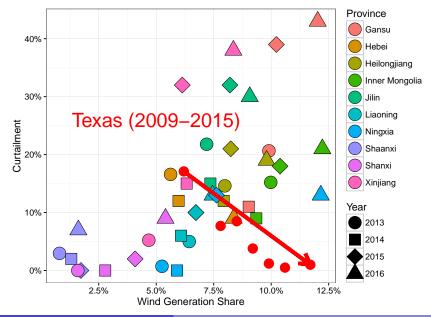

Institutions, Conflicts, and Political Economy in Renewable Energy Integration: Case of China, and Thoughts for India

> Michael R. Davidson Massachusetts Institute of Technology


> > Brookings India July 2017

Davidson - China Renewable Integration

Davidson - China Renewable Integration

Several causes of curtailment (Zhao et al. 2012; Fredrich Kahrl, J. H. Williams, and Hu 2013; NEA 2016)

Transmission bottlenecks

- Transmission bottlenecks
- Inflexible fossil generation mix, high cogeneration in north

- Transmission bottlenecks
- Inflexible fossil generation mix, high cogeneration in north
- Poor siting of wind generation w/r/t network access

- Transmission bottlenecks
- Inflexible fossil generation mix, high cogeneration in north
- Poor siting of wind generation w/r/t network access
- Protectionist policies for coal generation

Several causes of curtailment (Zhao et al. 2012; Fredrich Kahrl, J. H. Williams, and Hu 2013; NEA 2016)

- Transmission bottlenecks
- Inflexible fossil generation mix, high cogeneration in north
- Poor siting of wind generation w/r/t network access
- Protectionist policies for coal generation

Several causes of curtailment (Zhao et al. 2012; Fredrich Kahrl, J. H. Williams, and Hu 2013; NEA 2016)

- Transmission bottlenecks
- Inflexible fossil generation mix, high cogeneration in north
- Poor siting of wind generation w/r/t network access
- Protectionist policies for coal generation

High-level attention and government policies unable to solve

• Mandatory dispatch policies in place since 2005, revised 2007, 2009, 2015, 2016

Several causes of curtailment (Zhao et al. 2012; Fredrich Kahrl, J. H. Williams, and Hu 2013; NEA 2016)

- Transmission bottlenecks
- Inflexible fossil generation mix, high cogeneration in north
- Poor siting of wind generation w/r/t network access
- Protectionist policies for coal generation

- Mandatory dispatch policies in place since 2005, revised 2007, 2009, 2015, 2016
- Minimum capacity factor requirements by province (NDRC and NEA 2016)

Several causes of curtailment (Zhao et al. 2012; Fredrich Kahrl, J. H. Williams, and Hu 2013; NEA 2016)

- Transmission bottlenecks
- Inflexible fossil generation mix, high cogeneration in north
- Poor siting of wind generation w/r/t network access
- Protectionist policies for coal generation

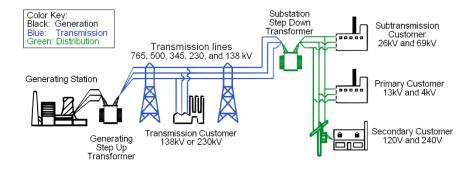
- Mandatory dispatch policies in place since 2005, revised 2007, 2009, 2015, 2016
- Minimum capacity factor requirements by province (NDRC and NEA 2016)
- Freeze new permitting in highest-curtailment provinces (NEA 2017)

Several causes of curtailment (Zhao et al. 2012; Fredrich Kahrl, J. H. Williams, and Hu 2013; NEA 2016)

- Transmission bottlenecks
- Inflexible fossil generation mix, high cogeneration in north
- Poor siting of wind generation w/r/t network access
- Protectionist policies for coal generation

- Mandatory dispatch policies in place since 2005, revised 2007, 2009, 2015, 2016
- Minimum capacity factor requirements by province (NDRC and NEA 2016)
- Freeze new permitting in highest-curtailment provinces (NEA 2017)
- Goal to raise wind share from 4% (2016) to 6% (2020) (NEA 2016)

Several causes of curtailment (Zhao et al. 2012; Fredrich Kahrl, J. H. Williams, and Hu 2013; NEA 2016)


- Transmission bottlenecks
- Inflexible fossil generation mix, high cogeneration in north
- Poor siting of wind generation w/r/t network access
- Protectionist policies for coal generation

High-level attention and government policies unable to solve

- Mandatory dispatch policies in place since 2005, revised 2007, 2009, 2015, 2016
- Minimum capacity factor requirements by province (NDRC and NEA 2016)
- Freeze new permitting in highest-curtailment provinces (NEA 2017)
- Goal to raise wind share from 4% (2016) to 6% (2020) (NEA 2016)

...

Power system primer

Investment mismatch (Xie et al. 2011)

Investment mismatch (Xie et al. 2011)

• Transmission infrastructure: suboptimal location or too few lines

Investment mismatch (Xie et al. 2011)

- Transmission infrastructure: suboptimal location or too few lines
- Other generation capacity: unable to balance variable renewables

Investment mismatch (Xie et al. 2011)

- Transmission infrastructure: suboptimal location or too few lines
- Other generation capacity: unable to balance variable renewables

Investment mismatch (Xie et al. 2011)

- Transmission infrastructure: suboptimal location or too few lines
- Other generation capacity: unable to balance variable renewables

Scheduling (Holttinen et al. 2011)

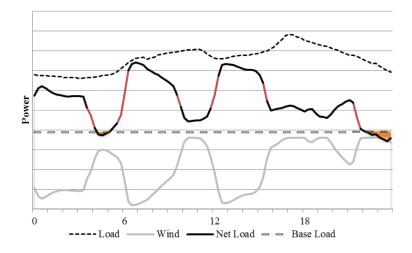
• Reserve requirements (backup generation) may increase

Investment mismatch (Xie et al. 2011)

- Transmission infrastructure: suboptimal location or too few lines
- Other generation capacity: unable to balance variable renewables

- Reserve requirements (backup generation) may increase
- New forecasting systems to build and integrate

Investment mismatch (Xie et al. 2011)


- Transmission infrastructure: suboptimal location or too few lines
- Other generation capacity: unable to balance variable renewables

- Reserve requirements (backup generation) may increase
- New forecasting systems to build and integrate
- More frequent scheduling / rescheduling of conventional generators (e.g. coal)

Investment mismatch (Xie et al. 2011)

- Transmission infrastructure: suboptimal location or too few lines
- Other generation capacity: unable to balance variable renewables

- Reserve requirements (backup generation) may increase
- New forecasting systems to build and integrate
- More frequent scheduling / rescheduling of conventional generators (e.g. coal)
- Additional impacts on frequency and voltage balancing

Who gets and pays for what? (Fischlein et al. 2013; M. Davidson, F. Kahrl, and Karplus 2016)

Who gets and pays for what? (Fischlein et al. 2013; M. Davidson, F. Kahrl, and Karplus 2016)

• Existing generators get smaller market share

Who gets and pays for what? (Fischlein et al. 2013; M. Davidson, F. Kahrl, and Karplus 2016)

- Existing generators get smaller market share
- New trade flows between provinces/states/countries

Who gets and pays for what? (Fischlein et al. 2013; M. Davidson, F. Kahrl, and Karplus 2016)

- Existing generators get smaller market share
- New trade flows between provinces/states/countries
- Who pays for new investments and scheduling services

Who gets and pays for what? (Fischlein et al. 2013; M. Davidson, F. Kahrl, and Karplus 2016)

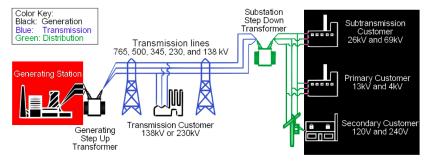
- Existing generators get smaller market share
- New trade flows between provinces/states/countries
- Who pays for new investments and scheduling services

Who makes decisions?

Who gets and pays for what? (Fischlein et al. 2013; M. Davidson, F. Kahrl, and Karplus 2016)

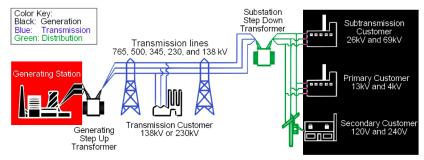
- Existing generators get smaller market share
- New trade flows between provinces/states/countries
- Who pays for new investments and scheduling services

Who makes decisions?

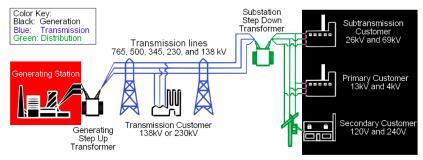

• Additional services and investments bring in new actors

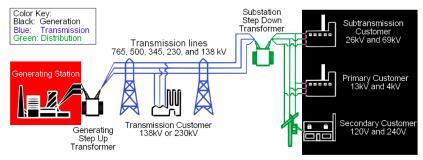
Who gets and pays for what? (Fischlein et al. 2013; M. Davidson, F. Kahrl, and Karplus 2016)

- Existing generators get smaller market share
- New trade flows between provinces/states/countries
- Who pays for new investments and scheduling services


Who makes decisions?

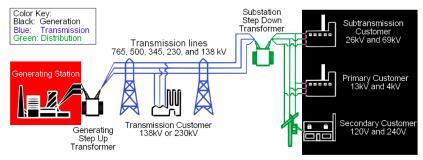
- Additional services and investments bring in new actors
- Need for coordination shifts decision-making power (e.g. setting conventional generation schedules)


Most countries have undergone some deregulation


Most countries have undergone some deregulation

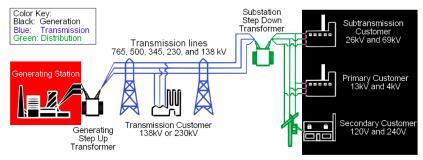
• Traditional vertically-integrated utilities (govt-owned or exclusive franchise) \rightarrow Competition in some segments (typically, generation and retail)

Most countries have undergone some deregulation


- Traditional vertically-integrated utilities (govt-owned or exclusive franchise) → Competition in some segments (typically, generation and retail)
- "Standard liberalization prescription" (Hunt 2002; Joskow 2008)

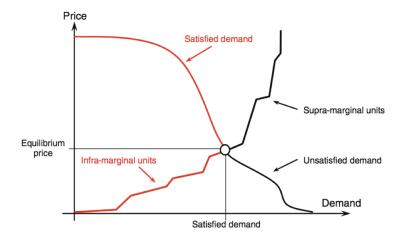
Most countries have undergone some deregulation

- Traditional vertically-integrated utilities (govt-owned or exclusive franchise) \rightarrow Competition in some segments (typically, generation and retail)
- "Standard liberalization prescription" (Hunt 2002; Joskow 2008)
 - Reduce conflicts of interest in new institutions


Backdrop of market restructuring = "deregulation"

Most countries have undergone some deregulation

- Traditional vertically-integrated utilities (govt-owned or exclusive franchise) \rightarrow Competition in some segments (typically, generation and retail)
- "Standard liberalization prescription" (Hunt 2002; Joskow 2008)
 - Reduce conflicts of interest in new institutions
 - Create proper incentive regulation for monopolies


Backdrop of market restructuring = "deregulation"

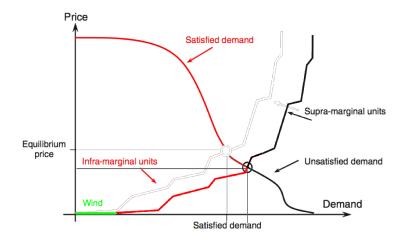
Most countries have undergone some deregulation

- Traditional vertically-integrated utilities (govt-owned or exclusive franchise) \rightarrow Competition in some segments (typically, generation and retail)
- "Standard liberalization prescription" (Hunt 2002; Joskow 2008)
 - Reduce conflicts of interest in new institutions
 - Create proper incentive regulation for monopolies
 - High degree of integration between operations and markets

Market functioning: Matching supply and demand

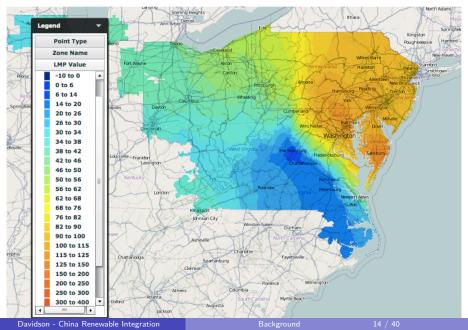
In electricity, the market is naturally differentiated by both location (e.g., substation) and time (minutes to hour) \rightarrow Locational Marginal Price (LMP) (Schweppe et al. 1988)

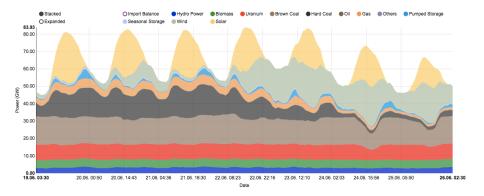
Davidson - China Renewable Integration


Market functioning with renewables

In electricity, the market is naturally differentiated by both location (e.g., substation) and time (minutes to hour) \rightarrow Locational Marginal Price (LMP) (Schweppe et al. 1988)

Davidson - China Renewable Integration


Market functioning with renewables


In electricity, the market is naturally differentiated by both location (e.g., substation) and time (minutes to hour) \rightarrow Locational Marginal Price (LMP) (Schweppe et al. 1988)

Davidson - China Renewable Integration

Locational signals (PJM 5-minute prices)

Time signals (Germany generation profile: June 19-26, 2017)

Time signals (Germany prices: June 19-26, 2017)

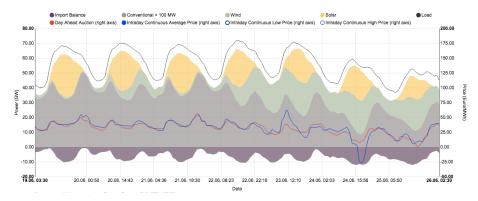


Figure: Day-ahead price. Real-time (hourly) price.

Countries frequently diverge from "textbook" (J. Williams and Ghanadan 2006)

Countries frequently diverge from "textbook" (J. Williams and Ghanadan 2006)

• Range of degrees of operation-market integration

Countries frequently diverge from "textbook" (J. Williams and Ghanadan 2006)

- Range of degrees of operation-market integration
- Persistence of legacy central planning institutions

Countries frequently diverge from "textbook" (J. Williams and Ghanadan 2006)

- Range of degrees of operation-market integration
- Persistence of legacy central planning institutions
- Competition structure, conflicts of interest, ownership ...

Countries frequently diverge from "textbook" (J. Williams and Ghanadan 2006)

- Range of degrees of operation-market integration
- Persistence of legacy central planning institutions
- Competition structure, conflicts of interest, ownership ...

Countries frequently diverge from "textbook" (J. Williams and Ghanadan 2006)

- Range of degrees of operation-market integration
- Persistence of legacy central planning institutions
- Competition structure, conflicts of interest, ownership ...

How do power markets affect renewable energy outcomes?

• Much work focuses on **prices and costs** (Jamasb 2006; Zhang, Parker, and Kirkpatrick 2008)

Countries frequently diverge from "textbook" (J. Williams and Ghanadan 2006)

- Range of degrees of operation-market integration
- Persistence of legacy central planning institutions
- Competition structure, conflicts of interest, ownership ...

- Much work focuses on **prices and costs** (Jamasb 2006; Zhang, Parker, and Kirkpatrick 2008)
- Or disbenefits from abuses of market power (Borenstein, Bushnell, and Wolak 2002)

Countries frequently diverge from "textbook" (J. Williams and Ghanadan 2006)

- Range of degrees of operation-market integration
- Persistence of legacy central planning institutions
- Competition structure, conflicts of interest, ownership ...

- Much work focuses on **prices and costs** (Jamasb 2006; Zhang, Parker, and Kirkpatrick 2008)
- Or disbenefits from abuses of market power (Borenstein, Bushnell, and Wolak 2002)
- In Europe, regional market and renewable energy integration of growing interest (Aravena and Papavasiliou 2017; Neuhoff, Wolter, and Schwenen 2016)

Countries frequently diverge from "textbook" (J. Williams and Ghanadan 2006)

- Range of degrees of operation-market integration
- Persistence of legacy central planning institutions
- Competition structure, conflicts of interest, ownership ...

- Much work focuses on **prices and costs** (Jamasb 2006; Zhang, Parker, and Kirkpatrick 2008)
- Or disbenefits from abuses of market power (Borenstein, Bushnell, and Wolak 2002)
- In Europe, regional market and renewable energy integration of growing interest (Aravena and Papavasiliou 2017; Neuhoff, Wolter, and Schwenen 2016)
- Still, little work on renewable energy implications, especially in non-standard markets

Davidson, Michael R. and I. J. Pérez-Arriaga (2017). *Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector*. MIT CEEPR Working Paper. Available at: www.mdavidson.org.

Davidson, Michael R. and I. J. Pérez-Arriaga (2017). Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector. MIT CEEPR Working Paper. Available at: www.mdavidson.org.

"Partial" restructuring blending market and central planning elements • Former government ministry disbanded in 1998, unbundled in 2002

Davidson, Michael R. and I. J. Pérez-Arriaga (2017). Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector. MIT CEEPR Working Paper. Available at: www.mdavidson.org.

- Former government ministry disbanded in 1998, unbundled in 2002
- Restructuring process incomplete (Andrews-Speed 2013):

Davidson, Michael R. and I. J. Pérez-Arriaga (2017). Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector. MIT CEEPR Working Paper. Available at: www.mdavidson.org.

- Former government ministry disbanded in 1998, unbundled in 2002
- Restructuring process incomplete (Andrews-Speed 2013):
 - Legacy quota allocation and price-setting institutions retained/modified

Davidson, Michael R. and I. J. Pérez-Arriaga (2017). Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector. MIT CEEPR Working Paper. Available at: www.mdavidson.org.

- Former government ministry disbanded in 1998, unbundled in 2002
- Restructuring process incomplete (Andrews-Speed 2013):
 - Legacy quota allocation and price-setting institutions retained/modified
 - Heavily dominated by state-owned enterprises (SOEs) w/weak profit motives

Davidson, Michael R. and I. J. Pérez-Arriaga (2017). Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector. MIT CEEPR Working Paper. Available at: www.mdavidson.org.

- Former government ministry disbanded in 1998, unbundled in 2002
- Restructuring process incomplete (Andrews-Speed 2013):
 - Legacy quota allocation and price-setting institutions retained/modified
 - Heavily dominated by state-owned enterprises (SOEs) w/weak profit motives
 - Strong local government protectionism

Davidson, Michael R. and I. J. Pérez-Arriaga (2017). Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector. MIT CEEPR Working Paper. Available at: www.mdavidson.org.

- Former government ministry disbanded in 1998, unbundled in 2002
- Restructuring process incomplete (Andrews-Speed 2013):
 - Legacy quota allocation and price-setting institutions retained/modified
 - Heavily dominated by state-owned enterprises (SOEs) w/weak profit motives
 - Strong local government protectionism
 - Insufficient regulatory oversight

Davidson, Michael R. and I. J. Pérez-Arriaga (2017). *Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector*. MIT CEEPR Working Paper. Available at: www.mdavidson.org.

"Partial" restructuring blending market and central planning elements

- Former government ministry disbanded in 1998, unbundled in 2002
- Restructuring process incomplete (Andrews-Speed 2013):
 - Legacy quota allocation and price-setting institutions retained/modified
 - Heavily dominated by state-owned enterprises (SOEs) w/weak profit motives
 - Strong local government protectionism
 - Insufficient regulatory oversight

New round of reforms (State Council 2015)

Davidson, Michael R. and I. J. Pérez-Arriaga (2017). Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector. MIT CEEPR Working Paper. Available at: www.mdavidson.org.

"Partial" restructuring blending market and central planning elements

- Former government ministry disbanded in 1998, unbundled in 2002
- Restructuring process incomplete (Andrews-Speed 2013):
 - Legacy quota allocation and price-setting institutions retained/modified
 - Heavily dominated by state-owned enterprises (SOEs) w/weak profit motives
 - Strong local government protectionism
 - Insufficient regulatory oversight

New round of reforms (State Council 2015)

• Slowly reduce planned electricity sales

Davidson, Michael R. and I. J. Pérez-Arriaga (2017). *Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector*. MIT CEEPR Working Paper. Available at: www.mdavidson.org.

"Partial" restructuring blending market and central planning elements

- Former government ministry disbanded in 1998, unbundled in 2002
- Restructuring process incomplete (Andrews-Speed 2013):
 - Legacy quota allocation and price-setting institutions retained/modified
 - Heavily dominated by state-owned enterprises (SOEs) w/weak profit motives
 - Strong local government protectionism
 - Insufficient regulatory oversight

New round of reforms (State Council 2015)

- Slowly reduce planned electricity sales
- Address renewable energy integration challenges

Davidson, Michael R. and I. J. Pérez-Arriaga (2017). *Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector*. MIT CEEPR Working Paper. Available at: www.mdavidson.org.

"Partial" restructuring blending market and central planning elements

- Former government ministry disbanded in 1998, unbundled in 2002
- Restructuring process incomplete (Andrews-Speed 2013):
 - Legacy quota allocation and price-setting institutions retained/modified
 - Heavily dominated by state-owned enterprises (SOEs) w/weak profit motives
 - Strong local government protectionism
 - Insufficient regulatory oversight

New round of reforms (State Council 2015)

- Slowly reduce planned electricity sales
- Address renewable energy integration challenges
- Reduce role of grid company

 70 interviews conducted 2013-2016 in 10 provinces of China: grid operators, plant managers, regulators

- 70 interviews conducted 2013-2016 in 10 provinces of China: grid operators, plant managers, regulators
- Quotas for coal plants still widely practiced at provincial level, despite various "priority dispatch" requirements

- 70 interviews conducted 2013-2016 in 10 provinces of China: grid operators, plant managers, regulators
- Quotas for coal plants still widely practiced at provincial level, despite various "priority dispatch" requirements
- Inter-provincial transmission allocation commonly fixed for the year, limited flexibility / integration with day-ahead and intra-day network conditions

- 70 interviews conducted 2013-2016 in 10 provinces of China: grid operators, plant managers, regulators
- Quotas for coal plants still widely practiced at provincial level, despite various "priority dispatch" requirements
- Inter-provincial transmission allocation commonly fixed for the year, limited flexibility / integration with day-ahead and intra-day network conditions
- Widespread *physical bilateral* contract markets without short-term / imbalance market

- 70 interviews conducted 2013-2016 in 10 provinces of China: grid operators, plant managers, regulators
- Quotas for coal plants still widely practiced at provincial level, despite various "priority dispatch" requirements
- Inter-provincial transmission allocation commonly fixed for the year, limited flexibility / integration with day-ahead and intra-day network conditions
- Widespread *physical bilateral* contract markets without short-term / imbalance market
- Market experiments overseen and, in some cases, directed by local governments

Modeling wind curtailment in Northeast

Modeling wind curtailment in Northeast

Unit commitment optimization (typical daily scheduling tool in most power systems):

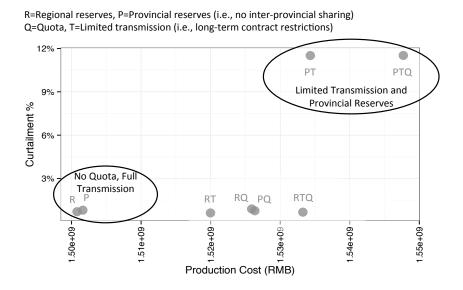
$$Z = \min_{\mathbf{x}, \mathbf{y}} \sum_{\mathbf{p}, \mathbf{k}, t} \left(\mathbf{c}^{\top} \mathbf{x}_{\mathbf{p}, \mathbf{k}, t} + \mathbf{d}^{\top} \mathbf{y}_{\mathbf{p}, \mathbf{k}, t} \right)$$
(1)

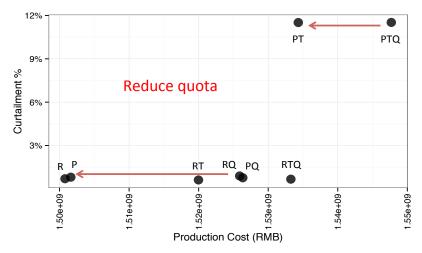
s.t. Supply/demand balance Network losses

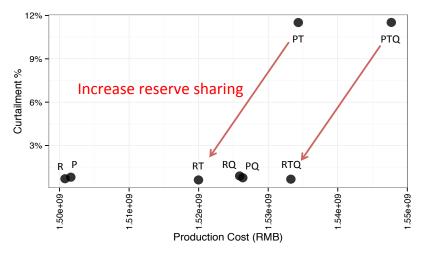
Generator output/ramping limits

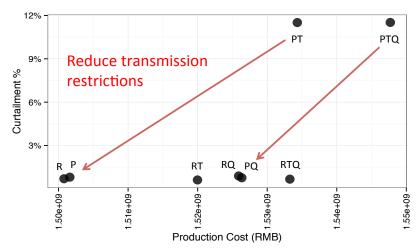
 ${\rm Commitment\ constraints}$

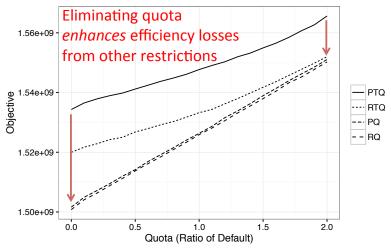
District heating requirements


Reserve requirements


Quota constraint


 $x \in \{0..N_{p,k}\}$: commitments y: outputs c: start up costs t: time steps (1 hour) d: variable operation costs p: provinces k: generator clusters Full model formulation in: (M. R. Davidson and Pérez-Arriaga 2017)


Three key political conflicts


Quota (Q)	Limited Transmission	Provincial Reserves (P)
	(T)	
Minimum generation	Planned total transfers	Provinces cannot share
allowance to coal-fired	between provinces.	reserve generation.
generators.		
	Implemented as reduction	Hence, must have
Implemented as minimum	in interconnection	adequate reserves
constraint on total	capacity and restricted	available within province.
generation for each type	flow directions between	
of generator.	provinces.	

• Inflexible trading caused by coal quotas and provincial autonomy in power systems operation

- Inflexible trading caused by coal quotas and provincial autonomy in power systems operation
- Market designs motivated by local industrial interests: governments frequently intervene to lower price, stimulate demand

- Inflexible trading caused by coal quotas and provincial autonomy in power systems operation
- Market designs motivated by local industrial interests: governments frequently intervene to lower price, stimulate demand
- Wind curtailment enhanced by interaction of inter-provincial trade barriers on different time-scales

- Inflexible trading caused by coal quotas and provincial autonomy in power systems operation
- Market designs motivated by local industrial interests: governments frequently intervene to lower price, stimulate demand
- Wind curtailment enhanced by interaction of inter-provincial trade barriers on different time-scales

Recommendations for policy

- Inflexible trading caused by coal quotas and provincial autonomy in power systems operation
- Market designs motivated by local industrial interests: governments frequently intervene to lower price, stimulate demand
- Wind curtailment enhanced by interaction of inter-provincial trade barriers on different time-scales

Recommendations for policy

• Inter-provincial trading barriers are important, under-emphasized elements of reform package to address renewable energy curtailment

- Inflexible trading caused by coal quotas and provincial autonomy in power systems operation
- Market designs motivated by local industrial interests: governments frequently intervene to lower price, stimulate demand
- Wind curtailment enhanced by interaction of inter-provincial trade barriers on different time-scales

Recommendations for policy

- Inter-provincial trading barriers are important, under-emphasized elements of reform package to address renewable energy curtailment
- Not all market mechanisms to reduce costs are equal bilateral contracts, especially physical ones, will *not* improve renewable energy situation

- Inflexible trading caused by coal quotas and provincial autonomy in power systems operation
- Market designs motivated by local industrial interests: governments frequently intervene to lower price, stimulate demand
- Wind curtailment enhanced by interaction of inter-provincial trade barriers on different time-scales

Recommendations for policy

- Inter-provincial trading barriers are important, under-emphasized elements of reform package to address renewable energy curtailment
- Not all market mechanisms to reduce costs are equal bilateral contracts, especially physical ones, will *not* improve renewable energy situation
- Modeling institution interactions can uncover "2nd-best" policies

Legacy operations and scheduling

Legacy operations and scheduling

• States have primacy and main responsibility over balancing

Legacy operations and scheduling

- States have primacy and main responsibility over balancing
- High percentage of long-term physical contracts

Legacy operations and scheduling

- States have primacy and main responsibility over balancing
- High percentage of long-term physical contracts
- Limited "unbundling"

Legacy operations and scheduling

- States have primacy and main responsibility over balancing
- High percentage of long-term physical contracts
- Limited "unbundling"

High renewable energy targets

Legacy operations and scheduling

- States have primacy and main responsibility over balancing
- High percentage of long-term physical contracts
- Limited "unbundling"

High renewable energy targets

• 175 GW of wind & solar & small RE by 2022

Legacy operations and scheduling

- States have primacy and main responsibility over balancing
- High percentage of long-term physical contracts
- Limited "unbundling"

High renewable energy targets

- 175 GW of wind & solar & small RE by 2022
- RE share rising from current 5% to 12-14%

Legacy operations and scheduling

- States have primacy and main responsibility over balancing
- High percentage of long-term physical contracts
- Limited "unbundling"

High renewable energy targets

- 175 GW of wind & solar & small RE by 2022
- RE share rising from current 5% to 12-14%

Emerging electricity markets

Legacy operations and scheduling

- States have primacy and main responsibility over balancing
- High percentage of long-term physical contracts
- Limited "unbundling"

High renewable energy targets

- 175 GW of wind & solar & small RE by 2022
- RE share rising from current 5% to 12-14%

Emerging electricity markets

• Short-term exchange transactions: 3% of total generation (CERC, 2017)

 $\mathsf{Long-term} \to \mathsf{Short-term}$

$\mathsf{Long-term} \to \mathsf{Short-term}$

• How much do long-term contract structures restrict short-term balancing?

$\mathsf{Long-term} \to \mathsf{Short-term}$

- How much do long-term contract structures restrict short-term balancing?
- Does RE integration require more flexible thermal contracts or less contracts?

$\mathsf{Long-term} \to \mathsf{Short-term}$

- How much do long-term contract structures restrict short-term balancing?
- Does RE integration require more flexible thermal contracts or less contracts?
- How will/should RE participate in exchanges in the future?

$\mathsf{Long-term} \to \mathsf{Short-term}$

- How much do long-term contract structures restrict short-term balancing?
- Does RE integration require more flexible thermal contracts or less contracts?
- How will/should RE participate in exchanges in the future?

 $\mathsf{State} \to \mathsf{Region} \ ... \mathsf{Country}$

$\mathsf{Long-term} \to \mathsf{Short-term}$

- How much do long-term contract structures restrict short-term balancing?
- Does RE integration require more flexible thermal contracts or less contracts?
- How will/should RE participate in exchanges in the future?

State \rightarrow Region ...Country

• Are current cross-border trading mechanisms sufficient for RE targets and RPOs?

$\mathsf{Long-term} \to \mathsf{Short-term}$

- How much do long-term contract structures restrict short-term balancing?
- Does RE integration require more flexible thermal contracts or less contracts?
- How will/should RE participate in exchanges in the future?

$\mathsf{State} \to \mathsf{Region} \ ... \mathsf{Country}$

- Are current cross-border trading mechanisms sufficient for RE targets and RPOs?
- What combination of market (e.g. exchange) vs. administrative (e.g. UI, PPA provisions) pricing is appropriate?

$\mathsf{Long-term} \to \mathsf{Short-term}$

- How much do long-term contract structures restrict short-term balancing?
- Does RE integration require more flexible thermal contracts or less contracts?
- How will/should RE participate in exchanges in the future?

$\mathsf{State} \to \mathsf{Region} \ ... \mathsf{Country}$

- Are current cross-border trading mechanisms sufficient for RE targets and RPOs?
- What combination of market (e.g. exchange) vs. administrative (e.g. UI, PPA provisions) pricing is appropriate?
- What will be the new balance of power between centre and state in scheduling and operation?

Thank you Michael Davidson michd@mit.edu www.mdavidson.org

References I

- Andrews-Speed, Philip (2013). "Reform Postponed: The Evolution of China's Electricity Markets." In: Evolution of Global Electricity Markets: New Paradigms, New Challenges, New Approaches, pp. 531–567.
- Aravena, I. and A. Papavasiliou (2017). "Renewable Energy Integration in Zonal Markets." In: IEEE Transactions on Power Systems 32.2, pp. 1334–1349. DOI: 10.1109/TPWRS.2016.2585222.
- Borenstein, Severin, James B. Bushnell, and Frank A. Wolak (2002). "Measuring Market Inefficiencies in California's Restructured Wholesale Electricity Market." In: *The American Economic Review* 5, p. 1376. ISSN: 00028282.
- CEC (2011). 2010 Electricity Industry Statistical Collection. Tech. rep. 《2010 电力统计资料汇编》. Beijing: China Electricity Council.
- Davidson, Michael R. and I. J. Pérez-Arriaga (2017). Modeling Unit Commitment in Political Context: Case of China's Partially Restructured Electricity Sector. Working Paper. Cambridge, MA: MIT Center for Energy and Environmental Policy Research.
- Davidson, M.R., F. Kahrl, and V.J. Karplus (2016). Toward a Political Economy Framework for Wind Integration: Does China Break the Mould? Tech. rep. 32. United Nations University World Institute for Development Economics Research.
- Fischlein, Miriam et al. (2013). "States of transmission: Moving towards large-scale wind power." In: Energy Policy 56, pp. 101–113. ISSN: 0301-4215. DOI: 10.1016/j.enpol.2012.11.028.
- Holttinen, Hannele et al. (2011). "Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration." In: Wind Energy 14.2, pp. 179–192.
- Hunt, Sally (2002). Making Competition Work in Electricity. New York: John Wiley & Sons. ISBN: 0471220981.
- Jamasb, Tooraj (2006). "Between the state and market: Electricity sector reform in developing countries." en. In: Utilities Policy 14.1, pp. 14–30. DOI: 10.1016/j.jup.2004.11.001.
- Joskow, Paul (2008). "Lessons learned from electricity market liberalization." In: The Energy Journal 29.2, pp. 9-42.
- Kahrl, Fredrich, James H. Williams, and Junfeng Hu (2013). "The political economy of electricity dispatch reform in China." In: Energy Policy 53, pp. 361–369. DOI: 10.1016/j.enpol.2012.10.062.
- NDRC and NEA (2016). Notice Regarding Implementing Wind and Solar Full Purchase Safeguard Management Work. Tech. rep. 《关于做好风电、光伏发电全额保障性收购管理工作的通知》. National Development and Reform Commission. URL: http://www.nea.gov.cn/2016-06/01/c_135404529.htm (visited on 07/30/2016).
- NEA (2016). 13th Five-Year Plan on Wind Development. Tech. rep. 《风电发展"十三五"规划》. Beijing: National Energy Administration. URL: http://zfxxgk.nea.gov.cn/auto87/201611/t20161130_2323.htm.
- (2017). Notice Regarding 2017 Monitoring of Wind Power Investment. 《国家能源局关于发布 2017 年度风电投资监测预警 结果的通知》、URL: http://zfxxgk.nea.gov.cn/auto87/201702/t20170222_2604.htm (visited on 03/27/2017).

References II

- Neuhoff, Karsten, Sophia Wolter, and Sebastian Schwenen (2016). "Power markets with Renewables: New perspectives for the European Target Model." In: *The Energy Journal* 37.01. DOI: 10.5547/01956574.37.2.kneu.
- Schweppe, Fred C. et al. (1988). Spot Pricing of Electricity. The Kluwer International Series in Engineering and Computer Science, Power Electronics & Power Systems. Boston, MA: Springer.
- State Council (2015). Opinion Regarding Deepening Electricity Sector Reform. Tech. rep. 9. 《中共中央国务院关于进一步深化 电力体制改革的若干意见》. Beijing: State Council.
- State Grid (2012). 2011 Power Exchange Report. Tech. rep. Beijing: State Grid.
- Williams, J and R Ghanadan (2006). "Electricity reform in developing and transition countries: A reappraisal." en. In: Energy 31.6-7, pp. 815–844. ISSN: 03605442. DOI: 10.1016/j.energy.2005.02.008.
- Xie, Le et al. (2011). "Wind Integration in Power Systems: Operational Challenges and Possible Solutions." In: Proceedings of the IEEE 99.1, pp. 214–232. DOI: 10.1109/JPR0C.2010.2070051.
- Zhang, Yin-Fang, David Parker, and Colin Kirkpatrick (2008). "Electricity sector reform in developing countries: an econometric assessment of the effects of privatization, competition and regulation." en. In: *Journal of Regulatory Economics* 33.2, pp. 159–178. DOI: 10.1007/s11149-007-9039-7.
- Zhao, Xiaoli et al. (2012). "Constraints on the effective utilization of wind power in China: An illustration from the northeast China grid." en. In: Renewable and Sustainable Energy Reviews 16.7, pp. 4508–4514. ISSN: 13640321. DOI: 10.1016/j.rser.2012.04.029.

Modeling wind curtailment in Northeast II

Experimental setup

- NE grid relatively isolated, with pronounced coal overcapacity and large wind curtailment (15-30%), winter highest
- Historical network and generator data from 2011 winter (CEC 2011)
- Fixed **one-week demand** in winter season, and **six wind scenarios** to capture variability
- Cogeneration units as must-run and higher minimum outputs (sensitivity on commitments)
- Measure effects and interactions of three political conflicts

Outcomes of interest

- Total production cost
- Wind curtailment

Model I

min

in
$$\sum_{g \in G} \sum_{t \in T} \left(\rho_g^{su} \boldsymbol{v}_{g,t}^{up} + \rho_g^{var} \boldsymbol{y}_{g,t} \right)$$
(2)

s.t.
$$\sum_{g \in G_p} \mathbf{y}_{g,t} - \sum_{p' \neq p} [\mathbf{f}_{p,p',t} + \mathbf{I}_{p,p',t}/2] = d_{p,t}$$
 (3)

$$\boldsymbol{f}_{\boldsymbol{p},\boldsymbol{p}',t} = -\boldsymbol{f}_{\boldsymbol{p}',\boldsymbol{p},t} \tag{4}$$

$$\mathbf{f}_{p,p',t} = \mathbf{f}_{p,p',t}^+ - \mathbf{f}_{p,p',t}^-$$
(5)

$$\sum_{s} j_{p,p',t,s} = f_{p,p',t}^{+} + f_{p,p',t}^{-}$$
(6)

$$\mathbf{f}_{\boldsymbol{\rho},\boldsymbol{\rho}',t} + \mathbf{I}_{\boldsymbol{\rho},\boldsymbol{\rho}',t}/2 \le \overline{\mathbf{F}}_{\boldsymbol{\rho},\boldsymbol{\rho}'} \tag{7}$$

$$I_{p,p',t} = \mu_{p,p'} \sum_{s} \alpha_{p,p',s} j_{p,p',t,s}$$
(8)

$$\alpha_{p,p',s} = (2s-1)\Delta f_{p,p'}, \qquad \forall s = 1..S$$
(9)

$$\Delta f_{p,p'} = \overline{F}_{p,p'} / S \tag{10}$$

$$I_{\rho,\rho',t}, f_{\rho,\rho',t}^+, f_{\rho,\rho',t}^-, j_{\rho,\rho',t,s} \ge 0$$
(11)

Model II

$$\mathbf{U}_{\boldsymbol{\rho},\boldsymbol{k},t} \leq |\boldsymbol{G}_{\boldsymbol{\rho},\boldsymbol{k}}| \tag{12}$$

$$\mathbf{U}_{p,k,t} \geq \sum_{t'=t-MU_k}^{L} \mathbf{V}_{p,k,t'}^{up}$$
(13)

$$|G_{p,k}| - \mathbf{U}_{p,k,t} \geq \sum_{t'=t-MD_k}^{t} \mathbf{V}_{p,k,t'}^{dn}$$
(14)

1

$$\mathbf{U}_{p,k,t} - \mathbf{U}_{p,k,t-1} = \mathbf{V}_{p,k,t}^{up} - \mathbf{V}_{p,k,t}^{dn}$$
(15)

$$\mathbf{W}_{p,k,t} = \mathbf{Y}_{p,k,t} - \underline{P}_k \mathbf{U}_{p,k,t}$$
(16)

$$\mathbf{W}_{g,t} - \mathbf{W}_{g,t-1} \leq \mathbf{U}_{\rho,k,t} R U_k + \mathbf{V}_{\rho,k,t}^{up} \underline{P}_k$$
(17)

$$\mathbf{W}_{g,t-1} - \mathbf{W}_{g,t} \leq \mathbf{U}_{p,k,t} R D_k + \mathbf{V}_{p,k,t}^{dn} \underline{P}_k$$
(18)

$$\mathbf{R}_{\rho,k,t} \leq \mathbf{U}_{\rho,k,t} R U_k \tag{19}$$

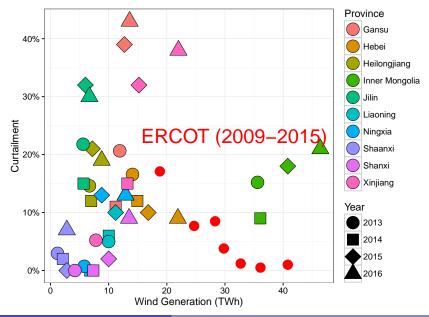
$$\mathbf{S}_{p,k,t} \leq \mathbf{U}_{p,k,t} R D_k \tag{20}$$

Table: Modeled minimum winter thermal generation quotas Q_p by province.

	Annual CF	Assumed Max Summer CF	Estimated Min Winter CF	Q _p
HL	47%	80%	14%	14%
JL	39%	80%	-2%	0%
LN	50%	80%	20%	20%
IME	58%	80%	36%	36%

Transmission capacities (physical)

Table: Estimated inter-provincial transmission capacities $\overline{F}_{p,p'}$ (MW) in 2011. (HL = Heilongjiang, JL = Jilin, LN = Liaoning, IME = Eastern Inner Mongolia)


	HL	JL	LN	IME
HL	0	4500	0	1800
JL	4500	0	3600	600
LN	0	3600	0	8000
IME	1800	600	8000	0

Transmission capacities (restricted)

Table: Modeled effective inter-provincial transmission capacities $\overline{F}_{p,p'}^*$ under provincial dispatch (MW). Source of exports (2011): (State Grid 2012).

	Exports (PWh)	Avg. power (MW)	$\overline{F}^*_{p,p'}$ (MW)
$HL\toJL$	0.119	14	0
$HL\toLN$	5.257	600	600
$HL\toIME$	0.426	49	0
$JL\toLN$	2.579	294	300
$IME\toLN$	10.622	1213	1200

China's wind curtailment

Davidson - China Renewable Integration