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Abstract

Implementing and expanding on the methods introduced in Hausmann
& Hidalgo (2009), we find that a city’s Economic Complexity - a measure
of the productive capabilities available in a location - informs that city’s
future growth prospects. Moreover, we find that the technological related-
ness between an industry and the activities already present in a city informs
the industry’s local growth prospects. The out-of-sample predictive value of
these findings suggests that the evolution of industries within a city is path-
dependent. Consequently, policymakers interested in the local economic de-
velopment of American cities may obtain valuable insights from these models’
predictions.
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1. Introduction

Countries diversify their productive structures into increasingly uncom-
mon activities as they develop1. Figure 1 shows this pattern by plotting the
diversity and average ubiquity of the export baskets of different countries,
along with their level of economic development. The salient feature of this
visualization is that, on average, richer countries lie on the high-diversity,
low-ubiquity end of the graph, while poorest countries tend to be found in
the low-diversity, high-ubiquity quadrant.

This international pattern is often mirrored in subnational analyses: De-
veloped cities or regions tend to diversify towards uncommon economic sec-

1Described in detail in Hausmann et al (2014).



Figure 1: Diversity, Ubiquity and Wealth

tors, while lagging areas remain focused on fewer, prevalent activities. Figure
2 illustrates this pattern within the United States. While variation in income
levels is disperse within the US, we still observe richer cities grouped towards
the bottom-right of the visualization, while poorer cities group in the upper-
left.

These findings contradict Ricardian comparative advantage theory, which
suggests that specializing in a narrow set of activities should lead to higher
levels of efficiency. The observation that diversity and ubiquity of a soci-
ety’s productive structures associate with levels of wealth is consistent with
a view that points to the progressive accumulation of productive capabilities
and know-how as the path to economic development.

The intuition behind one of such views, the Economic Complexity theory
of economic development2, goes as follows:

• Productive capabilities and tacit know-how, which are not perfectly

2Described in detail in Hausmann & Hidalgo (2009).
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Figure 2: Diversity, Ubiquity and Wealth within the US

observable, are combined in the production of goods and services.

• Regions that lack many capabilities will only be able to assemble a
relatively modest number of goods and services, which will also be
feasible in many other regions.

• To the contrary, regions that accumulate many capacities will be able
to assemble a relatively large number of activities, many of which will
only be feasible in the small group of other regions with the necessary
capabilities.

• As they expand their stock of productive capabilities, developing re-
gions become able to diversify their productive mix into less ubiquitous
activities.

From this perspective, the concept of productive diversity and average
ubiquity of a region’s productive mix are indicative of its level of economic
development. The concept is captured through the Economic Complexity
Index (ECI) which measures the unobserved stock of capabilities in an econ-
omy. For a city, ECI is derived through an iterative process that interacts the
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Figure 3: Complexity and wealth among US cities, 2016

measures of industrial diversity and ubiquity to correct for the noise in one
of the variables with the average values of the other (Hausmann & Hidalgo,
2009). The result is an index which captures the ability of a city to make
many products and services, and thus host many industries, including those
that are hard to host in capability-poor cities. Figure 3 shows how the ECI
of American cities relates to their GRP per capita in the same year.

Authors in urban economics discussing the issue of local economic growth
have emphasized the process of spatial equilibria, in which the effects of pro-
ductivity gains on local earnings growth are partially driven out by labor
mobility into growing cities that can accommodate a growing workforce with
relative ease3. These spatial dynamics suggest that:

1. Assessing the association between complexity and wealth should control
for population size, which could capture the effects of past economic
gains at the city level.

2. Assessing the effects of complexity on development should consider city

3See Glaeser and Gottlieb (2009).
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Figure 4: Complexity and wealth controlling for population

population growth as dependent variable of interest.

3. Assessing the effects of complexity on economic growth should consider
the heterogeneity between large and small cities and between dense and
sparse cities.

Figure 4 shows that even after controlling for population size, there is a
positive association between the gross regional product (GRP) per capita of
US cities and their level of economic complexity. However, Figures 5 and 6
also underscore how this relationship is contingent on city size with a stronger
effect among more populous cities. The reason for this is that while small
cities benefit from concentrating their resources towards the accumulation of
economies of scale on a single sector, large cities more readily gain wealth by
accumulating economies of scale in many different sectors.

Nevertheless, our main question is whether local levels of economic com-
plexity are predictive of the future growth of cities, which as we mentioned,
should be measured using population growth. Our analyses suggest that
this is indeed the case: a 1 standard deviation increase in ECI associates
with a 0.1 standard deviation increase in the logarithm of the population
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growth factor. This result is robust to controlling for a number of factors
that the economics literature has identified as relevant for local economic
growth. Moreover, our most complex model, which fits 5-year growth data
between 2001 and 2013, captures over 27% of the out-of-sample variations
in the logarithm of city growth ratios between 2013 and 2017. We find that
ECI is among the variables that contribute most to this forecasting capacity.
Finally, we test whether the association between ECI and future city growth
varies along city population and population density dimensions, finding some
evidence that city size dampens the association between ECI and city growth.

If the accumulation of productive capabilities is relevant for future eco-
nomic performance, a key question to address is the process of accumulation
of such capacities, which should be reflected in the patterns of diversification
of cities. International and subnational evidence shows that this process is
path-dependent: the accumulation of new productive capabilities depends
on how complementary these are to other capabilities already present in an
economy. From a diversification perspective, this suggests that absent indus-
tries that share capabilities with the competitive activities of a city are more
likely to appear and grow, while present sectors that do not share capabil-
ities with the rest of a city’s economy are more likely to shrink and disappear.

The technological proximity between pairs of products or industries cap-
tures the degree to which they share the same productive capabilities as
inputs. This proximity can be estimated in a number of ways. In an interna-
tional trade context, these proximities have been estimated as the tendency
for the exports of different pairs of goods to co-locate in the same countries of
origin. These estimates constitute the building blocks of the Product Space4,
a network visualization that shows each product most closely connected to
those other products with which it had been historically co-exported.

Similarly, in a subnational setting, it is expected for industries that rely on
the same inputs to cluster together in the same cities. The urban economics
literature refers to this tendency as Marshallian agglomeration externalities.
Measuring this clustering tendency provides an implicit measure of the re-
latedness between different pairs of industries.

4Introduced in Hidalgo et al (2007)
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Figure 5: Complexity and wealth in large cities

Figure 6: Complexity and wealth in small cities
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Separately, one can explicitly observe the tendency for sectors to rely on
the same inputs. For instance, if the occupational staffing patterns of indus-
tries are observable, one could construct an explicit technological relatedness
metric based on the similarity in the occupation demand between every pair
of industries.

Building on these technological relatedness metrics, one can calculate the
overall relatedness of an industry to the competitive industries present in a
city. The path-dependence hypothesis suggests that this technological den-
sity of citys economy around an industry should be positively associated with
the local prospects of that industry.

We test this hypothesis on density measures based on implicit related-
ness captured by the tendency of industries to cluster geographically, and on
explicit relatedness measured by the occupation similarity between industry
pairs. We provide network visualizations, or industry spaces for these two
measures of relatedness. We find the expected results: a 1% increase in the
implicit and explicit relatedness densities associate with a 0.07% and 0.01%
increase in the growth factor of cities, respectively. Our model, fit with 5-year
growth data between 2002 and 2012, captures over 12% of the out-of-sample
variations in city-industry growth between 2012 and 2017.

Moreover, we test the value of these density variables in the extensive
margin, assessing whether they predict the appearance and disappearance of
industries. We find that our models capture an out-of-sample area under the
ROC curve of 60% for the appearance of absent industries, and 70% of the
variation in the disappearance of present industries.

Given the out-of-sample predictive value of our models at the city and
the city-industry levels, we believe that they are informative forecasting tools
for policy-makers and analysts interested in local economic development in
the US.

The paper continues as follows: Section 2 describes how the relevant com-
plexity metrics are calculated. Section 3 presents our results predicting city
population growth as a function of the economic complexity index of a city.
Section 4 presents our results predicting city-industry growth and discrete
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changes (appearance and disappearance) as a function of implicit and explicit
relatedness densities. Section 5 concludes. Section 6 describes the datasets
used in our analyses.

2. Calculating complexity and relatedness measures

2.1. Economic Complexity Index
The calculation of complexity metrics for a given year starts with a matrix

of employment of all industries in all cities. We’ll define this matrix as Jci.
From here, we can calculate total employment levels by city across industries
and by industry across cities.

Xc =
∑
i

Jci (1)

Xi =
∑
c

Jci (2)

X =
∑
i

∑
c

Jci (3)

We now calculate the Revealed Comparative Advantage (RCAci) of a city
in a given industry as the ratio of the share of a given industry in a city’s
employment and the national share of the industry. We define the Mci matrix
as the condition that a given industry represents a larger share of an city’s
employment than the national share.

RCAci =
Xci/Xc

Xi/X
(4)

Mci = 1[RCAci ≥ 1] (5)

From Mci we can now estimate the diversity of a city as the count of
industries in which a given city has an RCAci greater than 1, and the ubiquity
of an industry as the number of cities in which the industry is observed with
an RCAci greater than one.

Diversityc = Kc0 =
∑
i

Mci (6)

Ubiquityi = Ki0 =
∑
c

Mci (7)
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Following Hausmann & Hidalgo (2009), we can now refine the metric of
diversity of a city with the ubiquity of the industries in which the city shows
an intensive concentration on. This yields the average ubiquity. This would
help improve the diversity metric for places that are not very diverse but
concentrate in very unique sectors (as San Jose, which we observe in the
figures above showing low diversity but high complexity).

Similarly, we can improve on the ubiquity of an industry by the diversity
of the cities that concentrate in it intensively. This would help correct for
sectors that are not very ubiquitous but are also not very complex in the
way they share productive inputs with other industries (such as extractive
sectors of the economy).

This process of refining an industry metric by the average values of the
relevant city metrics and vice versa is called the ”method of reflections”, and
if performed ad infinitum, it would converge to a metric at the city level and
a metric at the industry level. These would be the Economic Complexity
Index and the Industry Complexity Index, respectively.

Av. Ubq.c = Kc1 =

∑
iKi0 ∗Mci

Kc0

→ Kc2 → · · · → Kc∞ = ECIc (8)

Av. Div.i = Ki1 =

∑
cKc0 ∗Mci

Ki0

→ Ki2 → · · · → Ki∞ = ICIi (9)

Another way to estimate the ECI, which is mathematically equivalent,
would be as follows:

Kc,n =
1

kc, 0
Mci

1

ki,0

∑
c′

Mc′ikc′,n−2 (10)

Kc,n =
∑
c′

kc′,n−2
∑
i

Mc′ikc′,n−2
kc,0ki, 0

(11)

Kc,n =
∑
c′

kc′,n−2M̃
C
c,c′ (12)

Where:

M̃C
c,c′ =

∑
i

Mc′ikc′,n−2
kc,0ki, 0
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In vector notation:

#»

k n = M̃C ∗ #»

k n−2 (13)

As n→∞:

M̃C ∗ #»

k n−2 = λ
#»

k (14)

Where
#»

k is an eigenvector of M̃C . The second largest eigenvector of M̃C

in the city/industry matrix Mci accounts for the Economic Complexity Index
(ECI) at the city level, and the second largest eigenvector of M̃ i accounts for
the Industry Complexity Index (ICI). The ECI of a city is mathematically
equivalent to the average of the ICIs of those products (or sectors) in which
a location has an RCA larger than 1.

2.2. Proximity and Density

From the Mci we can count the number of cities in which a given pair of
products appear with high concentration.

co-occurrencei,i = Ui,i = MT
ci ∗Mci (15)

This co-occurrence matrix is by definition symmetric, and its diagonal
captures the number of occurrences of each industry. By dividing the co-
occurrences between industries i and i′ by the maximum between the diagonal
position for i and i′, we can estimate the minimum conditional probability for
a city to be competitive in an industry given that it is competitive in another.
This estimate captures the tendency for industries to cluster together in
the same cities, and we will refer to it as co-location implicit technological
proximity between industries.

φi,i′ =
Ui,i′

max(Ui,i, Ui′,i′)
(16)

We can visualize this co-location proximity as a network, which we call
the ”industry space”. In this case, connections in the industry space are
”implicit” technological relatedness measured by the tendency for industries
to cluster together. Figure 7 shows the industry space retaining 5% of the
strongest proximity connections and the strongest link to every industry.
This exercise yields a layout that permits identifying some visible industrial
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Figure 7: The Co-Location Industry Space. The co-location Industry Space shows the
implicit relatedness of one industry to another. The distance between nodes is calculated
by the probability of any two industries to appear in the same city.
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communities by sector.

A similar exercise could be executed on a matrix on the national staffing
patterns of industries by the occupations of their workers, so that we end up
with a new proximity matrix between pairs of industries that captures the
minimum conditional probability that an industry i demands a given occu-
pation with relative intensity, given that i′ also does. This is why we call
the occupation similarity explicit technological proximity between industries.
We will call this matrix ψi,i′ . Figure 8 displays the occupation-similarity ”in-
dustry space” similarly displaying the top 5% of the industry-to-industry
proximities and the strongest link to every industry.

From φi,i′ and ψi,i′ we get the implicit and explicit technological prox-
imities between every pair of industries. These metrics and their resulting
structures are expected to differ. To assess this difference, we can measure
the weighted degree centrality5 of every industry in both industry spaces:

centralityimplicit
i′ = cIi′ =

∑
i φi,i′∑

i

∑
i′ φi,i′

(17)

centralityexpliciti′ = cXi′ =

∑
i ψi,i′∑

i

∑
i′ ψi,i′

(18)

Figures 9 and 10 show that the distributions of centrality for the sets
of tradable and non-tradable industries. Interestingly, while non-tradable
industries are relatively central in the implicit proximity matrix φi,i′ , trad-
able industries are so in the explicit proximity matrix ψi, i′. We interpret
this result as a consequence of the high ubiquity of non-tradable industries
and the high occupational diversity of tradable industries. The former makes
non-tradable sectors relatively likely to co-locate with many industries, while
the latter makes tradable sectors share occupational vectors with many in-
dustries.

Following Hausmann et. al (2014), one way to assess the degree to which
the industries present in a city are relatively proximate to a given industry i
is to add up all proximities to that industry in the set of industries present

5These centrality measures capture the sum of all proximities to an industry as a
proportion of all the proximities in each network.
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Figure 8: The Occupational Similarity Industry Space. This industry space shows the ex-
plicit relatedness of one industry to another. The distance between the nodes is determined
by the tendency of different industries to employ the same composition of workers.
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Figure 9: Distribution of co-location centrality by tradability. The co-location centrality
is the sum of all the implicit proximities to an industry.

in the city and divide it by the total sum of all proximities. This metric
would capture the density of the industrial structure in a city around every
industry, both present or absent.

densityimplicit
c,i′ = dIc,i′ =

∑
iMc,i ∗ φi,i′∑

i φi,i′
(19)

densityexplicitc,i′ = dXc,i′ =

∑
iMc,i ∗ ψi,i′∑

i ψi,i′
(20)

Finally, based on the density and proximity metrics, we can estimate
the share of all densities that are captured by a city’s productive structure,
weighting by each industry’s ICI - a measure we call Strategic Index - (SI)-,
and how much the SI of a city would improve by adding a given missing
industry - a measure we call Strategic Gain (SG). We capture these metrics
based on the implicit co-location proximities.

SIc =
∑
i

dc,i(1−Mc,i)ICIi (21)

SGc,i =

[∑
i′

φi,i′∑
i′′ φi′′,i′

(1−Mc,i′)ICIi′

]
− dc,iICIi (22)
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Figure 10: Distribution of occupational centrality by tradability. The occupation centrality
is the sum of all the explicit proximities to an industry.

3. City growth as a function of economic complexity of cities

We assess how City population growth associates with lagged economic
complexity through the following equation.

log

[
P t+5
c

P t
c

]
= β0 + β1ECI

t
c +X tκ+ εc (23)

Where P t
c stands for the population of city c at year t, ECI tc is the com-

plexity of city c at time t, X t is a vector of city covariates at time t, and
εc is a residual uncorrelated with regressors. We take US micropolitan and
metropolitan areas for which we can capture all the relevant variables and fit
a 5-year growth model between 2006 and 2011 and test the predictive accu-
racy of its forecasts on city growth between 2011 and 2016. In the appendix
we provide estimates restricting for metropolitan areas which allow us to in-
clude education controls, as well as longer-term growth regressions for 8-year
spans - lack of data availability on some of the most relevant controls prevent
us from testing the out-of-sample accuracy of the 8-year growth models.

Table 1 provides estimates of different specifications, iterating on the set
of controls being included. It reports standardized ”beta” coefficients and ro-
bust p-values of the relevant t-tests for statistical significance of coefficients,
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and also provide the out-of-sample R2 for city population growth between
2011 and 2016. In our pooled model with demographic, welfare, productivity
and age structure controls (regression 6), we find that 1 standard deviation
increase in a city’s ECI associates with a statistically significant increase of
0.15 standard deviations in the logarithm of the population growth factor.
This model yields an out-of-sample R2 value of 27%, a significant level of
forecasting accuracy. Including baseline population and population density
interactions with ECI (regression 8) we find an increase in one order of mag-
nitude in the direct association between ECI and population growth, but a
negative and significant association between future growth and the interac-
tion of ECI and city population size. This suggests that the association of
ECI with future population growth is weaker for larger cities. This latter
model captures 29% of the out of sample variation in city growth between
2011 and 2016 - figure 11 displays the association between estimates of city
growth from the model of regression 8 and the observed levels of population
growth.

Table 1: City growth as a function of economic complexity
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Figure 11: Predicted and actual growth: 2011-2016

Moreover, table 2 shows that if we take model 5 and iteratively remove
different groups of variables, we find that removing ECI from the regres-
sion worsens it’s out-of-sample R2 by 1.6%, as opposed to removing baseline
demographics and welfare variables, which actually improves out-of-sample
predictive accuracy. While removing age structure or productivity variables
worsens the predictive quality of the model by more than ECI (7.7% and 9.7%
respectively), these sets of controls incorporate 8 and 7 variables each, while
ECI is one single regressor. This suggests that baseline ECI is a meaningful
predictor of future city growth.
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Table 2: City growth as a function of economic complexity

Finally, we further explore the heterogeneity of the effects of complexity
by city size, either by splitting the sample into large and small cities (above or
below the median) or by splitting it into city size quantiles. While regression
8 of table 1 shows a negative interaction between ECI and city size, we find
no significant differences in the effect of ECI between small and large cities
by interacting ECI with an indicator of whether the city was large at baseline
(regression 1). We do find evidence of a negative interaction between ECI
and the highest city size quantile (regression 2), but it’s significant only at a
10% level of confidence.
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Table 3: City growth as a function of economic complexity

4. City-industry growth as a function of relatedness densities

4.1. Intensive Margin: Predicting growth of industries

After observing that ECI contributes meaningfully to predicting future
city growth, we now want to assess whether the density measures of related-
ness between a city’s productive structure and a given industry are predictive
of that industry’s local growth. To test for this, we test for the following
specification:

log

[
J t+5
ci

J t
ci

]
= α0 + α1log[J t

ci] + α2log[dI tci] + α3log[dX t
ci] +X tρ+ µci (24)

20



Where J t
ci is the employment level in city c and industry i at year t, dI tci

and dX t
ci capture the implicit (co-location based) and explicit (occupation

similarity based) densities of the industrial structure of city c around indus-
try i at time t. X t stands for lagged controls and µci is an error term that
is uncorrelated with controls. In this setup, α1 estimates a mean-reversion
term, while α2 and α3 capture the 5-year elasticity of employment to the
implicit and explicit densities.

Table 4 shows the relevant estimates for the density elasticities and their
respective heteroskedasticity robust standard errors fit in 5-year growth win-
dows between 2002 and 2012, along with the out-of-sample R2 of models’
predictions of city/industry growth between 2012 and 2017. We find that
estimates of α1 are consistently negatives while estimates of α2 and α3 are
consistently positive and statistically significant - although the implicit den-
sity’s coefficients are more robust and higher in size. Importantly, a model
that only controls for these variables (model 3) shows an out-of-sample R2

of 4.7%. Adding industry, city, city-year and industry-year fixed effects in
model 4 does not alter the sign or significance of elasticities, but it marginally
worsens out-of-sample predictiveness - which is not unexpected of fixed effects
models. Adding new controls capturing lagged aggregate size of cities and in-
dustries (model 7) improves predictiveness, and so does including their lagged
growth rates and the city-industry lagged growth rate to correct for trends
(model 8). This does not affect the signs of elasticities, but model 7 does
remove statistical significance from the explicit density’s elasticity. Adding
city and industry fixed effects worsens predictiveness (model 9). Adding cur-
rent levels of city and industry growth does improve predictiveness (model
10), but we cannot use such a model for forecasting purposes. Hence we pick
model 8 as our preferred model for forecasting purposes. Figure 12 shows
the observed and out-of-sample predicted factors of city/industry growth be-
tween 2012 and 2017.
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Table 4: Growth of industries in cities as a function of densities by co-location and occu-
pation similarities

Figure 12: Predicted and actual growth: 2012-2017
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4.2. Extensive Margin: Predicting industry appearance and disappearance

Beyond predicting continuous growth factors of industries in cities, a
question of interest is that of predicting instances of industrial appearance
or disappearance in cities. These are instances of discontinuous success of
absent activities or failure of present ones, always measured in terms of em-
ployment.

When answering this question it is important to only consider important
shifts in industries’ performance. In order to do so, we consider as present
those industries with an RCAci ≥ 0.25 and as absent those industries with
an RCAci < 0.05. By doing this, we consider as appearances those cases in
which an industry jumps from RCAci,T−1 < 0.05 to RCAci,T ≥ 0.25, which
means increasing their RCAci by more than 500% during the observation win-
dow. We define disappearances as those cases in which the opposite happens.

If density metrics indeed capture the coherence between an industry and
the productive structure of a city, one would expect that:

• Higher densities associate with a lower chance of an industry being
absent.

• Among absent industries, the chance of appearance is higher for high
density industries.

• Higher density associates with a higher chance of an industry being
present.

• Among present industries, the chance of disappearance shrinks with
higher densities.

We test these hypothesis with the following logit specifications:

Logit[Xc,i] = γ0 + γ1dI
t
ci + γ2dX

t
ci + θci (25)

Where Xci stands for the presence, absence, appearance or disappearance
of industry i in city c. The absence and presence regressions take the density
around each industry in 2012 and capture its relationship with industries’
absence or presence in that year. In a similar way, the appearance and dis-
appearance regressions take density of 2007 and measure its relationship with
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the probability of appearance or disappearance for the period 2007-2012. In
each regression we evaluate whether the coefficients for each of the density
variables have the expected signs and statistical significance. Later, we as-
sess the out-of-sample predictive accuracy of the models by comparing the
predicted probabilities of absence or presence and appearances or disappear-
ances for the period 2012-2017, with what actually happened in that period.

Given that this is a classification exercise, we use the Area Under the
Curve (AUC) of the Receiver Operating Characteristics (ROC). This mea-
sure captures the capacity of a model to separate between binary events, as
higher values suggest a higher sensitivity for correctly classifying positives at
marginal increases in the false positive rate. The most relevant benchmark
of random classification is captured by the 45-degree line. We report ROC
values of each model, and display the relevant ROC.

4.2.1. Absence

Table 5 shows that all specifications capture negative and statistically
significant coefficients as expected, and provide similar AUC scores of about
75%. Figure 13 shows how the predictive sensitivity of the three models is
virtually indistinguishable along the specificity dimension.

Table 5: Logit models of absence on densities in 2012

24



Figure 13: Out-of-sample ROC curve for absence: 2017

4.2.2. Appearance

Table 6 shows that all specifications capture positive and statistically
significant coefficients as expected, and provide similar AUC scores of about
60%. Figure 14 shows how the three models yield very similar prediction
results.

Table 6: Logit models of appearance on densities. Period: 2007-2012
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Figure 14: Out-of-sample ROC curve for appearance: 2012-2017

4.2.3. Presence

Table 7 shows that all specifications capture positive and statistically sig-
nificant coefficients as expected. Model 1 and model 3 capture the highest
out-of-sample AUC scores of 77%, while model 2 using only the occupation
similarity density has an AUC of 73%. Figure 15 shows the predictive accu-
racy of model 2 is slightly worse than that of model 1 and model 3.

Table 7: Logit models of presence on densities in 2012
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Figure 15: Out-of-sample ROC curve for presence: 2017

4.2.4. Disappearance

Table 8 shows that all specifications capture negative and statistically
significant coefficients as expected. Model 3 captures an AUC of 72%, while
models 1 and 2 capture an AUC of about 70% each. Figure 16 shows how
model 3 is marginally better than models 1 and 2 at predicting future disap-
pearances.

Table 8: Logit models of disappearance on densities. Period: 2007-2012
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Figure 16: Out-of-sample ROC curve for disappearance: 2012-2017

5. Conclusion

This work is a preliminary step in a research agenda trying to assess the
skills and other productive capacities required to host different economic ac-
tivities, and how cities can best organize to grow faster and provide high
quality jobs to their workforce.

This paper discusses the relevance of the economic complexity measure
introduced by Hausmann & Hidalgo (2009) in order to forecast the popu-
lation growth of cities and the local employment growth of industries. We
find that this is the case: most empirical specifications confirm the presence
of significant coefficients with the hypothesized signs, and show sizeable pre-
dictive accuracy for the future performance of cities and industries. Given
these results, we consider that these metrics and the models presented above
provide valuable forecasting tools that can help analysts and policy-makers
make choices. We provide data visualization tools that are readily available
for the use of parties interested in the discussion of local economic develop-
ment of American cities.

In future work, we hope to focus on how tradable sectors develop locally
according to the presence of their non-tradable inputs, on how other explicit
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measures of technological proximity (input/output linkages, patent/R&D
similarity, etc.) help improve predictions on local industrial growth, ap-
pearance and disappearance, and how the economic complexity analysis can
be expanded to predict growth at the city/industry/occupation level.
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6. Description of datasets

6.1. City/Industry data

The main data source for all our analyses is a city/industry jobs panel
from EMSI. We aggregate EMSI’s data at the Micro/Metropolitan geo-
graphic level (what we refer to as cities) and at the 4-digit NAICS industrial
classification. While this local labor market data is proprietary and relies
on modelling and imputation, we build on it as it provides trustworthy es-
timates of city/industry cells that are censored in official statistical sources.
The industry/occupation data used to build the occupation-similarity ex-
plicit proximities was taken from the Occupational Employment Statistics
(OES). From these baseline datasets we are able to reproduce all complexity
metric calculations described above, and we can take metrics fixed at the
city/year level (ECI, SI, etc.) for analyses predicting city growth using other
city level data sources. Table 9 shows descriptive statistics for variables used
in our models at the city/industry for 2012, which is our baseline year for
out-of-sample prediction of city/industry job growth.

Table 9: Descriptive Statistics at City-Industry Level, 2012 (part 2)

6.2. City data

As mentioned above, we take a city panel of complexity variables to ad-
vance our city population growth predictions. For this purpose, we also in-
clude baseline controls on the demographics, productivity, wealth, age struc-
ture and education of American cities. Tables 10 and 11 present each of
the variables used by group, providing a description, source and descriptive
statistics for 2011, which is our baseline year for out-of-sample prediction of
the population growth of cities.
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Table 10: Descriptive Statistics at City Level, 2011 (part 1)
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Table 11: Descriptive Statistics at City Level, 2011 (part 2)
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