

BRANDEIS INTERNATIONAL BUSINESS SCHOOL

Rosenberg Institute of Global Finance Washington University in St.Louis Olin Business School

July 12, 2016

# 5<sup>th</sup> Annual Municipal Finance Conference

Track 1 – Issues in Capital Markets and Credit

### **Managing the Advance Refunding Option**

Authors: Andrew Kalotay / Lori Raineri

Discussant: Dave Abel / William Blair

William Blair

### When and When Not to Advance Refund

#### Background

- There exists a call option value that is unique to the Tax-Exempt Municipal sector
- Its value arises from funding a tax-exempt bond call at higher taxable (Treasury) yields
- Called the "Advance Refunding Option" or "ARO", it is available on a ONE-TIME Basis
- Until now not well defined or measured, it has financial and strategic value
- The value of the ARO can be easily and unintentionally misspent
- Preservation of the ARO has not typically appeared in most debt policies

#### **Immediate Goals**

- Develop estimation approaches for the ARO as a concept distinct from option value
- As a work in progress, some threshold observations could be considered in debt policy now

#### When close to the current call date - consider waiting, a hedge or a forward

# Why is this more relevant now?

### **Market Fundamentals Changed**

- For the last 30 years, the fixed-rate asset class has been generally rising (rates glacially falling)
- At virtually every point along the way, participants believed fixed rates at a "new low" trough
- Rates were always expected to rise, and minimal nod was to the value of aging yield curve slope
- Advance refunding was a value opportunity, and a risk-reducing decision to go sooner than later



# ARO Compares Market Acquisition Cost to Escrow cost

| Maturity (Years) | 1    | 2    | 3    | 5    | 10   | 15   | 20   | 25   | 30   |
|------------------|------|------|------|------|------|------|------|------|------|
| 5% NC-10 Yield   | 0.50 | 0.81 | 1.09 | 1.40 | 2.15 | 2.62 | 2.91 | 3.10 | 3.19 |
| Treasury Yield   | 0.58 | 1.03 | 1.30 | 1.74 | 2.25 | 2.50 | 2.66 | 2.89 | 3.00 |

#### **NO NEGATIVE ARBITRAGE** 117.325 117.325 Old Bond at 5-year Yield in Secondary Market 117.325 117.325 117.325 Old Bond Funded to 5-Year Call at New Bond Yield 111.085 108.304 113.442 109.660 108.737 3.883 6.240 7.665 8.588 9.021 PV% Value of the ARO - No Negative Arbitrage ESCROW at MARKET Old Bond at 5-year Yield in Secondary Market 117.325 117.325 117.325 117.325 117.325 Old Bond Funded to 5-Year Call at 5-Year Treasury 115.546 115.546 115.546 115.546 115.546 1.779 1.779 1.779 PV% Value of the ARO - Escrow at 5-Year Treasury 1.779 1.779

#### First look at the ARO

- Positive ARO if a bond can be discharged at a lower cost (through an escrow) than its alternative cost at fair market value.
- The ARO has time value. Market relationships change as the bond ages toward its call date.
- Green = Theoretical available yield at the Refunding Bond Yield (no negative arbitrage)
- Red = Actual available yield for an escrow investment to fund the call in 5 years

# Methodology Strengths and Difficulties

#### Strengths

- Funding of a call has different economics than the market acquisition cost of the refunded bond
- Negative arbitrage is the cost difference between "allowable vs. available" escrow yield
- Municipal practitioners can replicate this calculation using standard excel finance functions

#### Complexities

- Comparison of "escrow cost" to "market acquisition cost" has calibration difficulty
  - Reliance on the 5-year tenor of a 15-year callable in 5 years is not certain until the bond is actually called
- Transactions are done in Bond Series rather than as individual maturities
  - Short maturities bias down the long maturities, and long maturities bias up the short maturities.
  - ARO might be better measured by an "exclusion delta" rather than by each maturity as a stand-alone
- YTC as the Refunding Replacement Yield -- may not reflect the Issuer's real borrowing cost
  - The Issuer's terminal cost of replacement funds relies the refunding bond ALSO BEING CALLED.
  - Market practice has been to discount cash-flow savings at the YTC (new bond yield) for PV Savings purposes

# **Market Signals**

#### Presumption that the market always charges for a call option

- Recently inverted relationship price resistance, market discount rule, anticipated refunding
- Absent specific structural goals such as TOB program seeking long-dated tax-exempt cash-flow, non-callable bonds have been pricing wider than their callable equivalent Yield to Maturity.

#### Buyers commonly anticipate an advance refunding

- Should be a pricing difference for Advance Refundable vs. Non-Advance refundable bonds.
- Advance refunding can deliver a credit-pickup windfall much sooner than a current refunding.
- Current refundable-only bonds introduce a "European" edge to the "American Option"

#### Issues with the market give an advance refunding preference at time of pricing

- Formal reliance on tax purpose designations for mixed refunding and new money
- Tax regulation change risk

# **Refunding Efficiency Methodology**

Callable Advance Refunding Bonds

• Creates a new option exercisable only at the call date, exclude ARO

Callable Current Refunding Bonds (and not previously an advance refunding)

- Creates a new option exercisable in advance and including the call date
- Add 2% of refunded bond principal as an "ARO Proxy" to this term

Outcome:

• Loss of optionality reduces, ratio increases, in favor of a current refunding

### Efficiency = Ratio of "Savings Captured" to "Reduction in Option Value"

### Efficiency Ratio as a "Directional Indicator"

#### Biases down for negative arbitrage

- Absolute savings (numerator) decreases ratio falls.
- Negative arbitrage = Actual Escrow Cost --minus-- Cost at the "allowable bond yield"
- Option-rich refunding structures tend to have lower bond yields (therefore less negative arbitrage)
- Bias up for option-rich refunding structures
  - 4-coupon refunding which Y-T-M is "just inside" the 5-Coupon Y-T-M
  - Option(new) goes down, net reduction to optionality in whole goes up, efficiency ratio falls

#### • Injecting the ARO component

- Nearing the call date, ARO on the old bonds is low (the left term stays higher)
- Nearing the call date (but still advance), ARO on the new bonds is zero (denominator increases)
- Refunding Bonds are non-callable
  - If the market charges or doesn't charge for a call feature, the ratio will show it
- Discount rate for PV Savings
  - Market tradition uses the "yield to call" on the new bonds requires option exercise to be real?
  - Kalotay research supports using a "term structure of interest rates" (vs. TIC) to avoid distortions.

### Shadow ARO by Estimating its Cost of Preservation

| Now                           |              | Forward | Refunded Call Date: |               | 01/01/19 | Coupon:  |          | 5.000       |
|-------------------------------|--------------|---------|---------------------|---------------|----------|----------|----------|-------------|
| 0//01/1/                      | 5% NC-10     | Premium | Refundir            | ig Call Date: | 01/01/2/ |          |          | Current Dof |
| Maturity                      | Pius<br>100  | Per     | 07/01/17            | 10/01/17      | 01/01/19 | 04/01/19 | 07/01/19 | 10/01/19    |
| waturity                      | 100          | Month   | 07/01/17            | 10/01/1/      | 01/01/18 | 04/01/18 | 07/01/18 | 10/01/18    |
| 01/01/18                      | 1.52         | 7       | (0.5)               | (0.3)         |          |          |          |             |
| 01/01/19                      | 1.59         | 7       | 2.8                 | 2.9           | 0.7      | 0.9      | (1.0)    | (0.6)       |
| 01/01/20                      | 1.66         | 7       | 5.9                 | 5.9           | 3.5      | 3.6      | 1.4      | 1.7         |
| 01/01/21                      | 1.75         | 7       | 8.7                 | 8.6           | 6.1      | 6.0      | 3.6      | 3.7         |
| 01/01/22                      | 1.86         | 7       | 11.3                | 11.0          | 8.3      | 8.0      | 5.5      | 5.5         |
| 01/01/23                      | 1.98         | 7       | 13.4                | 13.1          | 10.2     | 9.8      | 7.1      | 6.9         |
| 01/01/24                      | 2.06         | 7       | 15.6                | 15.1          | 12.1     | 11.5     | 8.6      | 8.3         |
| 01/01/25                      | 2.14         | 7       | 17.5                | 16.9          | 13.7     | 12.9     | 10.0     | 9.4         |
| 01/01/26                      | 2.22         | 7       | 19.2                | 18.5          | 15.2     | 14.2     | 11.1     | 10.4        |
| 01/01/27                      | 2.31         | 7       | 20.6                | 19.9          | 16.3     | 15.2     | 11.9     | 11.1        |
| 01/01/28                      | 2.41         | 7       | 19.6                | 18.9          | 15.4     | 14.4     | 11.1     | 10.3        |
| 01/01/29                      | 2.45         | 7       | 19.3                | 18.6          | 15.1     | 14.0     | 10.8     | 10.0        |
| 01/01/30                      | 2.50         | 7       | 18.8                | 18.1          | 14.7     | 13.6     | 10.4     | 9.6         |
| 01/01/31                      | 2.55         | 7       | 18.3                | 17.7          | 14.2     | 13.2     | 10.0     | 9.3         |
| 01/01/32                      | 2.59         | 7       | 17.9                | 17.3          | 13.9     | 12.9     | 9.7      | 9.0         |
| 01/01/33                      | 2.64         | 7       | 17.5                | 16.9          | 13.5     | 12.5     | 9.3      | 8.6         |
| 01/01/34                      | 2.69         | 7       | 17.0                | 16.4          | 13.0     | 12.1     | 8.9      | 8.2         |
| 01/01/35                      | 2.74         | 7       | 16.5                | 16.0          | 12.6     | 11.7     | 8.5      | 7.8         |
| 01/01/36                      | 2.78         | 7       | 16.2                | 15.6          | 12.3     | 11.3     | 8.2      | 7.5         |
| 01/01/37                      | 2.82         | 7       | 15.8                | 15.3          | 11.9     | 11.0     | 7.9      | 7.2         |
| Attainable Escrow Yield       |              | 0.50    | 0.45                | 0.40          | 0.35     | 0.30     | 0.25     |             |
| Average Forward Premium (BPs) |              |         | Ο                   | 14            | 35       | 56       | 77       | 98          |
| Avg PV% Los                   | s to Preserv | e ARO   | 7.79%               | 7.31%         | 4.16%    | 3.42%    | 0.49%    | 0.00%       |

Getting within 3 months to a current refunding call date, sacrificing 0.5% PV savings as a forward to preserve the ARO, could be a successful argument.

# **Closing remarks**

#### Concept is timely and relevant

- Relationship between the municipal curve and the Treasury curve couples and decouples quickly on macro economic drivers
- Call features are increasingly preferred by buyers (impact of market discount rule)
- Commonly avoidable situations in which the ARO is spent for too little value

#### **Refinements to methodology**

- Alternative market cost leg perhaps cede that the old call date is the invested tenor
- Refunding replacement cost of funds requires the refunding option to be exercised
- New ARO calculation, revisit when advance refunding is better than current refunding
- Efficiency ratio works as a directional signal; but not yet as an absolute decision metric

#### Supplemental to the economic discussion

- Tactical reasons apart from efficiency to preserve the ARO tax caps and revenue limits
- Policy driven ARO might reduce incidence of taxable refunding for restructuring purposes
- When Treasury market furnishes high yield, escrow cost is limited by Section 148. The new refunding optionality now bears more directly in the form of increased escrow cost.