Safety, Liquidity, and the Natural Rate of Interest

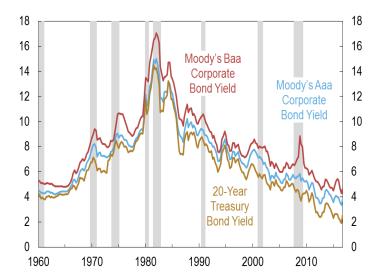
Marco Del Negro, Domenico Giannone Marc P. Giannoni, Andrea Tambalotti

Federal Reserve Bank of New York

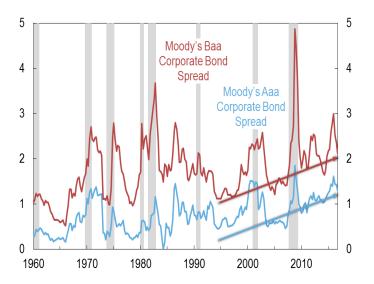
Brookings Papers on Economic Activity, Spring 2017

Disclaimer: The views expressed are ours and do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System

Why are interest rates low in the U.S.?


- Interest rates are low because r* is low, and r* is low because of the increasing premium for safety/liquidity since the late 1990s
- Build on recent finance literature emphasizing the role of safety/liquidity in the pricing of securities

$$1 = E_t \left[M_{t+1} (1 + r_t) (1 + \mathbf{CY}_{t+1}) \right]$$


where M_{t+1} is the stochastic discount factor, $(1 + r_t)$ is the pecuniary return, and $(1 + CY_{t+1})$ is the **convenience yield**

- Krishamurthy & Vissing-Jorgensen, 2012, Greenwood, Hanson, Stein, 2015, Kyiotaki & Moore, 2012, ...
- Our story: $(\mathbf{1}+\mathsf{CY})$ \uparrow \Rightarrow $(\mathbf{1}+\mathsf{r})$ \downarrow

Treasury and corporate yields

Spreads

Outline

- A flexible reduced form model:
 - Extract trends in observed interest rates, and in the convenience yield
- A structural model (DSGE):
 - Characterize the natural rate of interest *r*^{*} and estimate its low frequency movements

The reduced form model: VAR with common trends

• Multi-variate unobserved component model:

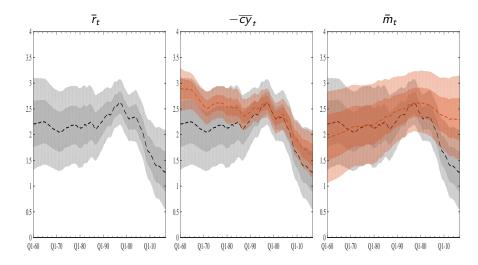
$$y_t = \Lambda \bar{y}_t + \tilde{y}_t$$

where y_t are $n \times 1$ observables, \bar{y}_t are the $q \times 1$ trends (Λ is the matrix of loadings)

$$\bar{y}_t = \bar{y}_{t-1} + e_t$$

and the stationary components \tilde{y}_t follow an unrestricted VAR

$$\Phi(L)\tilde{y}_t = \varepsilon_t$$


• Based on Stock and Watson, 1988, but estimated with Bayesian methods

Trends	Observables (1960Q1-2016Q4)					
	Inflation	π_t		$+\tilde{\pi}_t$		
$ar{\pi}_t$	Infl. Exp. (long run)	π^{e}_{t}	$= \bar{\pi}_t$			
	T-bill rate	$R_{3M,t}$	$= \bar{\pi}_t + \bar{r}_t$			
\overline{r}_t	T-bill Exp. (long run)	R_t^e	$+\bar{m}_t - \bar{cy}_t + \bar{m}_t - \bar{cy}_t^s -$	\overline{cy}_t^l		
	Long-run Treas.	$R_{20Y,t}$		$+\overline{\mathbf{tp}}_{\mathbf{t}}\overline{tp}_{t}$		

Decompose
$$r_t = m_t - \overline{cy}_t$$

Baa Yield $R_t^{Baa} = \overline{\pi}_t + \overline{m}_t + \overline{tp}_t$
 $\overline{CY}_t \Rightarrow \overline{R}_t^{Baa} - \overline{R}_{80,t} = \overline{cy}_t + \overline{\partial eK_t}$
Decompose $\overline{r}_t = \overline{m}_t - \overline{cy}_t^s - \overline{cy}_t^l$
 $\overline{CY}_t^s \qquad \frac{Baa - Aaa}{Spread} \quad \overline{R}_t^{Baa} - \overline{R}_t^{Aaa} = \overline{cy}_t^s$

Del Negro (Ganfare, Giannoni, Tambalotti Safety, Liquidity, and the Natural Rate of Interest

VAR Results #1 and #2: \bar{r}_t falls by 1.25% from late 1990s; Main driver is \overline{cy}_t

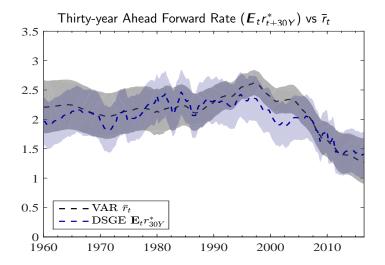
Del Negro, Giannone, Giannoni, Tambalotti

	0	,	· · · · · · · · · · · · · · · · · · ·		
		Baseline	Conv.Yield	Liq.+Safe.	Consumption
r _t		-1.29**	-1.27**	-1.30**	-1.40**
	$-\overline{\mathbf{cy}}_{\mathbf{t}}$		-0.93**	-0.97**	-0.78**
	$-\overline{cy}_{t}^{s}$ (safety)			-0.45**	-0.33**
	$-\overline{\mathbf{cy}}_{\mathbf{t}}^{I}$ (liquidit	y)		-0.52**	-0.45**
	m _t		-0.34	-0.33	-0.61
	$ar{\mathbf{g}}_{\mathrm{t}}$				-0.56
	$ar{oldsymbol{eta}}_{ extsf{t}}$				-0.04
Δī	t				-0.80

Change in Trends, 1998Q1-2016Q4

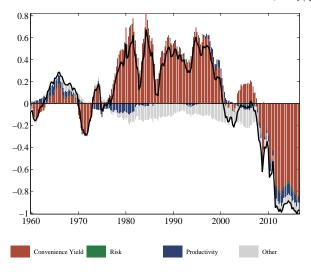
Del Negro, Giannone, Giannoni, Tambalotti

		Baseline	Conv.Yield	Liq.+Safe. C	Consumption
r _t		-1.29**	-1.27**	-1.30**	-1.40**
	$-\overline{cy}_t$		-0.93**	-0.97**	-0.78**
	$-\overline{cy}_{t}^{s}$ (safety)			-0.45**	-0.33**
	$-\overline{\mathbf{cy}}_{\mathbf{t}}^{I}$ (liquidit	y)		-0.52**	-0.45**
	$\bar{\mathbf{m}}_{\mathrm{t}}$		-0.34	-0.33	-0.61
	$ar{\mathbf{g}}_{t}$				-0.56
	$ar{eta}_{t}$				-0.04
$\Delta \bar{c}_t$					-0.80


Change in Trends, 1998Q1-2016Q4

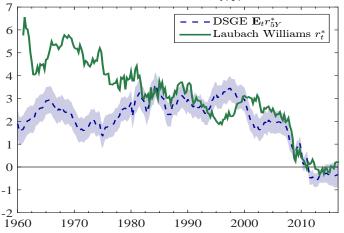
Del Negro, Giannone, Giannoni, Tambalotti

DSGE


- Medium/largish-scale model with Smets & Wouters' nominal and real rigidities, and financial frictions as in Bernanke, Gertler, and Gilchrist, 1999
 - Observables (1960Q1-2016Q3): the growth rate of real output (both GDP and GDI), consumption, investment, real wage, hours worked, inflation (both core PCE and GDP), long run inflation expectations, the FFR, the ten-year Treasury yield, Fernald's TFP growth, Baa and Aaa **spreads**
- **Convenience yield** assumed exogenous and identified off corporate spreads—as in VAR
 - see Del Negro et al., 2017, for a more structural analysis
- We define the **natural rate of interest** r_t^* as the real return to an asset that is as **safe/liquid** as a 3-month US Treasury bill *in a counterfactual economy without nominal rigidities*
- No nominal rigidities \rightarrow abstracting from the influence of monetary policy
- Safe/liquid: relevant benchmark for monetary policy

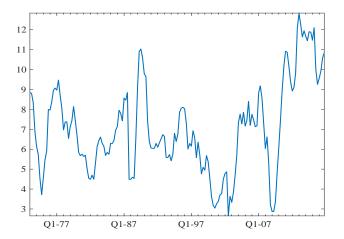
DSGE Result #1: DSGE's trends in r_t^* are the same as \bar{r}_t

DSGE Result #2: Convenience Yield is the main driver of trends in r_t^*

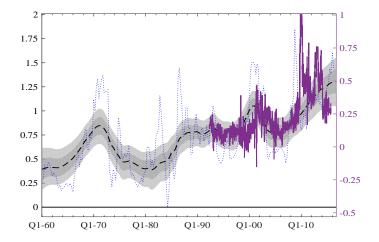

Decomposition of Thirty-year Ahead Forward Rate $(E_t r_{t+30Y}^*)$

Del Negro, Giannone, Giannoni, Tambalotti

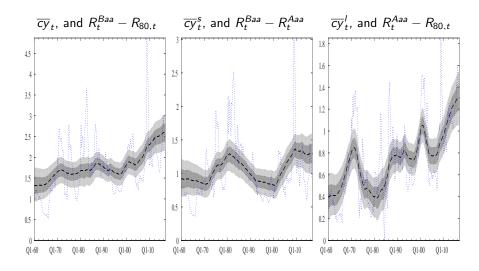
Laubach-Williams estimates very similar to DSGE's 5-year forward rate (post 1980)


Five-year Ahead Forward Rate $(E_t r_{t+5Y}^*)$ v.s. LW r^*

Conclusions Why have interest rates been low?


- Interest rates are low because r^* is low
- The secular decline in r^* since the late 1990s has been about $1^{1/4}$ PP
- .. and the increase in the **convenience yield** for safe/liquid assets such as Treasuries is an important driver of this decline
 - Corporate yields have fallen much less than Treasuries

Reference Slide: Distance to Default


Del Negro, Giannone, Giannoni, Tambalotti

Reference Slide: Trends in the Liquidity Convenience Yield and the Refcorp/Treasury Spread

Del Negro, Giannone, Giannoni, Tambalotti

Reference Slide: \overline{cy}_t , \overline{cy}_t^s , \overline{cy}_t^l , and Spreads

Del Negro, Giannone, Giannoni, Tambalotti