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Abstract

This paper examines effect of outdoor air pollution on child health in India by

combining satellite PM2.5 data with geo-coded Demographic and Health Survey of In-

dia(2016). We use an instrumental variable strategy for identification as local pollution

levels may be endogenous due to local household behavioural choices like participation

in local fuel wood market, burning crop residue etc which are not observed in sur-

vey data. Our identification strategy relies on use of upwind biomass burning events

in neighbouring areas to identify the effect of air pollution on child health. Our re-

sults indicate that one standard deviation increase in exposure to pollution during first

trimester lowers Height-for-age (by 6.7 percent) and Weight-for-age (by 7.8 percent);

the effect is prominent for poor people and Northern states of India which have higher

pollution levels.
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Effect of Early Life Exposure to Outdoor Air Pollution

on Child Health in India 1

[PRELIMINARY DRAFT]

1 Introduction

Pollution in any form, whether it be air or water, poses an environmental risk to the health of

the exposed population. According to WHO global air pollution database, out of the 15 most

polluted cities in the world, 14 belong to India. Another recently published report by Health

Effects Institute on air pollution in India (2018) reports that air pollution was responsible for

1.1 million deaths in India in 2015. In the absence of effective pollution regulatory policies,

air pollution levels have reached alarming levels in various parts of India (Greenpeace, 2017).

This warrants a closer look at the air pollution problem from the standpoint of welfare of the

younger generation currently being exposed to harmful pollutants with possible long-lasting

effect on their health. This article aims at estimating the effect of in-utero exposure to air

pollution on child growth indicators, using exogenous changes biomass burning events which

contribute to the air pollution.

Recent studies on India which focus on air pollution and child health rely on broad

measures of pollution at the city level (Greenstone and Hanna, 2014). In this paper we

conduct a pan-India analysis and we rely on rich geo-spatial information on air pollution to

study its effect on children’s growth indicators. In particular we study the effect of early life

exposure to air pollution (as measured by PM 2.5) on children’s weight and height measures

for children under age five. The rich geo-spatial information on pollution comes from satellite

data on aerosol optical depth which has been converted into gridded PM2.5 data (Dey et al.,

1 We are thankful to Abhiroop Mukhopadhyay & E.Somanathan for their valuable comments. We are

also thankful to conference participants at CECFEE, ADEW, EfD Annual Meet, AWEHE (inaugral meet),

ACEGD & Brookings India. We are especially grateful for valuable feedback which we got from Randall

Ellis, Shiko Maruyama, Sabyasachi Das and Dhritiman Gupta. We thank Athisii Kayina for his immense

help with ArcGIS software.
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2012; van Donkelaar et al., 2010). We match the gridded PM2.5 data to GPS locations of

sampled clusters in Demographic Health Survey (DHS, 2015-16 round for India) to produce

rich geo-spatial information about local (75 km radius) pollution levels in the place and time

of conception(residence) of a child.

In an empirical exercise which causally links child health to local pollution levels, house-

hold income and behavioural choices are omitted variables which make local pollution levels

endogenous. We use exogenous changes in biomass burning events like crop-burning and for-

est fires which are sources of pollution to address the endogeneity problem. In this paper we

adopt a instrumental variable strategy where we use neighbouring upwind fire-events (that

is biomass burning events) as an instrument for local pollution levels. This strategy criti-

cally relies on the assumption that exogenous changes in wind direction are not associated

with household’s income or behavioural choices. Multiple studies (Rangel and Vogl, 2018;

Pullabhotla, 2018) have shown that these wind changes impact local pollution levels. The

literature linking air pollution to child health has mostly focused on child mortality. In this

paper we show that air pollution affects child’s growth indicators even if she survives. To the

best of our knowledge, this is the first study for India which addresses the endogeneity issues

present while studying the link between children’s growth indicators with local pollution

levels.

Our analysis shows that air pollution negatively affects children’s health. Exposure to

air pollution during the first trimester decreases both Height-for-age (stunting measure) and

Weight-for-age (underweight measure) for children aged below five years. A standard devia-

tion change in PM2.5 is associated with 6.7% decrease in Height-for-age and a 7.8% decrease

Weight-for-age measure. The effect is prominent for poorer households, with Northern states

being more vulnerable due to high pollution levels in the area. These results are especially

important given the link between stunting and other human capital outcomes. Early life

stunting leads to irreversible damage, it is associated with shorter adult height, lower cog-

nitive ability, lower educational attainment, reduced adult income, and decreased off spring

birth weight (Victor et al., 2008; Mendez and Adair, 1999).

The paper follows the following structure. The next section provides a literature overview
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of the effect of pollution on child health and highlights the contribution of this paper to the

literature. Section 3 describes the various datasets that we use in our analysis. The next

section presents the empirical methodology that we follow and it is followed by results in

Section 5. Lastly, Section 6 concludes with an estimate of the extent of the problem and

discusses current state of policies regarding air pollution in India.

2 Previous Literature

Our work is motivated by the “fetal origins” hypothesis (Douglas and Currie, 2011), which

states that the in-utero period of a child critically determines mortality outcomes, disease

prevalence and future health outcomes, abilities and earnings. Fetal growth, if restricted, can

negatively affect future outcomes. The biological link between air pollution and fetal growth

has not been documented in the literature, but it is mediated by placental growth which

determines supply of oxygen and nutrients to the fetus. Exposure to pollution would affect

placental function which can be impacted by inflammation caused by maternal infection.

Additionally pollution is known to cause epigenetic changes (interaction between our genes

and environment which can cause DNA methylation, which regulates gene expression) which

could affect fetal growth as well (Rangel and Vogl, 2018). A recent paper by Chakrabarti

et. al (2019) has shown how exposure to biomass burning (which causes pollution) affects

respiratory health in adults as well as children. Hence this suggests that mothers can possibly

be affected during the pregnancy time due to exposure to pollution which can potentially

affect fetal growth as well.

In the economics literature the intrauterine period has been the focus of many studies

which have established links between occurrence of early life shocks to multiple outcomes.

Early life shocks studied in economics literature include incidence of a) disastrous events (like

famines, war, drought); b) nutritional shocks (like introduction of iodised salt, pregnancy

during Ramadan) and c) pollution (air or water). Currie and Vogl (2013) provide a review

of these early life shocks (a and b) on various outcomes; broadly summarised these shocks

negatively affect adult cognition, years of schooling, literacy status, adult height and stunting
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measures; and increase the likelihood of presence of birth defects, prevalence of heart disease

and obesity.

The focus of our study is in-utero exposure to air pollution and Currie et. al (2014)

reviews landmark studies which have been conducted in this area. Most of these studies are

from developed nations with a few exceptions. Similar to previous studies, a major part of

the literature focuses on learning outcomes (test-scores) and earnings which are negatively

affected due to in-utero exposure to pollution (Bharadwaj et al., 2013; Isen et al., 2013 &

Sanders, 2012). We extend this literature by looking at the link between early life exposure

to pollution and stunting and underweight measures.

The strand of literature which is most relevant for our study has mainly looked at the

effect of in-utero or early life exposure to air-pollution on infant mortality and birth weight.

Few papers in this area have used natural experiments to causally identify the effect of

air pollution on infant survival, for example, Chay and Greenstone (2003a and 2003b) use

introduction of environmental regulations under Clean Air Act, 1970 and recession in 1981-82

in United States to show that reduction in pollution levels led to reduction in infant mortality.

Currie and Walker (2011) show that introduction of congestion-reducing automated toll

payment systems in United States (which reduced number of idle vehicles emitting harmful

pollutants) reduced pre-mature and low birth-weight births. Currie and Neidell (2005) use

spatial and temporal variation in CO levels to analyse the effect of CO levels on infant

mortality. Most of the studies in this domain are from developed nations where availability

of high resolution pollution data is not a constraint. We focus on a developing nation

which has much higher pollution levels in comparison to developed nations. Lack of data on

pollution for developing nations has been a major limitation in the past but with availability

of rich spatial information on pollution from satellite data we link local exposure to air

pollution with child’s growth factors.

In a developing country context the paper by Greenstone and Hanna (2014) analyses the

effect of water and air pollution regulation policies on infant mortality in India. Another

study from a developing nation includes Foster et al. (2009) which uses Mexico’s clean

industry certification program to study its effect on pollution (we use a similar measure of
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pollution i.e. satellite data on Aerosol Optical Depth to infer PM2.5 levels) and resulting

respiratory related infant deaths. Wildfires and their negative health effects (like increase

in infant mortality, reported asthma cases, pre-term births etc) have also been studied in

context of Indonesian wildfire of 1997 (Jayachandran, 2009; Rukumnuaykit, 2003; Kunii et

al., 2002; Frankenberg et al., 2005 & Barber and James, 2000), California wildfires (Holstius

et al.,2012) and Australian wildfires (O’Donnell and Behie, 2015). A few recent papers assess

the effect of in-utero exposure to biomass burning events and pollution: Vogl & Rangel

(2018), Pullabhotla (2018) and Soo & Pattnayak (2019) study impacts on birth weight,

infant mortality and long-term health outcomes like adult height respectively. These papers

come closest to our paper as we also explore the link between in-utero exposure to pollution

and child health but our sample is much bigger than the Indonesian study; we focus on

solving the endogeneity problem in our paper rather than focusing on reduced form effect of

biomass burning events on child health and we look at post-natal growth instead of survival.

Another recent study on Bangladesh (Goyal & Canning(2017) provides evidence for in-utero

exposure to air pollution and increased risk of stunting, underweight and wasting but it

doesn’t address the endogeneity issues related to local pollution levels.

Our paper also adds to the growing literature of the effect of pollution on child health

in India. these effects have been demonstrated by two recent papers on effects of water

pollution in India. Brainerd and Menon (2014) have focused on use of fertilisers in India

during crop sowing season which increases concentration of harmful chemicals in water.

They find that exposure to these pollutants during the month of conception increases infant

mortality and reduces Height-for-age and Weight-for-age for children. Do et al. (2018) have

shown that regulation targeting industrial pollution in the Ganga River led to reduction in

water pollution levels and infant death.
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3 Data

3.1 Demographic Data

The demographic data used in this paper is sourced from the Demographic and Health

Survey (Round-4 for 2015-16) for India. DHS-IV contains detailed information about birth

history of each woman who was interviewed. This survey sampled 601,509 households and

interviewed 0.7 million eligible 2 women in the age group 15-49. Further, anthropometric

measures of health were collected for 0.22 million children of ages five years and below.

The DHS sample is a stratified two-stage sample and the primary sampling units (PSUs

or clusters) correspond to villages in rural areas and blocks in urban areas. The DHS-IV

comprises of around 28526 clusters with GIS information on almost all clusters3. To hide

the identity of the village (block in urban areas) all clusters were displaced by five kilometres

(two kilometres for urban clusters), with one percent of the clusters being displaced by as

much as 10 kilometres. We account for this displacement when we discuss our identification

strategy in the next section.

Our focus is on in-utero exposure to pollution for which we need the location and time

of conception. To measure in-utero exposure to pollution we use the birth history of every

child ever born to a woman. We use the location of the cluster, birth date and pregnancy

duration of a child to impute exposure to pollution during the first trimester 4. We make

an important assumption that the place of stay of the mother when the child was in-utero

is the same as current residence of a child 5.

We measure impact of air pollution on child health by using anthropometric measures:

Height-for-age and Weight-for-age (WHO standard z-scores) for children aged five and below.

2 Eligible women - married or unmarried women of reproductive ages.
3 131 clusters have no GIS information.
4 We also construct separate measures of exposures to pollution for other trimesters and first three months

after birth.
5 This assumption is a standard assumption which is employed by many papers which have used DHS

data for analysis (Brainerd & Menon, 2014). For example, in our sample the mean number of years for which

the interviewed family has stayed at the place of residence is around 15 years.
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In addition all other demographic and household level variables which are used in our analysis

are sourced from the DHS.We provide summary statistics of our analysis sample in Table

1. 52 percent of children in our estimation sample 6 are males with mean age around 29

months (2.5 years old) and the mean birth order of children is 2.2. The birth order is

slightly lower for children in South India. The average age at which mothers have children

is 24.5 years. Mothers had on an average 6.2 years of education. Three-fourth of our sample

consists of rural households and a similar proportion of households report their religion to

be Hindu. 37% of our sample belongs to marginalised groups which includes schedule caste

and scahedule tribes. The mean household size for our estimation sample is 6.5. 88 percent

of the households are headed by a male member and the average age of household head is

44.5 years. 85 percent of the households have an electricity connection, but only 23 percent

of the households use piped water as their source of drinking water, 28 percent of our sample

uses clean source of cooking fuel like LPG or bio-gas and the mean open defecation rate in

a cluster is 43 percent.

The mean Height-for-age (HFA) and Weight-for-age (WFA) z-score for our sample is

-1.46 and -1.52 respectively (mean weight-for-height is -0.97 for our sample). Children from

South India have much better HFA and WFA as compared to North Indian children. Height-

for-age is a measure of stunting and it represents the effect of early life shocks that a child

receives. Stunting generally occurs before age two and its effects are largely irreversible. It

is associated with an underdeveloped brain, with long-lasting harmful consequences, includ-

ing diminished mental ability and learning capacity, poor school performance in childhood,

reduced earnings and increased risks of nutrition-related chronic diseases such as diabetes,

hypertension, and obesity in future. Weight-for-age (underweight measure) reflects body

mass relative to chronological age. It is influenced by both the height of the child (height-

for-age) and his or her weight (weight-for-height). Deaton and Dreze (2009) advocate the use

of Weight-for-age as the health status indicator for children as its a comprehensive measure

which captures both stunting and wasting.

6 Details about estimation sample discussed in pollution section later.
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3.2 Pollution Data

In India, ground-based pollution measurement started post 2009 under the National Ambi-

ent Air Quality monitoring program maintained by Central Pollution Control Board. The

network has slowly expanded to around 90 sites across 35 cities over the years, which leaves

majority of India unmonitored 7. Amongst these cities, only Delhi has greater than 20 mon-

itoring sites while most other cities have a single monitoring site. Furthermore, most of the

sites do not have continuous temporal data. We use PM2.5 as our measure of pollution

which is a correlate of other pollutants (like NO2, SO2, CO) which are not captured in our

analysis. To address the paucity in ground-based pollution data in India, we estimate PM2.5

exposure using satellite data (van Donkelaar et al., 2010). We convert Aerosol Optical Data

(AOD) retrieved at 0.5 x 0.5 degree resolution from Multiangle Imaging SpectroRadiometer

(MISR) to PM2.5 data (Liu et al, 2004; Kahn and Gaitley 2015; Dey et al. 2010) using a

spatially and temporally heterogeneous conversion factor (Dey et al., 2012). The PM2.5 data

is further statistically downscaled at 0.1 x 0.1 degree resolution using spline interpolation.

The PM2.5 thus obtained is available at monthly frequency at 0.1 * 0.1 degree resolution

(10km*10km grid).

We explore the spatial variation in PM2.5 by plotting a heat map in Figure 1. We plot

mean annual PM2.5 (average over monthly data for years 2010 to 2016) for each district

of India. As the figure shows, the Northern region of the country is severely impacted by

high and dangerous levels of pollution, especially the states which lie in Indo-Gangetic plains

(Punjab, Haryana, Uttar Pradesh, Bihar) have the highest levels of pollution. On the other

hand, the Southern part of the country has much lower levels of pollution as shown by the

lighter shades in heat map. The WHO guideline for maintaining safe standards of pollution

recommends a threshold of mean annual pollution levels of 10ug/m3. Other standards

include WHO-IT1 which is 35ug/m3, WHO-IT2 which is 25ug/m3 and WHO-IT3 which is

15ug/m3. The Indian National Ambient Air Quality Standards (NAAQS) sets the threshold

at 40ug/m3. For our estimation sample we observe in Table 1 that the mean level of PM2.5

7 India has around 600 ground based monitors to cover the entire country with only 148 monitors which

capture PM2.5 for the entire country.
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is between 55ug/m3 & 60ug/m3 during all critical windows of development for children from

North India while the corresponding level of pollution exposure is much lower for children

from South India, which is around 35ug/m3 for all windows.

We use cluster location from DHS data and calculate mean PM2.5 in the 75km radius

for each month since the time of conception. We use these monthly pollution measures to

construct trimester level pollution exposure by calculating mean PM2.5 for three month

periods. Our estimation sample is constrained by the availability of PM2.5 data as we only

keep those children in our estimation sample for whom the pollution measure for each month

in the first trimester is present. The missing PM2.5 are due to missing satellite retrievals

due to cloud covers. In the appendix Table A1, we show that our outcome variables along

with our control variables are very similar between the estimation sample and out-sample

(with missing PM2.5 information).

We now link exposure to pollution during the first trimester with anthropometric mea-

sure (Height-for-age z-score) for children in Figure 2. The descriptive graph is a bin-scatter

plot which shows a negative relationship between Height-for-age and exposure to pollution

during first trimester. We convert pollution exposure figures to z-scores for ease of exposi-

tion. However this correlation may be driven by other factors. We explore this relationship

empirically in greater detail in Section 4.

4 Empirical Model

As pointed out above, we seek to investigate whether early life exposure to outdoor pollution

during first trimester has an impact on future child health, measured by Height-for-age (z-

scores) and Weight-for age (z-scores). Formally, we estimate the following empirical model:

Hicdmt = θ1PMcdmt + βXicdmt + γc + δt + λm + ρ1dt + ρ
2
mt + εicdmt (1)

Our main outcomes of interest (Hicdmt) are z-score for Height-for-age (stunting measure)

and Weight-for-age (underweight measure) for child i who was conceived in cluster c be-

longing to district d in month m and year t. The main variable of interest is PMcdmt which

11



captures the standardized PM2.5 (i.e. z-scores) in the 75km radius during first trimester

for a child. To be precise, for ease of interpretation, we transform the mean PM2.5 in first

trimester into z-scores based on the average and standard deviation of first trimester mean

PM2.5 in the estimation sample. We control for confounding factors in the vector Xicdmt

which includes gender, birth order and age of child, mother’s and father’s educational status,

mother’s age at birth, age and gender of household head, dummy for whether household has

piped water, has clean cooking source, whether household practices open defecation and the

fraction of households who practice open defecation in the cluster (excluding self). Since

all children in our sample are aged five or below, we use the assumption that these controls

have not changed a lot over time (i.e. from the time of conception to the time when they

were surveyed).

Different clusters (villages or blocks) can have different levels of development (health

infrastructure) which can affect health of a child hence we include cluster fixed effects in

our specification. We also include month and year fixed effects to account for systematic

effects related to season and year. We also remove any omitted variables that are related

to a district in any particular year as well as any seasonality effect specific to a month of a

particular year by including a district year specific fixed effect, ρ1dt and a month year specific

fixed effect, ρ2mt. The inclusion of these fixed effects means that the variation that remains

is the spatial variation in pollution within clusters and temporal variation within a year for

a district.

While our estimation exercise removes systematic variation using various fixed effects,

endogeneity concerns still remain. These endogeneity concerns arise as the local residential

area for a household corresponds to the region of economic activity that a household depends

on and also affects based on its behavioural decisions. The economic activity of a household

determines key inputs (like income) which feed into the production function of health of a

child. An example of this can be dependence of a household on nearby forest resources for

fuel-wood consumption or for livelihood (if it sells these resources in a market). In this case

the choice of use of fuel-wood by household affects the local pollution level in the region.

Additionally the forest cover is affected by the demand for forest resources (like fuel-wood)
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in the market, which in turn affects the pollution level in the area where they are finally

consumed. A similar logic holds true for crop residue burning as well, it is a conscious

decision taken by a household which impacts local pollution levels and at the same time

affects a farmer’s income which is a determinant of child health. Thus, local pollution level

is endogenous in the region of economic activity of the household.

4.1 Identification

The household behavioural choice of collecting fuel-wood or crop-burning and household

income are omitted variables in our specification hence the local pollution variable is en-

dogenous. To solve this endogeneity problem, we use a standardized measure of number

of upwind fire-events (more on this below) which take place in the 75 to 100 km radius of

the sampled cluster as an instrument. Fire-events are sourced from satellite image that are

divided into pixels. Number of fire-events refers to the number of pixels where that atleast

one fire-event is located within the pixel. These are biomass burning events that include crop

residue burning and forest fires. Further, when fire incidents are recorded then each of them

has a confidence value attached (interpreted as probability) which depicts the quality of the

observation and therefore, using this we construct a confidence weighted count of fire-events

around a cluster. We use only upwind fire-events, that is fire-events from which wind is

blowing towards the cluster 8. Further, following Rangel and Vogl (2018) for ease of inter-

pretation of results, we standardize the events by calculating z-scores for these fire-events

occurring in each cluster.

We use such fire-events only in the radius between 75 and 100 km (for ease of exposition

we refer to this area as a non-local area) as they impact local mean PM2.5 levels (within

75km radius of a cluster) but are not affected by household behavioural choices. To elaborate

further, these fire events belong to a region which is not a part of economic activity area of

a household. This essentially removes the effect of dependence on crop-burning or nearby

forest resources (or farmlands) for livelihood or fuel-consumption. Thus by capturing fire-

8Downwind fire-events refer to events with wind blowing away from the cluster.
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events in this non-local area, we ensure that we only capture the part which contributes to

the local pollution levels but is not correlated with household behavioural choices. Further

exogenous changes in wind direction is unlikely to be correlated with local behavioural

choices or economic activity in the area and thus non-local upwind fire-events serves as an

ideal instrumental variable. Zheng et. al (2019) use a similar instrumental variable (IV) in

their paper where they study the impact of air pollution on happiness levels using pollution

levels of neighbouring areas as an IV for local pollution levels.

The IV that we use has been explained diagrammatically in Figure 3, where the light

grey center denotes the cluster location, the white circle forms the 75 km radius around the

cluster and the grey ring represents the area between 75 and 100 km radii around the cluster.

Our endogenous variable is the mean PM2.5 variable which is calculated for the white circle

(within 75 km) and the probability weighted number of upwind fire-events in the grey ring

form the IV (between 75 and 100 km).

4.1.1 Fire-events and Wind Data

Our source of biomass burning events (called fire incidents) is NASA’s Fire Information for

Resource Management System (FIRMS) data which captures real-time active fire locations

across the globe. The FIRMS data that we use is called MODIS (shortform for MODerate

Resolution Imaging Spectro radiometer) data and it records fire incidents at pixel level where

each pixel is identified by a latitude and longitude reading. Each latitude (and longitude)

is centroid of a one kilometre pixel (1 km X 1 km in size). This data records not just the

location of a fire but also the brightness (temperature) of fire (in Kelvin units) and date and

time when the incident was picked by the Terra satellite. An observation for a fire incident

in MODIS data for a latitude and longitude does not necessarily mean that the size of the

fire is one square kilometre, but it means that atleast one fire is located within this fire pixel

(under good conditions the satellite can detect fires as small as 100m2). The MODIS data

is available on a daily basis since November 2000 and NASA reports that the fires captured

by this dataset are mostly vegetation fires. NASA data on fire incidents also provides a

variable “confidence”, which depicts the quality of the observations and it ranges from 0-100
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9. Following Rangel and Vogl (2018), we use this variable to construct a probability weighted

count of fire-events around a cluster (between 75 and 100 km) 10.

We use the cluster GIS information from DHS data and calculate the probability weighted

count of fire events which took place between 75 and 100 km radii (non-local exposure) during

the first trimester of a child. To ensure respondent confidentiality, all clusters in the DHS

data are displaced from their true location. The displacement is done by displacing an urban

cluster by two kilometre and a rural cluster by five kilometre with one percent of the rural

clusters being displaced by as much as 10 kilometres. The displacement can take place in

any direction but the cluster remains within the country boundary, within the same state

and district. We take the radius for our analysis to be 75 kilometre which is large enough

so that the true location of the cluster and sphere of economic activity of a household is

contained within the 75 kilometre radius circle.

Meteorological variables such as wind speed and wind direction are expected to play

an important role in modulating the outflow of fire burning residues emitted from a fire

event. To account for this, we tag each fire event with the respective wind speed and wind

direction. We use ERA-Interim data of u (zonal wind) and v (meridional wind) at 10m

from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim

dataset at 0.125*0.125 degree resolution.

The wind speed and wind direction was estimated as in equation (2) and (3) respectively

(Chowdhury et al., 2017):

ws = sqrt[(u)2 + (v)2] (2)

winddirection = [atan(u/v) ∗ (180/pi] + 180 (3)

9We convert confidence figures into probability figures by dividing them by 100
10NASA’s FIRMs data can also have some missing values attributable to satellite sensor outage. However

major incidents reported for sensor outage happened in years 2001-2003 which precedes our analysis period.
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4.1.2 Fire-events and Pollution

India has a substantial amount of land under cultivation( 60%) and under forest cover( 25%),

with majority biomass burning events taking place in these areas. Over the past few decades,

Indian agriculture has been marked with expansion of irrigation facilities, adoption of high

yield variety seeds and increased mechanisation (like use of combine harvester). A combi-

nation of these factors led to adoption of multi-cropping system by farmers which leaves

little time in between the harvest of one crop and sowing of another. In this scenario, crop

residue burning thus emerged as the quickest and cheapest way to get the farm ready for

the next crop. Cereals are the prime contributor to crop burning activity in India, with rice

and wheat crop residue burning forming the major chunk of residue burning process (Jain

et al, 2014). Two major residue burning seasons are thus related to crop harvest seasons:

kharif crop harvest (rice stubble burning) which takes place in the months of October and

November; and rabi crop harvest (wheat straw burning) which happens in the months of

March to May.

Biomass burning in India is not limited to just crop residue burning, it covers forest fires

as well. Forest fires or wildfires are caused by various factors acting in conjunction with

each other. These factors include availability of biomass (dry vegetation) and appropriate

climatic conditions(high temperature, low pressure, windy conditions). Forest Survey of

India lists vulnerable months for each state when forest fires are most likely to happen,

which mainly span the high temperature months from March to June. Wildfires happen

due to both intentional and unintentional human activity. In North Eastern states and in

states along the Eastern Ghats, slash and burn activity is rampant wherein vegetation in

forests is cut (slashed) and then burned to clear the piece of land for human use. In a lot of

cases unintentional human activities like leaving active cigarette butts behind in open forests

lead to forest fires. Other natural factors which cause forest fires include lightening which

produces a spark to start a fire in dry vegetation.

Figure 4 provides a linear fit plot between local PM2.5 levels and non-local fire-events

(all fire-events - left panel and just upwind fire-events - right panel). A strong positive
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relationship between the two is evident from this graph and forms the basis for using non-

local fire-events as an IV for local pollution levels. In our empirical work though, we use the

within cluster variation of these variables.

In Figure 5, we plot the temporal variation in PM2.5 and non-local fire-events. The figure

plots mean levels across all sampled clusters in the latest DHS round for India. We look at

mean PM2.5, mean count of total fire-events which take place in non-local areas and mean

count of total upwind fire-events which take place in non-local areas. As shown in the graph

(solid blue line) the winter months (from October to January) have highest pollution levels

in comparison to summer months (March to June), with lowest pollution levels recorded

in monsoon period (August-September). Corresponding to two harvest seasons we see two

peaks in fire-events plots (both all fire-events and upwind fire-events in dashed lines).

In western countries forest fires are mainly responsible for the carbon content release due

to biomass burning; however, in case of India (and other South Asian countries) crop residue

burning contributes the most to total carbon release. In South Asia, India stands out both

in terms of total area burned (4.5 million hectares burned in 2015) and in terms of total

carbon content (1.5 million metric tonnes) released due to biomass burning. A raw count

of biomass burning events in India shows that roughly both crop residue burning and forest

fires contribute equally. However, if we weigh these events based on the population density

11 of the area in which these events occur then crop burning events contribute more to the

total biomass burning events (65 percent). This mainly happens because residue burning

activities happen in more populated areas as against forest fires which happen in low density

areas. Appendix Figure 1 provides the population weighted split between forest fires and

crop residue burning in few selected states in India. As can be seen in this graph, with

an exception of Punjab, almost all other states are affected by both forest fires and residue

burning.

Biomass burning is a major source of pollution as it releases harmful pollutants like

11 Geo-coded fire events have been projected onto land mask cover for India to categorise each fire event

as an event which happens in a forest area vs cropped area. This data is then projected onto density map

of India, to get the density of the population in which these events take place.
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Carbon Dioxide(CO2), Carbon Monoxide (CO), Sulphur Oxides and particulate matter (PM)

in the atmosphere. The release of harmful pollutants in the atmosphere is captured by aerosol

loading 12 in the region. To summarise, fine particulate matter released during biomass

burning incidents have long range travel properties and affect not just the local areas but

far away regions as well.

Arguments above provide some suggestive evidence about the fact that non-local fire

events are associated with local pollution levels. Further evidence on this will be provided

when we discuss the first stage of 2SLS regression. However in addition what we require for

our IV strategy to work is that our IV should be uncorrelated with other factors which are

related to child health. We provide evidence in next section that it is likely to be true.

5 Results

5.1 Pollution and Child Health

We begin by presenting OLS results on effect of mean outdoor pollution in the first trimester

on child health outcomes in Table 2. Column 1 and 2 in Table 2 show that pollution exposure

during first trimester is negatively correlated to weight-for-age (WFA-Z) and height-for-age

(HFA-Z). The OLS estimates are small, a one standard deviation change in local PM2.5

reduces WFA-Z by 0.012 and HFA-Z by 0.011 standard deviation units (not significant).

A possible reason behind small coefficients could be the fact that local pollution exposure

subsumes the effect of both income and physiological effect of PM2.5 on child health. Since

these two effects can affect child health in opposite ways so the OLS estimate we notice is

smaller. Also, as described in the previous section, in equation (1) local pollution exposure

variable is riddled with endogeneity problem, hence the OLS estimates are biased.

To address the endogeniety problem, we use an Instrumental Variable strategy where

upwind fire events in the non-local areas are used as an instrument for local pollution levels.

12 Aerosol loading is the suspensions of solids and/or liquid particles in the air that we breathe. Dust,

smoke, haze are also part of aerosol loading.
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These upwind fire-events are assumed to be orthogonal to the income levels, so we are able

to capture the pure effect of PM2.5 disentangling it from the income effect. We present the

first stage of 2SLS results in Table 3. As hypothesized, we find that the relationship between

the endogenous variable - local PM2.5 in 75km radius and non-local upwind fire-events is

positive and highly significant. A one standard unit change in number of upwind fire-events

leads to a 0.105 standard deviation unit increase in local pollution levels. This is in line

with our hypothesis that particulate matter from fire-events far away affect local pollution

levels. The first stage rk-LM statistic is 1005 and is much above the Stock & Yoko bias cut

off. These results represent that local PM2.5 variation is affected by the seasonality present

in biomass burning events happening in non-local adjacent areas.

We test whether our IV meets exclusion restriction by providing some suggestive evidence

in Table 4. We regress various characteristics of a household (and its members) on our main

IV - upwind fire-events, essentially an insignificant result shows that there is no systematic

relationship between our IV and household (and its member’s) characteristics. We do this

by regressing variables which affect child health on our IV, columns 1 to 5 in Table 4 shows

education level of mother, source of water, choice of cooking fuel, open defecation measure

and birth order which act as controls in our main specification are not systematically related

to the IV. Columns 6 to 12 provides results for other variables (these include wealth class,

asset ownership, religion, dummy for minority group, household size and vaccination) which

can potentially affect child health and we find that they are also not related to fire-intensity

in non-local areas. The only exception is pregnancy duration which is positively correlated

with our IV in column 7.

We next move to the second stage results obtained using 2SLS strategy. We find that

both WFA-Z and HFA-Z are negatively affected by outdoor pollution experienced in-utero

during the first trimester. Columns 3 and 4 in Table 2 present our 2SLS results using

upwind fire events in non-local area as an IV. We find that a standard deviation unit change

in mean PM2.5 during first trimester leads to a decrease in WFA-Z(HFA-Z) by -0.102(-

0.115) standard deviation units which translates into a 6.7 percent decrease in WFA-Z and

7.8 percent decrease in HFA-Z.
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Additional results

We provide results on our full model in Appendix Table A2. We find that being a male

child, or being born later (higher birth order) is associated with lower HFA-Z and WFA-

Z. Similar to previous findings in the literature, we find that child growth indicators are

positively associated with mother’s education level and also age at which mother gives birth.

Source of water being pipedwater seems to have no affect on child health while use of clean

cooking fuel is associated with better child health outcomes. Household’s open defecation

practice is negatively associated with stunting and underweight measures. Finally, an older

household head perhaps contributes to better child care and hence is associated positively

with child health outcomes, while gender of the household head being male only affects

stunting measure.

We now focus on other time windows of critical development, that is second, third

trimester and the post-natal period of first three months after birth. Table 5 summarises

our results, we find that in-utero exposure to outdoor pollution which is experienced by the

mother (and her foetus) for second, third trimester and post-natal period13 has no impact

on Height-for-age, but some negative effect is present for Weight-for-age corresponding to

exposure in second trimester.

5.2 Robustness Checks

5.2.1 Extended Controls

a) Local weather conditions

In this section we provide multiple robustness checks for our results. Local weather condi-

tion like rainfall can play an important role as rainfall makes the ash and other pollutant

particles settle on the ground thereby reducing pollution levels. Temperature also plays an

important role in pollution dynamics. We control for both local temperature and rainfall in

columns 1 and 2 in Table 6. The number of observations is slightly smaller than before due

13The number of observations differ depending upon availability of pollution data for all months for the

window of analysis.
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to missing rainfall and temperature information for some clusters. Our original results still

hold and the magnitude of the effect is slightly larger after accounting for weather controls.

b) Gestational period, Household Size, Caste

The gestational period or pregnancy duration is also an important determinant of intrauter-

ine growth of a foetus which affects future child health. We additionally control for household

size and minority status of a household (being schedule caste or schedule tribe) to see if ex-

tended controls affect our original results. We find in column 3 and 4 (in Table 6) that

our estimates remain unchanged. Duration of gestational period is positively associated

with child growth indicators while children belonging to minority group have worse health

outcomes. Household size seems to have no effect on child growth indicators.

5.2.2 Sensitivity Analysis

The analysis uptil now used upwind fire-events happening in 75 to 100 km radius as the

IV for local mean PM2.5 in the 75 km radius around the cluster location. We now provide

results for alternate radii specifications to test the sensitivity of our model. In Table 7,

columns 1 and 2, the IV being used is the probability weighted total number of upwind fire-

events in 50 to 100 km radius (compressing the white inner circle in Figure 5). In columns

3 and 4, the IV being used is the probability weighted total number of upwind fire-events

in 50 to 75 km radius for local mean PM2.5 in the 50 km radius (compressing the donut in

Figure 5). Reducing the local pollution radius to 50 kms leads to a significant drop in total

number of observations as PM2.5 information is missing for a lot of observations. However

we still find that our results are of similar magnitude (they are slightly smaller for HFA-Z

analysis) and still remain significant. The HFA-Z result in Table 7 column 2 is significant

at 10 percent level while in column 4 it is marginally significant at 10 percent level (p-value

= 0.109). Lastly in columns 5 and 6, we drop the observations corresponding to the state

of Punjab. This has been done to ensure that our results are not driven in any way by the

state of Punjab which is affected by high levels of pollution corresponding to highest level
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of recorded fire-events in India14. Our results become larger in magnitude and are more

significant after dropping the state of Punjab.

5.2.3 Falsification Tests

In Table 8 (column 1 and 2) instead of using upwind fires as an IV we use downwind fires

(which lie in opposite octant from that of upwind fires with wind blowing away from cluster

location). We find that using downwind fire-events as an IV makes our results insignificant

and in case of HFA-Z the insignificant point estimate has the opposite sign. In columns 3 and

4, we provide results on the effect of pollution on child health where the location of a child

has been randomly shuffled. This random assignment of location leads to counter-intuitive

positive (and insignificant) effect of early life exposure to pollution during first trimester on

child health which strengthens our hypothesis that location does matter when it comes to

pollution exposure (and in turn affects child health).

5.2.4 Avoidance Behaviour

Do mothers plan conception?

An important threat in our analysis can be avoidance behaviour by mothers, that is if

mothers purposely avoid particular months for conception due to their concern about future

child health related to seasonal biomass burning activities. We test this by looking at birth

history of mothers for the estimation period i.e. years 2010 to 2016. We do this by creating

a mother-month-year panel. We create a dummy variable which takes value 1 if a mother

successfully conceives in a particular month of an year. We estimate a linear probability

model to test whether mother’s conception behaviour is systematically linked to non-local

fires. We control for mother’s education, characteristics of household head along with other

household characteristics like source of water, toilet facility, choice of cooking fuel. We

introduce the same fixed effects which are present in our initial specification to control for

regional and seasonal factors. We present these results in Table 9. In column 1, we present

results where we try and see whether there is correlation between three month exposure to

14 Almost 25% of total fire-events in India take place in Punjab.
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non-local upwind fire-events and conception. In column 2, we assess whether exposure to

fire-events in the month of conception has any effect on conception behaviour. We find that

in both the cases non-local upwind fire-events increase the probability of conception. This

suggests that we have some positive selection, as probability of mothers conceiving is more

during the time when incidence of fire-events is high. A one standard deviation in non-local

fire events in a month increases the probability of conception by 0.015% (corresponding

figure for 3 month exposure is 0.03%. Our analysis provides some evidence that mothers do

not practice avoidance behaviour.

5.3 Heterogeneity

i) By Background Characteristics

We now provide disaggregated regressions for Height-for-age. We split our estimation into

Poor (wealth index lower than 2) and Rich sample (wealth index greater than equal to 3).

In Table 10 (Column 1 and 2), we find that the negative effect of pollution is present only

for poor households. This can possibly be due to the fact that children in poor households

have less access to health care to abate negative effect of pollution on health.

As discussed before Southern India has lower pollution levels in comparison to Northern

India. While mean PM2.5 is above 56ug/m3 during all critical windows of development in

North India, the corresponding figure for South India is as low as 35ug/m3. We do sub-

sample analysis on observations from Northern and Southern States in columns 3 and 4 and

find that most of the effects that we see are limited to North India which have alarmingly

high levels of pollution throughout the year.

Finally, we compare children who are born to mothers with different educational attain-

ment. In column 5 and 6 of Table 10, we find the negative effect of pollution on child health

is mainly present for mothers who have less (till primary level) or no education. There is neg-

ative effect present for educated mothers (secondary or above) as well but it is not significant.

ii) By Child’s Age
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In Table 11 we test whether the effect of in-utero exposure to pollution persists overtime.

We observe that the effect is negative for all age-groups (zero to one year, greater than one

but less two years and greater than three years old). Studies have suggested that stunting is

irreversible after age of two years, we do find a significant negative persistent effect of early

exposure to pollution on stunting outcome for one to two year old children. Although the

effect is smaller but it continues to be present for children older than 3 years as well.

6 Conclusion

Outdoor pollution in India breaches safe standards in many areas. We link outdoor pollution

to biomass burning which is a significant source of carbonaceous aerosols, it plays a vital role

in atmospheric chemistry, air quality, ecosystems, and human health. Our analysis shows

that outdoor pollution is affected by neighbouring biomass burning events; this is used

to causally infer the effect of outdoor pollution (as measured by PM2.5) on child growth

indicators. We find that a z-score increase in PM2.5 levels during first trimester leads

to a reduction in Height-for-age (HFA-Z, stunting measure) and Weight-for-age (WFA-Z,

underweight measure) by 0.115 and 0.102 standard deviation units respectively. Figure 6

summarises our results graphically, exposure to outdoor pollution during different critical

windows of growth of a child is associated with worse child health outcomes. Almost all the

estimates are negative with significant effect present for exposure to pollution during first

trimester and second trimester (only WFA-Z measure).

The above results establish that exposure to pollution is linked to stunting measure

(HFA) in childhood. What impact does this have on the economy? We provide a back-of-

an-envelope calculation based on the Galasso et al. (2016) study. This study does a literature

review of the effect of stunting on GDP. Stunting affects GDP of a nation via three channels:

lower returns to lower education, lower returns to lower height and lower returns to lower

cognition. For India, where 66 percent of the workforce was stunted in childhood, this study

estimates that a complete elimination of stunting would have increased GDP by 10 percent
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15. We use a point estimate of probability of being stunted due to outdoor pollution, and find

that one standard deviation increase in outdoor pollution leads to a 0.18 percent reduction

in GDP.

India needs effective policies regarding regulation and management of outdoor pollution,

since the current policies are ineffective. Cross-border policies are needed to tackle the

problem of pollution. To curb air pollution, effective management of forest fires is needed;

however, the budget allocation for this purpose is really small and remains unused in every

financial year. Similarly the government has committed itself to subsidising the use of happy-

seeder technology (this is an alternative to combine harvester, it leaves rice residue in form

of a mulch on farm which doesn’t hamper wheat crop sowing and hence doesn’t require

burning), however the uptake of this policy remains quite low due to high initial investment

in the machine (Gupta and Somnathan, 2016). The National Clean Air Program (2018) is

a welcome step in this domain as it plans to extend air quality monitoring network, conduct

intensive awareness and monitoring campaigns, create city-specific action plans, among many

other initiatives.

15 This is an average figure for South Asia.
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Deaton, A. and Drèze, J. (2009). Food and Nutrition in India: Facts and Interpretations.

Economic and Political Weekly, pages 42–65.

Dey, S. and Di Girolamo, L. (2010). A Climatology of Aerosol Optical and Microphysical

Properties over the Indian Subcontinent from 9 Years (2000–2008) of Multiangle Imag-

ing Spectroradiometer (MISR) Data. Journal of Geophysical Research: Atmospheres,

115(D15).

Dey, S., Girolamo, L., Van Donkelaar, A., Tripathi, S., Gupta, T., and Mohan, M. (2012).

Decadal Exposure to Fine Particulate Matters (PM 2.5) in The Indian Subcontinent Using

Remote Sensing Data. Remote Sens Environ, 127:153–161.

Do, Q.-T., Joshi, S., and Stolper, S. (2018). Can Environmental Policy Reduce Infant

Mortality? Evidence from the Ganga Pollution Cases. Journal of Development Economics,

133:306–325.

Douglass, R. L. (2008). Quantification of the Health Impacts Associated with Fine Particu-

late Matter due to Wildfires.

Fletcher, J. M., Green, J. C., and Neidell, M. J. (2010). Long Term Effects of Childhood

Asthma on Adult Health. Journal of Health Economics, 29(3):377–387.

Foster, A., Gutierrez, E., and Kumar, N. (2009). Voluntary compliance, Pollution Levels,

and Infant Mortality in Mexico. American Economic Review, 99(2):191–97.

Foster, A. D. and Rosenzweig, M. R. (2003). Economic Growth and the Rise of Forests. The

Quarterly Journal of Economics, 118(2):601–637.

Frankenberg, E., McKee, D., and Thomas, D. (2005). Health Consequences of Forest Fires

in Indonesia. Demography, 42(1):109–129.

Galasso, E., Wagstaff, A., Naudeau, S., and Shekar, M. (2016). The Economic Costs of

Stunting and How to Reduce Them. Policy Research Note World Bank, Washington, DC.

28



Goyal, N. and Canning, D. (2017). Exposure to Ambient Fine Particulate Air Pollution

In-Utero as a Risk Factor for Child Stunting in Bangladesh. International Journal of

Environmental Research and Public Health, 15(1):22.

Greenstone, M. and Hanna, R. (2014). Environmental Regulations, Air and Water Pollution,

and Infant Mortality in India. American Economic Review, 104(10):3038–72.

Gupta, P. K., Sahai, S., Singh, N., Dixit, C., Singh, D., Sharma, C., Tiwari, M., Gupta,

R. K., and Garg, S. (2004). Residue Burning in Rice–Wheat Cropping System: Causes

and Implications. Current Science, pages 1713–1717.

Gupta, R. (2014). Low-Hanging Fruit In Black Carbon Mitigation: Crop Residue Burning

In South Asia. Climate Change Economics, 5(04):1450012.

Gupta, S., Agarwal, R., and Mittal, S. K. (2016). Respiratory Health Concerns in Children

at Some Strategic Locations from High PM Levels during Crop Residue Burning Episodes.

Atmospheric Environment, 137:127–134.

He, G., Fan, M., and Zhou, M. (2016). The Effect of Air Pollution on Mortality in China:

Evidence from The 2008 Beijing Olympic Games. Journal of Environmental Economics

and Management, 79:18–39.

Holstius, D. M., Reid, C. E., Jesdale, B. M., and Morello-Frosch, R. (2012). Birth Weight

following Pregnancy during The 2003 Southern California Wildfires. Environmental Health

Perspectives, 120(9):1340.

Isen, A., Rossin-Slater, M., and Walker, W. R. (2017). Every Breath you Take—Every

Dollar you’ll Make: The Long-Term Consequences of The Clean Air Act of 1970. Journal

of Political Economy, 125(3):848–902.

Jain, N., Bhatia, A., and Pathak, H. (2014). Emission of Air Pollutants from Crop Residue

Burning in India. Aerosol and Air Quality Research, 14(1):422–430.

29



Jayachandran, S. (2009). Air Quality and Early-Life Mortality Evidence from Indonesia’s

Wildfires. Journal of Human Resources, 44(4):916–954.

Kahn, R. A. and Gaitley, B. J. (2015). An Aanalysis of Global Aerosol Type as Retrieved

by MISR. Journal of Geophysical Research: Atmospheres, 120(9):4248–4281.

Kaskaoutis, D., Kumar, S., Sharma, D., Singh, R. P., Kharol, S., Sharma, M., Singh, A.,

Singh, S., Singh, A., and Singh, D. (2014). Effects of Crop Residue Burning on Aerosol

Properties, Plume Characteristics, and Long-Range Transport Over Northern India. Jour-

nal of Geophysical Research: Atmospheres, 119(9):5424–5444.

Kunii, O., Kanagawa, S., Yajima, I., Hisamatsu, Y., Yamamura, S., Amagai, T., and Ismail,

I. T. S. (2002). The 1997 Haze Disaster in Indonesia: Its Air Quality and Health Effects.

Archives of Environmental Health: An International Journal, 57(1):16–22.

Lai, W., Li, Y., Tian, X., and Li, S. (2017). Air Pollution and Cognitive Function: Evidence

from Crop Production Cycles. Available at SSRN 3039935.

Neidell, M. J. (2004). Air Pollution, Health, and Socio-Economic Status: The Effect of

Outdoor Air Quality on Childhood Asthma. Journal of Health Economics, 23(6):1209–

1236.

O’Donnell, M. and Behie, A. (2015). Effects of Wildfire Disaster Exposure on Male Birth

Weight in an Australian Population. Evolution, Medicine, and Public Health, 2015(1):344–

354.

Prinz, D., Chernew, M., Cutler, D., and Frakt, A. (2018). Health and Economic Activity

Over the Lifecycle: Literature Review. Technical report, National Bureau of Economic

Research.

Pullabhotla, H. (2018). Fires, Wind, and Smoke: Air Pollution and Infant Mortality; Job

Market Paper.

30



Rangel, M. A. and Vogl, T. S. (2018). Agricultural Fires and Health at Birth. Review of

Economics and Statistics, (0).

Rukumnuaykit, P. Crises and Child Health Outcomes: The Impacts of Economic and

Drought/Smoke Crises on Infant Mortality and Birth Weight in Indonesia. Economics

Department, year=2003, publisher=Citeseer.

Sahu, S. K., Zhang, H., Guo, H., Hu, J., Ying, Q., and Kota, S. H. (2019). Health Risk Asso-

ciated with Potential Source Regions of PM 2.5 in Indian Cities. Air Quality, Atmosphere

& Health, pages 1–14.

Sanders, N. J. (2012). What Doesn’t Kill You Makes You Weaker Prenatal Pollution Ex-

posure and Eucational Outcomes. Journal of Human Resources, 47(3):826–850.

Sharma, A. R., Kharol, S. K., Badarinath, K., and Singh, D. (2010). Impact of Agriculture

Crop Residue Burning on Atmospheric Aerosol Loading–A Study over Punjab State, India.

Annales Geophysicae, 28(2).

Simeonova, E., Currie, J., Nilsson, P., and Walker, R. (2018). Congestion Pricing, Air

Pollution and Children’s Health. Technical report, National Bureau of Economic Research.

Singh, C. P. and Panigrahy, S. (2011). Characterisation of Residue Burning from Agricultural

System in India Using Space Bbased Observations. Journal of the Indian Society of Remote

Sensing, 39(3):423.

Soo, J.-S. T. and Pattanayak, S. K. (2019). Seeking Natural Capital Projects: Forest Fires,

Haze and Early-Life Exposure in Indonesia. Proceedings of the National Academy of

Sciences.

Srivastava, P. and Garg, A. (2013). Forest Fires in India: Regional and Temporal Analyses.

Journal of Tropical Forest Science, pages 228–239.

Vadrevu, K. P., Lasko, K., Giglio, L., and Justice, C. (2015). Vegetation Fires, Absorbing

31



Aerosols and Smoke Plume Characteristics in Diverse Biomass Burning Regions of Asia.

Environmental Research Letters, 10(10):105003.

van Donkelaar, A., Martin, R., Verduzco, C., Brauer, M., Kahn, R., Levy, R., and Villeneuve,

P. (2010). A Hybrid Approach for Predicting PM 2.5 Exposure: van Donkelaar et al.

respond. Environmental Health Perspectives, 118(10):A426–A426.

Van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., and

Villeneuve, P. J. (2010). Global Estimates of Ambient Fine Particulate Matter Con-

centrations from Satellite-Based Aerosol Optical Depth: Development and Application.

Environmental Health Perspectives, 118(6):847.

Victora, C. G., Adair, L., Fall, C., Hallal, P. C., Martorell, R., Richter, L., Sachdev, H. S.,

Maternal, Group, C. U. S., et al. (2008). Maternal and Child Undernutrition: Conse-

quences for Adult Health and Human Capital. The Lancet, 371(9609):340–357.

Vijayakumar, K., Safai, P., Devara, P., Rao, S. V. B., and Jayasankar, C. (2016). Effects

of Agriculture Crop Residue Burning on Aerosol Properties and Long-Range Transport

over Northern India: A Study Using Satellite Data and Model Simulations. Atmospheric

Research, 178:155–163.

Zheng, S., Wang, J., Sun, C., Zhang, X., and Kahn, M. E. (2019). Air Pollution Lowers

Chinese Urbanites’ Expressed Happiness on Social Media. Nature Human Behaviour.

32



Tables and Figures

Figure 1: Spatial variation in Pollution: Mean PM2.5 in districts of India (2010 to 2016)
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Figure 2: Binscatter plot for relationship between Height-for-age & Weight-for-age (z-scores)

and Mean PM2.5 in first trimester (z-scores).
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Figure 3: Identification Strategy: Center (smallest grey circle) represents the cluster location,

White circle corresponds to 75km radius circle around the cluster location, grey ring area

(donut shape) corresponds to area between two circles (75 and 100 Km radii circles) with

cluster location as the center. Mean pollution level is calculated for the white circle, we call

this local pollution level for cluster C.

Local pollution level is instrumented using upwind non-local biomass burning events which

take place in the grey ring area (only uF). Probability weighted counts used everywhere.
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Figure 4: Linear fit plot between Mean PM2.5 (in 75 km radius), Total number of fire-events

between 75 and 100 km radius(Non-local fire-events) & Total number of upwind fire-events

between 75 and 100 km radius (Non-local upwind fire-events). Unit of observation is a child,

shaded area is 95% confidence interval.

Figure 5: Mean PM2.5, Mean count of all fire-events (in 75-100 km radius) & Mean count

of upwind fire-events (in 75-100 km radius) for each month in every year from 2010 to 2016.

Figure represents mean over all sampled clusters belonging to all states of India.
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Figure 6: Coefficient of 2SLS regression of outcomes(HFA-Z and WFA-Z) on outdoor air

pollution for different critical windows of development of a child. Vertical lines represent 95

percent confidence intervals.
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Table 1: Summary Statistics

All India NorthIndia SouthIndia

Variable Mean Std Dev Mean Std Dev Mean Std Dev

Outcomes

Height-for-age z score -1.46 1.68 -1.52 1.68 -1.27 1.66

Weight-for-age z score -1.52 1.22 -1.54 1.22 -1.44 1.22

Weight-for-height z score -0.97 1.38 -0.96 1.38 -1.01 1.41

Child characteristics

Dummy for male child 0.52 0.50 0.52 0.50 0.51 0.50

Birth-order 2.26 1.46 2.38 1.54 1.88 1.05

Childage in months 29.00 16.55 29.02 16.58 28.94 16.46

Pregnancy duration 9.02 0.48 9.00 0.46 9.10 0.52

Mother’s characteristics

Mother’s age at birth 24.50 4.91 24.67 5.00 23.91 4.56

Mother’s number of education years 6.26 5.16 5.81 5.18 7.81 4.77

Household characteristics

Rural 0.76 0.43 0.77 0.42 0.70 0.46

Dummy for head of household being a male 0.88 0.33 0.88 0.33 0.89 0.32

Age of head of household 44.59 15.18 44.51 15.21 44.88 15.09

Dummy for source of water: Pipedwater 0.23 0.42 0.23 0.42 0.24 0.43

Dummy for using clean cooking fuel 0.28 0.45 0.26 0.44 0.37 0.48

Dummy for household practicing open

defecation (OD)
0.42 0.49 0.41 0.49 0.44 0.50

Fraction of HHs practicing OD in a

village
0.43 0.35 0.43 0.35 0.45 0.33

Has electricity connection 0.85 0.36 0.82 0.38 0.94 0.23

Religion = Hindu 0.73 0.44 0.70 0.46 0.83 0.38

Caste = SC or ST 0.37 0.48 0.37 0.44 0.39 0.49

Household size 6.57 2.87 6.75 2.93 5.99 2.57

Mean pollution in 75 km radius

1st Trimester 54.06 31.87 59.33 32.90 35.96 19.07

2nd Trimester 52.23 29.84 56.98 30.90 35.90 18.02

3rd Trimester 53.30 32.40 58.52 33.68 35.32 18.47

Post-natal (3 months after birth) 53.32 35.38 58.46 36.89 35.44 21.46

Observations 1,81,361 1,40,476 40,885
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Table 2: Instrumental variable regression of outcomes on PM2.5 (z-score)

OLS
IV: Upwind fire-events

between 75 to 100 kms radius

(1) (2) (3) (4)

WFA-Z HFA-Z WFA-Z HFA-Z

Trimester-1: Mean PM2.5 in 75km radius (z-score) -0.0120** -0.0116 -0.103*** -0.116***

(0.005) (0.007) (0.032) (0.044)

Mean of Dependent Variable -1.52 -1.46 -1.52 -1.46

Includes Child, Mother and Household characteristics Yes Yes Yes Yes

Includes FEs for Month, Year & Cluster Yes Yes Yes Yes

Includes FEs for Month*Year & District*Year Yes Yes Yes Yes

Observations 179816 179816 179816 179816

Note: Standard errors in parentheses are clustered by DHS cluster. Notation for p-values *** is p < 0.01, ** is p <

0.05 & * is p < 0.1. Each coefficient corresponds to an individual OLS or 2SLS regression of HFA-Z or WFA-Z on

weighted mean PM2.5 in first trimester (z-score).Regressions include other controls - gender, birth order and age of

child, mother’s years of education, mother’s age at birth and its square, age and gender of household head, dummy for

whether household has pipedwater, has clean cooking source and whether household practices open defecation.
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Table 3: First-stage regression

Mean PM2.5 in 75km radius (z-score)

IV: Number of upwind fire events between 75 and 100km radius (z-score) 0.105***

(0.003)

First Stage F-stat 863

rk LM statistic 1005

Anderson Rubin wald statistic (p-value) 0.0016

Stock & Yoko critical values:

10 % 16.38

25 % 5.53

Observations 179816

Includes other controls from 2nd stage Yes

Includes FEs for Month, Year & Cluster Yes

Includes FEs for Month*Year & District*Year Yes

Note: Each coefficient corresponds to an individual FIRST stage 2SLS regression of HFA-Z or WFA-Z on variables

mentioned in the first column. Standard errors in parentheses are clustered by DHS cluster. Notation for p-values *** is

p < 0.01, ** is p < 0.05 & * is p < 0.1. PM2.5 & Fire-events variables have all been converted into z-scores. Regressions

include controls which are same as those mentioned in Table 2 notes.
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Table 4: IV Validity

(1) (2) (3) (4) (5) (6)

Identifying Instruments Mother’s Education
Source of water

is Pipedwater

Uses clean

cooking fuel

Fraction of HHs who

OD in the cluster
Birth Order Asset Ownership

Upwind fire events between 0.016 -0.000 0.000 -0.000 0.002 -0.002

75 and 100km radius in 1st Trimester (Z) (0.012) (0.001) (0.001) (0.000) (0.003) (0.003)

Observations 179816 179816 179816 179816 179816 179816

Includes Child, Mother & HH characteristics Yes Yes Yes Yes Yes Yes

Includes FEs for Month, Year & Cluster Yes Yes Yes Yes Yes Yes

Includes FEs for Month*Year & District*Year Yes Yes Yes Yes Yes Yes

(7) (8) (9) (10) (11) (12)

Identifying Instruments Pregnancy Duration Religion is Hindu Caste is SC or ST Poor Vaccination Household Size

Upwind fire events between 0.002* 0.000 0.0009 0.001 0.0007 0.001

75 and 100km radius in 1st Trimester (Z) (0.001) (0.000) (0.001) (0.000) (0.001) (0.006)

Observations 179816 179816 179816 179816 179816 179816

Includes Child, Mother & HH characteristics Yes Yes Yes Yes Yes Yes

Includes FEs for Month, Year & Cluster Yes Yes Yes Yes Yes Yes

Includes FEs for Month*Year & District*Year Yes Yes Yes Yes Yes Yes

Standard errors in parentheses are clustered by DHS cluster. Notation for p-values *** is p < 0.01, ** is p < 0.05 & * is p < 0.1. Fire-events have been converted to z-scores.
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Table 5: Instrumental variable effects:

Impact of weighted PM2.5 in 2nd Trimester to Post-natal period

(1) (2)

WFA-Z HFA-Z

Trimester-2: Mean PM2.5 in 75km radius (Z) -0.05* -0.03

(0.03) (0.04)

Observations 184183 184183

Trimester-3: Mean PM2.5 in 75km radius (Z) -0.05 -0.05

(0.04) (0.05)

Observations 172917 172917

Post-natal: Mean PM2.5 in 75km radius (Z) -0.01 0.05

(0.03) (0.04)

Observations 190717 190717

Includes Child, Mother & HH characteristics Yes Yes

Includes FEs for Month, Year & Cluster Yes Yes

Includes FEs for Month*Year & District*Year Yes Yes

Note: Standard errors in parentheses are clustered by DHS cluster. No-

tation for p-values *** is p < 0.01, ** is p < 0.05 & * is p < 0.1. Each

coefficient corresponds to an individual 2SLS regression of HFA-Z or

WFA-Z on weighted mean PM2.5 in first trimester (z-score). Regres-

sions include controls which are same as those mentioned in Table 2

notes.
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Table 6: Robustness Checks: Extended controls

IV: Upwind fire-events

b/w 75 to 100 km radius

(1) (2) (3) (4)

WFA-Z HFA-Z WFA-Z HFA-Z

Trimester-1: Mean PM2.5 in 75km radius (Z) -0.111*** -0.125*** -0.103*** -0.116***

(0.0328) (0.0453) (0.0323) (0.0448)

Mean rainfall in 75km radius -0.0463** -0.0492

(0.0217) (0.0300)

Mean temperature in 75 km radius 0.00336** 0.00348

(0.00151) (0.00213)

Gestational period 0.141*** 0.172***

(0.0252) (0.0347)

Household Size 0.00549*** 0.00304

(0.00143) (0.00194)

Caste is SC or ST -0.131*** -0.153***

(0.00877) (0.0118)

Observations 179459 179459 178718 178718

Includes Child, Mother & HH characteristics Yes Yes Yes Yes

Includes FEs for Month, Year & Cluster Yes Yes Yes Yes

Includes FEs for Month*Year & District*Year Yes Yes Yes Yes

Note: Standard errors in parentheses are clustered by DHS cluster. Notation for p-values *** is p <

0.01, ** is p < 0.05 & * is p < 0.1. Each coefficient corresponds to an individual 2SLS regression of

HFA-Z or WFA-Z on weighted mean PM2.5 in first trimester (z-score). Regressions include controls

which are same as those mentioned in Table 2 notes.
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Table 8: Falsification Tests

IV: Downwind Fire-events

in 75 to 100km radius

IV: Upwind Fire-events

in 75 to 100 km radius

(shuffled location)

(1) (2) (3) (4)

WFA-Z HFA-Z WFA-Z HFA-Z

Trimester-1: Mean PM2.5 in 75km radius (Z) -0.008 0.003 0.033 0.054

(0.03) (0.04) (0.033) (0.048)

Observations 179816 179816 179539 179539

Includes Child, Mother & HH characteristics Yes Yes Yes Yes

Includes FEs for Month, Year & Cluster Yes Yes Yes Yes

Includes FEs for Month*Year & District*Year Yes Yes Yes Yes

Note: Standard errors in parentheses are clustered by DHS cluster. Notation for p-values *** is p < 0.01,

** is p < 0.05 & * is p < 0.1. Each coefficient corresponds to an individual 2SLS regression of HFA-Z or

WFA-Z on weighted mean PM2.5 in first trimester (z-score). Regressions include controls which are same

as those mentioned in Table 2 notes.
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Table 9: Mother’s conception behaviour

(1) (2)

Dummy for successful conception

3 month exposure to upwind fire-events 0.000307***

in 75-100kms (0.000049)

Exposure to upwind fire-events 0.000151***

in 75-100kms in the month of conception (0.000042)

Number of Unique Mothers 144833 144833

Includes Child, Mother & HH characteristics Yes Yes

Includes FEs for Month, Year & Cluster Yes Yes

Includes FEs for Month*Year & District*Year Yes Yes

Note: Standard errors in parentheses are clustered by DHS cluster. Notation for p-

values *** is p < 0.01, ** is p < 0.05 & * is p < 0.1. Each coefficient corresponds to an

individual OLS regression of log number of conceptions on controls mentioned in the

table. Regressions include other controls for mother’s education, father’s literacy level,

characteristics of household head and wealth index of the household.
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Table 10: Heteregeneity: By Background Characteristics

IV regression:

Height-for-age Z score

Mother’s Education

Poor Rich North South Primary or less Secondary or higher

(1) (2) (3) (4) (5) (6)

Trimester-1: Mean PM2.5 in 75km radius (Z) -0.139** -0.0824 -0.120*** -0.0226 -0.176** -0.0775

(0.059) (0.063) (0.043) (1.813) (0.081) (0.056)

Observations 84458 88932 139656 40159 76965 95642

Includes Child, Mother & HH characteristics Yes Yes Yes Yes Yes Yes

Includes FEs for Month, Year & Cluster Yes Yes Yes Yes Yes Yes

Includes FEs for Month*Year & District*Year Yes Yes Yes Yes Yes Yes

Note: Standard errors in parentheses are clustered by DHS cluster. Notation for p-values *** is p < 0.01, ** is p < 0.05 & * is p < 0.1.

Each coefficient corresponds to an individual 2SLS regression of HFA-Z on weighted mean PM2.5 in first trimester (z-score). Regressions

include controls which are same as those mentioned in Table 2 notes.

North Indian states: Arunachal Pradesh, Assam, Bihar, Chandigarh, Gujarat, Haryana, Himachal Pradesh, Jammu and Kashmir,

Jharkhand, Madhya Pradesh, Manipur, Meghalaya, Mizoram Nagaland, Delhi, Punjab, Rajasthan, Sikkim, Tripura, Uttar Pradesh and

Uttarakhand.

South Indian states: Andhra Pradesh, Karnataka, Kerala, Maharashtra, Chhattisgarh, Odisha, Telangana, West Bengal, Lakshwadeep

Islands, Andaman and Nicobar Islands, Dadar and Nagar Haveli, Daman and Diu, Puducherry and Goa.
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Table 11: Heteregeneity: By Age

IV regression: Height-for-age Z score

Age of child

0 to 1 years 1 to 2 years 3+ years

(1) (2) (3)

Trimester-1: Mean PM2.5 in 75km radius (Z) -0.0564 -0.719** -0.110*

(0.349) (0.338) (0.0588)

Observations 30456 28669 100701

Includes Child, Mother & HH characteristics Yes Yes Yes

Includes FEs for Month, Year & Cluster Yes Yes Yes

Includes FEs for Month*Year & District*Year Yes Yes Yes

Note: Standard errors in parentheses are clustered by DHS cluster. Notation for p-values

*** is p < 0.01, ** is p < 0.05 & * is p < 0.1. Each coefficient corresponds to an individual

2SLS regression of HFA-Z or WFA-Z on weighted mean PM2.5 in first trimester (z-score).

Regressions include controls which are same as those mentioned in Table 2 notes.
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Appendix

Figure 1: Population weighted split of all biomass burning events which took place from

2010-2016 for select states.
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Table A2: Full Model : IV Regression

(1) (2)

WFA-Z HFA-Z

Trimester-1: Mean PM2.5 in 75km radius (z-score) -0.103*** -0.116***

(0.032) (0.045)

Child is Male -0.036*** -0.099***

(0.006) (0.008)

Birth Order -0.046*** -0.062***

(0.003) (0.004)

Child’s Age in Months -0.082*** -0.106***

(0.008) (0.010)

Mother’s Education (in years) 0.027*** 0.031***

(0.001) (0.001)

Household Head’s Age 0.002*** 0.002***

(0.000) (0.000)

Houehold Head is Male 0.011 0.031**

(0.010) (0.014)

Mother’s Age at Birth 0.048*** 0.058***

(0.005) (0.007)

Mother’s Age at Birth square -0.001*** -0.001***

(0.000) (0.000)

Source of water is Pipedwater 0.016 0.005

(0.011) (0.015)

Uses clean cooking fuel 0.134*** 0.140***

(0.010) (0.013)

Household Defecates in Open (OD) -0.136*** -0.166***

(0.009) (0.013)

Observations 179816 179816

Includes FEs for Month, Year & Cluster Yes Yes

Includes FEs for Month*Year & District*Year Yes Yes

Note: Standard errors in parentheses are clustered by DHS cluster.

Notation for p-values *** is p < 0.01, ** is p < 0.05 & * is p < 0.1.
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