 
that is carefully calibrated to epidemiological parameters and to current US 
conditions, allowing direct comparisons of the various NPIs.

3. See Acemoglu and others (2020), Alvarez, Argente, and Lippi (2020), Atkeson 
(2020a, 2020b), Aum, Lee, and Shin (2020), Azzimonti and others (2020), Baqaee and 
Farhi (2020a, 2020b), Berger, Herkenhoff, and Mongey (2020), Bodenstein, Corsetti, and  
Guerrieri (2020), Budish (2020), Eichenbaum, Rebelo, and Trabant (2020a, 2020b), Farboodi, 
Jarosch, and Shimer (2020), Favero, Ichino, and Rustichini (2020), Glover and others (2020), 
Guerrieri and others (2020), Jones, Philippon, and Venkateswaran (2020), Krueger, Uhlig, 
and Xie (2020), Lin and Meissner (2020), Ludvigson, Ma, and Ng (2020), Morris and others 
(2020), Moser and Yared (2020), Mulligan (2020), Rampini (2020), Rio-Chanona and others 
(2020), and Stock (2020).
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Additional pertinent literature estimates the extent to which the eco-
nomic contraction starting in March was an endogenous response to the 
virus or a direct causal consequence of government strictures. This ques-
tion is a topic of papers in this volume by Bartik and others (2020) and by 
Gupta, Simon, and Wing (2020), so we refer the reader to their discussion 
of this literature.

CAVEATS Our results require three important caveats. First, while our 
sixty-six-sector model provides considerable granularity, some of the 
highest-risk economic activities, such as nightclubs and attendance at 
indoor professional sports, are subsectors within our sixty-six sectors. 
Because we do not model those highest-contact activities directly, we 
exclude them from our general conclusion that the economy can be reopened 
safely by relying on noneconomic NPIs. Prudence suggests that this tail 
of highest-risk activities, which account for a small fraction of economic 
activity, should remain closed, perhaps until there is a vaccine. Second, our 
national model misses the regional heterogeneity of the pandemic. Third, 
although we have taken pains to include the best available estimates for 
calibrating the model, much about the pandemic remains uncertain, and 
the confidence bands in the simulation figures understate actual consider-
able uncertainty (this uncertainty is explored in the online appendix).

I. The Model

We use an age-based SIR model with exposed and quarantined compart-
ments and with age-specific contact rates. An age-based approach matters 
for four reasons. First, death rates vary sharply by age. Second, workplace 
shutdowns affect working-age members of the population. Third, different 
industries have different age structures of workers, so reopening policies 
that differentially affect different industries could have consequences for 
death rates as a result of the death-age gradient. Fourth, some policies 
affect different ages differently, such as closing and reopening schools and 
only allowing workers of a certain age to return to their workplace.

I.A. Age-Based SEIQRD Model

The model simplifies Towers and Feng (2012) and follows Hay and 
others (2020), adding a quarantined compartment. We consider five age 
groups: ages 0–19, 20–44, 45–64, 65–74, and 75+. The epidemiological state 
variables are S (susceptible), E (exposed), I (infected), Q (quarantined),  
R (recovered), and D (dead). The state variables are all five-dimensional 
vectors, with each element an age group, so for example I2 is the number 
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of infected who are ages 20–44. The unit of time is daily. We assume that 
the recovered are immune until a vaccine or effective treatment becomes 
available.4

Let Sa (etc.) denote the ath element of S (ath age group). The SEIQRD 
model is:

dS S C
I

N
a a b ab ab

b

b

∑= −β r 





(1)

dE dS Ea a a= − − s(2)

dI E I I Ia a a a a a= s − γ − d − c(3)

dQ I Q Qa a a a a= c − γ − d(4)

dR I Qa a a= γ + γ(5)

dD I Qa a a a a= d + d(6)

The total number of individuals of age a is Na = Sa + Ea + Ia + Qa + Ra.
The parameters of the model are the adult transmission rate β, the 

recovery rate γ, the latency rate s, the age-dependent death rate da, the 
quarantine rate c, the 5 × 5 contact matrix C (with element Cab), and  
age-dependent transmission factors rab. The adult transmission rate β 
reflects the probability of an adult becoming infected from a close contact 
with an infected adult. The factors rab allow for transmission rates involv-
ing children to differ from the adult-adult rate; rab is normalized to be 1 for 
adult-adult contacts. Transmission can be mitigated by protective measures 
such as masks. As discussed below, we model those protective measures 
separately and accordingly define β to be the transmission rate without  
mitigation, so that β is determined by the biology of the disease and  
preexisting social customs (e.g., hand shaking). The latency rate s and 
the recovery rate γ are biological characteristics of the disease. The death 

4. The assumption of subsequent immunity among the recovered is a matter of ongoing 
scientific investigation. A working hypothesis based on the related coronaviruses causing 
MERS and SARS is that immunity could decay but last for one to three years. Because our 
simulations run through the end of 2020, our assumption is that the recovered are immune 
through that period.
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rate da varies by age. The parameter c is the removal rate into quarantine, 
the value of which depends on quarantine policy. Calibration and esti-
mation of the model is discussed in section IV.

The contact matrix C is the mean number of contacts among different 
age groups in the population. Thus, according to equations (1) and (2),  
a susceptible adult of age a who comes into contact with an adult of age b 
has an instantaneous infection probability of β times the probability that 
the age-b adult is infected. The total instantaneous probability of infection 
is the sum over the expected transmission by contacts of different ages 
if those contacts are infected, times the probability that the contacted 
individual is infected.

In the model, an infected individual is placed into quarantine with 
some probability, at which point they no longer can infect others. In 
practice, identifying the infected individual requires testing, contact tracing, 
or both. In addition, in the United States, quarantine is imperfect and 
amounts to encouragement to self-isolate. The model abstracts from these 
complexities.

Other than the quarantine rate c, the parameters in the model represent 
preexisting conditions at the start of the epidemic. Policy and self-protective 
behavior can be thought of as either changing the values of these param-
eters or, alternatively, introducing additional parameters in the model. For 
example, the probability of transmission from a contact is reduced substan-
tially if both individuals are wearing masks. In addition, lockdown orders 
and self-limiting behavior can reduce the number and ages of contacts, that 
is, alter the elements of the contact matrix. Our modeling of such NPIs, 
both self-protective and mandated, is discussed in section III.

In a model without quarantine and with transmission rates and death 
rates that depend on age, the initial reproduction number R0 is

�R C( )= β Γ •(7) maxRe eval ,0

where maxRe[eval(.)] denotes the maximum of the real part of the 
eigenvalues of the matrix argument, C̃ is the normalized contact matrix 

with elements C̃ab = 
C N

N
ab a

b





 , Γab = rab/(γ + db), and • is the element-wise  

product.5 Equation (7) generalizes the familiar expression for R0 in a scalar 

5. Equation (7) is derived using the next-generation matrix method; see Towers and 
Feng (2012) and van den Driessche (2017).
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SIR model (R0 = β/(γ + d)) to age-based contacts with age-dependent 
transmission and death rates.6

I.B. Sector- and Activity-Based Contact Matrices

The contact matrix C represents the expected number of contacts in 
a day between individuals in different age bins. We distinguish between 
contacts made in three activities: at home, at work (on the work site), 
and other. Other includes both contacts made as a consumer engaging in 
economic activity, such as shopping, air travel, or dining at a restaurant, 
and in noneconomic activities, such as free recreation and social events. 
In a given day, an individual can be in one, two, or all three of these 
three states.

The expected number of contacts made in a day is the sum of the 
contacts made at home conditional on being at home, plus those made 
at work conditional on being at work, plus those made while engaged in  
other activities conditional on doing other activities, times the respective 
probabilities of being in those three states. To differentiate between work 
in different sectors, which among other things differs by the degree of 
personal proximity and numbers of contacts at the workplace, we further 
distinguish work contacts by sector. Accordingly, the expected number 
of contacts at work is the weighted average of the expected number of 
contacts, conditional on working in sector i, times the probability of 
working in sector i. Thus,

C p C p C p Cab a
home

ab
home

a
other

ab
other

sectors i a i
work

ab i
work∑= + +(8) ,, ,

where Cab
home is the (a, b) element of the contact matrix conditional on 

being at home, pa
home is the probability of an age-a individual being at 

home, similarly for other, Cab,i 
work is the (a, b) element of the contact matrix 

conditional on being at work in sector i, and pa,i
work is the probability of 

an age-a individual working in sector i, that is, the employment share  
of sector i as a fraction of the population. That is, let La,i be the number of 
workers of age a employed in sector i; then,

p
L

N
a i
work a i

a

=(9) .,

,

6. The parameter β differs in the scalar and age-based settings, where β in the scalar 
model is the transmission rate β in the age-based model times the expected number of 
contacts.
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The disaggregation of the contact matrices in equation (8) distinguishes 
between different types of contacts. A server in a restaurant has contact 
with a customer in his or her capacity as a worker (work contact matrix 
for restaurants), while customers will have contact with the server in their 
capacity as consumers engaged in an other activity. Similarly, a home 
health aide providing services to an elderly person at the client’s home will 
be in contact with the elderly person as part of work, while the elderly 
client will be making that contact at home.

I.C. Employment, Unemployment, and Output

Employment by age, by sector, and total (L) are respectively sums over 
sectors, ages, and overall. Let the subscript • denote summation over that 
index. Then,

L L L L L L La sectors i a i i ages a a i a a i i∑ ∑ ∑ ∑= = = =• • • •(10) , , and ., , , , , ,

The departure of output from its full-employment level is estimated 
using Hulten’s (1978) theorem, which says that the elasticity of real GDP to 
the total hours worked in a given sector is given by the total labor income 
in this sector, Yi, as a share of nominal GDP:

d ln Y d ln Lsectors i i i∑= Y •(11) .,

We discuss this approximation further in section VI.C.
In the counterfactual simulations, labor supply is constrained in two 

ways. First, if schools are closed, a fraction of workers will not have other 
child-care options so will be unable to return to work. Second, the virus 
reduces labor supply because some workers are temporarily quarantined 
and some have died.

II. Data Sources

We briefly summarize the data used to calibrate the model and historical 
NPIs, with details provided in the online appendix.

II.A. Economic Data

Employment by age and industry are estimated using the 2017 American 
Community Survey.

An important NPI is reducing workplace density by having workers 
work at home. Using data from the Real-Time Population Survey, Bick, 
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Blandin, and Mertens (2020) estimate that 35.2 percent of the workforce 
worked entirely from home in May 2020, up from 8.2 percent in February. 
We use the fraction of workers working from home from their Real-Time 
Population Survey to estimate the fraction of workers working from 
home in February and at the end of May. We construct a daily time series 
of the national fraction working from home by interpolating and extrap-
olating these points using the national Google workplace visit mobility 
index.7 This aggregate time series is apportioned to the sector level using 
Dingel and Neiman’s (2020) estimates of the (prepandemic) fraction of 
workers in an occupation who can work from home, reported to the sixty-
six input-output sectors classification using a crosswalk.

Mongey, Pilossoph, and Weinberg (2020) construct an index of high 
personal proximity (HPP) by occupation, which measures an occupation 
as HPP if it is above the median value of proximity as measured by within-
arm’s-length interactions by occupation. This occupational index was 
cross-walked to the sixty-six sectors.

Daily sectoral shocks to labor shares by industry are estimated from 
hours reductions reported in the February–June monthly establishment 
survey (tables B1, broken down to the sectoral level proportionally to the 
sectoral employment changes reported in table B2).8 These provide the 
estimates of the sectoral shocks to hours for the establishment survey 
reference weeks. Between the reference weeks, the sectoral shocks were 
linearly interpolated, and extrapolated after the June reference week, using 
the Google workplace visit mobility index.

Data on workers’ child-care obligations are from Dingel, Patterson, and 
Vavra (2020).

II.B. Contact Matrices and Epidemiological Data

The contact matrices are estimated using POLYMOD contact survey  
data.9 Conditional contact matrices for home, work, and other were  
computed by sampling contact matrices from the POLYMOD survey 
data and then reweighting them to match US demographics on these three 
activities.

7. Google COVID-19 Community Mobility Reports, https://www.google.com/covid19/
mobility/.

8. Establishment survey data can be found at the Bureau of Labor Statistics, “Labor Force 
Statistics from the Current Population Survey,” https://www.bls.gov/cps/.

9. POLYMOD Social Contact Data, https://doi.org/10.5281/zenodo.1157934), version 1.1 
(2017).
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We used the age distribution of workers by industry and Mongey, 
Pilossoph, and Weinberg’s (2020) personal proximity index, cross-walked 
to the sector level (HPPi), to construct industry-specific conditional contact 
matrices, Cab,i 

work as the product of HPPi times the overall conditional mean 
contact matrix, with all sectoral matrices scaled so that the weighted mean 
equals the overall mean work contact matrix.10

The probabilities pother in equation (8) are estimated from the POLYMOD 
contact data (normalized for US demographics). The probability phome is 
nearly 1 in the POLYMOD diaries (i.e., nearly everyone spends part of 
their day at home) and is set to 1 for all simulations.

Daily death data, which are used to estimate selected model parameters, 
are from the Johns Hopkins COVID-19 GitHub repository.11

II.C. Calibration of Historical NPIs

We use an index of nonwork Google mobility data and school closing 
data to estimate the historical pattern of reduction in nonwork, nonhome 
(other) activities and thus other contacts. We refer to these generally as  
historical NPIs, some of which are a consequence of government decisions 
(e.g., closing schools) and some of which represent voluntary self-protection. 
We construct a Google mobility index (GMI) using three Google mobility 
measures at the daily level (national averages): retail and recreation, transit 
stations, and grocery and pharmacies. These three measures are averaged, 
normalized so that 1 represents the mean of the final two weeks of February 
2020, and smoothed (centered seven-day moving average). Dates of school 
closings are taken from Kaiser Family Foundation (2020), aggregated to 
the national level using population weighting. Section IV explains the use 
of these data to create time-varying contact matrices.

II.D. Epidemiological Parameters

We reviewed twenty papers with medical estimates of incubation 
periods and duration of the disease once symptomatic (see the online 
appendix). These papers provided twenty-three estimates of the incubation 

10. As an alternative, we sampled from the POLYMOD contact diary data to compute 
the conditional distribution (element-wise) for at-work contacts and sampled from the 15th, 
50th, and 85th percentiles to construct low, median, and high conditional contact matrices, 
then assigned an industry to one of these three groups based on its HPP value. This approach 
yielded similar contact matrices by sector to the first approach and behaved similarly in 
simulations.

11. JHU CSSE COVID-19 Dataset, https://github.com/CSSEGISandData/COVID-19/
tree/master/csse_covid_19_data.
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(the latency) period and sixteen estimates of the period from becoming  
symptomatic to being recovered (the recovery period). For the latency 
period, we used the mean value from the three peer-reviewed studies 
with estimates, which yields a latency period of 4.87 days and a value of 
s = 1/4.87 (continuous-time, daily time scale). For the recovery period, 
the studies have very long estimates, from 17.5 to 28.3 days, which appear 
to reflect sample selection in the studies which tend to consider the most 
severe (and longest-lasting) cases. Estimates of the recovery period used 
in the epidemiological literature are shorter, and we use Kissler and others’ 
(2020) estimate of an infectious period of five days. As a sensitivity check, 
we also consider an infectious period of nine days; as shown in the online 
appendix, our simulation results are not sensitive to this change so the 
analysis in the text uses the five-day recovery period.

Salje and others (2020) and Verity and others (2020) provide estimates 
of the infection-fatality ratio (IFR) by age. Ferguson and others (2020) 
adjust Verity and others’ (2020) IFRs to account for nonuniform attack 
rates across ages. Salje and others (2020) use data from France and the 
Diamond Princess cruise ship; they have lower IFRs at the youngest ages 
and slightly higher IFRs at the older ages than Ferguson and others (2020). 
We adopt the more recent IFR profile from Salje and others (2020), scaled 
proportionately to match a specified overall (population-wide) IFR.12 
The overall IFR is not known because of insufficient random population 
testing. We therefore adopt a range of estimates of the population IFR 
from 0.4 percent to 1.1 percent; the age-specific IFR is then obtained 
using Salje and others’ (2020) IFR age profile. The population-wide IFR 
is weakly identified in our model. For our main results we use a population-
wide IFR of 0.7 percent and report sensitivity analysis in the online 
appendix.

Boast, Munro, and Goldstein (2020) and Vogel and Couzin-Frankel 
(2020) provide largely nonquantitative surveys of the sparse literature 
concerning transmissibility of the virus in contacts involving children. 
To calibrate the parameters rab involving children, we reviewed nine 
studies on this topic posted between February 21 and May 1. These studies 
point to a lower transmission rate for contacts involving children, although 
the estimates vary widely. Of the seven studies that estimate a transmis-
sion rate from children to adults, our mean estimate, weighted by study 
relevance, is r1b = 0.44, b > 1. Of the four studies that estimate transmission 

12. Specifically, our vector of age-IFRs in percentages is c(0.001, 0.020, 0.28, 1.35, 7.18), 
where c is set to yield the indicated population IFR (0.6 percent in our base case).
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rates from adults to children, our weighted mean estimate is ra1 = 0.27, 
a > 1. We are unaware of estimates of child-child transmission rates so, 
lacking data, we set r11 to the average, r11 = (r1b + ra1)/2. These estimates 
are highly uncertain and some of the simulation results are sensitive to their 
values; that sensitivity is discussed further in the text and in more detail 
in the online appendix.

III. GDP-to-Risk Index

One reopening question is whether sectors should be reopened differen-
tially based on either their contribution to the economy or their contri-
bution to risk of contagion. The expressions for R0 in equation (7) and 
for output in equation (11) lead directly to an index of contributions of 
GDP per increment to R0. Specifically, consider a marginal addition of 
one more worker of age a returning to the work site in sector i. Then 
the ratio of the marginal contribution to output, relative to the marginal 
contribution to R0, is

�
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a i
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where the numerator does not depend on a because the output expression 
(11) does not differentiate worker productivity by age.

The derivative in the denominator in equation (12) depends on the 
contact matrix; however, as is shown in the online appendix, because 
of the way that La,i enters C, this dependence on the full contact matrix 
is numerically small. Thus, while in principle qi varies as employment 
and the other components of the contact matrix vary, in practice this 
variation in qi is small so that the path of qi is well approximated by its 
pre pandemic full-employment value. For the simulations that examine 
sequential industry reopening, we therefore used equation (12) with the 
derivatives of maxRe[eval(C̃)] numerically evaluated at the baseline values 
of the contact matrix.

Some algebra for a single-age SIR model provides an interpretation of 
this index in terms of deaths. It is shown in the online appendix that the 
effective case reproduction rate, Reff = R0(S/N), can be written as
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where D
.
 = dD/dt and D

..
 = d2D/dt2. At the start of the epidemic, when  

S/N = 1, combining expressions (12) and (13) shows that

d ln Y dL

d D D dL
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a i

)( )(q = γ + d(14) ,
,

�� �

where d– is the population-wide death rate; the subscript a is dropped 
because equation (13) holds for a single-age SIR. Thus, in a single-age 
version of the model, qi is proportional to the ratio of the marginal growth 
of GDP to the marginal growth of the daily death rate from adding a worker 
to sector i.

It is tempting to translate q into a GDP increment per death for a 
marginal reopening of a sector; however, the alternative formulation  
in equation (14) shows that such a calculation depends on the state of 
the pandemic because the denominator is the contribution to the growth 
rate of daily deaths. If daily deaths are increasing, adding a worker to a 
sector is costly because it increases the already-exponential growth rate 
of deaths. The more negative the growth rate of deaths, the smaller the 
contribution of the additional worker to the total number of deaths. This 
is a key insight, that the marginal cost of reopening is contained and can 
be kept small by a combination of sectoral prioritization and, especially, 
ensuring that noneconomic NPIs are in place to keep Reff < 1 during  
the reopening.

Standardized and Winsorized values of q are listed in the table in online 
appendix A for the sixty-six NAICS code private sectors in our model.13 We  
refer to this Winsorized/standardized index as the GDP-to-risk index. The  
highest GDP-to-risk sectors tend to be white-collar industries such as legal  
services, insurance, and computer design, along with some high-value 
moderate-risk production sectors such as oil and gas extraction and truck  
transportation. Moderate GDP-to-risk industries include paper products,  
forestry and fishing, and utilities. Low GDP-to-risk industries tend to have  
many low-paid employees who are exposed to high levels of personal 

13. The value of q as defined in equation (12) depends on epidemiological parameters. 
To a good approximation, standardization eliminates this dependence, except for the rab factors  
for transmission involving children—the matrix Γ ≈ r/(γ + d–), where the matrix r has elements rab.  
There are three outlier sectors (legal, management, and finance and investments) which have 
very high GDP-to-risk measures. It is numerically convenient to Winsorize to handle these 
outliers, although the conclusions are not sensitive to the Winsorization.
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contacts at work, including residential care facilities, food services and 
drinking places, social assistants, gambling and recreational industries, 
transit and ground passenger transportation, and educational services.

IV. Calibration of Historical NPIs and Estimation

The historical paths of contact reduction and self-protective measures, 
which we collectively refer to as historical NPIs, combine calibration 
using historical daily data and estimation of a small number of param-
eters to capture the time paths of self-protective measures, such as wearing 
masks, on which there are limited or no data. Altogether, the model has 
five free parameters to be estimated: the initial infection rate I0 as of 
February 21, the transmission rate β, and three parameters describing the 
path of NPIs from March 10 through the end of the estimation sample. 
The model-implied time-varying estimate of R0 closely tracks a non-
parametric estimate of R0.

IV.A. Time-Varying Historical Contact Matrices and NPIs

The NPIs that were implemented between the second week of March 
and mid-May include closing schools, personal distancing, prohibiting 
operation of many businesses and making changes in the workplace to 
reduce transmission in others, orders against large gatherings, issuing stay-
at-home orders in some localities; wearing masks and gloves, and urging 
self-isolation among those believed to have come in close contact with an 
infected individual. These NPIs are a mixture of policy interventions and 
voluntary measures taken by individuals protecting themselves and their 
families from infection.

These NPIs enter the model in two ways. The first is through the 
reduction of contacts; for example, working from home or being furloughed 
or laid off eliminates a worker’s contacts at the workplace. The second is 
through reducing the probability of transmission (β), conditional on having 
contact with an infected individual; personal distancing and wearing masks 
falls in this second category. Our approach to producing time-varying 
contact matrices and β is a mixture of calibration when we have directly 
relevant data (for example, dates of school closures, mobility measures of 
nonwork trips, and measures of the number of employed workers and the 
fraction of those workers working from home) and estimation of the effect 
of NPIs for which we do not have data, such as personal distancing and 
the use of masks.
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We introduce these NPIs by modifying equation (8) to allow for time-
varying contacts and mitigation:
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As in equation (8), the total contacts made by someone of age a meeting 
someone of age b at time t is the sum of the contacts made at home, in other 
activities, and at work. The conditional contact matrices Cab

home, Cab
other, and 

Cab,i 
work and the probabilities pa

home, pa
other, and pa,i

work in equation (15) refer to 
prepandemic contacts and population weights in equation (8). The remain-
ing factors l ab,t 

other, lwfh,t, and sit represent measured reductions in contacts, 
and the factor jt captures NPIs that have the effect of reducing transmission 
conditional on a contact (e.g., masks).

We briefly describe these factors and motivate the structure of equa-
tion (15), starting with the second term, contacts made during other 
activities. The expected number of contacts made by a meeting b is lab,t 

other 
pa

other Cab
other. Attending school is an other activity, so for age < 20 we model 

school closings by letting lab,t 
other be linear in the national average fraction of 

students with schools open on day t, with l ab,t 
other = 1 if all schools are open 

and lab,t 
other = 0.3 if all are closed (accounting for nonschool other contacts). 

For contacts made by adults, we set l ab,t 
other to the Google mobility index 

for other activities described in section III.
The factor jt represents the reduction in the transmission probability, 

relative to the unmitigated transmission rate βrab, resulting from self-
protective NPIs, such as personal distancing, hand hygiene, and wearing a 
mask. Guidance concerning and use of these protective measures evolved 
over the course of the pandemic. Early in the pandemic, public health 
guidance stressed hand washing and disinfecting surfaces. Until April 3, 
the CDC recommended that healthy people wear masks only when taking 
care of someone ill with COVID-19. On April 3, the CDC changed that 
guidance to recommend the use of cloth face coverings, and masks were 
adopted gradually through April into May.14 For example, New York 
implemented a mandatory mask order on April 15, Bay Area counties did 
so on April 22, Illinois on May 1, Massachusetts on May 6. As of early July 
many states still did not require masks although some businesses in those 

14. IHME, “COVID-19 Projections,” https://covid19.healthdata.org/united-states-of-
america?view=mask-use&tab=trend, accessed December 2020.
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states did. There is now considerable evidence that personal distancing 
and the use of masks are effective in reducing transmission of the virus.15 
Although there are data on mandatory personal distancing measures by 
state (Kaiser Family Foundation 2020), we are aware of only limited data 
on the actual mask usage.16 Lacking such data, we estimate the aggregate 
effect of those measures through the scalar risk reduction factor jt, param-
eterized using a flexible functional form, specifically, the first two terms in 
a type-II cosine expansion, constrained so that 0 ≤ jt ≤ 1:

f f t s T T
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where F is the cumulative normal distribution. We set the start date of 
the NPIs, s0, to be March 10, three days before the declaration of the 
national emergency, reflecting the short period between the first reported 
COVID-19 death in the United States on February 29 and the start of the 
lockdown. The date T denotes the end of the estimation sample. This 
parameterization introduces three coefficients to be estimated, f0, f1, and f2.

The second term in equation (15) parameterizes contacts made at home. 
Most but not all contacts at home involve household members. Using 
the American Time Use Survey, Dorèlien, Ramen, and Swanson (2020) 
estimate that 85 percent of contacts made at home or in the yard involve 
household members; however, their total home contacts are fewer than in 
our contact matrices, especially for children under age 15, for whom they 
impute contacts. We therefore make a modest adjustment of their estimate 
and assume that 80 percent of contacts are among household members. 
Contacts among household members are modeled as unmitigated, with 
the remaining 20 percent of at-home contacts that are with nonhousehold 
members mitigated by the factor jt.

15. The effect of masks on COVID-19 transmission has been reviewed by Howard and 
others (2020), who, following Tian and others (2020), suggest that masks reduce the prob-
ability of transmission by the factor (1 – epm)2, where e is the efficacy of trapping viral 
particles inside the mask and pm is the percentage of the population wearing the mask. Chu 
and others (2020) conducted a meta-analysis of 172 studies (including studies on SARS and 
MERS) on personal distancing, masks, and eye protection; their overall adjusted estimate  
is that the use of masks by both parties has a risk reduction factor of 0.15 (0.07 to 0.34); 
however, they found no randomized mask trials and do not rate the certainty of the effect 
as high.

16. The COVID Impact Survey (at https://www.covid-impact.org/, accessed July 17) 
reports results for surveys at two points in time, late April and early June, and indicates an 
increase in mask usage over that period.
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The final term in equation (15) parameterizes contacts at work. For 
workers in sector i, the baseline contacts are reduced by the fraction sit of 
workers continuing to work,

s L Lit i t i t= • •(17) ,, , , , 0

where L•,i,t is the all-ages labor force in industry i at date t and t0 is the final 
week in February 2020. Of those still working, a fraction lwfh,t work from 
home, leaving the fraction sit (1 − lwfh,t) of sector i workers remaining in 
the workplace. We set sit and lwfh,t equal to, respectively, the daily sectoral 
shock to the labor share and the time series on the fraction of workers 
working from home by sector, both of which are described in section II.A. 
These reduced contacts are then multiplied by the noncontact risk reduction 
factor jt in equation (16).

Figure 3 illustrates three different contact matrices. The first (left) is 
the baseline prepandemic contact matrix estimated for Monday, March 2. 
The second (center) is the calibrated contact matrix for Wednesday, 
April 15, in the midst of the lockdown, constructed using equation (15)  
with jt = 1, so that the matrix represents only the reduced contacts from 
school closings, layoffs, working from home, and reduced other activities, 
not from additional (unmeasured but estimated) protective precautions.  

Source: Authors’ calculations using POLYMOD data.
Notes: The (a,b) element is the number of contacts made by individual age a (y axis) of individuals of 

age b (x axis) in a day, for age bins 0–19, 20–44, 45–64, 65–74, and 75+. Darkest indicates eight to nine 
contacts, lightest indicates less than .2 contacts. From the left, the matrices are the baseline prepandemic 
contact matrix, the estimated contact matrix as of April 15 (accounting for working at home, layoffs, no 
school, reduced travel, but not accounting for masks or other transmission-reducing factors), and contacts 
under a hypothetical in which there is no school, all workers under age 64 return to work, workers 65+ 
work from home (or not at all), and visits to the elderly are reduced by 75 percent relative to baseline.
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Figure 3. Illustrative Contact Matrices: Baseline, Estimated for April 15,  
and Counterfactual
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The third matrix is a counterfactual matrix for a scenario considered below, 
in which workers age 65+ work from home or not at all, other workers  
return to their workplace, there is no school, and visits to the elderly (includ-
ing by home health and nursing home workers) are reduced by 75 percent.  
The effect of these counterfactual adjustments is to reduce contacts in the  
top row and final column (the oldest age groups), reduce child-child contacts 
(youngest age group), and for contacts among middle age groups to be 
similar to baseline levels.

IV.B. Estimation Results

After the calibration described in section IV.A, the SEIQRD model has 
five free parameters: the initial infection rate I0, the unrestricted adult 
transmission rate β, and the three parameters determining jt, f0, f1, and f2. 
These parameters were estimated by nonlinear least squares, fit to the daily 
seven-day moving average of national COVID-19 deaths from the Johns 
Hopkins real-time database, using an estimation sample from March 15 to 
June 12, 2020.17 The mid-March start of the estimation period is motivated 
by the evidence of undercounting of COVID-19 deaths, especially early in 
the epidemic; see, for example, the New York Times estimates by Katz, Lu, 
and Sanger-Katz (2020). This systematic undercounting of deaths provides 
an important caveat on the parameter estimates; in particular, the initial 
infection rate could be higher than we estimate.

Table 1 provides estimates of these parameters and their standard errors 
for selected values of the overall population IFR. Standard errors are reported 
below the estimates, with the caveat that we are not aware of applicable 
distribution theory to justify the standard errors given the nonstationary, 
highly serially correlated data. The final column reports the root-mean-
square error (units are thousands of deaths). The only parameter that is 
independently interpretable outside of the model is the initial number of 
infections on February 21, I0, which we estimate to be 3,635 (SE = 370) 
using our base case population IFR of 0.7 percent.

One overall summary of the fit of the estimated model is the time path 
of the model-implied effective case reproduction rate, Reff = R0(S/N). This is 
plotted in figure 4 over the estimation period (through June 12). The figure 
also shows a nonparametric estimate computed directly from actual daily  

17. Daily deaths have a weekly “seasonal” pattern reflecting weekend effects in reporting. 
Using the seven-day trailing change in actual and model-predicted deaths smooths over this 
substantively unimportant noise.
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Table 1. Estimated Parameter Values

IFR Î0 β̂ f̂ 0 f̂ 1 f̂ 2 RMSE

0.005 4.932 0.051 0.012 0.832 0.804 1.195
(0.485) (0.001) (0.003) (0.040) (0.039)

0.007 3.635 0.050 0.005 0.854 0.821 1.200
(0.371) (0.001) (0.004) (0.035) (0.041)

0.009 2.932 0.0500 0.006 0.879 0.826 1.215
(0.317) (0.001) (0.005) (0.039) (0.047)

Source: Authors’ calculations.
Notes: The parameters I0 and β are, respectively, the initial number of infections on February 21 

(in thousands) and the adult transmission rate. The coefficients f0, f1, and f2 parameterize the scaling 
factor jt. Given the infection-fatality ratio (IFR) in the first column and the other model parameters 
given in the text, the parameters in the table are estimated using data on the seven-day moving average 
of deaths (in thousands) from March 15 through June 12. Nonlinear least squares standard errors are 
given in parentheses.

Source: Authors’ calculations.
Notes: Ninety-five percent confidence bands shown. The model-implied estimate (dark gray) is 

computed from the estimated model, for population IFRs = 0.4–1.1 percent. The nonparametric estimate 
(light gray) is computed using equation (13) with the change in deaths estimated over seven days and 
daily deaths averaged over the week, using a local quadratic smoother. Nonparametric estimate is shifted 
by fourteen days to approximate the lag from infections to deaths.
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Figure 4. Model-Implied and Nonparametric Estimates of Reff
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deaths using equation (13).18 Given the nonstandard serial correlation in  
the data, neither set of confidence intervals would be expected to have 
the usual 95 percent frequentist coverage. The model-based and non-
parametric estimates are quite similar. Both estimate that, early in the 
pandemic, the initial R0 was approximately 3.2, which is within the range 
of other estimates. With the self-protective measures and government-
ordered shutdowns, the effective R dropped sharply through March into 
April and was estimated to be below 1 from mid-April through mid-May. 
Subsequently, with the reopening and the increased mobility, the model-
based effective R rose slightly above 1, although the nonparametric esti-
mate remained just below 1. The estimated values of Reff are plotted for 
IFRs ranging from 0.4 percent to 1.1 percent; they are nearly the same, 
indicating that the IFR is not separately identified in the model as discussed 
by Atkeson (2020b).

V. Control Rules and Simulation Design

Decision making in the coronavirus epidemic has occurred at all levels 
of society: consumers decide if they feel it is safe to dine out or travel; 
workers weigh concerns about the safety of returning to work; local  
officials decide on when to apply for and how to implement reopening; 
state officials issue closure orders, mandate noneconomic NPIs, and permit 
reopenings; and federal agencies attempt to provide guidance. We combine 
these multiple decision makers, private and public, into a single repre-
sentative decision maker who is averse to both deaths and unemployment. 
For convenience, we refer to this decision maker as a governor who has 
primary authority over decisions to shut down and to reopen, but the 
term “governor” stands in for the actual, more complex, decentralized 
decision-making process.

V.A. Control Rules

We model reopening decisions as reacting to recent developments with 
the twin aims of controlling deaths and reopening the economy in mind. 
In so doing, we treat the governor as following the CDC and White House 

18. The growth rate of daily deaths in equation (13) is estimated by the average seven-
day change in deaths divided by the seven-day average daily death rate, smoothed using a 
local quadratic smoother. The nonparametric estimates assume the SIR model. For an alter-
native estimator of R that does require information on disease-specific dynamics but does not 
assume a SIR structure, see Cori and others (2013).
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reopening guidelines (White House, CDC, and FDA 2020), which advises 
reopening the economy if there is a downward trajectory of symptoms 
and cases for fourteen days, along with having adequate medical capacity 
and health care worker testing. Because of changes in test availability, 
confirmed cases are a poor measure of total infections, so we use deaths 
instead of infections but otherwise follow the spirit of the CDC guidelines.

Specifically, we consider a governor who will restrict activity when 
deaths are rising or high, relax those restrictions when deaths are falling 
or low, tend to reopen when the unemployment rate is high, and tend to 
reopen when the cumulative unemployment gap is high. This final tendency 
reflects increasing pressures on budgets—personal, business, and public—
from each additional week of high unemployment and low incomes on top 
of previous months.

In the jargon of control theory, this amounts to the governor following a 
proportional-integral-derivative (PID) control rule, in which the feedback 
depends on current deaths, the fourteen-day change in deaths (declining 
death rate), the current unemployment rate, and the integral of the unem-
ployment rate. Accordingly, we suppose that the governor follows the lin-
ear PID controller,

�∫= k + k + k + k + k−
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where Ut is the unemployment rate (= 1 − Lt/Lt0), where t0 is the end of 
February 2020) and D

.
 is the death rate. The CDC recommends tracking  

not the instantaneous derivative of infections (or D) but the change over 
fourteen days, and deaths are noisy, suggesting some smoothing of D.  
Similarly, U is unobserved and at best can be estimated with a lag, even 
using new and continuing claims for unemployment insurance and non-
standard real-time data. For the various terms on the right-hand side of 
equation (18) we therefore use, in order, the fourteen-day average of the 
unemployment rate, the cumulative daily unemployment rate since March 7, 
deaths over the previous two days (these are observed without noise in our 
model), and the fourteen-day change in the two-day death rate.

The governor decides whether workplaces can reopen and, if so, whether 
to stagger the reopening across industries using the GDP-to-risk index. 
Specifically, we consider a sequence of sectoral reopenings as determined 
by the PID controller, shifted by the GDP-to-risk index:

s s u sit it t i itR R
( )( )= + F + k q −q(19) 1 ,
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where sit is the workforce in sector i at date t as a fraction of its February  
value (see equation [17]), tR is the initial date of the reopening, and F 
is the cumulative Gaussian distribution, which is used to ensure that the  
controller takes on a value between 0 and 1 (so sectoral relative employ-
ment satisfies sitR ≤ sit ≤ 1). The industry shifter kqqi preferences industry i 
based on its GDP-to-risk index.

Reopening the economy requires not just working but shopping, which 
is an other activity. In the historical period, the factor l ab,t 

other for a > 2 is set 
to equal the Google mobility index for other activities. We model this 
factor as increasing to 1 proportionately to GDP from its value on tR as  
the economy reopens, so that full employment corresponds to l ab,t 

other = 1 
for a > 2.

V.B. Noneconomic NPIs

Noneconomic NPIs are either under the control of the governor (e.g., 
reopening schools) or are decisions made by individuals that are influ-
enced by the governor (e.g., attending church). Instead of specifying policy 
rules for these other NPIs, we examine different scenarios in which the 
governor behaves according to equations (18) and (19) concerning sectoral 
reopening. For example, one set of choices entails opening up schools, but 
with protections (which the governor and school districts can mandate); 
in the context of equation (15), opening schools corresponds to setting  
lab,t 

other = 1 for ages < 20, and protective measures at schools correspond 
to setting jt < 1 for contacts made at school. For adults, we allow for 
relaxation of protective measures (masks, personal distancing) according 
to three reopening phases. For age 75+, we consider scenarios in which 
they are subject to additional restrictions on visits and greater use of 
protection than in the general population. These stand in for regular testing 
of nursing home employees, requiring visiting families to gather outside 
and to wear masks, and so forth.

VI. Simulation Results

All the simulations have the same structure: the governor controls eco-
nomic reopening according to the control rule in equation (18), given a 
specified path of noneconomic NPIs. This structure allows us to quantify 
the interaction between economic and noneconomic NPIs. In our second 
wave baseline (figure 1), the governor is pro-reopening so exercises a fast 
reopening. As an alternative, we consider a slower governor who is more 
willing to shut down the economy a second time.



BAQAEE, FARHI, MINA, and STOCK 411

The environment in which the governor makes these decisions is 
specified in terms of NPIs, which differ in each scenario. Some of these, 
like school reopening, are directly under the governor’s control, while 
others, like masks and personal distancing, are individual decisions 
that can be influenced by state, federal, and local recommendations and 
education. The baseline is the fast-reopening second wave scenario in 
figure 1; each scenario is defined by departures from that baseline. All 
simulations begin on June 1, which approximates the middle of actual 
state reopenings. Georgia was the first state to reopen most consumer-
facing businesses on April 24, while reopening for some of the hardest-
hit regions (for example, Massachusetts, Michigan, and New York City) 
occurred mainly in June.

The multiple public and private reopening road maps (Gottlieb and 
others 2020; White House, CDC, and FDA 2020; National Governors 
Association 2020; Conference Board 2020; Romer 2020) generally reopen 
in phases, where transition to the next phase is determined by public health 
gating criteria. We follow this framework and relax (or reimpose) non-
economic NPIs in three phases. In the reopening baseline, phase I reopening 
occurs on May 18, phase II reopening occurs on June 8, phase III reopening 
occurs on July 1. Nursing homes lag by one phase and enter phase III on 
September 15. These phases are modeled as (1) an increase, in three equal  
steps, in the number of other and nonhousehold home contacts from before 
the lockdown to prepandemic conditions, and (2) a relaxation of personal 
protective measures (masks, personal distancing) from their mid-May 
values to a value that is higher but still represents considerable reduction 
in transmission rates, given a contact, relative to unrestricted conditions.  
In the second wave baseline, the self-protective factor j rises from its 
late-May empirical estimate of 0.26 to 0.67. As a calibration using the 
formula in footnote 12, a factor of 0.67 corresponds to one-quarter of the 
population using masks that are 75 percent effective for all nonhousehold 
contacts. In the reopening baseline, workers working at home return to 
the workplace during phases I–III. The roadmaps and actual reopenings 
typically prioritize safer sectors, so in our second wave baseline we use 
equation (19) with kq = 1. If primary and elementary schools reopen, they 
do so on August 24.

In all scenarios, we assume that workplace safety measures remain in 
place throughout the simulation period at their estimated late-May level, 
specifically, the within-workplace transmission factor β is reduced by 
a factor of 0.26. As calibration using the formula in footnote 12, this 
corresponds to 65 percent of workers wearing a 75 percent effective mask 
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when in contact with workers or customers, although in practice workplace 
safety measures would vary by sector.

Each scenario also specifies an effective quarantine rate. The effective 
quarantine rate is the fraction of infected individuals who, at some point 
during their infection, enter quarantine. The rate that is achieved in prac-
tice reflects a combination of identifying the infected through testing or 
contact tracing, government policy concerning those who test positive, 
and individual compliance. Currently, the CDC website advises indi-
viduals who test positive or who are symptomatic to self-isolate “as much 
as possible.”19 We assume a current quarantine rate of 5 percent which, 
for example, corresponds to 10 percent of the infected restricting their 
contacts by half. We consider alternatives of higher quarantine rates later in 
the summer, which in turn hinges on testing and contact tracing becoming 
more widely available.

All simulations reported here are for a population-wide IFR of  
0.7 percent; sensitivity analysis is provided in the online appendix. Uncer-
tainty spreads in the simulation plots are two standard error bands based 
on the estimation uncertainty for I0 and β in table 1. All simulations end 
on January 1, 2021. Details for all scenarios are available in the online 
appendix, as are sensitivity results for these scenarios that vary the  
population-wide IFR and epidemiological parameters.

Figure 5 shows total deaths and the share of recovered individuals by 
age for the baseline second wave scenario in figure 1. Of the 482,000 deaths  
by January 1, 56 percent are age 75 or older. By January 1, nearly one-
quarter of the population has been infected, with those age 20–44 having 
the highest recovered rate (31 percent) because of their higher rates of 
contact. Because of the high rate of recovered individuals, the value of Reff 
in this simulation is just over 1 by January 1.

Results for mortality by age and GDP are given in the online appendix.

VI.A. Economic NPIs

The first economic NPI, shutting down the economy while holding 
constant the other assumptions of the second wave baseline, is modeled  
by the slow governor’s response, holding constant the other assumptions 
of the second wave baseline, and is shown in the top panel of figure 2. 

19. “What to Do If You Are Sick,” Centers for Disease Control and Prevention,  
https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/steps-when-sick.html?CDC_AA_ 
refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fif-you-are-sick 
%2Fcaring-for-yourself-at-home.html, accessed June 19, 2020.



BAQAEE, FARHI, MINA, and STOCK 413

Source: Authors’ calculations.
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As discussed in the introduction, the second shutdown reduces but does not 
eliminate the second wave of deaths, while producing rates of unemploy-
ment in the mid-teens. Here, we consider the effects of three more-nuanced 
economic NPIs: relying more heavily on the GDP-to-risk index, so that 
high-risk, low-value sectors are reopened last and closed first; requiring 
all workers to work from home; and an age-based policy that requires all 
workers who are age 65+ to work from home if they can or not to work at all.

The top panel of figure 6 departs from the second wave baseline  
by implementing a more aggressive sectoral reopening than in figure 1, 
specifically by increasing kq in equation (19) to kq = 2. As it happens, 
whether one makes more aggressive use of the GDP-to-risk index has a 
small effect: when the sectoral reopening exploits the GDP-to-risk index, 
deaths are reduced by 800 and second-half GDP is increased by 0.2 percent 
(the unemployment rate is very slightly lower under the nuanced reopening 
because the lower deaths permit a slightly faster reopening). This finding 
is robust: we have explored the gains from stronger or weaker phasing of 
reopenings or shutdowns based on the GDP-to-risk index, both Winsorized 
(used here) and not; while using this index reduces deaths, the gains are 
modest at best and, in scenarios in which deaths are being brought under 
control, the benefits of a staged sectoral reopening are nearly negligible. 
The remaining simulations therefore retain the baseline value of kq = 1. 
Some intuition for the limited benefit of a staged sectoral reopening is that, 
for the average worker, only half their contacts occur at work, and because 
workplaces are generally regulated, it is easier to implement and enforce 
transmission reduction measures at work than in noneconomic other activi-
ties such as church or parties; thus the potential gains from staged sectoral 
reopening are small to begin with.

This finding of small benefits to staggering the sectoral reopening has 
an important caveat: although our sixty-six sectors provide considerable 
granularity and exhibit a large variation in the GDP-to-risk index, the 
sectoral detail does not isolate those few businesses in the highest-risk tail 
of the contact distribution. For example, NAICS code 722 (food services and 
drinking places) includes establishments ranging from catering companies 
to nightclubs. Contacts among customers and workers at high-contact/ 
high transmissibility activities such as nightclubs are in principle in the  
POLYMOD contact database, so these very high-contact economic activi-
ties are in both the workplace and consumption (other activity) components 
of the model. That said, judgment strongly suggests that such high-contact 
economic activity would appropriately be treated differently than broad-
based reopening: keeping closed the highest-contact economic activities 
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Source: Authors’ calculations.
Notes: Baseline is the fast reopening second wave scenario in figure 1. Total deaths by January 1: 

482,000 (top) and 383,000 (bottom). Bands denote +/− 1, 1.65, and 1.96 standard deviations arising from 
sampling uncertainty for the estimated parameters.
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could be a justifiable NPI in a cost-benefit sense, perhaps indefinitely 
until a vaccine is available. These very high-contact activities are a small 
fraction of economic activity, for example, admissions to movie theaters, 
sports, and other live entertainment comprised less than 0.6 percent of 
personal consumption expenditures in 2019.

The bottom panel of figure 6 modifies the second wave baseline by requir-
ing those workers who are able to work from home to continue to do so as 
businesses reopen. By reducing workplace contacts, this policy reduces 
deaths by January 1 from 482,000 to 383,000. This reduction in deaths 
allows the governor to implement a less severe second wave shutdown, 
so the unemployment rate is lower (by approximately 1 percentage point) 
during the fall than without the work-from-home order.20

Figure 7 (top panel) considers an age-based policy, in which only 
workers over age 65 are required to work from home, if they are able, 
or not at all. The effect of this NPI on employment and contagion varies 
by sector, depending on the age distribution of workers, personal proximity  
in the workplace, and the extent to which that sector admits working from 
home. This policy reduces total deaths from 482,000 to 466,000. The 
year-end unemployment rate is slightly higher under this scenario than the 
second wave baseline because of the laid-off age 65+ workers.

The bottom panel of figure 7 considers the combined effects of an eco-
nomic lockdown with these three economic NPIs layered on: leaning more 
heavily on phasing by sector, requiring working from home, and laying off 
workers age 65+ who are not able to work from home. These instruments 
are complementary, and between them they reduce deaths by 171,000. Yet, 
this full arsenal of economic NPIs neither prevents nor quells the second 
wave, just limits its damage, and they are accompanied by very high 
unemployment rates.

Compared to the full shutdown, the three more-nuanced economic NPIs 
have the virtue of both reducing deaths and supporting overall employment. 
That said, the main conclusion from these simulations is that the full 
economic shutdown in figure 2 (top panel), even if combined with the 
additional economic measures in figures 6 and 7, is not potent enough, 
by itself, to stop the second wave.

20. We note that there are plausibly effects on productivity from working at home, 
although a priori the overall sign is unclear. Workers save time commuting; however, they 
could have distractions such as child care. Bloom and others (2015) find that workers who 
work from home are more productive; however, that is a pre-COVID-19 study, so there is 
plausibly selection in those results. See Mas and Pallais (2020) for a review. These potential 
productivity effects are not included in our calculations.
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Source: Authors’ calculations.
Notes: Baseline is the fast reopening second wave scenario in figure 1. Total deaths by January 1: 

466,000 (top) and 311,000 (bottom). Bands denote +/− 1, 1.65, and 1.96 standard deviations arising from 
sampling uncertainty for the estimated parameters.
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VI.B. Noneconomic NPIs

We now turn to four noneconomic NPIs that could mitigate the second 
wave: not allowing schools to reopen in the fall; undertaking enhanced 
protections for age 75+, especially the most vulnerable in long-term 
care facilities; increasing the quarantine rate, which would entail direct-
ing resources toward increased testing and contact tracing; and revoking  
phase III noneconomic relaxation, such as returning to prohibitions 
on large group gatherings and enhanced mask wearing and personal 
distancing.

The option of not reopening elementary and secondary schools in 
the fall is shown in figure 8 (top panel). Not sending children to school 
reduces contacts among children and between children and their teachers, 
so reduces the spread of the virus. As discussed in section II, however, 
contacts involving children are believed to entail lower risk of spreading 
the virus than contacts among adults, so deaths by January 1 only fall by 
26,000. Moreover, if schools are closed, then some workers will be con-
strained in their labor supply because they must provide child care; as a 
result, the unemployment rate remains elevated through the fall at just 
over 10 percent. In addition, closing schools has the undesirable effect of 
retarding schoolchildren’s education, especially for those least able to learn 
in an online environment. So not reopening schools alone imposes consid-
erable economic and noneconomic costs while not solving the problem of 
the second wave.

Because COVID-19 mortality rates increase sharply with age, one pos-
sible policy is to devote additional resources focused on protecting the 
elderly. Current CDC guidelines for nursing homes recommend virus 
testing for all residents and staff but do not specify testing frequency.21 
The CDC also recommends that visitors wear cloth masks and restrict  
their visit to their relative’s room. The Centers for Medicare and Medicaid 
Services guidelines for reopening long-term care facilities recommend 
weekly testing of staff, providing staff with personal protective equip-
ment, and delaying outside visitors until the state enters federal phase III 
reopening.22 In theory, these are strong and protective steps; however,  

21. “Testing Guidelines for Nursing Homes,” Centers for Disease Control and Preven-
tion, https://www.cdc.gov/coronavirus/2019-ncov/hcp/nursing-homes-testing.html, accessed 
June 20, 2020.

22. “Nursing Home Reopening Recommendations for State and Local Officials,” Centers 
for Medicare and Medicaid Services, https://www.cms.gov/medicareprovider-enrollment-and-
certificationsurveycertificationgeninfopolicy-and-memos-states-and/nursing-home-reopening-
recommendations-state-and-local-officials, accessed May 18, 2020.
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Source: Authors’ calculations.
Notes: Baseline is the fast reopening second wave scenario in figure 1. Total deaths by January 1: 

456,000 (top) and 355,000 (bottom). Bands denote +/− 1, 1.65, and 1.96 standard deviations arising from 
sampling uncertainty for the estimated parameters.
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it is unclear how the testing and additional staff needed to implement these 
guidelines will be paid for and whether nursing homes have the institu-
tional capacity to implement these measures.

Figure 8 (bottom panel) examines the effects of enhanced protections 
for the elderly, modeled as requiring nursing homes to maintain their 
restrictions on visitors and transmission mitigation measures of late May 
(the details of how these requirements are met could change in practice, for 
example, by more staff testing as tests become more available than they 
were in May). The reduction in deaths is large, by 127,000, about one-third 
of projected cases under the baseline from July 1 through January 1. This 
significant saving in life is consistent with the conclusions in Acemoglu 
and others (2020), although their estimated gains are even larger because 
they start from a much higher baseline number of deaths. The reduced 
number of deaths provides room for the governor to be less restrictive and, 
while under this policy the economy still has a W-shaped recession, the 
second dip is less severe.

The roadmaps generally stress the importance of widespread testing and 
quarantine. During the spring and summer of 2020, however, testing was 
notable mainly because of its absence. In some cases, test results were 
so delayed as to render testing useless for public health purposes. Our 
enhanced quarantine scenario has a 10 percent effective quarantine rate, 
that is, 10 percent of infected individuals are sent into perfect quarantine at 
some point during their infection.23 Without legally enforceable quarantine, 
even a 10 percent effective quarantine rate evidently would require a signifi-
cant increase in testing with fast turnaround, combined with incentives to 
quarantine. That testing need not be random but instead could be focused 
on populations who are both at a highest risk of getting the virus and are 
most likely to spread it.

The effect of a 10 percent quarantine rate (up from 5 percent in the base-
line) is shown in the top panel of figure 9; the bottom panel shows results for  
a 15 percent quarantine rate. Increasing the quarantine rate to 10 percent 

23. We consider this effective quarantine rate as ambitious but achievable. Current estimates 
of the asymptomatic rate vary from less than 40 percent to approximately 80 percent. Yang, 
Gui, and Xiong (2020) estimate a 42 percent asymptomatic rate for a sample of Wuhan 
residents. Data in Guðbjartsson and others (2020) suggest a comparable asymptomatic rate 
in Icelandic testing, and Poletti and others (2020) suggest a 70 percent asymptomatic rate 
among those younger than 60. As a calibration, suppose that 40 percent of the infected (a high 
fraction of the symptomatic) get tested, get their results back while they are still infectious, 
and are advised to self-isolate, that half of those comply, and that those who comply reduce 
their contacts by 50 percent. This results in a 10 percent effective quarantine rate.
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Source: Authors’ calculations.
Notes: Baseline is the fast reopening second wave scenario in figure 1. Total deaths by January 1: 

384,000 (top) and 331,000 (bottom). Bands denote +/− 1, 1.65, and 1.96 standard deviations arising from 
sampling uncertainty for the estimated parameters.
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reduced fatalities from 482,000 to 384,000 and increasing the quarantine 
rate to 15 percent nearly flattens the death curve and reduced total deaths 
to 331,000. With increased testing and quarantine, the governor can pause 
the economic reopening but does not need a second economic shutdown.

These scenarios all have phased-in lifting of restrictions on noneconomic 
activities, such as basketball games, large group gatherings, and religious 
services, as well as partial relaxation of personal protections such as wear-
ing masks. An option available to the governor is to revoke the phase II 
and III noneconomic reopenings and to call for increased wearing of masks 
and personal distancing. We therefore consider a case in which the gov-
ernor reverts to phase I for noneconomic gatherings (church, social, etc.) 
on July 20, upon seeing the reversal of the previously declining trend in 
deaths. Recall that phase I noneconomic restrictions are less restrictive than 
our empirical estimates for mid-May.

Figure 10 (top panel) considers this reversal of noneconomic NPIs. 
Unlike the imposition of strict economic NPIs or economic shutdowns, 
this policy brings Reff below 1 and deaths decline: the second wave is kept 
small and brief. Year-end deaths total only 188,000, and the economy is 
near full employment.

The final two cases combine some of these noneconomic NPIs. Figure 10 
(bottom panel) considers the combined effect of returning to phase I social 
distancing, enhanced protections for the elderly, and 10 percent quarantine. 
The combined effect is to reduce year-end deaths to 155,000 with nearly 
full employment. Figure 2 (bottom panel), discussed in the introduction, 
additionally requires workers who can to continue to work from home; the 
result is a further reduction in deaths to 147,000 and nearly full employ-
ment throughout the fourth quarter.

VI.C. Cost per Life

A standard approach in the economics literature on the pandemic is to 
view NPIs through the lens of cost per life saved. There are technical reasons 
to object to this calculation: standard estimates of the value of life refer to 
marginal consumption losses whereas the current losses are nonmarginal, 
and the true cost of a shutdown-induced recession depends on the path  
of recovery which is highly uncertain.24 More importantly, the preceding  
simulations underscore that the value-of-life framing is too narrow for many 
of these calculations, in which the NPI reduces lives lost and improves 
economic outcomes.

24. See Hall, Jones, and Klenow (2020) for a discussion.
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Figure 10. Noneconomic Non-pharmaceutical Interventions: Strong Personal Distancing

Source: Authors’ calculations.
Notes: Baseline is the fast reopening second wave scenario in figure 1. Total deaths by January 1: 

188,000 (top) and 155,000 (bottom). Bands denote +/− 1, 1.65, and 1.96 standard deviations arising from 
sampling uncertainty for the estimated parameters.
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With these caveats, one component of a cost-benefit analysis of economic 
NPIs is the economic cost, measured by lost output, relative to lives saved. 
The paths of the fast and slow governors allow us to compute the value of 
lost output per death averted as a result of a slow reopening (or aggressive 
closing), relative to the fast governor, over the period of the simulation, 
holding constant all other NPIs.25 These values vary substantially across 
NPI scenarios. If an economic lockdown is the only tool used, that is, the 
scenario in figure 1 versus figure 2 (top panel), the cost per death averted is  
$11 million. In scenarios with other NPIs, the cost per death averted tends to 
increase because the other NPIs are reducing deaths, so the marginal value 
of the lockdown measured in terms of deaths is diminished. For example, 
if an economic lockdown is layered on top of the reversal in noneconomic 
NPIs in figure 10 (top panel), the cost per death averted is $24 million. 
These values exceed typical US government estimates; for example, the 
US Environmental Protection Agency (2010, appendix B) recommends 
using $9.1 million (2019 dollars) per death averted.

VI.D. Nonlinear Input-Output Calculations

Our counterfactual GDP estimates use the approximation in equation (11) 
known as Hulten’s (1978) theorem. Hulten’s theorem is an equilibrium first-
order approximation for small shocks. Given that the sectoral reductions in 
hours associated with lockdowns are very large, it is natural to question the 
validity of this approximation. As shown by Baqaee and Farhi (2019, 2020a, 
2020b), the quality of the approximation depends on the size of the sectoral 
shocks and how sectoral labor income shares vary with the shocks, which 
in turn depends on the elasticities of substitution in consumption and in 
production. When all the elasticities are equal to one, the economy is 
Cobb-Douglas, the sectoral labor shares are constant, and Hulten’s theorem 
applies globally and not only as a first-order approxi mation. However, if the 
elasticities are less than one, so that there are complementarities, then the 
quality of the approximation can quickly deteriorate when the shocks get 
large. This is potentially important given that the empirical literature typically 
finds that inter-sectoral elasticities are significantly below one.

To gauge the importance of these nonlinearities for our calculations, 
we consider the counterfactual sectoral reductions in hours in 2020:Q3 in the 
economic lockdown scenario of figure 2 (top panel). We explore different  
values within the plausible set of inter-sectoral elasticities (s, q, e, h), 

25. This calculation misses differences in lives saved and costs incurred in 2021, outside 
the simulation window.
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where s is the elasticity of substitution in consumption, q is the elas-
ticity of substitution across intermediates in production, e is the elasticity 
of substitution between value added and intermediates in production, and  
h is the elasticity of substitution between capital and labor in produc-
tion. We consider low elasticities given the short horizons involved. When 
(s, q, e, h) = (1, 1, 1, 1), so that Hulten’s theorem applies globally, the 
reduction in real GDP is 7.3 percent. When (s, q, e, h) = (0.95, 0.001, 
0.7, 0.5), the reduction in real GDP is 7.9 percent. When (s, q, e, h) =  
(0.7, 0.001, 0.3, 0.2), the reduction in real GDP is 9.5 percent. Finally, 
when (s, q, e, h) = (0.5, 0.001, 0.3, 0.2), the reduction in real GDP is 
10.1 percent. Hence, empirically plausible complementarities in consump-
tion and in production can amplify real GDP losses, relative to what we 
have reported, by somewhere between 10 and 40 percent.

VII. Discussion

The modeling presented here goes beyond what is in the literature by 
incorporating an age-based SEIQRD model into a sectoral economic model 
with multiple, explicitly specified NPIs, calibrated and estimated to current 
US conditions using the most recently available data. Still, multiple caveats 
are in order. One is that the situation differs by state, with Northeastern 
states seeing a sharp decline in infections and deaths in May through July 
2020, but other parts of the United States seeing expansions in infections 
and deaths. The national modeling here abstracts from these differences.  
In addition, there is considerable uncertainty over some key epidemio-
logical parameters, such as the infection-fatality ratio. Additional simulation 
results in the online appendix explore the sensitivity of the modeling results 
to some of the key epidemiological parameters. Although numerical values 
differ—for example, under all control scenarios deaths are higher if a higher 
value of the IFR is assumed—the conclusions from section VI are robust.

For convenience, we have called the decision maker in the model the 
governor. This is a simplification of a complex decision-making environ-
ment in which federal guidelines, state requirements and guidelines, local 
implementation, and individual decisions combine to influence the spread 
of the virus. There is a compelling body of work that much of the decline 
in economic activity in March and April was not directly caused by govern-
ment intervention but instead was an endogenous self-protective response 
by consumers and, similarly, that official reopenings had limited if any 
direct causal effect on spending (Bartik and others 2020; Gupta, Simon, 
and Wing 2020). If so, one might think of consumers as more akin to our 
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slow governor. Under this interpretation, our results align with the reduced-
form evidence that the key to reviving the economy is providing a setting 
in which consumers and workers are comfortable returning to economic 
activity, that is, in which deaths are low and declining.

Our governor in these simulations used a backward-looking PID control 
rule based on the CDC suggested guidelines. This differs from most of the 
recent economic modeling surveyed in the introduction, which investigates 
optimal control rules. These approaches are complementary: optimal con-
trol provides insights about how economic decisions could optimally be 
made; the approach here asks how various NPIs can reduce or eliminate 
the need for adhering to lockdowns within the context of existing economic 
reopening or closing plans. One issue that has not been addressed in the 
economics literature using optimal control is the large amount of param-
eter and model uncertainty, which is ignored under standard optimal con-
trol rules but is reflected in the uncertainty bands in our figures and in the 
online appendix. Addressing this uncertainty could be done using the tools 
of robust control, but that has not yet been done in combined economics-
epidemiological models.26

The main conclusion from the simulations in section VI is that aggres-
sive use of noneconomic NPIs can lead to a reduction in deaths and a 
strong economic reopening. If a second wave emerges, a second round of 
economic shutdowns would be both costly and ineffective, compared to 
noneconomic NPIs. A key noneconomic NPI is returning to phase I–level 
restrictions on noneconomic social activities, combined with widespread 
adoption of measures to reduce transmission such as masks and personal 
distancing. When combined with other measures, such as ramped-up 
testing and quarantine and enhanced protection of the elderly, especially in 
nursing homes, these noneconomic NPIs can provide a powerful force to 
control a second wave and, based on our modeling, make room for bringing 
the large majority of those currently not working back to work.
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26. See, however, Morris and others (2020) for an example within an epidemiology-
only model.
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