Municipal Borrowing Costs and State Policies for Distressed Municipalities

Pengjie Gao, HKUST and University of Notre Dame Chang Lee, University of Illinois at Chicago Dermot Murphy, University of Illinois at Chicago

July 2016

Gao, Lee, and Murphy

Motivation

- Sovereign credit risk-sharing between countries in Europe has become more prominent since 2008
 - Following the crisis: ECB administered assistance packages to Greece, Ireland, and Portugal
 - March 2015: quantitative easing program in which distressed sovereign bonds would be held by the ECB and European national central banks
- Still unclear: the long-term effects of these risk reallocations on sovereign borrowing costs

Motivation

- The risk-sharing policies of the ECB in many ways parallel those of U.S. states
 - Draghi: "The ECB is ready to do whatever it takes to preserve the Euro" (in the wake of the sovereign debt crisis)
 - Similarly, many U.S. states have policies in place to protect the creditworthiness of the state and its municipalities
 - Edward Rendell, governor of PA in 2010: "(missing a bond payment) would devastate not only the city, but the school district, the county, and central PA" (in the wake of a fiscal crisis in Harrisburg, PA)

Motivation

- This paper examines the implications of intergovernmental risk sharing on government borrowing costs
 - Specifically, the costs and benefits of risk reallocation
- The U.S. municipal bond market provides an ideal setting for examining these implications
 - Significant cross-state variation in risk-sharing policies
 - State policies for its municipalities and ECB policies for its member countries share the same goal to protect the creditworthiness of the region

State Policy for Distressed Municipalities

- "Chapter 9" states allow unconditional Chapter 9 (hands-off)
 - Independence of the local governments from the state
 - Weak creditor protection: Chapter 9 operates advantageously for debtors
- "Proactive" states deal with distressed municipalities directly via state programs (hands-on)
 - Risk transfer from the local governments to the state government
 - Emergency loans and revenue transfers
 - Restructure municipal finances
 - Strong creditor protection
 - Conditional approval of Chapter 9 (last resort)

State Type Classification

		State	can restruc	cture:		
	C1	C2	C3	C4	Proactive?	C1: program
CT	0	1	1	1		triggered by default
\mathbf{DC}	1	0	0	0		
FL	1	0	0	0		C2 [·] debt contracts
ID	1	0	0	0		
IL	0	1	1	1		
IN	0	0	1	0		C3: labor contracts
KY	0	1	0	0		
ME	1	1	0	1	Yes	C4: taxes and fees
MA	0	1	0	1		
MI	1	1	1	0	Yes	
NV	1	1	1	1	Yes	
NH	0	0	0	0		
NJ	1	1	0	1	Yes	
NM	0	0	0	0		
NY	1	1	1	0	Yes	
NC	1	1	0	1	Yes	
OH	1	1	0	0	Yes	
OR	0	1	0	0		
PA	1	1	1	1	Yes	
RI	0	1	0	1		
TN	0	1	0	1		

Distress Policy by State

Source: Spiotto et al (2012) and Pew Report (2013)

Questions

- For local municipal bonds, does either state policy:
 - ... mitigate yield reactions following default?
 - ... lead to lower borrowing costs?
 - ... reduce cyclicality in yields?
 - ... prevent contagion?
- If local municipal bond yields are generally lower under one of these state policies, are there tradeoffs?

Data

- Trade-level data from the Municipal Securities Rulemaking Board (MSRB)
 - Data are aggregated into bond-month observations
 - Yield spread is the main variable of interest: difference between municipal bond-month yields and the durationmatched treasury yield
 - Sample period: 1999 to 2010
- Default data obtained from Bloomberg
- Municipal bond attributes obtained from Mergent

Summary of Data

	Non-Defaulted	Defaulted
N(bonds)	$416,\!643$	2,063
N(issuers)	$25,\!554$	679
Avg. Bond Par Value (\$M)	6.69	9.82
Avg. Bond Maturity (years)	13.82	18.98
Conduit (%)	10	59
Insured (%)	61	27
Inv. Grade (%)	80	22
Non-Inv. Grade (%)	0	9
Unrated (%)	20	69
Gen. Obligation (%)	42	4
Callable (%)	62	78
Puttable (%)	0	1

Summary of Data by State Type

	Chapter 9	Proactive	Neither
N(bonds)	143364	124691	150651
N(issuers)	10064	6317	9568
Avg. Bond Par Value (\$M)	7.1	7.1	6.1
Avg. Bond Maturity (years)	14.5	13.5	13.5
Conduit (%)	8	12	12
Insured (%)	61	64	59
Inv. Grade (%)	79	81	79
Non-Inv. Grade (%)	0	1	0
Unrated (%)	21	19	21
Gen. Obligation (%)	40	51	37
Callable (%)	66	60	59

Default Rates by State Type

N(Defaulted Bonds)			
Chapter 9	AL, AR, AZ, CA, ID, MN, MO, MT, NE, OK, SC, TX, WA	443	
Proactive	ME, MI, NC, NJ,	123	
	NV, NY, OH, PA		
Neither	The Rest	275	

Defaulted Bonds (%)				
Chapter 9	AL, AR, AZ, CA, ID, MN, MO, MT, NE, OK, SC, TX, WA	0.379%		
Proactive	ME, MI, NC, NJ, NV, NY, OH, PA	0.164%		
Neither	The Rest	0.173%		

Questions

- For local municipal bonds, does either state policy:
 - ... mitigate yield reactions following default?
 - ... lead to lower borrowing costs?
 - ... reduce cyclicality in yields?
 - ... prevent contagion?
- If local municipal bond yields are generally lower under one of these state policies, are there tradeoffs?

Yields, Post-Default and Ex-Ante

	Regular	
Default	5.861***	5.437***
	(8.83)	(6.50)
Default x Chapter 9		1.295
		(1.42)
Chapter 9		0.0189^{*}
		(1.68)
Default x Proactive		-1.267
		(-1.13)
Proactive		-0.0199**
		(-2.30)
Default x Insured	-4.663***	-4.486***
	(-6.34)	(-5.57)
Insured	-0.109***	-0.109***
	(-12.27)	(-12.37)
Ch. 9 - Proactive	/	0.0388***
p-value	(0.006
Def x Ch. 9 - Def x Pro		2.562^{***}
p-value		0.004

The yield change following a default event in a Chapter 9 state is 2.6 percentage points higher (Default x Chapter 9 minus Default x Proactive) than the change in Proactive states.

Ex-Ante: yields in Chapter 9 states are 3.9 basis points higher (Chapter 9 minus Proactive) than those in Proactive states.

Control Variables (for those interested)

	Regular		
General Obligation	-0.0832***	-0.0790***	
	(-7.69)	(-7.72)	
Callable	0.00616	0.00581	
	(0.71)	(0.67)	
Puttable	-0.803***	-0.799***	
	(-6.33)	(-6.30)	
Time to Maturity	0.0187^{***}	0.0184^{***}	
	(11.33)	(10.94)	
Inverse TTM	0.0935^{***}	0.0934^{***}	
	(7.47)	(7.47)	
Rated	-0.304^{***}	-0.301***	
	(-7.26)	(-7.32)	
Rated x Rating	0.0470^{***}	0.0471^{***}	
	(6.83)	(6.86)	
Equal Tax	0.0544^{***}	0.0440^{***}	
	(5.98)	(3.93)	

Coincident Index	-0.0390***	-0.0435***
	(-7.12)	(-8.03)
Log(Size)	-0.0317^{***}	-0.0304^{***}
	(-8.86)	(-8.74)
Intercept	-0.220***	-0.221***
	(-6.13)	(-6.37)
Ch. 9 - Proactive		0.0388***
p-value		0.006
Def x Ch. 9 - Def x Pro		2.562^{***}
p-value		0.004
SE Clustering	Issuer-YM	Issuer-YM
Fixed Effects	YM	YM
Ν	5080589	5080589
R-Squared	0.487	0.488

Offering Yields

	All	Unrated	Uninsured
Chapter 9	0.0457***	0.0836^{***}	0.140***
	(6.55)	(5.88)	(10.39)
Proactive	0.0320^{***}	0.0521^{***}	0.0359^{***}
	(4.74)	(3.74)	(2.64)
Insured	-0.112^{***}	-0.290***	
	(-14.31)	(-20.32)	
Ch. 9 - Proactive	0.0137^{*}	0.0315^{**}	0.1041***
p-value	0.054	0.049	0.000
SE Clustering	Issuer-YM	Issuer-YM	Issuer-YM
Fixed Effects	$\mathbf{Y}\mathbf{M}$	$\mathbf{Y}\mathbf{M}$	YM
N	244258	35559	80314
R-Squared	0.651	0.661	0.669

Offering yields in Chapter 9 states are 1.4 basis points higher than those in Proactive states.

This difference is even higher for risky bonds: 3.2 basis points for unrated bonds, 10.4 basis points for uninsured bonds.

Identification

- Empirical challenge: are the higher yields in Chapter 9 states actually due to the Chapter 9 policy, or for some different reason that is common to these states?
- Identification Strategy 1: examine conduit bonds ("corporate munis"), which are not subject to Chapter 9 or Proactive state policies
- Identification Strategy 2: examine municipal bonds issued in the counties on the border of NC and SC

Falsification using Conduit Bonds

	Conduit		
Default	4.206*** 4.285***		
	(10.13)	(8.90)	
Default x Chapter 9		-0.511	
		(-0.73)	
Chapter 9		0.0298	
		(0.83)	
Default x Proactive		0.604	
		(0.65)	
Proactive		-0.0278	
		(-0.82)	
Default x Insured	-3.169^{***}	-3.375***	
	(-5.73)	(-5.17)	
Insured	-0.613***	-0.610***	
	(-16.70)	(-16.56)	
Ch. 9 - Proactive		0.0576	
p-value	(0.133	
Def x Ch. 9 - Def x Pro		-1.115	
p-value		0.261	

Conduit bonds are not subject to Proactive state policies and cannot declare Chapter 9.

Yields reactions following default are not significantly different in Chapter 9 states versus Proactive states.

Ex-ante, yields are also not significantly different.

North Carolina vs South Carolina

North Carolina vs South Carolina

	Reg	ular	New	Issue
	(1)	(2)	(3)	(4)
Chapter 9 (SC)	0.0867^{***} (2.94)	0.0765^{***} (3.30)	0.0914^{**} (2.02)	0.0919^{**} (2.29)
Intercept	(-10.45)	(-0.0489)	(-8.18)	(-0.33)
SE Clustering Fixed Effects N R-Squared	County YM 39069 0.541	County YM 39069 0.541	County YM 1905 0.828	County YM 1905 0.828

Secondary yields and offering yields are higher in SC border counties than NC border counties.

Questions

- For local municipal bonds, does either state policy:
 - ... mitigate yield reactions following default?
 - ... lead to lower borrowing costs?
 - ... reduce cyclicality in yields?
 - ... prevent contagion?
- If local municipal bond yields are generally lower under one of these state policies, are there tradeoffs?

Yields and Economic Conditions

	(2)
Bad Times	0.0142^{*}
	(1.86)
Bad Times x Chapter 9	0.0377^{**}
	(2.36)
Bad Times x Proactive	-0.0261^{**}
	(-2.44)
Good Times x Chapter 9	-0.00998
	(-0.98)
Good Times x Proactive	-0.0117
	(-1.36)
Insured	-0.123^{***}
	(-13.10)
Intercept	-0.211^{***}
	(-5.73)
Bad x Ch. 9 - Bad x Pro	0.0638***
	0.001
Good x Ch. 9 - Good x Pro	0.0017
	0.892

During bad times, yields in Chapter 9 states are 6.4 basis points higher than those in Proactive states.

There is no difference during good times, however.

Questions

- For local municipal bonds, does either state policy:
 - ... mitigate yield reactions following default?
 - ... lead to lower borrowing costs?
 - ... reduce cyclicality in yields?
 - ... prevent contagion?
- If local municipal bond yields are generally lower under one of these state policies, are there tradeoffs?

Contagion Effects

- Contagion: negative externality of a municipal default
- What causes contagion in municipal bond markets?
 - Information about individual issues is limited
 - Distress of one locality is perceived as a signal of imminent distress elsewhere
- Kidwell and Trzcinka (1982, 1983) show that the NYC financial crisis in 1975 was not associated with contagion effects
- When Harrisburg, PA was financially distressed in 2010, the state provided emergency lending, with the governor citing contagion concerns

Contagion Effects

	Chap	ter 9	Proa	active	Nei	ther
$\operatorname{Pctdef}_{q-1}$	0.123^{***}	0.131***	0.0008	0.0007	0.0233**	0.0238^{**}
-	(4.51)	(4.51)	(0.09)	(0.08)	(2.05)	(2.07)
$Pctdef_{q-2}$		0.123^{***}		-0.0102		0.0252^{**}
-		(4.17)		(-1.48)		(2.15)
$Pctdef_{q-3}$		0.140^{***}		-0.0106		0.0262^{***}
		(3.93)	1	(-1.39)		(2.59)
$Pctdef_{q-4}$		0.132^{***}		0.0008		0.0199^{**}
		(5.06)		(0.12)		(2.03)
SE Clustering	Issuer-YM	Issuer-YM	Issuer-YM	Issuer-YM	Issuer-YM	Issuer-YM
Fixed Effects	$\mathbf{Y}\mathbf{M}$	YM	YM	$\mathbf{Y}\mathbf{M}$	\mathbf{YM}	YM
Controls	Yes	Yes	Yes	Yes	Yes	Yes
Ν	1718422	1688362	1374025	1346899	1689350	1655254
R-Squared	0.484	0.479	0.509	0.504	0.495	0.489

- Contagion effects are significant in Chapter 9 states, and last for about one year
- No contagion effect in Proactive states at any time horizon

Questions

- For local municipal bonds, does either state policy:
 - ... mitigate yield reactions following default?
 - ... lead to lower borrowing costs?
 - ... reduce cyclicality in yields?
 - ... prevent contagion?
- If local municipal bond yields are generally lower under one of these state policies, are there tradeoffs?

Tradeoffs

- Proactive state governments bear some of the credit risk of its municipalities
 - Low-cost emergency loans, grants, credit guarantees, professional/technical assistance
- The prospect of bailout creates moral hazard problems
- We expect that yields on state-issued bonds in Proactive states will be higher than those in Chapter 9 states due to the transfer of credit risk and moral hazard problems

Revenue Transfers

 According to US Census data, we do indeed see higher state-tolocal revenue transfers, especially during bad times

	(3)	Pro x Good - Ch. 9 x Good 0.0221^*
Proactive x Good	0.0130	p-value 0.061
	(1.52)	Pro x Bad - Ch. 9 x Bad 0.0350***
Chapter 9 x Good	-0.00906	p-value 0.000
	(-0.81)	
Proactive x Bad	0.0239^{***}	During good times, state-
	(4.93)	to-local revenue transfers
Chapter 9 x Bad	-0.0111	are 2.2 pct. points higher
	(-1.54)	in Proactive states than
Bad	-0.0134	Ch. 9 states.
	(-1.23)	
		During bad times, this
		difference increases to

3.5 pct. points.

Moral Hazard

• This creates a moral hazard problem – local municipalities in Proactive states take on more debt, as credit risk is shared with the state

	(3)
Proactive x Good	0.174***
	(6.13)
Chapter 9 x Good	0.0724
	(1.81)
Proactive x Bad	0.181***
	(5.78)
Chapter 9 x Bad	0.0518*
	(1.83)
Bad	0.0716
	(1.29)

DEPVAR: total local debt divided by total local revenue

Local debt levels are higher in Proactive states than Chapter 9 states in good times and bad times

State-Issued Bonds

• Because Proactive states take on local credit risk, the yields on their stateissued bonds are higher

	Regular	New Issue
Chapter 9	0.0218	0.0298
	(0.79)	(1.28)
Proactive	0.0572^{**}	0.144^{***}
	(2.00)	(3.01)
Insured	0.00495	-0.0207
	(0.25)	(-1.08)
Ch. 9 - Proactive	-0.0354**	-0.1142**
p-value	0.035	0.012
SE Clustering	State-YM	State-YM
Fixed Effects	YM	YM
Ν	508305	18153
R-Squared	0.602	0.807

Yields on state-issued bonds in Proactive states are 3.5 basis points higher than those in Chapter 9 states. Offering yields are 11.4 basis points higher.

Conclusions

- Local municipal bond yields are higher in Chapter 9 states than Proactive states, particularly following default
 - These yields are also more cyclical and susceptible to contagion
- The lower borrowing costs for the local governments in Proactive states come at the expense of higher borrowing costs for the state government
- Intergovernmental risk-sharing policies clearly have benefits and costs
 - Implications for sovereign debt policies in Europe; do the costs of being Proactive justify the benefits?

