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ABSTRACT   Many technological innovations replace workers with 
machines. But this capital–labor substitution need not reduce aggre-
gate labor demand, because it simultaneously induces four countervail-
ing responses: own-industry output effects; cross-industry input–output 
effects; between-industry shifts; and final demand effects. We quantify 
these channels using four decades of harmonized cross-country and indus-
try data, whereby we measure automation as industry-level movements in 
total factor productivity that are common across countries. We find that 
auto mation displaces employment and reduces labor’s share of value 
added in the industries where it originates (a direct effect). In the case of 
employment, these own-industry losses are reversed by indirect gains in 
customer industries and induced increases in aggregate demand. By contrast,  
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own-industry labor share losses are not recouped elsewhere. Our frame-
work can account for a substantial fraction of the reallocation of employ-
ment across industries and the aggregate fall in the labor share over the last 
three decades. It does not, however, explain why the labor share fell more 
rapidly during the 2000s.

It is a widely held view that recent and incipient breakthroughs in arti-
ficial intelligence and dexterous, adaptive robotics are profoundly 

shifting the terms of human-versus-machine comparative advantage. In 
light of these advances, numerous scholars and popular writers anticipate 
the wholesale elimination of a vast set of currently labor-intensive and 
cognitively demanding tasks, leaving an ever-diminishing set of activi-
ties in which labor adds significant value (Brynjolfsson and McAfee 
2014; Ford 2015; Frey and Osborne 2017). The displacement of labor 
from production could take (at least) two forms: employment displace-
ment, meaning the elimination of aggregate employment; or labor share 
displacement, meaning the erosion of labor’s share of value added in the 
economy.

Whether technological progress ultimately proves employment- 
displacing or labor share–displacing depends proximately on two factors: 
how technological innovations shape employment and labor’s share of  
value added directly in the industries where they occur; and how these 
direct effects are augmented or offset by employment and labor share 
changes elsewhere in the economy that are indirectly spurred by these 
same technological forces. The first of these phenomena—the direct effect 
of technological progress on employment and labor share in the specific 
settings in which it occurs—is often readily observable, and we suspect 
that observation of these direct labor share–displacing effects shapes 
theoretical and empirical study of the aggregate impact of technological 
progress. The indirect effects of technological progress on these same 
outcomes, however, are likely more challenging to observe and quantify, 
and hence may receive short shrift in economic analysis and in the wider 
public debate.1

1. Caselli and Manning (forthcoming) observe that many recent analyses of the potential 
impact of new technology on workers implicitly rely on models that omit general equilib-
rium effects.
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To see the challenge this creates, consider the two panels of figure 1, 
which reports bivariate scatters of the relationship between industry-level 
total factor productivity (TFP) growth over the 1970–2007 period and con-
temporaneous industry-level log employment growth (the top panel) and 
industry-level changes in log labor share (the bottom panel), defined as 
the log ratio of the wage bill to value added.2 Both panels reveal a well-
determined downward slope: Industries experiencing faster measured TFP 
growth on average exhibit steep relative declines in employment and labor 
share over this period. It would be tempting to infer from these figures that 
technological advances (captured by TFP growth) erode aggregate employ-
ment and labor’s share of national income.

But theory makes clear that there is no direct mapping between the 
evolution of productivity and labor demand at the industry level and the 
evolution of labor demand in the aggregate (Foster and others 2017). A 
long-standing body of literature, starting with research by William Baumol 
(1967), has considered reallocation mechanisms for employment, showing 
that labor moves from technologically advancing to technologically lag-
ging sectors if the outputs of these sectors are not close substitutes. Further, 
Rachel Ngai and Christopher Pissarides (2007) and Daron Acemoglu and 
Veronica Guerrieri (2008) show that such ongoing unbalanced productiv-
ity growth across sectors can nevertheless yield a balanced growth path for 
labor and capital shares. Indeed, one of the central stylized facts of modern 
macroeconomics, immortalized by Nicholas Kaldor (1961), is that during 
a century of unprecedented technological advancement in transportation, 
production, and communication, labor’s share of national income remained 
roughly constant (Jones and Romer 2010). This empirical regularity, which 
John Maynard Keynes (1939) deemed “a bit of a miracle,” has provided 
economists—though not the lay public—with grounds for optimism that, 
despite seemingly limitless possibilities for labor-saving technological 
progress, automation need not displace labor as a factor of production.

Table 1 confirms the broad relevance of these theoretical observations. 
Aggregate employment grew dramatically in all countries from 1970 to 
2007, even as relative employment fell in the industries experiencing the 
fastest productivity growth. Yet, conversely, labor’s share of value added 

2. Our data sources and methods are documented in detail in section I. The figures above 
average across the 19 developed countries in our sample encompassing 28 market industries. 
Each industry is weighted by its own-country average share of employment (the top panel of 
figure 1) or value added (the bottom panel of figure 1) over the full time interval. Patterns are 
similar when instead using decadal changes in employment or labor’s share and previous-
decade TFP growth starting in the 1980s.
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Source: EU KLEMS.
a. All values are expressed as annual, unweighted average changes across country-years in log points.
b. The line shows the linear fit weighted by industries’ employment shares. Statistics: β = –0.949 

(SE = 0.181), R2 = .515.
c. The line shows the linear fit weighted by industries’ value-added shares. Statistics: β = –0.143 

(SE = 0.050), R2 = .238.
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Figure 1. Industry-Level Total Factor Productivity Growth versus Employment Growth 
and the Change in Labor’s Share of Value Added, 1990–2007a
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was steady or rising in the 1970s, declined modestly in the 1980s and 
1990s, and then fell steeply in the 2000s in many countries. These facts 
thus highlight the pitfalls of extrapolating from direct, first-order techno-
logical relationships (here, observed at the industry level) to labor market 
outcomes in the aggregate, because the latter incorporate both direct and 
indirect consequences of technological progress (as well as many non-
technological factors).

This paper applies harmonized cross-country and cross-industry data to 
explore the relationship between technological change and labor market 
outcomes over four decades. A first contribution of the paper is to attempt 
to overcome the tension, endemic to this area of work, of using micro-
economic variation to afford identification while attempting to speak to 
macro economic outcomes. This tension arises here because we study the 
relationship between productivity growth, innovation, and labor displace-
ment at the country-industry level. As figure 1 underscores, naively extrap-
olating from industry-level to aggregate-level relationships is potentially 
fallacious. The alternative—directly estimating effects at the macro level—
often suffers from underidentification and low statistical power, and fur-
thermore is silent on the microeconomic channels through which aggregate 
effects come about.

To overcome these pitfalls, we empirically model three micro–macro 
linkages that, in combination with the industry-level estimates, allow us 
to make broader inferences about aggregate labor displacement effects.3 
The first link uses harmonized data from the World Input–Output Data-
base (Timmer and others 2015), enumerating cross-industry input–output 
linkages to trace the effects of productivity growth in each industry to out-
comes occurring in customer industries and in supplier industries—that is, 
industries for which, respectively, the originating industry is upstream or 
downstream in the production chain.4 The second link connects aggregate 
economic growth and sectoral labor demands. Recognizing that productiv-
ity growth in each industry augments aggregate income and hence indirectly 
raises final demand, we estimate the elasticity of sectoral demand emanating 
from aggregate income growth and then apply our TFP estimates to infer the 
indirect contribution of each industry’s productivity growth to final demand. 
Third, our analytic framework recognizes that uneven productivity growth 

3. Our approach here builds on our earlier work (Autor and Salomons 2017), in which 
we incorporate only one of these linkages.

4. Our analysis follows many recent works exploiting these linkages to study the propa-
gation of trade and technology shocks (Acemoglu and others 2016; Pierce and Schott 2016; 
Acemoglu, Akcigit, and Kerr 2016).
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across industries yields shifts in industry shares of value added, which in 
turn potentially alter labor’s share of aggregate value added.5

Our net estimates of the impact of productivity growth and innovation 
on aggregate outcomes of interest therefore sum over (i) direct industry-
level effects; (ii) indirect customer and supplier effects in linked sectors; 
(iii) final demand effects accruing through the effect of productivity growth 
on aggregate value added; and (iv) composition effects accruing through 
productivity-induced changes in industry shares of value added. We believe 
that this simple accounting framework can be usefully applied to other data 
sets and sources of variation.

Distinct from earlier work that focuses on specific measures of techno-
logical adoption or susceptibility (for example, robotics and routine task 
replacement), a second contribution of the analysis is to employ TFP—
which is an omnibus measure of technological progress (Solow 1956). 
Using TFP as our baseline measure potentially overcomes the challenge 
for consistent measurement posed by the vast heterogeneity of innovation 
across sectors and periods. TFP is also applicable to our analysis for a 
second reason: Because all margins of technological progress ultimately 
induce a rise in TFP—either by increasing the efficiency of capital or 
labor in production or by reallocating tasks from labor to capital or vice 
versa—our empirical approach is not predicated on a specific mecha-
nism through which technological progress affects outcomes of interest. 
But the flip side of this agnosticism is that merely observing a change 
in TFP in any industry or time period does not tell us which channel 
(augmentation, reallocation) is operative. Using information on output, 
employment, earnings, and labor’s share of value added, however, we 
can infer these channels. Specifically, we study how changes in industry-
level TFP affect output (value added) quantities and prices, employ-
ment, earnings, and labor’s share of value added economy-wide, to 
draw inferences on both industry-level and aggregate labor-augmenting 
and labor share–displacing effects of technological progress.

It is well understood that estimates of TFP may also be confounded 
with business cycle effects, industry trends, and cross-industry differences 
in cyclical sensitivity (Basu and Fernald 2001). We confront these issues 
directly. We purge the simultaneity between an industry’s estimated TFP 
growth and changes in other industry-level measures that serve as inputs 

5. This mechanism is akin to skill-biased structural change in the framework developed 
by Buera, Kaboski, and Rogerson (2015), though here we focus on labor share rather than 
skill composition.
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into the TFP calculation (for example, output, wage bill, and employment) 
by replacing own-country-industry TFP with the mean TFP of the corre-
sponding industry observed in other countries in the same year.6 We purge 
the potential cyclicality of TFP by including a set of distributed lags as 
well as country–business cycle indicators, which absorb business cycle 
variation in productivity measures. We address the opaqueness of TFP as a 
measure of technological progress by complementing it with an alternative, 
directly observable measure of industry-level technological advancement: 
patent awards by industry and country (Autor and others 2017a). Patent 
awards—and even more so, patent citations—prove to be strong predictors 
of industry-level TFP growth. Using patent awards in place of TFP growth, 
we obtain strongly comparable estimates of the relationships between tech-
nological progress, employment, wage bill, and value added, which we 
view as useful corroborative evidence.

TFP’s virtue as an omnibus technology measure is also its shortcoming 
as a specific technology measure. Because TFP incorporates productivity 
growth arising from all sources, our analysis cannot directly answer the 
question of whether recent or specific technologies—such as industrial 
robotics or artificial intelligence—are more or less labor-complementing or 
labor share–displacing than earlier generations of technology. By the same 
token, our analysis cannot distinguish between the effects of automation-
based versus non-automation-based sources of TFP growth, which may in 
turn have distinct (or even countervailing) effects on either employment or 
on labor’s share of value added. We refer readers to recent studies focusing 
on specific technological advances for this evidence (Graetz and Michaels, 
forthcoming; Acemoglu and Restrepo 2017; Dauth and others 2017; 
Chiacchio, Petropoulos, and Pichler 2018).

Our work builds on an active, recent body of literature that questions the 
optimistic implications of the long-standing Kaldor facts by offering models 
where aggregate labor displacement is a potential consequence of advanc-
ing technology. Acemoglu and Pascual Restrepo (2018, forthcoming) con-
sider models in which two countervailing economic forces determine the 
evolution of labor’s share of income: the march of technological progress, 
which gradually replaces “old” labor-using tasks, reducing labor’s share of 
output and possibly diminishing real wages; and endogenous technological  
progress that generates novel labor-demanding tasks, potentially reinstating  

6. This strategy leverages the fact that changes in other-country, same-industry TFP are 
highly predictive of the evolution of own-country-industry TFP but are not intrinsically cor-
related with its evolution.
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labor’s share. The interplay of these forces need not necessarily yield a 
balanced growth path; that is, labor’s share may decline. Daniel Susskind  
(2017) develops a model in which labor is ultimately immiserated by the 
asymptotic encroachment of automation into the full spectrum of work 
tasks—contrary to Acemoglu and Restrepo (forthcoming), labor immisera-
tion is guaranteed because falling labor scarcity does not spur the endogenous 
creation of new labor-using tasks or labor-complementing technologies.7

A central empirical regularity that underscores the relevance of this 
recent work is that labor’s share of national income has indeed fallen in 
many nations in recent decades, a trend that may have become more pro-
nounced in the 2000s (Elsby, Hobijn, and Şahin 2013; Karabarbounis and 
Neiman 2013; Piketty 2014; Barkai 2017; Autor and others 2017b; Dao 
and others 2017; Gutiérrez and Philippon 2017). Reviewing an array of 
within- and cross-country evidence, Loukas Karabarbounis and Brent  
Neiman (2014) argue that labor’s falling share of value added is caused by 
a steep drop in the quality-adjusted equipment prices of information and 
communication technology relative to labor. Though Karabarbounis and 
Neiman’s work is controversial, in that it implies an aggregate capital/labor 
substitution in excess of 1—which is a nonstandard assumption in this  
literature—their work has lent empirical weight to the hypothesis that 
computerization may erode labor demand. Related work by Maya Eden 
and Paul Gaggl (2018) calibrates an aggregate production function, and 
similarly attributes part of the decline in the U.S. labor share to a rise in the 
share of income paid to information and communication technology capital.

A growing microeconometric literature presents a mixed set of findings 
on whether such erosion has occurred recently or in the past. Focusing 
on the first half of the twentieth century, Michelle Alexopoulos and Jon 
Cohen (2016) find that positive technology shocks raised productivity  
and lowered unemployment in the United States between 1909 and 1949. 
Using contemporary European data, Terry Gregory, Anna Salomons, and 
Ulrich Zierahn (2016) test whether routine-replacing technical change has 

7. The conceptual frameworks of both papers build on the work of Zeira (1998), Autor, 
Levy, and Murnane (2003), and Acemoglu and Autor (2011), who offer models in which 
advancing automation reduces labor’s share by substituting machines (or computers) for 
workers in a subset of activities (which Autor, Levy, and Murnane designate as “tasks”). 
Other labor-displacement mechanisms are given by Sachs and Kotlikoff (2012) and Berg, 
Buffie, and Zanna (2018), who develop overlapping-generation models in which rapid 
labor-saving technological advances generate short-run gains for skilled workers and capital 
owners, but in the longer run, immiserate those who are not able to invest in physical or 
human capital. Stansbury and Summers (2017) present time-series evidence that productivity 
growth and wage growth are positively correlated.
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reduced employment overall across Europe, and they find that though this 
type of change has reduced middle-skill employment, this reduction has 
been more than offset by compensatory product demand and local demand 
spillovers. In work closely related to ours, Mai Chi Dao and others (2017) 
analyze sources of the trend decline in labor share in a panel of 49 emerg-
ing and industrialized countries. Using cross-country and cross-sector varia-
tion in the prevalence of occupations potentially susceptible to automation  
(à la Autor and Dorn 2013), Dao and others find that countries and sectors 
initially more specialized in routine-intensive activities have seen a larger 
decline in labor share, consistent with the possibility of labor displacement.8

Concentrating on industrial robotics, arguably the leading edge of work-
place automation, Georg Graetz and Guy Michaels (forthcoming) conclude 
that industry-level adoption of industrial robots has raised labor produc-
tivity, increased value added, augmented workers’ wages, had no measur-
able effect on overall labor hours, and modestly shifted employment in 
favor of high-skill workers within countries that belong to the European 
Union. Conversely, using the same underlying industry-level robotics data 
but applying a cross-city design within the United States, Acemoglu and 
Restrepo (2017) present evidence that U.S. local labor markets that were 
relatively exposed to industrial robotics experienced differential falls in 
employment and wage levels between 1990 and 2007.9

Our analysis proceeds as follows. Section I summarizes the data and 
measurement framework and presents the simple shift-share decomposi-
tion that undergirds our accounting framework. Section II presents our 
estimates for the direct effects of productivity growth (measured initially 
by TFP, in subsection II.A; and by patents in subsection II.B) on labor 
input, value added, and labor’s share of value added, across a range of 
model specifications. Section III then presents our main results accounting 
for both direct (“own-industry”) effects, and for indirect effects operat-
ing through input–output linkages and final demand. Section IV quantifies 
the aggregate implications of these direct and indirect effect estimates for 
employment, hours worked, and labor’s share of value added to assess 

8. Using an analogous approach, Michaels, Natraj, and Van Reenen (2014) find that 
information and communication technology adoption is predictive of within-sector occupa-
tional polarization in a country-industry panel sourced from EU KLEMS covering 11 coun-
tries observed over 25 years.

9. Dauth and others (2017) and Chiacchio, Petropoulos, and Pichler (2018) apply the 
Acemoglu–Restrepo approach to German and EU-wide data, respectively. Dauth and others 
find that robot adoption leads to worker reallocation but has no net impact on employment 
or wages. Chiacchio, Petropoulos, and Pichler affirm the Acemoglu–Restrepo results for 
employment though not for wages.
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whether technological progress has, on net, been either augmenting or 
displacing of the aggregate employment or labor share. We also con-
sider in this section whether our accounting approach can explain cross- 
industry patterns of employment change and aggregate, time-series 
changes in the evolution of the labor share between and within industries.

To briefly summarize our results, automation (as embodied in TFP 
growth) has been employment-augmenting yet labor share–displacing over 
the last four decades. As implied by the scatter plot in figure 1 (top panel), 
industries with persistent gains in relative productivity secularly contract 
as a share of aggregate employment, meaning that the direct effect of 
rising productivity has been to reduce labor input in the sectors where it 
originates. But this direct effect is more than fully offset by two indirect 
effects: First, rising TFP within supplier industries catalyzes strong, offset-
ting employment gains among their downstream customer industries; and 
second, TFP growth in each sector contributes to aggregate growth in real 
value added and hence rising final demand, which in turn spurs further 
employment growth across all sectors.

Conversely, we find that productivity growth is directly labor share– 
displacing in the industries where it originates; and it is particularly impor-
tant that this direct effect is not offset by indirect effects spurred by input–
output linkages, compositional shifts, or final demand increases. Thus, we 
conclude that productivity growth has contributed to an erosion of labor’s 
share of value added. Notably, this labor share–eroding effect was not pres-
ent in the first decade of our sample, the 1970s, but then became strongly 
evident thereafter. Our analysis therefore broadly supports the hypothesis 
that the decline in the labor share since the 1980s is consistent with a shift 
toward more labor-displacing technology commencing in the 1980s. But 
the acceleration in the labor share decline observed during the 2000s is left 
unaccounted for by this mechanism.

In section V, we briefly consider the interpretation of our findings, 
focusing in particular on the relationship between the industry-level and 
aggregate outcomes observed in our data, and the underlying unobserved 
firm-level dynamics that may contribute to these outcomes.

I. Data and Measurement

Our analysis draws on EU KLEMS, an industry-level panel database cov-
ering the countries that belong to the Organization for Economic Coopera-
tion and Development since 1970 (O’Mahony and Timmer 2009). We use 
the 2008 release of EU KLEMS, supplemented with data from the 2007 
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and 2011 releases to maximize data coverage. Our primary analytic sample 
covers the period 1970–2007. We limit our analysis to the 19 developed 
countries of the European Union, excluding its Eastern European members; 
and we also include Australia, Canada, Japan, South Korea, and the United 
States. These countries and their years of data coverage are listed in online 
appendix table A1.10 The EU KLEMS database contains detailed data for  
32 industries in both the market and nonmarket economies, as summarized 
in online appendix table A2. We focus on nonfarm employment, and we 
omit the poorly measured private household sector, and public administra-
tion, defense, and extraterritorial organizations, which are almost entirely 
nonmarket sectors.11 The end year of our analysis is dictated by major revi-
sions to the industry definitions in EU KLEMS that were implemented 
from the 2013 release onward. These definitional changes inhibit us from 
extending our consistent 1970–2007 analysis through to the present, though 
we analyze 2000–15 separately using the 2017 release of EU KLEMS for a 
smaller subset of countries for which these data are available.12

Table 1 summarizes trends in aggregate hours of labor input and labor’s 
share of value added by decade for the 19 countries in our analysis. As with 
all analyses in the paper, these statistics are calculated using the 28 market 
industries that constitute our analytic sample and are annualized to account 
for the fact that years of data coverage differ by country. With very few 
exceptions, aggregate labor hours rise in all countries and time periods. The 
growth rate of labor hours is most rapid in the 1980s, slower in the 1990s, 
and slower still in the 2000s. Distinct from aggregate labor hours, trends in 
labor’s share of value added differ by country and time period. On average, 
the aggregate labor share rises in the 1970s and then falls during the  
subsequent three decades, with by far the sharpest annual rate of decline 
in the 2000s.

Table 2 reports analogous statistics for trends in hours of labor input and 
labor’s share of value added among the 28 industries in our sample. There 
is a substantial diversity of experiences among industries. Employment fell 
steeply in mining and quarrying, textiles and related products, and refining, 

10. The online appendixes for this and all other papers in this volume may be found at 
the Brookings Papers web page, www.brookings.edu/bpea, under “Past BPEA Editions.”

11. Although EU KLEMS classifies health care and education as nonmarket sectors, they 
are a substantial and growing part of GDP across the developed world; and in many countries 
(for example, the United States), they also encompass a large private sector component. We 
therefore choose to retain these sectors in our analysis.

12. This subset includes Austria, Belgium, Denmark, Finland, France, Germany, Italy, 
the Netherlands, Spain, Sweden, the United Kingdom, and the United States.
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Table 2. Trends in Hours Worked, Labor Share, and Total Factor Productivity,  
by Industry, 1970–2007

ISIC 
code 
(rev. 3) Description

Time-
averaged

value added 
share

100 × annual log change

Hours 
workeda

Labor 
shareb

Total factor 
productivityb

C Mining and quarrying 0.015 −2.45 −1.22 0.29
15–16 Manufacture of food, 

beverages, and tobacco 
products

0.026 −0.52 −0.08 0.72

17–19 Manufacture of textiles, 
apparel, leather, and 
related products

0.012 −3.96 0.18 2.07

20 Manufacture of wood and 
wood products, exclud-
ing furniture

0.005 −1.34 −0.32 2.12

21–22 Manufacture of paper and 
paper products, print-
ing, and publishing

0.022 −0.25 −0.19 1.10

23 Manufacture of coke, 
refined petroleum  
products, and nuclear 
fuel

0.006 −1.54 −1.60 −0.49

24 Manufacture of chemicals 
and chemical products

0.022 −0.78 −0.44 3.19

25 Manufacture of rubber 
and plastics products

0.010 0.67 0.21 2.56

26 Manufacture of other 
nonmetallic mineral 
products

0.009 −1.33 −0.18 1.68

27–28 Manufacture of basic and 
fabricated metals

0.029 −0.87 −0.22 1.72

29 Manufacture of machin-
ery and equipment not 
elsewhere classified

0.023 −0.60 0.03 1.86

30–33 Manufacture of electrical 
and optical equipment

0.033 −0.28 −0.10 4.49

34–35 Manufacture of motor 
vehicles and transpor-
tation equipment

0.024 −0.12 −0.27 2.42

36–37 Manufacture of furniture 
and manufacturing not 
elsewhere classified; 
recycling

0.008 −0.58 −0.03 1.09

E Electricity, gas, and water 
supply

0.025 −0.28 −0.65 1.29

F Construction 0.068 0.94 0.04 0.20
50 Sale, maintenance, and 

repair of motor  
vehicles and fuel

0.014 0.95 −0.05 0.11

(continued on next page)
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51 Wholesale trade, exclud-
ing motor vehicles

0.064 0.67 −0.28 1.07

52 Retail trade, excluding 
motor vehicles; repair 
of personal and house-
hold goods

0.052 0.73 −0.16 1.18

H Hotels and restaurants 0.028 1.80 −0.09 −0.88
60–63 Transportation activities 

of travel agencies
0.045 0.91 −0.17 1.24

64 Post and  
telecommunications

0.025 0.52 −1.18 3.04

J Financial intermediation 0.064 1.70 −0.46 0.95
70 Real estate activities 0.113 3.08 0.70 −0.66
71–74 Renting of machinery and 

equipment; computer 
and related activities; 
research and develop-
ment; and other  
business activities

0.098 4.63 0.68 −1.65

M Education 0.057 1.67 −0.01 −0.14
N Health and social work 0.066 2.89 0.05 −0.22
O Other community, social, 

and personal service 
activities

0.040 2.16 0.11 −1.02

Sources: EU KLEMS; authors’ calculations.
a. Changes are annualized log differences weighted by country size and hours-worked shares.
b. Changes are annualized log differences weighted by country size and value-added shares.

Table 2. Trends in Hours Worked, Labor Share, and Total Factor Productivity,  
by Industry, 1970–2007 (Continued )

ISIC 
code 
(rev. 3) Description

Time-
averaged

value added 
share

100 × annual log change

Hours 
workeda

Labor 
shareb

Total factor 
productivityb

while growing rapidly in many business and personal services. Labor’s 
share of value added declined in the majority of sectors, with the steepest 
fall in heavy industry. TFP growth, meanwhile, was most rapid in manufac-
turing and was negative in several service industries.

Table 3 summarizes trends in employment, hours, wages, value added, 
labor share, and TFP by industry over the four decades of our sample. 
We quantify these trends overall, by broad sector, and by decade by 
estimating regression models for the change in country-industry-year 
outcomes (multiplied by 100). In this table, and throughout the paper, 
regression models are weighted by time-averaged shares of the rele-
vant weighting variable—employment, hours, or value added—within 
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countries multiplied by time-varying country shares of the weighting 
variable. As such, we weight by country size in our main estimates, and 
we show in the online appendixes that our main results are not sensitive 
to this choice.

The top row of table 3 reports estimates for all industries and time 
periods. The middle rows report these relationships separately by decade, 
and the bottom rows report them separately for five broad sectors encom-
passing the 28 industries in our analysis. As detailed in online appendix 
table A2, these sectors are: mining, utilities, and construction; manufac-
turing; education and health; low-tech services (including personal ser-
vices, retail, wholesale, and real estate); and high-tech services (including 
post and telecommunications, finance, and other business services). The 
reported regression coefficients, which correspond to within-industry 
changes, reflect a number of key trends in the data. Employment growth, 
measured in workers or hours, is positive in all decades but slows sub-
stantially across consecutive decades. Employment growth is negative 
in manufacturing; modestly positive in mining, utilities, and construc-
tion; and strongly positive in services—with the most rapid growth evi-
dent in high-tech services, followed by education and health, and finally 
low-tech services. Like employment, the growth of real hourly wages is 
positive in all periods but is secularly slowing.

Consistent with results reported in much recent work (Elsby, Hobijn, and 
Şahin 2013; Karabarbounis and Neiman 2014; Autor and others 2017b), 
trends in the labor share of value added vary across the decades. Labor’s 
share of value added trends modestly upward in the 1970s, then falls in 
each decade of the 1980s, 1990s, and 2000s. This trend is most pronounced 
in manufacturing and in mining, utilities, and construction. It is modest in 
high-tech services, and in the education and health sector, and it is absent 
in the low-tech services sector.

The descriptive statistics given in table 3 focus on within-industry 
changes in the labor share of value added and its components. But of 
course, changes in the aggregate labor share may stem from both (i) within-
industry shifts in labor’s share of value added; and (ii) changes in the share 
of value added accounted for by industries that differ in their labor shares. 
Our analysis assesses the contribution of technological change to both 
margins. To quantify the importance of within- versus between-industry 
shifts, we implement a simple shift-share decomposition, as follows. Let  
L
_

c,t = ∑iwi,c,tli,c,t equal the aggregate log labor share of value added in country c 
in year t, defined as the weighted sum of log labor shares li,c,t in each indus-
try i, where weights wi,c,t correspond to industry i’s share in value added in 
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its respective country and year.13 Let ΔL
_

c,t equal the change in aggregate log 
labor share in country c over time interval t—equal to 1970–80, 1980–90, 
1990–2000, or 2000–07—where Δ is the first-difference operator. Finally, 
let l

_
i,c,t = (li,c,t1

 − li,c,t0
)/2 and w

_
i,c,t = (wi,c,t1

 − wi,c,t0
)/2. We can then decompose 

the observed labor share change in each decade as

L l lc i c i c i c i c
ii

∑∑∆ = ω ∆ + ∆ωτ τ τ τ τ(1) ,, , , , , , , , ,

where the first term to the right of the equals sign is the contribution of 
within-industry changes in labor share to the aggregate change, and the 
second term is the contribution to the aggregate change due to shifts in 
value-added shares across industries.

The results of this decomposition, reported in table 4, indicate that the 
majority, but not the entirety, of the change in aggregate labor share of 
value added in each decade is accounted for by within-industry shifts. 
Focusing first on the country size–weighted calculations (the left columns), 
we find that more than all of the rise in labor share in the 1970s is due to 
within-industry changes, whereas between 51 and 72 percent of the fall in 
the labor share in the subsequent three decades is accounted for by within-
industry declines. If we instead weight each country equally in the shift-
share decomposition, we reach similar conclusions about the importance 
of within-industry labor share movements (the right columns). Further, if 

13. Per our convention, this calculation includes only the 28 market industries featured 
in our analysis.

Table 4. Shift-Share Analysis of the Changes in Labor Share by Decadea

Decade

Weighted by country size Unweighted

Mean
Between 
industry

Within 
industry Mean

Between 
industry

Within 
industry

1970s 0.513 −0.187 0.700 0.230 −0.146 0.376
(−0.36) (1.36) (−0.63) (1.63)

1980s −0.459 −0.183 −0.276 −0.201 −0.121 −0.080
(0.40) (0.60) (0.60) (0.40)

1990s −0.263 −0.075 −0.188 −0.750 −0.304 −0.446
(0.28) (0.72) (0.41) (0.59)

2000s −0.861 −0.425 −0.436 −0.126 −0.018 −0.104
  (0.49) (0.51)  (0.17) (0.83)

Sources: EU KLEMS; authors’ calculations.
a. The units are 100 × annualized decadal log changes in labor share by country. The values in paren-

theses are the shares explained by between-industry or within-industry shifts.
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we decompose the change in the mean level of labor share rather than the 
mean log level (online appendix table A3), we find a similar time pattern 
as for the log labor share and a similarly outsized role played by within-
industry changes.

These decomposition results suggest that the within-industry determi-
nants of changes in the aggregate labor share are of greater analytic inter-
est compared with the between-industry drivers, though we explore both 
margins below. The 2000s stand out, however, for having a roughly even 
distribution of the aggregate labor share changes into within-industry 
and between-industry components. Consistent with the observations of 
Matthew Rognlie (2015) and Germán Gutiérrez (2017), this pattern reflects 
the outsized growth of the real estate industry’s value added in numer-
ous countries—particularly during the 2000s—and this industry has an 
extremely low share of labor in value added (see online appendix table 
A4). If we eliminate real estate from the analysis, however, we find that  
the fall in the aggregate labor share in the 2000s is reduced by less than 
one quarter (from −0.86 to −0.64 per year); the within-industry compo-
nent of the labor share decline explains no less than 90 percent of the total 
in each decade; and the annual rate of decline in the labor share during 
the 2000s is still more than twice as rapid as in the 1990s.14 Thus, the 
rising share of real estate in value added is not the primary driver of the 
falling labor share.

Figure 2 adds country-level detail to these calculations by plotting the 
evolution of the aggregate labor share of value added for all the countries 
in our sample. Each panel contains two series: In the first series, industry 
shares are permitted to vary by year; the second series holds these shares 
constant at their within-country, over-time averages. The fact that these 
series closely correspond for almost all countries reinforces the infer-
ences from the decomposition that most of the aggregate changes in the 
labor share observed in the data stem from within-industry movements in  
this share.

II. Main Estimates

Before making estimates, we tackle two remaining issues: simultaneity and 
timing. The simultaneity issue arises because labor’s share of value added 
features in the construction of TFP, inducing a mechanical correlation 

14. Supplemental tables are available upon request from the authors.
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Figure 2. Trends in Labor’s Share of Value Added by Country, 1970–2007a
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Figure 2. Trends in Labor’s Share of Value Added by Country, 1970–2007a (Continued )

(continued on next page)
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Sources: EU KLEMS; authors’ calculations.
a. Labor share is labor compensation as a share of value added. Reweighted labor share is the average 

of industry labor shares weighted by time-averaged industry value-added shares. The data are for all 
sectors of the economy, excluding agriculture, public administration, private households, and extraterri-
torial organizations.
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Figure 2. Trends in Labor’s Share of Value Added by Country, 1970–2007a (Continued )

between TFP growth and shifts in the labor share.15 To overcome this pit-
fall, we construct industry-level TFP growth for each industry–country pair 
as the leave-out mean of industry-level TFP growth in all other countries in 
the sample. This approach eliminates the mechanical correlation between 
TFP and labor share and arguably exploits movements in the technology 

15. In EU KLEMS, TFP growth is calculated as the log change in industry value added 
minus the log change in labor and capital inputs, weighted by the average start and end 
period of their respective factor shares (Timmer and others 2007). In a regression of the 
change in labor share on TFP growth, the change in labor share used in the TFP calculation 
enters the right-hand side of the equation, leading to a mechanical relationship.
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frontier that are common among industrialized economies. Confirming 
the utility of this strategy, we show in online appendix table A5 that 
other-country, same-industry TFP is a strong predictor of own-country-
industry TFP: In a set of regressions of own-country-industry TFP on 
other-country-industry TFP that includes a large number of country, year,  
sector, and business cycle main effects, we obtain a prediction coefficient 
that ranges from 0.32 to 0.57, with a t value above 5 in all specifications. 
Based on this reasoning and evidence, we employ the leave-out TFP 
measure in place of own-industry TFP in all the analyses given below.

The second issue, timing, arises because contemporaneous productiv-
ity innovations are unlikely to induce their steady-state effects immedi-
ately, meaning that a lag structure is needed for estimating the relationship 
between TFP and outcomes of interest (Ramey 2016). To explore a suit-
able structure, we estimate simple local projection models in the spirit of 
Òscar Jordà (2005), which involve regressing a series of first differences 
of increasing length of the outcome variable of interest on the explanatory 
variable of interest (here, TFP growth) and a set of controls. We estimate

∑− = β + β ∆ + β ∆

+ β ∆ + β ∆ + α + γ + ε

( ) ( )

( )

+ − ≠ − ≠=

≠ − −

Y Y TFP TFP

TFP Y

i c t K i c t i c c i t
k

i c c i kk

K

i c c i t i c t c t s i c t

(2) ln ln ln ln

ln ln ,

, , , , 1 0 1 , , 1 2 , ,0

3 , , 2 4 , , 2 , , ,

where ln Yi,c,t+K denotes the log outcome of interest in industry i, country c, 
and year t; and K denotes the time horizon for the local projection. The 
dependent variables therefore reflect the log change in outcome Y from 
base year t − 1 up to year t + K. The impulse variable is the log change in 
other-country-industry TFP between years t − 2 and t − 1, Δ ln TFPi,c≠c(i),t−1. 
These effects are estimated while controlling for lagged values of both TFP 
growth (Δ ln TFPi,c≠c(i),t−2) and of outcome variable growth (Δ ln Yi,c,t−2)—that 
is, conditional on the lagged history of both TFP and outcome growth at the 
path start time. This allows for feedback dynamics within the system and 
controls for them through the inclusion of the lagged variables. Each model 
further controls for a set of country-year fixed effects (αc,t), as well as fixed 
effects for five broad sectors (γs, as outlined in online appendix table A2). 
Following the approach of Coen Teulings and Nikolay Zubanov (2014), we 
also control for subsequent TFP innovations occurring between t = 0 and  
t = K, which reduce the influence of serial correlation in TFP innovations on 
estimates of β1. Finally, standard errors are clustered by country-industry.

Figure 3 reports local projection estimates and confidence intervals for 
the relationship between a TFP innovation shock, measured as an increase 
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16. The standard deviation of TFP growth is 2.6 log points, as reported in online 
appendix table A6.

Figure 3. Local Projection Estimates of the Relationship between Total Factor  
Productivity Growth and Outcome Variables, 1970–2007a
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in TFP of 1 standard deviation, occurring between periods t = −1 and  
t = 0, and ensuing industry-level changes Δk ln Yi,c ≡ ln Yi,c,t+k − ln Yi,c,t−1 for  
K ∈{0, . . . , 5}.16 For all the outcome variables considered (employment, 
hours, wage bill, value added, and labor share), the local projection esti-
mates indicate that TFP growth predicts small or negligible contemporane-
ous changes in the outcomes of interest that cumulate in ensuing years. In 
all cases, however, these effects plateau after three years, implying that 
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no more than four lags of the independent variable are needed to capture 
the impulse response of a contemporaneous shock. For completeness, we 
include five lags in our main specifications, though we shorten the lag 
structure when analyzing subintervals of the data.

II.A.  Within-Industry Direct Effects: Own-Industry TFP  
and Own-Industry Outcomes

Our initial estimates, reported in table 5, consider the within-industry 
“direct” effects of TFP growth on own-industry outcomes. We fit ordinary 
least squares, first-difference models of the form

Y TFP t t peak

a t trough

i c t
k

i c c i t k
k

c t c c

c i c t

∑ ( )

( )

∆ = β + β ∆ + α + δ + α × + α × =

+ × = + ε

( )≠ −
=

(3) ln ln

,

, , 0 1 , ,
0

5

, ,

where Δ ln Yi,c,t is an outcome of interest and, as above, i indexes indus-
tries, c indexes countries, and t indexes years; and the log change in TFP 
(contemporaneous plus five distributed lags) is the explanatory variable of 
interest. Because equation 3 is a first-difference specification estimated at 

–0.5
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Real value added
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Labor’s share in value added

Coefficient

–0.5

0.5

0

Sources: EU KLEMS; authors’ calculations.
a. The coefficients are for observed, own-industry TFP shocks in year –1, and are rescaled to 

have a standard deviation of 1. The estimates include country-year and sector fixed effects, one lag 
of TFP and outcome variable growth, and controls for TFP shocks over the projection horizon. The 
darker shading denotes the 70 percent confidence interval and the lighter shading denotes the 95 
percent confidence interval.
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Figure 3. Local Projection Estimates of the Relationship between Total Factor  
Productivity Growth and Outcome Variables, 1970–2007a (Continued )
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the industry-country-time level, it implicitly eliminates industry-country 
effects. We additionally include country and year indicator variables, which 
correspond to linear country and time trends in the first-difference model; 
country–time interaction terms, which allow country trends to accelerate or 
decelerate over the sample interval; and country-specific cyclical peak and 
trough indicators interacted with country indicators to account for country-
specific business cycle effects. All models are weighted by industries’ time-
averaged shares of the relevant weighting variable—employment, hours, or 
value added—within countries, multiplied by time-varying country shares 
of the weighting variable, and standard errors are clustered at the level of 
country–industry pairs.

The top left panel of table 5 presents estimates for industry-level 
employment, measured as the log number of workers (encompassing  
both employees and the self-employed). We estimate that industries 
experiencing relative gains in productivity exhibit relative declines in 
employment. The point estimate of −2.07 in column 1, corresponding to the 
sum of the six β1

k coefficients, implies that an increase of 1 standard devia-
tion in own-industry TFP (2.58 log points) predicts a fall in own-industry 
employment of approximately 2 log points. This estimate implies that 
the estimated elasticity of employment to TFP growth is below 1 (0.80 = 
2.07 ÷ 2.58)—that is, there is a partial industry-level demand offset 
(compare with Bessen 2017).

Columns 2 and 3 of table 5 stress-test this estimate by adding five major 
sector group fixed effects, and by replacing the country-trend and country– 
business cycle controls with an exhaustive set of country-year indicator 
variables. The inclusion of sector group trends reduces the point estimate 
from −2.07 to −1.13, and increases precision. This pattern suggests that 
TFP innovations may spill over across industries within a sector. We sub-
sequently model these spillovers in the next section, when we add input–
output linkages to the regression model; meanwhile, we add sector group 
dummies (reflecting sector group trends in the log-level models) to all 
subsequent models, so our primary identification comes from within-
sector, between-industry comparisons. Conditional on the inclusion of 
these sector group trends, the addition of a full set of country-year 
dummies in column 3 has almost no impact on the magnitude or preci-
sion of the point estimates. This insensitivity is worth bearing in mind 
because we do not include exhaustive country-year dummies in our 
main models; these dummies would interfere with the identification of 
input–output linkages, which have much lower country-year variability 
than own-industry TFP.



28 Brookings Papers on Economic Activity, Spring 2018

The top middle panel of table 5, which reports analogous estimates for 
log hours of labor input, finds an almost identical slope as for employ-
ment, indicating that most of the employment adjustment to productivity 
changes occurs on the extensive margin. The top right panel explores the 
relationship between TFP and nominal industry wage bill changes. These 
point estimates are also similar to those for hours and employment, sug-
gesting that industry (relative) nominal wages are not much affected by 
TFP changes; rather, the industry-level relationship between TFP and wage 
bill changes stems from employment shifts.

We turn to output measures in the bottom left and bottom middle 
panels of table 5. Rising industry TFP predicts significant relative declines 
in industry-level nominal value added (bottom left panel) and significant 
relative rises in real industry value added (bottom middle panel), implying 
(logically) that rising industry productivity lowers industry prices.

Comparing the estimates in the bottom left and bottom middle panels of 
table 5 reveals that a rise in industry TFP predicts a smaller (less negative) 
change in nominal value added than in the wage bill. This suggests that 
rising TFP predicts a relative fall in labor’s share of industry value added.17 
The bottom right panel of the table confirms this implication: A rise in TFP 
of 1 standard deviation predicts a fall in an industry’s labor share of value 
added of about 0.55 percentage point over a five-year horizon.

We have implemented a large number of tests of the robustness of these 
estimates, which are reported in table 6. These include weighting all coun-
tries equally rather than by their value-added shares (top rows); eliminat-
ing the contemporaneous TFP term from the distributed lag model (second 
group of rows); eliminating the self-employed from our employment, wage 
bill, and labor share models (third group of rows); imputing zeros to the 
TFP measures in cases where the reported values are negative (fourth group 
of rows);18 estimating equation 3 using five-year-long first differences in 

17. Because the wage bill regression is weighted by hours shares and the value-added 
regression by value-added shares, the precise impact of TFP growth on the labor share cannot 
be directly inferred from a comparison of these two columns.

18. Thirty-six percent of all country-industry-year TFP growth observations are nega-
tive. This is most frequently the case for renting of machinery and equipment, computer and 
related activities, research and development, and other business activities (codes 71–74); 
other community, social, and personal service activities (code O); hotels and restaurants 
(code H); and real estate activities (code 70). But it occurs in all industries to some extent. 
The likely cause is that annual frequency TFP calculations incorporate a fair amount of mea-
surement error, leading to short-run intervals where nominal value added rises less rapidly 
than the share-weighted growth of labor and capital inputs.
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place of annual first differences (fifth group of rows);19 and using data from 
the 2000–15 period from the 2017 release of the EU KLEMS data (van Ark 
and Jäger 2017), thus adding eight additional outcome years at the cost of 
dropping prior decades and several countries (bottom rows).20 Results are 
remarkably stable across these many sets of estimates, though precision is 
much lower for models fitted using the short 2000–15 panel.

The robust negative industry-level relationships between TFP and both 
employment and labor’s share of value added seen in tables 5 and 6 are cen-
tral inputs into our subsequent analysis. We stress that these findings do not 
by themselves imply that productivity growth depresses either employment 
or the labor share in the aggregate. Indeed, these direct within-industry 
relationships do not at present incorporate any of the potentially counter-
vailing effects operating through other channels, including input–output 
linkages, compositional shifts, and final demand effects. Before incorporat-
ing these links in the next section, we perform a validity test on our main 
technology measure.

II.B. Applying Direct Measures of Technological Progress

Our omnibus measure of productivity-augmenting technological change, 
TFP, has the advantage of not being bound to a specific set of technologies 
or their associated measurement challenges. But TFP’s strength is also its 
weakness. Because it is an accounting residual, one can only speculate 
on the underlying sources of technological progress that contribute to ris-
ing TFP. To partially address this concern, we test whether our key results 
above hold when we focus on a specific margin of technological advance-
ment: industry-level patenting flows (Acemoglu, Akcigit, and Kerr 2016).

Using data from Autor and others (2017a), who match patent grants 
to their respective corporate owners, and then to industry codes based 
on corporate owners’ industry affiliations, we construct counts of patent 
grants and patent citations by year for patents granted to both U.S. and 
non-U.S. inventors using data from the U.S. Patent and Trademark Office 
that use U.S. Standard Industrial Classification codes, cross-walked to the 
EU KLEMS industry level. Aggregate summary statistics for standardized 

19. These estimates are obtained from full-length five-year intervals (1970–75,  
1975–80, . . . , 2000–05) only; and the reported coefficients reflect the effect of TFP growth 
occurring over the previous five-year interval.

20. More recent EU KLEMS releases cover a smaller set of countries and rely on back-
casting data preceding 1995. We use a balanced panel of 12 countries—Austria, Belgium, 
Denmark, Finland, France, Germany, Italy, the Netherlands, Spain, Sweden, the United 
Kingdom, and the United States—over the period 2000–15.
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patent counts and patent citations are reported in online appendix table A6,  
while online appendix table A7 reports the mean log number of patent 
grants and patent citations by industry and by inventor nationality (U.S. 
versus non-U.S.), and online appendix table A8 summarizes industry-level 
trends by decade and sector. These tables highlight the substantial hetero-
geneity in patent flows across industries and over time, with the highest 
levels of patenting occurring in chemicals and electrical equipment, and 
the lowest occurring in education. Patent grants rise across the decades 
while citations fall in the most recent decade, reflecting the substantial lag 
between patent grants and patent citations. Although citations are likely a 
better measure of innovation than the raw count of patent grants (Trajtenberg 
1990), citations may understate innovation in the final years of the sample 
because they arrive with a lag. In what follows, we report results using both 
measures of patenting activity.

Given that patenting activity is an input into the industry-level innova-
tion and automation process, it should predict TFP growth. To verify this 
supposition, we estimate industry-level descriptive regressions of the form

TFP PAT t peak

a t trough

i c t
k

i c c i t k
k

c t c

c i c t

∑ ( )

( )

∆ = β + β + α + δ + α × =

+ × = + ε

( )≠ −
=

(4) ln ln

,

, , 0 1 , ,
0

3

, ,

where Δ ln TFPi,c,t is the measured change in industry-level TFP, and  
ln PATi,c≠c(i),t is the log count of industry-level patents, which are normal-
ized to have a standard deviation of 1. Paralleling the specifications given 
above, we include both contemporaneous patenting activity and a set of 
annually distributed lags. Analogous to our strategy of using other-country 
(“leave out”) TFP growth by industry, we use patenting activity by non-
U.S. inventors as predictors of U.S. TFP growth and, similarly, use patent-
ing activity by U.S. inventors as predictors of non-U.S. TFP growth.

The estimates of equation 4, reported for patent counts in the upper rows 
of table 7 and for patent citations in the lower rows, confirm that patent flows 
are a strong predictor of industry TFP growth. A rate of industry patents or 
patent citations that is 1 standard deviation higher predicts about 0.6 log 
point faster industry TFP growth (t = 2.9). This relationship is robust; add-
ing year effects (column 2), country–business cycle effects (column 3), and 
country-year effects (column 4) to these first-difference models has almost 
no impact on the magnitude or precision of the predictive relationship.

Table 8 explores the relationship between patenting activity and the 
evolution of industry-level labor input, value added, and factor payments. 
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Table 7. Predictive Relationships between Industry Patenting Activity and Total Factor 
Productivity Growth, 1970–2007a

 

100 × annual change in log TFP by country-industry

(1) (2) (3) (4)

Sln(patentsi,c,t−k) 0.574*** 0.602*** 0.602*** 0.603***
(0.197) (0.202) (0.202) (0.204)

R2 0.061 0.137 0.138 0.142
No. of observationsb 16,518 16,518 16,518 16,518

Sln(patent citationsi,c,t−k) 0.608*** 0.647*** 0.648*** 0.649***
(0.208) (0.229) (0.230) (0.233)

R2 0.054 0.139 0.140 0.143
No. of observationsb 16,479 16,479 16,479 16,479

Fixed effects
 Country Yes Yes Yes Yes
 Year No Yes Yes Yes
 Country × time trend No No Yes No
 Country × business cycle No No Yes No
 Country × year No No No Yes

Sources: EU KLEMS; U.S. Patent and Trade Office; authors’ calculations.
a. Log patents and log patent citations are rescaled to have a standard deviation of 1. The estimates 

shown are the sum of coefficients for the contemporaneous effect and three annually distributed lags. 
Standard errors clustered by country-industry are in parentheses. Statistical significance is indicated at 
the *10 percent, **5 percent, and ***1 percent levels.

b. The number of observations is equal to the number of country-industry cells multiplied by the  
number of years.

Following the template of the tables presented above, we report regressions 
of industry-level first differences in outcome variables on log industry pat-
ent counts or patent citations—contemporaneous and five annually distrib-
uted lags—and the full set of controls used in table 7.21 Comparable to the 
pattern of results for TFP, we find that industry-level patent citation flows 
predict a fall in own-industry employment and hours, a decline in nominal 
value added, a rise in real value added, and, most important, a fall in own-
industry labor share.22 These findings hold for both measures of patenting 
activity—patent counts and patent citations. Though precision is far lower 
for the patent-based estimates than TFP-based estimates—likely because 
we effectively have patenting data for only two countries, U.S. and non-
U.S.—we view these findings as supportive of our main results.

21. Since the majority of variation in patenting reflects stable, cross-industry differences 
rather than over-time, within-industry fluctuations, we exclude sector-specific indicators 
from these models (which would otherwise absorb most identifying variation). Due to this 
limited variation, we confine our patent analysis to direct (own-industry) effects.

22. Due to the differences in underlying units, the magnitude of coefficients cannot be 
directly compared between the TFP and patents models.
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III. Linking Micro to Macro

As underscored by the top panel of figure 1, it would be erroneous to con-
clude that because relative employment declines in industries experiencing 
rising productivity, aggregate employment falls as productivity rises. 
To move from this cautionary observation to a rigorous quantification of 
how industry-level productivity growth affects the aggregate employment 
and labor share, we next add three micro–macro linkages to our estima-
tion and accounting framework: customer–supplier linkages; final demand 
effects; and composition effects.

III.A. Accounting for Customer–Supplier Linkages

The effect of productivity growth occurring in an industry is unlikely 
to be confined to the sector in which it originates. Industries facing lower 
input prices or higher-quality inputs from their suppliers may increase 
purchases; similarly, industries whose customers are experiencing rising 
productivity may face rising or falling output demands. We account for 
these input–output linkages by adding two terms to equation 3:

�

�

Y TFP TFP

TFP t

a t peak a t trough

i c t
k

i c c i t k
k

k
j i c t k

SUP

k

k
j i c t k

CUST

k
c t s c

c c i c t

∑ ∑

∑

( ) ( )

∆ = β + β ∆ + β ∆

+ β ∆ + α + δ + γ + α ×

+ × = + × = + ε

( )≠ −
=

≠ −
=

≠ −
=

(5) ln ln ln
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.
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, ,

These additional terms, � �≠ ≠TFP TFPj i c t

SUP

j i c t

CUST
and, , , , , measure the weighted sum of 

TFP growth in all other domestic industries j ≠ i, which are, respectively, 
the suppliers and customers of industry i:23

� ∑ { }∆ = × ∆ ∀ ∈≠ ≠
=

≠TFP weight TFP L SUP CUSTj i c t

L

j i c
L

j

J

j i c t
L(6) ln ln , , ., , ,

1
, ,

The supplier and customer weights used for this calculation are obtained 
from input–output coefficients from the World Input–Output Database and 
are averaged over the period 1995–2007. The supplier weights are equal 
to each domestic supplier industry j’s value added as a share of the value 
added of industry i, capturing the importance of supplier industries j in the 

23. We eliminate the on-diagonal (own-industry) term from the input–output measures 
because these are captured by the direct TFP terms (β1

k).
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production of industry i’s output. Analogously, the customer weights are the 
shares of value added of each industry i that are used in domestic industry 
j’s final products, capturing the importance of industries j as end consum-
ers of industry i’s output.24 These weights account not only for shocks to an 
industry’s immediate domestic suppliers or buyers but also for the full set of 
input–output relationships among all connected domestic industries (that is, 
the Leontief inverse). We renormalize both the customer and supplier TFP 
terms to have a standard deviation of 1, with summary statistics reported in 
online appendix table A6. As with our main (direct) measure of TFP, these 
supplier and customer TFP linkage terms are calculated using industry-
level, leave-out means of TFP growth in all other countries in the sample.

The estimates of equation 5, reported in the top half of table 9, indicate 
that productivity growth emanating from supplier industries predicts steep 
increases in the employment and hours of labor input of customer indus-
tries (though not in their nominal wage bill, value added, or labor share). 
Specifically, the point estimate of 0.97 on the supplier-industry TFP term 
in column 1 indicates that a rise of 1 standard deviation in an industry’s 
supplier productivity predicts an employment gain of 97 log points. This 
effect is almost identical in magnitude but opposite in sign to the estimated 
direct effect of TFP growth of −0.95 on own-industry employment. Thus, 
this input–output linkage reveals a first channel by which direct effects of 
productivity growth on own-industry outcomes may be offset by effects 
accruing outside the originating sector.

Conversely, productivity growth emanating from customer industries 
(the third row of the top half of table 9) generally has negligible and 
always insignificant estimated effects on employment, hours, wage bill, 
value added, and labor share in supplier industries. This result is consis-
tent with the simple Cobb–Douglas input–output framework developed 
by Acemoglu, Ufuk Akcigit, and William Kerr (2016), where productiv-
ity innovations in a given industry lead to output gain in its customer 
industries—those benefiting from its price declines—but have no net effect 
on its supplier sectors, where price and quantity effects are offsetting.

A third important pattern revealed by table 9 is that our earlier estimates 
of the relationship between TFP growth and own-industry outcomes are 
essentially unaffected by the inclusion of the customer and supplier terms 
(compare the point estimates in tables 5 and 9). Thus, our initial findings 

24. Although every industry is potentially both a customer and supplier to every other 
industry, the terms “customer” and “supplier” refer to the direction of flows of inputs and 
outputs: Suppliers produce outputs that are purchased by (downstream) customers; and cus-
tomers purchase inputs produced by (upstream) suppliers.
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for the relationship between TFP growth and own-industry employment 
and labor share are unaltered.

III.B. Accounting for Final Demand Effects

The lower half of table 9 adds a third channel of response: final demand 
effects accruing through the contribution of productivity growth to aggre-
gate value added. To capture these final demand effects, we estimate the 
relationship between country-specific aggregate economic growth (con-
temporaneous and five distributed lags) and industry-specific inputs using 
the following specification:

∑∆ = λ + λ ∆ + α + ε≠ −
=

Y VAi c t
k

j i c t k s i c t
k

(7) ln ln ., , 0 1 , , , ,
0

5

The explanatory variable of interest in this equation, Δ ln VAj≠i,c,t, is the 
growth of own-country real or nominal value added, where the subscript 
j ≠ i highlights that we exclude own-industry output from the explana-
tory measure for each industry to eliminate any mechanical correlation 
between aggregate growth and industry outcomes. These stacked first-
difference regression models drop the country, year, trend, and business 
cycle indicators used in equation 5, so that identification largely arises 
from country and year time series. Because these are first-difference 
models, however, they implicitly eliminate industry-country effects.

The estimates of equation 7, reported in the lower half of table 9, docu-
ment a second countervailing effect of industry-specific productivity inno-
vations on aggregate outcomes: Each log point gain in country-level real 
value added predicts an approximately 0.6 log point rise in same-country, 
other-industry employment and hours. Similarly, each log point gain in 
country-level nominal value added predicts essentially a one-for-one rise in 
same-country, other-industry wage bill and nominal value added, as well as a 
very modest but statistically significant rise in same-country, other-industry 
labor share (the estimated elasticity is 0.071). Because TFP growth emanat-
ing from any one sector raises the real aggregate value added in the coun-
try where it occurs, these estimates imply that each industry’s productivity 
growth contributes to aggregate labor demand across all other sectors.25

25. We report a pure stacked country-level time series version of these estimates in 
online appendix table A9, in which we eliminate industry-level variation entirely and instead 
use only country-year observations. These point estimates are similar to those used in the 
bottom half of table 9, which we prefer because they eliminate the mechanical relationship 
between own-industry and country-level aggregate outcomes.
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III.C. Accounting for Compositional (Between-Sector) Effects

The estimates given in table 9 reveal one further mechanism by which 
sectoral productivity gains affect the aggregate labor share: by shifting 
relative sector sizes. Column 4, in the top half of table 9, shows that a rise 
in own-industry TFP growth predicts a fall in industry-level nominal value 
added with an elasticity of −0.58. This finding implies that sectors with 
rising productivity will tend to shrink as a share of nominal value added. 
Figure 4 confirms this intuition by depicting a scatter plot of the bivariate 
relationship between industry-level TFP growth and the change in indus-
tries’ log shares of own-country nominal value added (averaged over years 
and across countries). On average, industries that experience 1 log point 
faster TFP growth than the economy-wide average lose about 0.6 log point 
as a share of nominal economy-wide value added.

Applying this observation to the Oaxaca decomposition equation above 
(equation 1), it is immediately clear that uneven productivity growth across 

Source: EU KLEMS.
a. All values are expressed as annual, unweighted average changes across country-years in log points. 

The line shows the linear fit weighted by industries’ value-added shares. Statistics: β = –0.606 (SE = 0.158), 
R2 = .361.

Change in value-added share (log points)

Mining, utilities, and construction
Manufacturing
Education and health

Low-tech services
High-tech services

−4

−2

0

2

−2 −1 0 1 2 3 4

TFP growth (log points)

Figure 4. Industry-Level Total Factor Productivity Growth versus Industries’ Shares of 
Country-Level Nominal Value Added, 1970–2007a
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industries will shift the aggregate labor share through changes in relative 
sector sizes. If rapid productivity growth occurs in industries with rela-
tively low labor shares (for example, manufacturing industries), this will 
indirectly raise the aggregate labor share; conversely, relatively rapid pro-
ductivity growth in labor-intensive sectors (for example, education and 
health) will have the opposite effect.26

IV. Quantitative Implications

With these estimates in hand, we now quantify the implied contribution of 
TFP growth to the evolution of the aggregate employment and labor shares 
accruing through the four channels outlined above: own-industry, supplier 
and customer, final demand, and composition. We start with employment 
and hours, then turn to the labor share.

IV.A. Aggregate Employment and Hours Effects

The effect of TFP growth on employment and hours combines the first 
three of these effects: the own-industry (or “direct”) effect, the supplier 
and customer effects, and the final demand effect. The first (own-industry) 
effect is equal to the sum of the β1

k coefficients in equation 5 multiplied 
by their corresponding Δ ln TFPi,c≠c(i),t terms, and aggregated by weighting 
these industry-level predictions by the time-averaged share of each indus-
try in total employment or hours:

∑ ∑∆ ≡
∂

∂
= β × ω × ∆

( )

( )

≠ =
≠

=

(8) ln
ln

ln
ln .,

,

, ,

1
0

5

, ,
1

Y
Y

TFP
TFPc t

OWN c t

i c c i t

k

k
ic i c c i t

i

I

Here, ln Yc,t is log employment or hours in country c in year t; ∑5
k=0β1

k is the 
sum of coefficients in equation 5; wi,c is the time-averaged employment 
or hours share of industry i in its respective country; and Δ ln TFPi,c≠c(i),t 
is own-industry TFP growth.

The supplier and customer effects are, analogously, equal to the 
sum of the β2

k and β3
k coefficients multiplied by their corresponding 

� �≠ ≠TFP TFPj i c t

SUP

j i c t

CUST
and, , , ,  terms, and then aggregated to the national level 

26. The upstream and downstream linkages estimated in equation 5 can also contribute 
to the between-industry component of the labor share change through their effects on indus-
try nominal output shares, though we estimate these effects to be comparatively small and 
statistically insignificant.
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by weighting each by its time-averaged industry employment or hours 
shares (wi,c):

∑ ∑∆ ≡
∂

∂
= β × ω × ∆

≠ =
≠

=

(9) ln
ln

ln
ln ,,

,

, ,
2

0

5

, , ,

1�
�Y

Y
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TFPc t

SUP c t

j i c t

SUP
k

k
i c j i c t

SUP

i

I

and

∑ ∑∆ ≡
∂

∂
= β × ω × ∆

≠ =
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I

The third component that we calculate is the final demand effect of TFP 
growth in each industry on employment or hours economy-wide, ΔYc,t

FD. 
For any one industry, this contribution is equal to the product of four 
terms: (i) the effect of TFP growth in i on i’s real value added (∑5

k=0βk
1,VA);  

(ii) the effect of growth in i’s real value added on total value added (φi,c); 
(iii) the effect of growth in real value added on employment or hours in 
each industry j ≠ i (∑5

k=0lk
1); and (iv) the size of industry j relative to overall 

employment or hours in the economy (wi,c).27 To obtain the aggregate effect 
(summing across industries), we calculate:

∑ ∑

∑∑ ∑( )

∆ ≡
∂

∂
×

∂
∂

= λ × ω
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∂






= λ × β ω × φ

( )

( )

≠

= = ≠

== =

Y
Y

VA

VA

TFP

VA

VA

VA

TFP

(10) ln
ln

ln

ln

ln

ln

ln

ln

ln

.

c t
FD c t

c t

c t

i c c i t

k

k
i c

i

I
c t

i c t

i c t

i c c i t

k
VA

k

kk
i c i c

i

I

,

,

,

,

, ,

1
0

5

,
1

,

, ,

, ,

, ,

1 1,
0

5

0

5

, ,
1

In this expression, ln Yc,t is log employment or hours in country c in year t 
as before; ∑5

k=0l1
k is the estimated effect of the aggregate real value added 

on outcome Y from equation 7 reported in column 5 of the lower half of 
table 9; ∑5

k=0βk
1,VA is the estimated direct effect of Δ ln TFP in equation 5 on 

own-industry real value added (reported in column 5 in the lower half of 
table 9); wi,c is the time-averaged employment or hours share of industry i 

27. In calculating ΔYc,t
FD, we also include the customer and supplier TFP effects estimated 

in equation 5, though we suppress those terms above to conserve notation.
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in its respective country; and φi,c is the time-averaged value-added share of 
industry i in country c.28

Figure 5 displays the results of these calculations for overall employ-
ment and hours of labor input, respectively. The first bar in the top panel 
of figure 5 corresponds to the direct effect of TFP growth on own-industry 
employment. Its height of −0.22 implies that, on average, productivity 
growth reduced own-industry employment by approximately 8.2 percent 
over the full 37-year period (0.22 × 37). The second bar (supplier effect), 
with a height of 0.35, indicates that the countervailing effect of rising sup-
plier productivity on employment in customer industries more than offset 
this direct effect. The third bar (customer effect), with a height of 0.05, 
indicates that rising productivity in customer industries exerted a very 
modest positive employment effect in supplier industries. The fourth bar, 
with a height of 0.30, reflects the substantial contribution of rising produc-
tivity to overall employment operating through final demand. The fifth bar 
(net effect) sums these four components to estimate a net positive effect of 
productivity gains on aggregate employment, totaling about 18 log points 
(0.48 × 37 = 17.8) over the outcome period.

The bottom panel of figure 5 reports the analogous exercise for hours 
of labor input rather than employment. We find comparable effects on this 
outcome: Although rising productivity reduces relative employment in 
the sectors in which it occurs, it augments employment in (downstream) 
customer sectors (as captured by the supplier effect) and boosts aggregate 
demand through its contribution to overall value added. As with employ-
ment, the net effect on hours is strongly positive.

To provide insight into how rising TFP spurs relative employment 
declines in directly affected industries while simultaneously generating 
rising employment in the aggregate, online appendix tables A11 and A12 
report the contributions to employment growth by industry operating 
through each channel estimated above: direct effects, input–output link-
ages, and final demand effects. These contributions, underlying the aggre-
gate employment growth predictions in figure 5, can be analyzed from 
two complementary perspectives. The first, reported in online appendix 
table A11, calculates the contribution of TFP growth originating in each 
industry to the predicted aggregate change in employment. The second, 

28. This last term, φi,c, is derived by differentiating the sum of industry log value added 
at the country level with respect to the log value added of industry i in country c, which is 
simply equal to i’s share in country c’s value added. Note that the sum of industry shares 
is less than 1, because we exclude nonmarket industries from the analysis, though they are 
logically included in aggregate national value added.
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Source: Authors’ calculations, based on table 9.
a. The units are the predicted annual change in the outcome variable expressed in log points. See the 

notes to table 9.

Employment

Hours of labor input
Log points

−0.4

0

0.2

0.4

−0.4

0

0.2

0.4

Log points

−0.222

0.353

0.051

0.301

0.482

Direct
effect

Supplier
effect

Customer
effect

Final demand
effect
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effect

−0.215
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0.085

0.268
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Direct
effect

Supplier
effect

Customer
effect

Final demand
effect

Net 
effect

Figure 5. Predicted Effects of Total Factor Productivity Growth on Aggregate  
Employment and Hours of Labor Input, 1970–2007a
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reported in online appendix table A12, enumerates the predicted effect of 
TFP growth originating throughout the economy on predicted employment 
growth in each destination industry, scaled by that industry’s weight in 
aggregate employment.29

For the direct effect, the contributions to employment in the originat-
ing and destination industry are the same by definition because these 
direct effects operate only within industries. As shown in online appen-
dix tables A11 and A12, the negative direct effects that we estimate for 
employment originate in industries that have experienced strong TFP 
growth (such as electrical and optical equipment, and transportation and 
storage), or industries that make up a large share of total value added (such 
as retail), or both.

Conversely, TFP growth originating in supplier and customer industries 
leads to employment and hours growth elsewhere in the economy through 
input–output linkages. The supplier/customer contribution of any given 
industry to aggregate employment depends on three terms: the industry’s 
rate of TFP growth; the weight that industry has as a supplier or customer 
of other industries; and, in turn, the weight that those customer and sup-
plier industries have in aggregate employment. Industries such as post 
and telecommunications, wholesale trade, financial intermediation, and 
transportation and storage produce important positive employment spill-
overs to other industries, in part because they are suppliers to a variety of 
service industries, which are themselves a large share of total employment. 
These industries highlight the potential of productivity growth in service 
industries to induce sizable positive employment spillovers. Conversely, 
other business activities—an important supplier industry—exhibits declin-
ing productivity, and thus contributes a meaningful negative employment 
spillover. Finally, manufacturing industries—such as chemicals, basic and 
fabricated metals, and electrical and optical equipment—make a large indi-
rect contribution to employment in customer industries, due to their rapid 
productivity growth.30

Finally, each industry’s TFP growth potentially contributes to employ-
ment via its effect on final demand. This effect depends on two terms: 

29. We do not separately report contributions for hours worked because they are nearly 
identical to those for employment.

30. The indirect employment contribution made by productivity gains in customer indus-
tries is much smaller than the corresponding effect of productivity gains in supplier industries,  
and it is primarily driven by TFP growth in electrical and optical equipment, transportation 
equipment, and machinery.
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the originating industry’s rate of TFP growth, and its share in national 
value added. Hence, productivity growth in industries that make up a large 
share of value added has a larger effect on overall income. Manufacture of 
electrical and optical equipment (codes 30–33); post and telecommunica-
tions (code 64); financial intermediation (code J); manufacture of motor 
vehicles and transportation equipment (codes 34–35); manufacture of 
chemicals and chemical products (code 24); and wholesale trade, excluding 
motor vehicles (code 51) are the largest contributors by TFP source to final 
demand, reflecting their rapid productivity growth and substantial weight 
in aggregate value added.31

How successful is our approach in capturing the evolution of employ-
ment observed in the data? Figure 6 answers this question by compar-
ing the industry-level employment predictions of our statistical model to 
observed employment changes, averaged across country-years. In each 
panel, employment growth predictions, obtained by summing across all 
channels in the model, are reported on the horizontal axis, while observed 
employment growth is reported on the vertical axis. The top panel of 
figure 6 plots the predicted versus observed log employment change by 
industry, while the bottom panel plots the predicted versus observed con-
tribution that each industry makes to aggregate employment growth.32 This 
figure makes evident that our model can account for a substantial part of 
the variation in employment growth by industry (the top panel), and the 
extent to which these industry effects contribute to aggregate job growth 
(the bottom panel). Each of the three channels featured in the model con-
tributes to its predictive power. A regression of the observed contribution 
of each industry to aggregate employment growth on its predicted value 
based only on the direct (own-industry) effect yields an R2 of .34. Add-
ing customer and supplier effects to this prediction raises this R2 to .45. 
Incorporating the final demand effect raises it further to .61. Given that 
the model exclusively uses variation in TFP across industries to form 
predictions, we consider this as strong confirmation of the utility of our 
accounting framework.

31. Observe that the contribution of final demand growth to employment and hours 
worked in destination industries reported in online appendix table A12 is directly propor-
tional to the size of the industry in total employment.

32. The predicted versus observed employment contribution (the bottom panel of figure 6) 
depends on the proportional growth in each industry multiplied by its weight in overall 
employment, whereas the predicted versus observed employment change (the top panel of 
figure 6) depends on only the first of these terms.
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Sources: EU KLEMS; authors’ calculations.
a. All values are expressed as annual, unweighted average changes across country-years in log points.
b. The line shows the linear fit weighted by industries’ employment shares. Statistics: β = 1.925 (SE = 

0.539), R2 = .329.
c. The line shows the unweighted linear fit. Statistics: β = 2.676 (SE = 0.418), R2 = .612.

Employment growthb

Contribution to aggregate employment growthc

Observed (log points)

Mining, utilities, and construction
Manufacturing
Education and health

Low-tech services
High-tech services

−2

0

2

4

0

0.1

0.2

0.3

−1 −0.5 0 0.5 1
Predicted (log points)

–0.05 −0.025 0 0.025 0.05 0.075 0.1

Predicted (log points)

Observed (log points)

Figure 6. Predicted versus Observed Employment Growth for Industry-Level Changes 
and Industry-Level Contributions to Aggregate Changes, 1970–2007a
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IV.B. Aggregate Labor Share Effects

We now perform the analogous exercise for the implied effect of ris-
ing TFP on labor’s share of value added. In this calculation, the own- 
industry, interindustry, and final demand effects are obtained analogously 
to those for employment and hours.33 However, the labor share calcu-
lation includes a fourth channel: TFP-induced compositional shifts in 
value-added shares across industries. This between-industry composition 
effect is calculated as
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Here, Δŵi,c is the predicted change in the value-added share of industry i 
in country c, and l

_
i,c is the time-averaged log labor share in industry i in coun-

try c. The terms wi,c and βk
1,VA are defined as in equation 10, again adjusted 

for the labor share model: The time-averaged weights wi,c are shares of 
nominal value added rather than shares of employment or hours worked, 
and the coefficients βk

1,VA reflect nominal rather than real value-added 
coefficients (shown in column 4 of table 9). Concretely, this prediction 
reflects the sum of induced shifts in each industry’s share of own-country 
nominal value added (Δwi,c, the expression in braces) multiplied by that 
industry’s labor share.34

We report quantitative implications for labor’s share of value added 
in figure 7. The first bar reflects the labor share effect associated with 

33. The weights (wi,c) used in equations 8, 9, and 10 are now time-averaged, industry 
value-added shares rather than employment or hours shares; and the final demand effect is 
calculated using aggregate increases in nominal rather than real value added. Hence, the 
coefficients ∑5

k=0l1
k and ∑5

k=0βk
1,VA in equation 10 are taken from column 4 (rather than column 5) 

of, respectively, the lower and upper rows of table 9.
34. As with prior calculations, we incorporate customer and supplier TFP effects into 

this calculation but suppress them from the equation for simplicity. We have also estimated 
models that allow the aggregate income elasticities, estimated in the lower half of table 9, 
to vary by broad sector (thereby potentially admitting nonhomotheticities). This has neg-
ligible effects on the predicted composition changes, and we therefore do not report these 
specifications.
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Source: Authors’ calculations, based on table 9.
a. The units are the predicted annual change in the outcome variable expressed in log points. See the 

notes to table 9.
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Figure 7. Predicted Effects of Total Factor Productivity Growth on the Aggregate  
Labor Share, 1970–2007a

own-industry productivity growth. Its height of −0.14 suggests that, on 
average, own-industry productivity growth reduced the labor share by 
some 5.2 percent over the 37-year period (0.14 × 37). Unlike employment 
and hours worked, however, there are no positive countervailing effects 
from interindustry linkages or final demand; rather, these additional 
channels also serve to decrease the aggregate labor share, albeit by small 
amounts compared with the direct effect (−0.01, −0.06, and −0.02 log point 
annually for, respectively, the supplier, customer, and final demand effects). 
Finally, industry composition shifts resulting from a reallocation of value 
added across industries also predict a small net labor share decline: This 
effect amounts to about 1.7 percent over the entire period (0.046 × 37).

Taken together, all four channels operating on the labor share—direct,  
supplier/customer, final demand, and composition—predict a decline 
of –0.27 log point annually, or about 10 percent over the entire period  
(0.27 × 37). Most of this effect stems from the direct labor share–displacing 
effect operating within industries, combined with an absence of counter-
vailing effects operating within industries. Compositional shifts mod-
estly reinforce this trend. Given an initial average labor share of about 
67 percent in our 19 countries (table 1), this corresponds to a nonnegligible 
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predicted decline of 6 percentage points over the period 1970–2007, of 
which the large majority (0.225 log point annually—that is, 8.3 percent,  
or about 5.5 percentage points, over the entire period) is predicted to 
occur within industries.

Table 10 reports the separate industry-level contributions made to these 
overall predictions.35 The first column shows each industry’s contribution to 
the total predicted within-industry effects (that is, the predicted effects for 
own-industry TFP growth, interindustry linkages, and final demand taken 
together, which are largely driven by the own-industry effect). The second 
column analogously shows the contribution of each industry to the pre-
dicted between-industry effect shown in figure 7. Table 10 highlights that 
most industries experience a negative within-industry labor share effect. 
Predictably, some of the largest contributions are made by industries that 
have witnessed strong productivity growth, such as electrical and optical 
equipment, chemicals, basic and fabricated metals, and post and telecom-
munications. However, industries with more modest productivity growth 
but comprising relatively large shares of value added—such as wholesale 
trade, and transportation and storage—also contribute substantially to the 
aggregate within-industry effect. Real estate and other business activities 
are the only industries that contribute a small countervailing effect; here, 
positive within-industry labor share changes are predicted because these 
sectors have experienced negative TFP growth on average. Finally, several 
(public) services—such as education, health and social work, and other 
personal services—contribute almost nothing to the predicted aggregate 
labor share decline, because they have experienced virtually no measured 
productivity growth.

Table 10 also shows that the industry-specific contributions to the 
composition (that is, between-industry) effect are quite heterogeneous. In 
general, the predicted shift away from capital-intensive mining, utilities, 
and manufacturing industries tends to increase labor’s share: In isolation, 
these industries contribute a predicted increase in the labor share of about  
1.6 percent cumulated over the period (0.036 × 37). This is reinforced by 
contributions from (mostly high-tech) services, such as post and telecom-
munications, financial intermediation, and transportation and storage. 
However, real estate single-handedly contributes a large negative compo-
sitional effect of, on average, 0.086 log point annually, or over 3 percent 

35. Unlike for employment and hours, most effects for the labor share are driven by the 
direct effect. As a result, there is no need to separately consider the industry contributions by 
source of TFP growth.
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Table 10. Industry-Level Contributions to Predicted Within- and Between-Industry 
Components of the Change in Aggregate Labor Share, 1970–2007

ISIC code
(rev. 3) Description

Within 
industry

Between 
industry

C Mining and quarrying −0.003 0.001
15–16 Manufacture of food, beverages, and tobacco  

products
−0.006 −0.005

17–19 Manufacture of textiles, apparel, leather, and related 
products

−0.009 0.001

20 Manufacture of wood and wood products, excluding 
furniture

−0.004 0.001

21–22 Manufacture of paper and paper products, printing, 
and publishing

−0.009 0.001

23 Manufacture of coke, refined petroleum products, 
and nuclear fuel

0.000 0.000

24 Manufacture of chemicals and chemical products −0.019 0.010
25 Manufacture of rubber and plastics products −0.008 0.002
26 Manufacture of other nonmetallic mineral products −0.005 0.001
27–28 Manufacture of basic and fabricated metals −0.021 0.008
29 Manufacture of machinery and equipment not  

elsewhere classified
−0.013 0.000

30–33 Manufacture of electrical and optical equipment −0.038 0.009
34–35 Manufacture of motor vehicles and transportation 

equipment
−0.016 0.000

36–37 Manufacture of furniture and manufacturing not 
elsewhere classified; recycling

−0.003 0.000

E Electricity, gas, and water supply −0.010 0.009
F Construction −0.006 −0.008
50 Sale, maintenance, and repair of motor vehicles 

and fuel
−0.002 0.000

51 Wholesale trade, excluding motor vehicles −0.023 0.008
52 Retail trade, excluding motor vehicles; repair of 

personal and household goods
−0.018 0.002

H Hotels and restaurants 0.003 −0.003
60–63 Transportation activities of travel agencies −0.018 0.005
64 Post and telecommunications −0.018 0.012
J Financial intermediation −0.017 0.009
70 Real estate activities 0.013 −0.086
71–74 Renting of machinery and equipment; computer and 

related activities; research and development; and 
other business activities

0.017 −0.008

M Education 0.001 −0.002
N Health and social work 0.001 −0.005
O Other community, social, and personal service  

activities
0.006 −0.004

Total  −0.225 −0.046

Source: Authors’ calculations, based on table 9.
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across the entire period. This prediction is consistent with the aggregate 
labor decomposition reported in table 4 and stems from three distinc-
tive features of the real estate industry: a very low labor share relative 
to the economy-wide average, a rising share of value added, and zero 
or negative TFP growth.

IV.C. Why Has the Fall in Labor Share Accelerated?

Our results imply that technological progress, broadly construed, has 
been employment-augmenting but labor share–displacing—that is, gener-
ating net employment gains while serving to reallocate value added away 
from labor and toward other factors. But this observation raises a puzzle: 
If automation has been consistently labor share–displacing, why has the 
evolution of labor’s share differed so sharply across the decades—rising 
during the 1970s, declining in the 1980s and 1990s, and then falling more 
steeply in the 2000s? We briefly take up this question here.

Table 11 reports our baseline model’s predictions separately by decade. 
The first three columns report the observed annual log labor share change in  
each decade, both within and between industries, while the last three col-
umns report the changes predicted by our baseline model. This table high-
lights the fact that, although our baseline approach explains a substantial part 
of the aggregate labor share fall observed since the 1980s, it fails to match 
two key features of the decade-specific patterns: the positive sign of the 
within-industry effect operating in the 1970s, and the observed acceleration 
of the within-industry log labor share decline in the 2000s. The proximate 
reason for both mismatches is clear: The bulk of the model’s explanatory 
power for the labor share derives from the so-called direct effect—the dif-
ferential decline of the labor share in industries with faster TFP growth;  

Table 11. The Contribution of Total Factor Productivity Growth to the Within-  
and Between-Industry Components of the Change in Aggregate Labor Share,  
by Decade, 1970–2007

Decade

Actual annual change in labor 
share in log points

Predicted annual change in labor 
share in log points

Total
Between 
industry

Within 
industry Total

Between 
industry

Within 
industry

1970s 0.513 −0.187  0.700 −0.294 −0.124 −0.169
1980s −0.459 −0.183 −0.276 −0.365 −0.005 −0.360
1990s −0.263 −0.075 −0.188 −0.202  0.005 −0.207
2000s −0.861 −0.425 −0.436 −0.231 −0.091 −0.140

Source: Authors’ calculations, based on table 9.



54 Brookings Papers on Economic Activity, Spring 2018

thus, for the baseline approach to explain the time pattern of rising and then 
falling labor share across the decades, it would need to be the case that TFP 
growth was negative in the 1970s, became positive in the 1980s and 1990s, 
and then accelerated in the 2000s. This does not match the time pattern 
of TFP growth, however (see table 3). The model does slightly better at 
capturing the time pattern of between-industry effects—predicting larger 
compositional shifts in the 1970s and 2000s, which is approximately con-
sistent with the data—but our explanatory power is limited here as well.36

Our empirical framework admits several mechanisms through which 
the effect of technological progress on the labor share may differ over 
time. One mechanism is that an acceleration of TFP growth will lead to 
a more rapid fall in the labor share. But as noted above, this explana-
tion is a nonstarter because TFP growth decelerated in the 2000s, even as 
the fall in the labor share accelerated. Second, the locus of productivity 
growth may be differently distributed among industries in different eras. 
To the extent that industries experiencing rapid TFP gains are more (or 
less) labor-intensive or make up a larger (or smaller) share of the total 
economy, the aggregate labor share will decline more (or less) strongly 
through, respectively, compositional effects and within-industry effects. 
But table 11 suggests that these explanations have a limited bite. Allowing 
the sources of TFP growth to differ across decades, as we do in the table, 
does not explain the sharp decadal differences in the between- and within-
industry contributions to the fall in the labor share.

A third possibility is that, all else being equal, a given amount of over-
all productivity growth might have different effects in different eras if the 
source of that productivity growth is changing—for example, if productivity 
growth increasingly stems from technologies that are relatively less labor-
augmenting and relatively more labor share–displacing. Figure 8 suggests 
that this explanation has some promise. Akin to figure 1 above, figure 8 
presents bivariate scatters of the relationship between industry-level TFP 
growth and changes in, respectively, industry-level log employment (the 
top panel) and industry-level log labor share (the bottom panel). Distinct 
from earlier figures, figure 8 depicts separate slopes by decade. The top 
panel shows a consistently stable, downward-sloping relationship between 
industry-level TFP growth and relative declines in employment, with a 
somewhat steepening slope after the 1970s. By contrast, the bottom panel 

36. The substantial between-industry component of the falling labor share in the 2000s 
is, as above, due to the rapid growth of the real estate industry in value added, a phenomenon 
that is unlikely to be attributable to technological progress.
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Sources: EU KLEMS; authors’ calculations.
a. All values are expressed as annual, unweighted average changes across country-years in log points. 

The lines are the weighted linear fits by decade.
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Figure 8. Industry-Level Total Factor Productivity Growth versus Industry-Level  
Employment and Labor Share by Decade, 1970–2007a
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shows a much more noticeable shift in the relationship between produc-
tivity and labor’s share over time. During the 1970s, there is no appre-
ciable link between industries’ productivity growth and their labor share 
changes. A clear negative relationship emerges in the 1980s, however, and 
remains in place during the 1990s and 2000s. This pattern suggests that a 
shift toward more labor share–displacing productivity growth is a possible 
explanation for the fall in the labor share commencing in the 1980s.

To explore this possibility more rigorously, we estimate a set of distrib-
uted lag models where the own-industry impact of TFP growth is allowed 
to vary by decade. Across a range of specifications, we find that the 1970s 
stand out as a period when own-industry TFP growth had a less negative 
effect on labor’s share. We do not find much evidence of statistically signifi-
cant heterogeneity in coefficients for the decades thereafter, consistent with 
the broad patterns shown in the bottom panel of figure 8. Table 12 provides 
estimates of the direct effect of TFP growth on our range of outcomes, esti-
mated separately for the 1970s and the three subsequent decades. As shown 
in columns 11 and 12, there is a statistically insignificant positive rela-
tionship between own-industry TFP growth and own-industry labor share 
changes during the 1970s, which turns statistically significant and nega-
tive for the three more recent decades. Online appendix table A13 provides 
additional detail by estimating these models separately by decade, applying 
a five-year lagged long-difference specification.37

To assess the quantitative importance of these decadal differences, 
table 13 reports a set of decade-specific predictions based on table 12. 
These predictions are constructed by allowing the β1

k coefficients in equa-
tion 8 and the βk

1,VA coefficients in equation 11 to be different in the 1970s 
compared with the other three decades, thereby allowing both the effect of 
TFP growth on the within-industry and between-industry components of 
the aggregate labor share to change over time.38 A drawback of perform-
ing predictions with these estimates is that, relative to our main estimates, 
the estimated TFP slopes are shallower across all periods, likely because 
identification of the distributed lag terms is weak in short panels. Nev-
ertheless, the predicted within-industry pattern now qualitatively matches 
the turnaround after the 1970s: Productivity growth is predicted to mod-
estly increase labor’s share during the 1970s and to decrease it thereafter.  

37. We are severely limited in our ability to estimate distributed lag models for the 
decade of the 1970s because no country enters the EU KLEMS data before 1970, and several 
enter later (see online appendix table A1).

38. We restrict our attention here to the direct effect because we find this to be the main 
driver of aggregate labor share changes, irrespective of the time period under consideration.
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The model is also somewhat successful at predicting the increase in the 
between-industry component of the falling labor share in the 2000s.  
The model is not successful, however, in explaining the acceleration of the 
within-industry fall in the labor share in the 2000s.

Summarizing, our analysis broadly supports the hypothesis that the 
decline in the labor share since the 1980s is consistent with a shift toward 
more labor share–displacing technology commencing in the 1980s. But 
the acceleration in the labor share decline observed during the 2000s is left 
unaccounted for by this mechanism. We hypothesize that a closer study of 
specific technologies may yield additional insights into these periods. At 
the same time, we do not assume that technological factors are the sole 
contributor to the changing secular pattern of the labor share decline or 
its recent deceleration. Instead, what our findings make clear is that tech-
nological progress has been broadly employment-augmenting and labor 
share–displacing for at least three decades. The consistency of the evi-
dence, rather than its over-time acceleration or deceleration, is what gives 
us confidence in the utility of our approach for tracing through the within-
industry, between-industry, and aggregate consequences of productivity 
growth originating in all industries.

V. Concluding Remarks

Theory makes clear that there is no direct mapping between the evo-
lution of productivity and labor demand at the industry level and the 
evolution of labor demand in the aggregate. Theory gives less guidance  
about how to draw this indirect mapping. We present an empirical 
approach for mapping the industry-level effects of technological progress 

Table 13. The Contribution of Total Factor Productivity Growth to the Within-  
and Between-Industry Components of the Change in Aggregate Labor Share,  
by Decade, 1970–2007

Decade

Actual annual change in labor 
share in log points

Predicted annual change in labor 
share in log points

Total
Between 
industry

Within 
industry Total

Between 
industry

Within 
industry

1970s 0.513 −0.187 0.700 0.030 −0.020  0.050
1980s −0.459 −0.183 −0.276 −0.201 −0.022 −0.179
1990s −0.263 −0.075 −0.188 −0.125 −0.016 −0.109
2000s −0.861 −0.425 −0.436 −0.150 −0.085 −0.065

Source: Authors’ calculations, based on table 12.



DAVID AUTOR and ANNA SALOMONS 59

on aggregate employment and labor share outcomes, taking into account 
both the direct effects of productivity growth in advancing industries and 
the indirect effects of interindustry demand linkages, between-industry 
compositional change, and increases in final demand. Our findings indi-
cate that these indirect effects are sizable and are countervailing for 
employment. We find that technological progress is broadly employment- 
augmenting in the aggregate. But this is not so for labor’s share of value 
added, where direct labor share–displacing effects dominate. Our simple 
framework can account for a substantial fraction of both the reallocation 
of employment across industries and the aggregate fall in the labor share 
over the last three decades. It does not, however, explain why the share 
of labor in value added fell more rapidly during the 2000s than in prior 
decades. Nor can it distinguish between the contributions of automation-
based versus non-automation-based sources of productivity growth, which 
may plausibly exert distinct effects on either employment or on labor’s 
share of value added.

Although our empirical exploration of labor displacement has linked 
effects at the industry level to aggregate outcomes, this high-level repre-
sentation is consistent with a variety of within- and between-firm adjust-
ments. At one extreme, every firm in an industry undergoing technological 
progress might substitute capital for labor in a subset of tasks. Alterna-
tively, absent any within-firm change in task allocation, a technological 
advance might spur an increase in industry market share among relatively 
capital-intensive firms, and a concomitant decline among relatively labor-
intensive firms.39 Under either scenario, labor’s share in industry value 
added would fall. Our analysis cannot speak to these within-firm versus 
between-firm dynamics. Nevertheless, we believe that the scope of the 
evidence presented here complements more granular, but narrower, firm-
level and establishment-level studies.
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39. For further explorations of the linkage between firm-level dynamics and aggregate 
productivity, see Decker and others (2017), Autor and others (2017b), and Foster and others 
(2017, 2018).
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Comments and Discussion

COMMENT BY
JOHN HALTIWANGER   One of the oldest questions and concerns 
among economists is the impact of innovation and productivity growth on 
employment. Over the centuries, technological progress has raised pro-
ductivity dramatically, enabling far greater output per unit of labor input. 
Moreover, accompanying product innovations have enabled associated 
rapid increases in the quality and range of products. Although this raises 
GDP per capita, concerns have frequently been raised about the workers 
left behind by technological advances. Recently, these concerns have 
arisen in the context of the impact on the workforce of perceived rapid 
changes in automation. Artificial intelligence, robotics, customized 
software, and specialized machinery have already become embedded in 
many production technologies, enabling the replacement of tasks once 
performed by workers.

Our understanding of these issues, even after much attention in the lit-
erature, remains relatively incomplete. Part of this reflects the fact that 
the type of data that is ideally needed to understand the labor-displacing 
nature of technology is not readily available.1 Partly this reflects the 
view that each new wave of innovation is potentially different in both 
the nature and speed of any disruption and displacement that occurs. In 

1. For example, firm-level evidence on technology adoption accompanied by detailed 
information about the size and mix of the workforce in terms of skills is needed. Occasion-
ally, modules have been added to firm-level surveys that provide very helpful information, 
such as the Survey of Manufacturing Technology in the 1980s and 1990s. We need a new 
wave of such modules for more recent advances in technology. In addition, we need to inte-
grate such data with longitudinal matched employer–employee data to investigate the impact 
on the workforce.
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addition, regardless of data limitations, it is challenging to sort through the  
complex mechanisms at the firm, industry, country, and global levels. 
Economic theory reminds us that technological improvements in one 
sector may yield a reallocation of labor to sectors with less rapid tech-
nological change (Ngai and Pissarides 2007), depending on the elasticity 
of substitution across sectors. The impact on aggregate employment also 
inherently depends on the elasticity of the labor supply. However, this latter  
perspective is in the long run, and there might be much disruption, dis-
placement, and reallocation along the way.

This paper by David Autor and Anna Salomons weighs in on this ongoing 
debate by using pooled data, industry by country by time (mostly annual), 
on the relationship between outcomes such as employment growth, value-
added growth, and the labor share with indicators of technological inno-
vation. The primary focus in this paper is to use measures of total factor 
productivity (TFP) to capture the latter. The main findings in terms of 
employment growth are that there is an own-industry negative impact of 
rising TFP but offsetting indirect effects arising from the input–output link-
ages as well as the overall positive impact of rising TFP on aggregate value 
added and final demand. Taken at face value, the answer to the question 
posed in the paper’s title is that though there may be sectoral reallocation 
induced by technological innovation, the aggregate effect on employment 
growth is positive. This answer is in principle reassuring to those who have 
continued to express concerns about the impact of innovation on employ-
ment outcomes.

Although I am sympathetic to the overall message of the paper and the 
careful analysis of rich industry-by-country data, I think there are several 
challenges in interpreting the paper’s results. First, the empirical approach 
is entirely reduced form, which can be very useful for helping guide future 
analysis; but the nature of the reduced-form approach taken here does not 
provide much guidance about the mechanisms underlying the estimated 
results.2 Second, there are many details about the measurement, specifica-
tions, and estimation that raise a host of questions about what we learn 
from using these industry-by-country-by-time data. Most of my remaining 
comment focuses on these latter issues.

A core concern is whether TFP growth at the industry level is a good 
proxy for innovation. In my figure 1, average annual TFP growth rates 

2. Richard Rogerson’s comment provides a detailed perspective on these issues.
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Source: U.S. KLEMS.
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Figure 1. Industry-Level Total Factor Productivity Growth, by Industry, 1970–2007
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for the 28 industries used by Autor and Salomons from the U.S. KLEMS 
data are presented. Several remarks are warranted. First, the outsized role of 
information and communication technology (ICT) in productivity growth 
over this period is reflected in the electrical and optical equipment industry. 
Second, even during this period of rapid, ICT-induced productivity growth, 
45 percent of industries have negative long-run productivity growth in the 
U.S. data. Autor and Salomons acknowledge the relatively high fraction 
of observations with negative productivity growth (and do some limited 
robustness analysis) but attribute much of this to high-frequency measure-
ment error.3 My figure 1 shows that this is a pervasive issue, even over long 
time intervals. Moreover, my figure 1 shows that it is not just the difficult-
to-measure sectors, such as finance and services or the nonprofit sectors, 
that exhibit these patterns.

This pattern of pervasive industry-level negative productivity growth is 
also present at medium-run frequencies. My figure 2 presents a scatter plot 
of the employment growth rates and TFP growth rates at the industry level 
for the United States for these 28 industries using peak-to-peak variation 
(using the two-year average at each peak) based on reference cycles devel-
oped by the National Bureau of Economic Research. About 45 percent of 
the industry-by-time observations have negative productivity growth at this 
frequency. It is also evident that the negative own-industry effect estimated 
by Autor and Salomons is present in my figure 2. The elasticity of employ-
ment growth with respect to TFP growth using this medium-run variation 
is −0.207 (with a standard error of 0.090), which includes industry and time 
period controls, and the standard error is clustered at the industry level.

This pervasive finding of negative productivity growth at the industry 
level is not new. Dale Jorgenson, Mun Ho, and Jon Samuels (2018) sum-
marize their views and the literature by highlighting four competing expla-
nations: measurement error; resource depletion, relevant for sectors such as 
oil and gas extraction and mining; misallocation and regulation; and finally, 
sectors that especially deviate from private sector profit maximization (for 
example, health and education). All four of these explanations raise ques-
tions about the relevance of using TFP at the industry level as an indicator 
of innovation and technological progress. In addition, a few other factors 
also raise questions.

3. I did not find the robustness analysis in the paper’s table 6 compelling in terms of 
treating the negative TFP growth observations as zero. The discussion here highlights many 
different reasons that might underlie the observed negative TFP growth. Those same factors 
(such as reallocation dynamics) may be influencing the positive observations as well, and 
accordingly raise questions about the interpretation of the findings. 
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Figure 2. Peak-to-Peak U.S. Employment and Total Factor Productivity Growth Rates 
for the 28 Industries Considered by Autor and Salomons, 1972–2007a

Source: U.S. KLEMS.
a. The line shows the linear fit. 
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In particular, Michael Gort and Steven Klepper (1982) hypothesized 
long and variable lags between innovation and productivity growth. They 
argue that a surge in innovation in an industry is accompanied by a surge 
in the entry of new firms that engage in experimentation with new products 
and processes. During this period of experimentation, productivity growth 
might actually fall rather than rise. It is only later that productivity growth 
is observed, after successful entrants grow, while less successful entrants 
contract and exit. Gort and Klepper used relatively crude data on busi-
ness formation and exits, but they did show patterns consistent with their 
hypothesis. Recent evidence from Lucia Foster and others (2018) provides  
more direct confirming evidence. We find that a surge in entry within 
an industry in one three-year period yields a decline in within-industry 
productivity growth and an accompanying rise in productivity disper-
sion across firms in the industry in the next three-year period. It is only 
in the subsequent years that productivity growth is observed, along with 
an accompanying decline in productivity dispersion. Gort and Klepper’s 
firm dynamics are in some respects related to the misallocation hypoth-
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esis mentioned above, but in this case it is a more benign form of mis-
allocation. Namely, Gort and Klepper argue that the firm dynamics and 
shakeout process inherent in innovation may lead to a decrease in pro-
ductivity growth during the experimentation period, but this is part of 
the investment needed to eventually achieve successful innovations and 
productivity growth.

The firm dynamics hypothesized by Gort and Klepper (1982) also high-
light another limitation of using industry-level as opposed to firm-level data 
to investigate the main questions of interest. Industry-level fluctuations in 
productivity reflect not only the within-firm innovations but also between-
firm reallocation dynamics that may take some time to work through. A 
related issue is that many firm-level studies find a strong positive rela-
tionship between TFP and employment growth at the firm level (Decker 
and others 2018; Ilut, Kehrig, and Schneider, forthcoming). Reconciling 
the firm-level evidence with the industry-level evidence considered here 
likely requires distinguishing within-firm from between-firm innovations. 
That is, the successful innovators within an industry may be increasing 
employment but require less employment than unsuccessful firms that con-
tract and exit. The overall impact at the industry level may be negative, 
but this may be entirely attributable to reallocation. Interestingly, Autor 
and others (2017) find that the decline in the within-industry labor share is 
primarily accounted for by reallocation, and not by within-firm declines in 
the labor share. In addition, even at the industry level, Daron Acemoglu, 
Ufuk Akcigit, and William Kerr (2016), using a similar specification to that 
used by Autor and Salomons, find a positive own-industry effect of TFP 
growth on employment growth (using a one-period lag of own-industry 
TFP growth).

All these issues raise questions about whether Autor and Salomons are 
providing much guidance about the impact of innovation on the poten-
tial displacement of labor. If nothing else, the timing and dynamics are 
complex, and a five-year lag specification is likely inadequate—especially 
from the perspective and findings of Gort and Klepper (1982) and of Foster 
and others (2018). In addition, there are interesting and complex issues 
in these dynamics. If productivity growth lags innovation substantially, at 
what point does any displacement of workers occur? Does it occur during 
the innovation or experimentation phase, or does it occur in the shakeout 
phase? The answer is likely all of the above.

These complex dynamics are important for more reasons than getting 
the frequency and lag structure of the empirical specification correct. At 
the core of concerns of the impact of automation on displacement is the 
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speed of the transition dynamics. The Gort and Klepper firm dynamics 
suggest that implementation lags are long and variable. If implementation 
lags have shortened, then this has potentially important implications for the 
reallocation and displacement dynamics that might arise, even if there is no 
long-run adverse impact on employment.

There are other related concerns about the details of the implementa-
tion. The authors use a leave-out-mean approach for measuring within-
industry-by-country TFP growth. This approach is intended to avoid the 
potential mechanical relationship between TFP and employment growth. 
The latter concern is potentially nontrivial, but does depend on the pres-
ence of measurement error in the labor input. The latter is likely among 
the best measured inputs in production. Moreover, others have overcome 
this concern using the relationship between contemporaneous employ-
ment growth and lagged TFP growth (Acemoglu, Akcigit, and Kerr 
2016). I think using the leave-out-mean approach in this context also 
has other problems. For one, there is much evidence that innovation and 
productivity growth at the industry level is quite different across coun-
tries. The 1990s were a period when ICT innovation and productivity 
took off in the United States. relative to the rest of the world, including  
Europe. The approach taken by Autor and Salomons would distort this 
variation. The U.S. surge in productivity in the ICT sector in the 1990s 
would be left out of the U.S. measure, but it is so large that it would con-
tribute substantially to the leave-out-mean of all other countries. Relatedly, 
I am skeptical that the leave-out-mean approach captures the technological 
frontier at the industry level.

Finally, I found the analysis of upstream and downstream industries 
interesting but difficult to interpret. Partly, it was difficult to interpret 
because of technical issues. The appropriate model and measurement meth-
odology with input–output linkages is to use gross output production func-
tions and explicit modeling and measurement of intermediate input usage. 
In addition, the results as presented are a bit of a black box. It would be 
interesting to explore and understand what types of supply chain links are 
especially important in this context. Acemoglu, Akcigit, and Kerr (2016) 
suggest some ways of exploring these issues.
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COMMENT BY
RICHARD ROGERSON  Although the long-run effect of technologi-
cal change on aggregate labor market outcomes has long been of interest 
to economists, concern about this issue has recently intensified, perhaps 
motivated in part by the decline in labor’s share that has been observed in 
the United States and elsewhere in recent decades and by the sense that 
it might be due, at least in part, to increases in automation that reflect 
recent trends in technological change. This paper by David Autor and 
Anna Salomons seeks to assess the aggregate effects of automation on 
employment and labor’s share since 1970 using sectoral data from a large 
set of developed economies. The paper provides much information that 
is useful in the effort to better explain the dynamics of employment and 
the labor share, complementing the earlier contribution to the Brookings 
Papers by Michael Elsby, Bart Hobijn, and Ayşegül Şahin (2013), which 
focused entirely on the United States. However, though I think Autor and 
Salomons present a lot of interesting evidence, I nonetheless feel they are 
largely unsuccessful in their effort to offer compelling and credible evi-
dence on the causal effects of automation on employment and the labor 
share at the aggregate level. The reduced-form methods employed by the 
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authors essentially document conditional correlations. These correlations 
can serve as valuable diagnostics and provide suggestive evidence to help 
us distinguish between competing explanations. But these reduced-form 
methods are not well suited to delivering quantitative estimates of causal 
effects.

In the brief space that I have available here, I first describe why I think 
the empirical approach employed by the authors is unable to deliver reli-
able estimates of the causal effects of growth in total factor productivity 
(TFP) on employment and the labor share. I follow this with several shorter 
comments about details of the specification adopted by the authors.

USING SECTORAL DATA TO ESTIMATE AGGREGATE RESPONSES A key compo-
nent of the paper’s analysis is to recover the aggregate effects of TFP  
on employment and the labor share using reduced-form estimates of  
sectoral relationships. My main comment relates to the basis for inter-
preting these aggregate effects as the causal effects of TFP. As is well 
known, there is a long history of debate arguing the pros and cons of 
structural versus reduced-form approaches to uncovering causal effects, 
especially at the aggregate level. I do not want to get into this debate here, 
so I take as given that the goal is to learn what we can using reduced-form 
methods.

Before getting into specifics, I think it is important to first back up a bit 
to consider how the authors arrived at an analysis of sectoral data in their 
attempt to uncover aggregate effects. In particular, suppose we start with 
the premise that the goal is to use reduced-form methods to understand 
the effect of TFP growth on either employment or the labor share at the 
aggregate level in a particular country. Given this goal, it seems natu-
ral that one might first consider attempts to uncover these effects using 
reduced-form methods on aggregate data.

The simplest exercise that one might start with is to regress either  
of these aggregate outcome variables on aggregate TFP (perhaps includ-
ing several lags, as the authors do). But if one simply ran the regression 
of either the employment–population ratio or the labor share on TFP 
for a single country, no one would view the coefficients as a reliable 
estimate of the causal effect of aggregate TFP on either outcome of 
interest. The reason is that potentially many other factors are at play 
that are also affecting these outcomes, these other factors may be cor-
related with TFP, and the regression is projecting all these effects onto 
changes in TFP.

One possible response is to try to include measures of the other poten-
tially important factors on the right-hand side. Although there might be a 
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few channels that we could capture this way, many of them are likely not 
easily measured, so there will always remain some concern that one is not 
isolating the effect of TFP. In such a situation, it is standard practice to 
include time effects as a way to control for unobserved factors; but using 
data for a single country, these time effects would explain all the variation 
in the left-hand-side variable.

If one thought that the key time effects were constant across countries, 
then expanding the analysis to include data from several countries would 
solve the problem. Note that one could of course also allow for country-
level fixed effects in the analysis. But if one thought that the unobserved 
driving forces were specific to the country and year, expanding the analysis 
to many countries would not solve the basic problem of needing to isolate 
the effects of TFP from those of other factors, given that this would require 
a full set of interacted country and time effects.

A nice strategy adopted by Autor and Salomons is to use TFP from other 
countries as a proxy for TFP in the country being studied. This turns out to 
be a good proxy and, at least at first pass, would seem to eliminate the need 
for a fully interacted set of country and time fixed effects in the previous 
analysis. To the extent that global factors influence either labor share or 
employment across countries and are correlated with average movements 
in TFP, it would still be necessary to use time fixed effects to control for 
these other factors, but the use of other countries’ TFP eliminates the effect 
of country-specific, non-TFP factors that might be correlated with country-
specific TFP. But upon further reflection, it should be apparent that this 
strategy only solves the problem if it is assumed that the global non-TFP 
factors that are correlated with average TFP have identical effects on all 
countries. If not, we would still need a fully interacted set of country and 
time effects to control for these effects.

Why might one think that employment and labor share responses to a 
given shock might differ across countries? An old idea in the literature on 
cross-country differences in labor market evolutions—initially put forth 
by Michael Bruno and Jeffrey Sachs (1985), and later taken up by Paul 
Krugman (1994) and Olivier Blanchard and Justin Wolfers (2000)—is that 
country-specific factors (for example, labor market institutions) lead to dif-
ferential responses across countries to a given shock. There seems every 
reason to think that this idea is relevant in the current context, when one 
seeks to estimate how output, employment, and wages respond to various 
driving forces. For example, the factors leading to increased global trade 
are plausibly correlated with TFP and plausibly have differential effects 
across economies, not only because of different labor market institutions, 
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but also because different economies might have varying exposures to a 
given trade shock.1

To summarize, a key impediment to obtaining estimates of the aggregate 
effects of TFP on employment and the labor share from aggregate data 
using reduced-form methods is the need to include a set of fully interacted 
country and time fixed effects as a way to control for non-TFP factors.

Why might one turn to sector-level data in an attempt to uncover the 
aggregate effects? If one accepts that fully interacted country and time 
fixed effects are needed to properly control for non-TFP factors, then a  
sector-level analysis seems to offer a way around the issue, because one 
could now allow for a set of fully interacted country and time fixed effects 
and still have variation to consider. Two issues arise, however. First, why 
would we think that there are not important time and country effects at the 
sector level? The strategy of adding another layer of data to get around 
the need to have a full set of fixed effects presumes that we can rule out 
variation in driving forces or their impact at this new layer. But what is the 
rationale for this belief? My own view is that, in general, the more we dis-
aggregate, the larger and more varied are the sources of idiosyncratic varia-
tion. Put differently, if one believes that interacted country and time fixed 
effects are important, why would it seem reasonable to assume that these 
effects do not vary at the sectoral level? Of course, these country-time-
sector effects would not be a problem if they were uncorrelated with TFP, 
but I see no basis for assuming this. The previous example of increased 
trade would certainly lead one to expect country-time-sector effects.

This issue aside, the second issue with moving to sector-level data is that 
each sector does not represent an economy. That is, even if we properly 
identify the effect of own-sector TFP changes on own-sector outcomes, 
we still need to determine how to aggregate the effects. This requires that 
we need to isolate not only the causal effect of TFP growth in sector i on 
outcomes in sector i, but also the causal effects of TFP growth in sector i 
on outcomes in all other sectors.

When one moves to sectoral data as a way to estimate aggregate effects, 
the implicit claim is that it is straightforward or easy to identify all these 
cross-sector, general equilibrium effects using reduced-form analyses. In 
fact, the authors characterize their analysis as building up the aggregate 
effects by quantifying each of several underlying effects, suggesting that it 
is easier to compute these individual underlying pieces than it is to directly 

1. This same logic, of course, suggests that it is not appropriate to impose a common 
response to TFP across countries.
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compute the aggregate response. I argue below via a simple example that I 
believe this is not the case. That is, moving the analysis to the sectoral level 
does not get around any of the issues that led one to move from aggregate 
to sectoral data in the first place.

But before describing the simple example to make this point, I do want 
to emphasize that I nonetheless think sectoral analyses can be very useful. 
The reason is that they potentially provide additional information about 
driving forces and mechanisms. To be concrete, let us focus on the issue of 
the aggregate decline in the labor share. One may have various candidate 
driving forces or mechanisms in mind. The reason that sectoral data may  
be very useful is that there may be considerable variation across sectors, 
and this variation may prove to be a useful diagnostic to help us evaluate 
the promise of various driving forces. For example, in the current context, 
Autor and Salomons are interested in assessing the role of automation as a 
driving force. Variation in both investment in equipment (especially, per-
haps, computing equipment), and the change in the labor share at the sec-
toral level might reveal something about the promise of a story that stresses 
automation. I say more about this below.

However, though I think sectoral-level data are therefore very valu-
able for qualitatively assessing different explanations, I do not think that 
moving to sectoral data provides any advantage in helping us to tease 
quantitative effects out of the data using reduced-form methods. And to 
think otherwise is basically wishful thinking. To see why, I consider the 
reduced-form methods employed by the authors in the context of a simple 
structural model.

In particular, consider an economy that captures the basic economics of 
William Baumol (1967). There is a representative household with prefer-
ences each period, given by

−− σ + γ .1 1 1 1C BHt t
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function:

y A k hi t i t i t i t= θ −θ ., , , ,
1

Aggregate consumption and investment are produced by combining the 
outputs of the N sectors:

∑( )+ = − ρ

=

ρ ρ−

.,
1 1

1

1

C I a yt t i i t
i

N



76 Brookings Papers on Economic Activity, Spring 2018

Consider the competitive equilibrium for this economy. Even without 
doing any analysis, one might already sense something curious vis-à-vis 
the authors’ analysis. The specification given above suggests that the two 
preference parameters s and γ are surely going to be important for deter-
mining the response of aggregate employment to changes in the profile of 
sector TFPs. In particular, if we assume the limiting case of s = 1, then 
we have offsetting income and substitution effects, and it is easy to show 
that in the competitive equilibrium, aggregate employment is independent 
of the TFP profile across sectors. One may well ask how the empirical 
specification adopted by the authors is incorporating this key parameter 
and the associated labor supply effects, because the equations estimated 
by the authors all have the feel of being motivated by labor demand con-
siderations, with no role for labor supply. Although it is common (even if 
not warranted) to abstract from labor supply considerations in the context 
of short-run fluctuations, there seems to be no basis for thinking that labor 
supply considerations do not factor into long-run labor market outcomes.

In what follows, I simply posit that aggregate employment is some 
unspecified function of the sector TFPs and capital stock, without impos-
ing that equilibrium employment is consistent with desired labor supply of 
the household, taking all prices as given. Note, first, that if we normalize 
the wage to 1, then the sector i price is just the inverse of sector i TFP. Sec-
ond, it is easy to show that maximization yields the following expressions:
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Taking the logs and first differences, we end up with
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Recall that Ht is implicitly a function of the profile of period t TFPs and 
the capital stock in the country being studied. The fact that it enters with 
a coefficient of 1 reflects the fact that preferences are homothetic, so that 
an increase in aggregate labor increases the output of each good propor-
tionately. If one wanted to consider preferences that were nonhomothetic, 
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then the coefficient on aggregate labor would vary across sectors, but the 
appropriate average of these effects would still be 1. A common coefficient 
of less than 1 would imply an inconsistency, given that aggregate labor 
must be the sum of the sectoral labors. The key point, however, is that the 
need to control for aggregate hours on the right-hand side surely suggests 
that one would need to include a fully interacted set of country and time 
effects to control both for the effects of TFP on total hours and for potential 
non-TFP factors.2

The approach taken by the authors is to replace Ht with a measure 
of either nominal or real value added. Although this implicitly allows for 
a particular form of country-time fixed effect, this is appropriate only if 
aggregate hours and value added move one-for-one across all countries. 
But we know from growth accounting exercises that this is simply not the 
case. It also explains why they obtain the troubling result that a given per-
centage increase in aggregate value added at a single point in time, holding 
all else constant, leads to a smaller percentage increase in value added in 
all sectors.

The significance of the previous derivation is that even in a model with 
no driving forces beyond TFP, and no heterogeneity across countries other 
than TFP, one would need to include a fully interacted set of country and 
time fixed effects in order to properly estimate the sectoral relationship 
between TFP and employment. In reality, the time and country fixed effects 
will also pick up non-TFP effects. It follows that when one wants to use the 
estimates of this equation to compute the effect of TFP changes on employ-
ment, one needs to include the component of the country-time fixed effects 
that reflects TFP effects as opposed to non-TFP effects. That is, in order to 
trace out the causal effect of changes in TFP on employment using these 
estimates, one would need to be able to decompose the change in estimated 
country-time fixed effects into the parts that come from changes in TFP as 
opposed to non-TFP factors. But the whole reason for moving to sectoral 
data was because we did not know how to isolate the effect of TFP from 
non-TFP effects that were country and time varying. This sectoral approach 
ultimately requires that we have a solution to the problem that led us to the 
sectoral data in the first place!

Although my example is admittedly very simple, the key point derives 
from a very basic and robust property: In a multisector model, the allocation 

2. The second term on the right-hand side also depends on the country-specific profiles 
of TFP, though readers familiar with these types of models will see that D is simply the 
model-implied aggregate price index. For present purposes, we can ignore this term.
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of labor to any sector will depend on the total amount of labor supplied in 
equilibrium, which will be a function of the profile of sector TFPs as well 
as any non-TFP factors that influence labor markets. The only way to cred-
ibly capture the evolution of this term over time and across countries in a 
linear regression model is to allow for a fully interacted set of country-time 
fixed effects.3

Let me summarize. I have raised two basic reasons for why the use of 
sectoral data should not be viewed as a path for obtaining credible esti-
mates for causal aggregate effects using reduced-form methods. First, it 
presupposes that there are not important biases associated with country-
time-sector effects that are correlated with the driving force of interest, in 
this case TFP. But second, this path requires that one be able to isolate TFP 
from non-TFP effects captured by country-time fixed effects. If one could 
do this credibly, then one would not need to go to sectoral data in the first 
place.

Although the discussion above explains what I view as the main  
limitation of the paper in terms of its ability to deliver credible esti-
mates of the causal aggregate effects of TFP, in the remainder of my 
space I point out a few additional issues with the specification that the 
authors adopt.

TFP AS THE DRIVING FORCE The paper’s title and some of its exposition 
suggest that the purpose of the analysis is to uncover the effects of auto-
mation on employment and labor’s share. Automation reflects a particu-
lar type of technological progress. Because not all technological progress 
reflects automation, it would seem necessary for any study that seeks to 
isolate the effects of automation to first attempt to isolate the component 
of technological progress that might best be associated with automation. 
The authors instead choose to focus purely on the effects of an “omnibus” 
measure of technological progress—namely, TFP.

At one level, this is a simple issue of semantics—perhaps the authors’ 
goals are really to assess the effects of TFP growth on labor market out-
comes, rather than the effects of automation per se on labor market out-
comes. But if we accept this alternative framing of the analysis, it seems 
that the analysis is implicitly abstracting from what surely must be the 

3. My simple example does not include the linkages that Autor and Salomons include. 
Doing so would destroy the tractability of my simple example, but the basic point 
remains valid: A key determinant of hours in a given sector is the total amount of work 
being carried out.



COMMENTS and DISCUSSION 79

most important question. Two simple observations explain why I say this. 
First, until recently, there was a consensus that the so-called Kaldor 
facts (Kaldor 1961) provided a good description of aggregate economic 
outcomes in developed economies. Namely, both the employment– 
population ratio and the labor share were roughly constant. Second, we 
know from standard growth accounting exercises that changes in TFP 
are the dominant source of growth. Together, these observations tell us 
that for a long period in many economies, steady growth in TFP has been 
accompanied by stable values for both the employment–population ratio 
and the labor share.

It follows that if TFP growth is found to have significant effects on 
either the employment–population ratio or the labor share in the post-1970 
period, this must surely reflect a change in the effects of TFP on these out-
comes. The simplest explanation for why the effects of TFP might have 
changed surely lies in the possibility that the nature of technological prog-
ress has changed, and the authors clearly note this. But to my mind, this 
suggests that any study seeking to link changes in technology to recent 
changes in labor market outcomes must also make some effort to isolate 
the potentially different components of technological progress. Moreover, 
sectoral data would potentially be of particular importance in this regard, 
because we might think that there is heterogeneity both over time and 
across sectors in the composition of technological change and that this 
variation would prove to be important.

In fact, the EU KLEMS database that the authors use for their analy-
sis does provide information on different categories of investment, and, 
to the extent that the authors wish to assess the effects of automation 
per se on labor market outcomes, a key limitation of the analysis is that 
they have not integrated this additional information into the analysis. On 
this point, I would again note the important earlier contribution to the 
Brookings Papers by Elsby, Hobijn, and Şahin (2013). Like the present 
paper, it sought to shed light on the causes behind the declining labor 
share by examining data at the sectoral level, though it focused solely on 
the United States. In their analysis, Elsby, Hobijn, and Şahin did con-
sider the role of investment in equipment, and they found that it had little 
explanatory power for understanding the dynamics of the labor share 
over time and across sectors.

LEVELS VERSUS FIRST DIFFERENCES The basic premise in using sectoral 
data from several countries to estimate effects is that there is something 
common about how a given change in TFP affects outcomes across coun-
tries. Although this is a standard approach, the basis for it in the present 



80 Brookings Papers on Economic Activity, Spring 2018

context is not entirely clear. Two features of the data are notable. First, at 
any point in time, there are large differences in TFP across the countries in 
the authors’ sample. Second, there are also large differences in labor share 
in a given sector across countries. If the labor share we observe is related 
to the technology being used, which is a basic premise of the analysis in 
this paper, then we might think that it is the level of TFP (that is, the tech-
nology being used) that is related to the labor share, and that one cannot 
assume that a given change in TFP has the same effect on employment and 
the labor share independent of the initial level of TFP.

To pursue this further, suppose that one country has TFP that is only  
80 percent that of the leader in some sector. Suppose both this coun-
try and the leader experience an improvement in TFP of 5 percentage 
points. Assuming that this will have the same response in both countries 
is to assume that the effect of TFP on these variables is linear. But if we 
think that changes in the nature of technological progress are influenc-
ing these effects, it seems unclear that this is a reasonable assumption. 
Perhaps the trailing country should have effects that resemble those  
of the leading economy when it moved from 80 to 85 percent of its cur-
rent level.

BENCHMARK SPECIFICATION Although not stated explicitly in the paper, 
I think it is understood that the goal of this analysis is to uncover the 
“long-run” effects of automation on employment and the labor share. 
This is a key point to note, given that there is good reason to believe that 
short-run effects might be very different. In particular, we know that indi-
viduals displaced from certain industries often experience long spells of 
nonemployment, including early retirement. The labor share is implicitly 
affected by the response of both prices and wages, and, to the extent that 
these variables respond very differently in the short and long runs, it is 
clearly important to distinguish between short- and long-run responses. 
Also, the dynamics of TFP changes may have varying serial correlation 
over time. Although I appreciate that the authors have taken some care 
to isolate the long-run effects of changes in TFP, I remain somewhat 
skeptical about the extent to which they have purged their results of 
short-run effects.

My own preference would have been for them to focus on consecu-
tive long-period differences to generate their benchmark results. In the 
robustness section, they do present results for differences over consecu-
tive five-year periods. The results for this case were only about two-
thirds as large as for their benchmark specification, suggesting that this 
difference is potentially significant. Moreover, even in this setting they 
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do not exclusively rely on five-year differences, because they retain obser-
vations for the period 2005–07 and they use observations for periods 
in which a country’s data start in between the two endpoints. I suspect 
that about 20 percent of their observations in this exercise are not from 
five-year differences. This detail aside, my own preference would be to 
focus on ten-year differences. The authors’ own calculations lead them 
to conclude that effects require about five years, and using five-year dif-
ferences implies that any changes after the initial year will not have 
realized their full effect at the end of the interval. To retain data from 
the post-2000 period, they could define the three periods as 1975–85, 
1985–95, and 1995–2005, or, alternatively, as 1977–87, 1987–97, and 
1997–2007. I would find results from this specification to be both more 
transparent and more compelling.

VALUE-ADDED TFP VERSUS GROSS OUTPUT TFP In their initial specification, 
the authors run regressions of the outcome of interest on value-added 
TFP at the sector level. They later suggest that they want to incorporate 
sectoral input–output linkages into the analysis and use this to motivate 
the inclusion of value-added TFP terms from other sectors on the right-
hand side, distinguishing them in terms of being upstream or downstream. 
When doing this, the authors continue to use value-added TFP measures as 
their TFP measure. I think it is problematic to continue to use value-added 
TFP measures in a context where one aims to measure effects propagated 
through input–output connections. Unfortunately, I think this is an issue 
that many researchers seem not to appreciate, so this is one of the reasons 
I raise it here.

The first point to realize is that value-added TFP and gross output TFP 
are two truly distinct objects. It is particularly important that value-added 
TFP already incorporates the effects of technological progress in supplier 
sectors.4 Relatedly, when one chooses to represent the production side of 
the economy via value-added production functions, one is not assuming 
that there are no input–output relationships; rather, they are embedded 
in the value-added TFPs.

One reason for preferring a specification in which one starts with gross 
output production functions is that one might reasonably think that this 
provides a better description of how primitive technology shocks appear—
that is, they affect the ability of a given sector to produce gross output. 
Propagation through the input–output network will imply that value-added 

4. See Moro (2012) for derivations that explicitly link value-added and gross output TFP 
in a simple setting.
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TFP will change in other sectors, so that a representation using value-
added production functions cannot easily be used to trace out the effect 
of a primitive technology shock to the gross output production function 
in one sector. However, for a given set of gross output TFP shocks, the 
valued-added representation will capture the same set of overall equilib-
rium responses, so there is no benefit to adopting one approach versus the 
other if one wants to study the overall effect of observed shocks. But using 
value-added TFP when explicitly studying input–output linkages makes 
it impossible to disentangle direct effects from effects operating through 
input–output linkages.

CONCLUDING COMMENTS One of the goals of Autor and Salomons’s 
paper was to provide estimates of the effects of TFP on aggregate out-
comes. To be sure, this is a challenging goal, and I do not think the 
profession is yet able to produce reliable estimates of these effects. In 
particular, for the reasons I have described, I do not feel that the approach 
taken in this paper is particularly promising in this regard. Nonetheless, 
the authors are to be commended for compiling a large amount of evi-
dence about the relationships between key labor market outcomes at the 
sector level for a large set of countries. I think this information is valu-
able in the effort to learn more about the driving forces and mechanisms 
at work, and it will surely be useful to future researchers working on 
this important issue. But given the limitations of the methods used for 
uncovering quantitative causal relationships, I would have preferred if 
the authors had focused more on how the cross-country evidence shapes 
our priors about the plausibility of technological factors compared with 
other factors.
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GENERAL DISCUSSION  Robert Gordon noted that a large number of 
industries in the Bureau of Labor Statistics data have negative total factor 
productivity (TFP) growth, as noted by commenter John Haltiwanger. One 
might be tempted to believe that negative TFP growth is a result of mea-
surement error. But consider the example of the higher education industry, 
one in which negative TFP growth could actually be real, and a result of 
various processes unrelated to innovation. At a university, undergraduate 
students are the “output,” which the university produces at a relatively 
fixed level and with a stable quality over time. “Inputs” include professors, 
administrative resources, and information technology. But other inputs 
include investments in expensive new buildings and sports facilities, which 
require maintenance over time. With the output of students fixed and with 
the value of inputs rising over time, TFP growth in higher education could 
indeed be negative. This framework could also apply to other industries. In 
retail, for example, e-commerce may not contribute enough to productiv-
ity growth to offset the decline in traditional bricks-and-mortar stores. In 
health care, hospitals have upgraded their facilities and hired additional 
staff, but without an increase in patient care. Taken together, such examples 
may explain why negative TFP growth could be a real phenomenon and not 
a product of measurement error.

Martin Baily made two comments. First, as commenter Richard  
Rogerson had suggested, labor supply is most likely the main determinant of 
employment at an aggregate level, not TFP growth. TFP growth might have 
effects on employment at a micro or industry level, but not at the aggre-
gate level. Second, though the instrumental variables used by the authors 
as proxies for innovation—for example, patents and robot adoption— 
were interesting, Baily suggested they were probably poor instruments. 
Robot adoption, he reasoned, is still a recent phenomenon, and patent 
flows should probably only have a small effect on productivity. In his own 
research, Baily has found that many of the changes in productivity over the 
past few decades were not actually due to automation, but rather to scaling 
and business organization. In retail, for example, the transition from small 
mom-and-pop stores to big box–style department stores was a major driver 
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of productivity growth. In the automobile industry, companies using simi-
lar technology and equipment were able to increase productivity mostly by 
organizing production more effectively. Research by the McKinsey Global 
Institute suggests that much of the decline in the labor share of income in 
the United States was due to changes in the manufacturing industry.1

Katharine Abraham disagreed with Gordon, arguing that there are sig-
nificant parts of the economy for which mismeasurement of TFP and pro-
ductivity growth are a real concern. The health care industry is an example 
of a major industry for which the difficulty of measuring output causes 
serious problems for measurement of productivity. She suggested that such 
measurement issues could pose major problems for the broad conclusions 
reached by the authors. Baily had suggested that mismeasurement might 
not be an issue as long as relative productivity growth—how the rate of 
productivity growth in any one industry compares to that in other indus-
tries—was not systematically affected by measurement bias. Instead, she 
suggested that measurement bias might shift the levels of TFP, productiv-
ity, and output by different amounts in different industries.

Valerie Ramey recommended that the authors revisit past research that 
showed a negative effect of productivity growth on employment and hours. 
Similar results were found in work by Olivier Blanchard and Danny Quah; 
Jordi Galí; Neville Francis and Ramey; and Susanto Basu, John Fernald, 
and Miles Kimball.2 She recommended using the models developed in 
these papers to study the effect of technology on the labor share of income 
to see if they gave similar answers.

Robert Hall mentioned a few identification issues with the authors’ 
empirical model. First, he noted that the authors assume there is no 
unobserved covariate simultaneously affecting both the labor share of 
income (the dependent variable) and TFP growth (the independent vari-
able). If a covariate existed, it would bias the model’s results. Second, 
the authors did not, in Hall’s view, adequately demonstrate that the  

1. Sree Ramaswamy, James Manyka, Gary Pinkus, Katy George, Jonathan Law, Tony 
Gambell, and Andrea Serafino, “Making It in America: Revitalizing US Manufacturing” 
(McKinsey Global Institute, 2017).

2. Olivier Jean Blanchard and Danny Quah, “The Dynamic Effects of Aggregate Demand 
and Supply Disturbances,” American Economic Review 79, no. 4 (1989): 655–73; Jordi Galí, 
“Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggre-
gate Fluctuations?” American Economic Review 89, no. 1 (1999): 249–71; Neville Francis 
and Valerie A. Ramey, “Measures of Per Capita Hours and Their Implications for the  
Technology-Hours Debate,” Journal of Money, Credit and Banking 41, no. 6 (2009): 1071–97; 
Susanto Basu, John G. Fernald, and Miles S. Kimball, “Are Technology Improvements 
Contractionary?” American Economic Review 96, no. 5 (2006): 1418–48. 
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number of patent claims is a viable instrumental variable; specifically, it 
was not shown to be statistically independent of an unobserved covariate. 
Hall suggested one possible unobserved covariate might be the existence 
of market power in a given industry, which he suspected was of first-
order importance.

Salomons first addressed data questions. She noted that although the 
authors present results for higher-frequency data, they also estimated  
models for long time intervals over decades, which yielded quantitatively 
and qualitatively similar results to those presented at higher frequencies. 
Second, she clarified the identification strategy used to estimate the aggre-
gate effects of TFP growth across countries and industries. The authors 
did not look only at interactions between time and countries or take a set 
of country-year fixed effects in a regression to scale up the broad effects 
of automation on employment. Rather, they measured the effect of TFP 
growth on value added at the country, industry, and year levels, and then 
measured the total value-added effects across countries by using own-
industry coefficient estimates on various macroeconomic outcomes, such 
as labor’s share of income and employment. The empirical model could 
not include country-year fixed effects because doing so would absorb any 
variation in TFP growth across countries.

Salomons acknowledged that measurement issues associated with TFP 
growth could be a real concern with regard to the authors’ conclusions. 
The reason the authors used TFP as a proxy for automation was because 
it is a broad measure, and does not erroneously focus on some very spe-
cific, idiosyncratic trend. Robotics, for example, might be an interesting  
measure of automation, but it has only a limited effect on select sectors 
of the economy. She acknowledged that a major drawback of using TFP 
growth is that it might be too broad, which is why they tried using robotics 
and patents as instrumental variables. Finally, Salomons commented on 
the possible drivers of the reallocation of resources between industries or 
firms, which lead to differing levels of productivity growth. The paper is 
silent on the causes of this reallocation, but Salomons noted that it could 
certainly be due to market power, as suggested by Hall and by Autor in 
previous work.3

Autor acknowledged that he and Salomons were sensitive to the 
issues of measurement and the omnibus definition of TFP as a measure 

3. David Autor, David Dorn, Lawrence F. Katz, Christina Patterson, and John Van 
Reenen, “The Fall of the Labor Share and the Rise of Superstar Firms,” Working Paper 
no. 23396 (Cambridge, Mass.: National Bureau of Economic Research, 2017).
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of innovation and automation. He suggested that the instrumental vari-
ables used in their paper—robotics and patents—might be thought of as a  
“rescaling” of TFP. Patent flows, in particular, should be a good measure of 
innovation, and the data are highly correlated across countries. Although 
Autor acknowledged that these measures should probably not be treated 
as excludable instrumental variables, he suggested that they are still useful 
proxies for automation. In the final version of the paper, the authors use 
patents as a proxy for TFP—for which it has strong predictive power—but 
not as an instrument for TFP.

Blanchard and Rogerson had asked about identification, particularly 
related to the omission of country-year fixed effects. Echoing Salomons’s 
comments, Autor noted that including country-year fixed effects would 
absorb the variation in the data required to provide a measure of the aggre-
gate effects of TFP growth on macroeconomic outcomes across countries 
and over time. The authors do, however, measure the country-year effects 
more broadly by using the chain rule to get the effect of a particular indus-
try on an entire country, and then they estimate the effect of the country 
on broad outcomes. Autor conceded that this still might not be the perfect 
identification method.

Autor agreed with Baily’s comments about the problem of excluding the 
labor supply from the model. However, he argued that if the approach used 
in the paper was wrong, and the labor supply was in fact the main driver 
of employment, then one would expect productivity growth to be unrelated 
to employment, which is largely what they find. More surprising, however, 
is that they find that productivity growth is also negatively related to the 
change in labor’s share of income, and that this effect changes over time.

Autor emphasized that the ultimate goal of the paper is not to exposit the 
driving forces behind TFP growth, a rather broad, omnibus measure of pro-
ductivity, but rather to explore how productivity growth affects industry-
level and aggregate employment, sectoral reallocation, and the evolution 
of labor’s share of national income. Because TFP is difficult to measure, 
the nature of productivity growth is often unclear. One model of productiv-
ity growth, proposed by Daron Acemoglu and Pascual Restrepo, posits 
that productivity growth could be labor-intensive and capital-augmenting, 
thereby complementing the use of labor and expanding the number of  
available tasks, rather than reducing it.4 Alternatively, productivity growth 

4. Daron Acemoglu and Pascual Restrepo, “Artificial Intelligence, Automation and 
Work,” Working Paper no. 24196 (Cambridge, Mass.: National Bureau of Economic 
Research, 2018).
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could be labor-displacing, meaning it reduces the share of output paid to 
labor. Autor emphasized that the exercise in the present paper is designed 
to tease out the nature of productivity growth by examining its effect on 
employment outcomes, which provides information about the nature of the  
productivity growth occurring. He also acknowledged the limitation of their 
cross-country, industry-level panel data set. Their main source of data, the 
EU KLEMS database, does allow for better analysis across countries than 
would be possible working with more detailed micro-level data specific to 
individual countries. He noted that the paper would likely be insufficient 
to satisfy macro or labor economists, but that the authors hoped to connect 
the two disciplines in an informative way—or at least to untie them in their 
shared disapproval of the methods and conclusions of the present paper.
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