

A DIVISION OF ANDREW KALOTAY ASSOCIATES, INC.

Creating a Live Yield Curve In the Illiquid Muni Market

- Andrew Kalotay -

6th Annual Municipal Finance Conference Washington, DC, July 17, 2017

Real-Time US Treasury Yields

US On/Off The Run Sovereig	gn Curve	an c1	C
US On/Off The Run Sovereig	Actions •	98) Chart	Setting
X-Axis Tenor Y-Axis Mid YTM		Currency None -	PCS BGN
Specific mm/dd/yy 🗂 Relative 🔟	ast 1D 1W 1	LM Modify	
 Values and Members Values 	Members 💿 C	onstituents	
6) Export			- 1 9
Tenor Description	Price	Yield Source	Update
11) 1M B 0 07/20/17 Govt	0,832	0.845 BGN	15:32
12) 3M B 0 09/21/17 Govt	0.973	0,988 BGN	15:32
13) 6M B 0 12/21/17 Govt	1.103	1.124 BGN	15:32
14) 1Y B 0 06/21/18 Govt	1.190	1.218 BGN	15:33
15) 2Y T 1 ¹ / ₄ 05/31/19 Govt	99-25 ⁷ 8	1.350 BGN	15:33
16) 3Y T 1 5 06/15/20 Govt	100-00 ¹ 8	1.499 BGN	15:33
1) 4Y T 1 3 05/31/21 Govt	98-27 ³ 4	1.673 BGN	15:33
18) 5Y T 1 ³ ₄ 05/31/22 Govt	99-28 ⁷ s	1.771 BGN	15:33
19) 6Y T 1 5 05/31/23 Govt	98-14	1.904 BGN	15:33
20) 7Y T 2 05/31/24 Govt	100-02 ³ 4	1.987 BGN	15:33
21) 8Y T 2 % 05/15/25 Govt	100-13	2.069 BGN	15:33
22) 9Y T 1 5 05/15/26 Govt	95-28+	2.135 BGN	15:33
23) 10Y T 2 % 05/15/27 Govt	101-294	2.159 BGN	15:33
T 2 % 05/15/27 Govt 1	01-29 ¹ 4	2.159 BGN	
	105-23	2,084 601	15:33
2) 30Y 3 05/15/47 Govt	105-1/4	2.728 BGN	15:33

Source: Bloomberg

1

Real-Time UST Yield Curve

Source: Bloomberg

How About the Muni Market?

Large but illiquid

Small issue sizes, little trading after issuance Trades reported within 15 minutes to regulator MSRB/EMMA

Common structure: Serial issue of 5% bonds, callable at par after 10 years (5% NC-10) Issued at a significant premium

No live yield curve

Although needed for a wide range of purposes

Typical Recent Municipal Issue

\$78,265,000 STATE OF OREGON OREGON FACILITIES AUTHORITY REVENUE REFUNDING BONDS (Samaritan Health Services Project) 2016 Series A								
		Maturity	Schedule	Yield-to-				
Maturity Data	Driveirel	Teterest		Worst				
(October 1)	Amount	Rates	Yield	Price	CUSIP^{\dagger}			
				1/				
2024	\$1,155,000	5.000%	2.280%	/ 119.503	68608JVU2			
2025	1,440,000	5.000	2.560	119.258	68608JVV0			
2026	3,580,000	5.000	2.720	119.625	68608JVW8			
2027	3,775,000	5.000	2.870	118.199*	68608JVX6			
2028	3,965,000	5.000	2.970	117.260 [*]	68608JVY4			
2029	1,885,000	5.000	3.050	116.515*	68608JVZ1			
2030	1,975,000	5.000	3.130	115.776 [*]	68608JWA5			
2031	7,430,000	5.000	3.200	115.133*	68608JWB3			
2032	7,970,000	5.000	3.260	114.586*	68608JWC1			
2036	1,095,000	5.000	3.390	113.411*	68608JWG2			

\$19,685,000, 5.000% Term Bonds due October 1, 2035, Yield 3.380%, Price 113.501*, CUSIP[†]68608JWF4
\$7,800,000, 5.000% Term Bonds due October 1, 2041, Yield 3.500%, Price 112.428*, CUSIP[†]68608JWH0
\$16,510,000, 5.000% Term Bonds due October 1, 2046, Yield 3.530%, Price 112.162*, CUSIP[†]68608JWJ6

Priced to the first optional call date of October 1, 2026.

Why 5% NC-10?

Issuers: Show large savings from refunding Call option at issuance is deep in the money Bonds are usually eligible for advance refunding

Institutional investors: Avoid undesirable mark-to-market treatment if rates rise

Prices of bonds selling at a discount are further depressed by tax payable at maturity by marginal buyer Bonds issued at a high premium are unlikely to fall below par Benchmark Curves Represent Yields of 5% NC-10 Bonds

Because 5% NC-10 is the standard structure Used to be par NC-10

Curves distributed by several vendors, once or twice daily MMA and MMD are best known Bloomberg curve represents yields of 5% optionless bonds

Yields obtained by surveying major market participants and using trade data from EMMA

Process not transparent

Typical 5% NC-10 Yield Curve And Corresponding Prices

Problems with Callable Benchmark Curves

Fail to be arbitrage free: *Prices of 5% callable bonds should decline with maturity*

Increasing yields do not assure declining prices

Implied optionless (NCL) curve not credible: Smooth callable curve implies kink in optionless curve

Usage: Analysts fail to 'strip out' call option Should use optionless curve Results based on callable benchmark are misleading

Examples follow

Smooth Callable Curve Implies Kink in Optionless Curve

Smooth Optionless Curve Implies Kink In Callable Curve

Spreads of Benchmark Bonds to Callable Curve Are Nonsensical

The AP/MBIS Yield Curves

Benchmark curve derived from 'ask' prices posted by several dealers for roughly 4,000 investment-grade bonds Bonds updated monthly

Selection, prices, and curve construction fully documented Rigorous, automated process; uses CurviLinear[™] methodology

Credit-specific and optionless curves also reported

Calculated and disseminated hourly Plans call for greater frequency

Distributed to financial institutions, the press, and to the public (by AP, via third party tools)

CurviLinear[™] Methodology

- Solve for optionless par yield curve that prices bonds as closely as possible to the input prices Multidimensional nonlinear regression using Google's open source Ceres Solver
- Derive 5% NC10 curve from optionless par curve YTW's of fairly priced 5% NC10 bonds

All prices, including call option values, computed using standard bond analytics (Black-Karasinski process with 15% vol, tax-neutral OAS)

Work in progress:

Improve fit by solving for par curve and volatility simultaneously Build volatility surface – by maturity and lock-out

E.g. Vol of 5% bond maturing in 15 years callable in 8 years is 17.3%

In Summary

Muni market has lacked a live benchmark yield curve

- Standard curves represent yields of hypothetical 5% callable bonds
 - Opaque process, often defective and misused

New AP/MBIS curves are derived from ask prices of selected bonds across maturity spectrum Methodology transparent Currently updated hourly Approach allows for ongoing enhancements More frequent updates Interest rate volatility surface

Contact Information

Andrew Kalotay

andy@kalotay.com

(212) 482 0900