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Outline

• What is differential privacy?

• Applying differential privacy to data

• Implementing differential privacy for census

• Analyzing impact of differential privacy
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WHAT IS DIFFERENTIAL PRIVACY?
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Differential privacy is…

• A formal (mathematical) definition of privacy
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Differential privacy is not…

• An algorithm for disclosure control
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Differential privacy is not…

• An algorithm for disclosure control

• An absolute guarantee against disclosure risk

6



APPLYING DIFFERENTIAL PRIVACY
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Construct cross-tabs from “true” data

School Attendance

Never Attending Past

Male 3 12 33

Female 4 17 31
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Population = 100



Draw noise from Laplace distribution
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Add noise to cross-tab

School Attendance

Never Attending Past

Male 3 – 1 = 2 12 + 0 = 12 33 + 1 = 34

Female 4 + 8 = 12 17 + 2 = 19 31 – 2 = 29
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Sum = 108



Construct synthetic microdata
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DIFFERENTIAL PRIVACY AND CENSUS
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POLICY DECISIONS
Differential privacy and census
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Policy decisions

• Global privacy loss budget (𝝴)

• Geographic levels

• Tables

• Invariants and constraints
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• 1940 Geographic levels

– Nation

– State

– County

– Enumeration district
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• 1940 tables

– Voting age [2] x Hispanic [2] x Race [6]

– Households/group quarters type [8]

– Detailed [192]

• Voting age [2] x Hispanic [2] x Race [6] x GQ Type [8]
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ANALYZING DIFFERENTIALLY 
PRIVATE 1940 CENSUS DATA
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• Census Disclosure Avoidance System (DAS) 
source code published in April 2019

– 2020 Census DAS Development Team, 2019
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• Census Disclosure Avoidance System (DAS) 
source code published in April 2019

– 2020 Census DAS Development Team, 2019

• Implements their TopDown algorithm

– Abowd et al, 2019 
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• Four geographic levels 

– Nation, state, county, enumeration district
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Fixed parameters



Fixed parameters

• Four geographic levels 

– Nation, state, county, enumeration district

• Three queries / tables

– Voting age – Hispanic – Race

– Houshold – group quarters 

– Detailed
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Modifiable parameters

• Global privacy loss budget (ɛ)
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Modifiable parameters

• Global privacy loss budget (ɛ)

• Fractional allocation to

– Geographic levels 

– Tables
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Modifiable parameters

• Global privacy loss budget (ɛ)

• Fractional allocation to

– Geographic levels 

– Tables

• Number of runs
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• Comparisons between ”true” data (IPUMS 
1940 complete-count) and differentially 
private data
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• Differences in total population for counties 
and enumeration districts

• County-level African American population

• ED-level proportion of total population who 
identify as African American

• Index of dissimilarity (D)

• Multigroup entropy (H)
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Key takeaways

• Geographic units with smaller populations are 
less accurate

• Small sub-populations are less accurate

• Bias for segregation metrics concerning
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CENSUS DAS 
Differentially private datasets

30



Parameters

• Global privacy loss budget (ɛ)

– 8 values: [0.25, 0.50, 0.75, 1.0, 2.0, 4.0, 6.0, 8.0]

• Four runs for each value of ɛ
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Parameters
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Geographic levels Fraction

Nation 0.25

State 0.25

County 0.25

Enumeration district 0.25



Parameters
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Tables Fraction

Voting age—Hispanic – Race 0.675

Household – Group quarters 0.225

Detailed 0.1
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GEOGRAPHIC LEVELS
Differentially private datasets
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Parameters

• Global privacy loss budget (ɛ)

– One value: 1.0

• One run
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Parameters
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Geographic levels Fraction*

Nation 0.85

State 0.05

County 0.05

Enumeration district 0.05



Parameters
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Tables Fraction

Voting age – Hispanic – Race 0.675

Household – Group quarters 0.225

Detailed 0.1
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TABLES
Differentially private datasets
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Parameters

• Global privacy loss budget (ɛ)

– One value: 1.0

• One run
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Parameters

50

Geographic levels Fraction

Nation 0.25

State 0.25

County 0.25

Enumeration district 0.25



Parameters
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Tables Fraction*

Voting age – Hispanic – Race 0.9

Household – Group quarters 0.05

Detailed 0.05
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Conclusions

• Diff. privacy less complicated than expected
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Conclusions

• Diff. privacy less complicated than expected

• Fundamental importance of policy decisions 
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Conclusions

• Diff. privacy less complicated than expected

• Fundamental importance of policy decisions 

• Largest impact on accuracy of small areas and 
small sub-populations

59



Conclusions

• Diff. privacy less complicated than expected

• Fundamental importance of policy decisions 

• Largest impact on accuracy of small areas and 
small sub-populations

• Bias for segregation metrics concerning
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