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Outline

* Mobility data: representativeness and meaning
» Testing data: biases in confirmed case reports

* Assessing timing of policies versus epidemiology: accounting for non-
linear dynamics



COVID19 Mobility Data Network:

* ~50researchers internationally

 DUAs with Facebook, Camber
Systems (incl unacast etc), Cuebiq

* Direct 1:1 connections between
network members and local/state
policy makers to guide response

e Standardized analyses across
locations and data platforms

<« C & covid19mobility.org '1.

COVID-19 Mobility Data Network  Visualzation Tools Resources  About  Partners Contact CCDD. Member Login (Fig. 1 — Countries currently receiving support from the COVID-19 Mobility Data Network include: United States, Mexico, Peru,
Chile, United Kingdom, Spain, Italy and India. States within the US include: New York, Massachusetts, Florida, Illinois, Michigan,
Missouri, Louisiana, Texas, Colorado, Washington, and California. Cities within the US include: Boston, Cambridge, New York,
Syracuse, Miami, Detroit, Chicago, New Orleans, Houston, Denver, Seattle, Santa Clara, San Jose and Los Angeles)

COVID-19 Mobility Data Network

We are a network of infectious disease epidemiologists at universities around
the world working with technology companies to use aggregated mobility data
to support the COVID-19 response. Our goal is to provide daily updates to
decision-makers at the state and local levels on how well social distancing
interventions are working, using anonymized, aggregated data sets from mobile
devices, along with analytic support for interpretation.

Covid19mobility.org
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Mobile phone data for informing public health actions
across the COVID-19 pandemic life cycle
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High: >20

Moderate: 10-20

Households under
poverty line (%)

Low: <10

Population over
70 years old (%)

U.S. county-level characteristics to inform
equitable COVID-19 response

(® Taylor Chin, © Rebecca Kahn, © Ruoran Li, Jarvis T. Chen,
® Nancy Krieger, (® Caroline O. Buckee, {0 Satchit Balsari,

(® Mathew V. Kiang
doi: https://doi.org/10.1101/2020.04.08.20058248
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New Cases

Number of Cases
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Kaashok & Santillana http://dx.doi.org/10.2139/ssrn.3574849


https://dx.doi.org/10.2139/ssrn.3574849

num cases

Linear Regression
y=ax+b

Advantage: simple interpretation of a

Drawback: does not fit these data

»t Can we transform the variables?
i Quadratic Regression
D)
: y =ax’ + bx tc
= Advantage: fits the data better
Drawback: cannot interpret a and b
>t

num cases

“SIR”Regression

y=f(p.v)

Advantage: fits the data well

Advantage: can interpret fand v



Daily reported deaths Modelled outcomes (incident daily)
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Collaboration with Nishant Kishore (HSPH), Nick Menzies (HSPH), Ted Cohen (Yale), Aimee Taylor (HSPH), Pierre Jacob (Harvard)



Modeled incident case
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Bayesian nowcasting with adjustment for delayed and incomplete reporting to estimate
COVID-19 infections in the United States

Melanie H Chitwood, Marcus Russi, Kenneth Gunasekera, Joshua Havumaki, Virginia

E. Pitzer, Joshua L Warren, Daniel Weinberger, Ted Cohen, Nicolas A Menzies
medRxiv 2020.06.17.20133983; doi: https://doi.org/10.1101/2020.06.17.20133983



Fresno County, California - Day 0: Mar 07, 2020
Estimate of R(t) with 95th Percentiles Movement
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Collaboration with Nishant Kishore (HSPH), Nick Menzies (HSPH), Ted Cohen (Yale), Aimee Taylor (HSPH), Pierre Jacob (Harvard)



State Mandated Stay-At-Home Orders by Date of Implementation
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State of emergency declared, March 13

NBA cancels season, March 11
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Social Distancing is Effective at Mitigating COVID-19 Transmission in the United States
Hamada Badr, Hongru Du, Max Marshall, Ensheng Dong, Marietta Squire, Lauren Marie Gardner
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New reported cases by day in Texas
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Cumulative incidence measured by serosurveillance

Reductions in commuting mobility predict geographic differences in SARS-CoV-2

prevalence in New York City

Stephen M. Kissler'™, Nishant Kishore?*, Malavika Prabhu**, Dena Goffman®*, Yaakov Beilin82*,
Ruth Landau®, Cynthia Gyamfi-Bannermans, Brian T. Bateman?, Daniel Katz8®, Jonathan Gale,

Angela Bianco®, Joanne Stone®, Daniel Larremore?, Caroline O. Buckee?, Yonatan H. Grad'
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Conclusions

* Consistency in finding that messaging and orders unlikely to have been
driving factor in behavior change

* Lockdowns were highly effective at reducing growth rate of epidemics

* Nonlinearities and variable timing intrinsic to epidemic dynamics
Important

* Testing and mobility data both have limitations, not necessarily
appropriate to use them quantitatively as indicators

 We are very far from herd immunity. This is going to be a long haul.



