Lower oil prices and the U.S. economy: Is this time different?

Christiane Baumeister, University of Notre Dame
Lutz Kilian, University of Michigan
Lower Oil Prices and the U.S. Economy: Is This Time Different?*

September 10, 2016

Christiane Baumeister
University of Notre Dame
CEPR

Lutz Kilian
University of Michigan
CEPR

Abstract: We explore the effect on U.S. real GDP growth of the sharp decline in the global price of crude oil and hence in the U.S. price of gasoline after June 2014. Our analysis suggests that this decline produced a stimulus of about 0.7 percentage points of real GDP growth by raising private real consumption and an additional stimulus of 0.04 percentage points reflecting a shrinking petroleum trade deficit. This stimulating effect, however, has been largely offset by a reduction in real investment by the oil sector more than twice as large as that following the 1986 oil price decline. Hence, the net stimulus since June 2014 has been effectively zero. We found no evidence of an additional role for frictions in reallocating labor across sectors or for increased uncertainty about the price of gasoline in explaining the sluggish response of U.S. real GDP growth. Nor did we find evidence of lower oil costs stimulating other business investment, of financial contagion or of spillovers from oil-related investment to non-oil related investment, of an increase in household savings, or of households deleveraging.

JEL codes: E32, Q43
Key Words: Stimulus; oil price decline; uncertainty; reallocation; savings; shale oil; oil loans.

* We thank Richard Curtin at the Institute for Social Research for providing access to additional data on gasoline price expectations in the Michigan Survey of Consumers that are not in the public domain. We also benefited from helpful comments by Lucas Davis, Ana Maria Herrera, Jim Hamilton, Valerie Ramey, and Jim Stock.

Lutz Kilian, Department of Economics, 611 Tappan Street, University of Michigan, Ann Arbor, MI 48109-1220, USA. Email: lkilian@umich.edu.

Corresponding author: Christiane Baumeister, Department of Economics, 722 Flanner Hall, University of Notre Dame, Notre Dame, IN 46556, USA. Email: cjsbaumeister@gmail.com
1. Introduction

Between June 2014 and March 2016, the real price of oil declined by 66%. There has been much debate about the effect on U.S. growth of this sharp decline in global oil prices and hence in U.S. gasoline prices. Most pundits expected this oil price shock to boost the U.S. economy. Table 1 shows that, nevertheless, average U.S. real economic growth has increased only slightly since 2014Q2 from 1.8% to 2.2%. Breaking down the components of real GDP reveals a striking discrepancy between sharply reduced average growth in real nonresidential investment, driven by a dramatic fall in oil-related investment, and substantially higher average growth in real private consumption. Moreover, real petroleum imports, which had been falling prior to 2014Q2, have been rising again since 2014Q2, while the growth in real petroleum exports has nearly doubled, reducing the petroleum trade deficit and adding to real GDP growth. The increase in real petroleum exports is in sharp contrast to the decline in overall real exports since 2014Q2.

The evidence in Table 1 raises a number of questions. Unexpected declines in the real price of oil may affect the U.S. economy, for example, to the extent that they lower firms’ costs of producing domestic goods and services. Why then did the decline in the real price of oil not cause a strong economic expansion, as presumed in standard macroeconomic textbooks, which interpret oil price shocks as shifts of the domestic aggregate supply curve (or, in a more modern framework, as shifts in the cost of producing domestic real output)? Unexpected declines in the real price of oil also matter for the economy, because they may increase the demand for other domestic goods and services, as consumers spend less of their income on motor fuels. One question of interest thus is by how much we would have expected private real consumption to increase as a result of the windfall income gain caused by lower oil prices. Did the actual growth in private real consumption match expected growth or was it perhaps held back because the
decline in the global price of crude oil was not fully passed on to retail fuel prices? Or did consumers simply choose not to spend their income gains, but pay off their debts or increase their savings? Finally, why did the real consumption of motor vehicles decline, despite an overall increase in private real consumption? Were consumers perhaps reluctant to buy new automobiles because of increased uncertainty about future gasoline prices, holding back overall economic growth?

Another puzzle is why private nonresidential investment declined as much as it did after 2014Q2. Clearly, the answer is related to the increased importance of U.S. shale oil production, raising the question of whether the growth of the shale oil sector has changed the transmission of oil price shocks to the economy. The decline in oil-related investment in response to falling oil prices not only has a direct effect on U.S. real GDP, but there are also broader implications to consider. One concern has been that the decline of the shale oil sector may have slowed growth across oil-producing states, imposing a drag on aggregate U.S. growth. Another conjecture has been that lower investment by oil producers may have slowed growth in other sectors of the economy nationwide, as the demand for structures and equipment used in oil production declined. A third conjecture has been that risky loans to oil companies may have undermined the stability of the banking system, disrupting financial intermediation. A related concern has been that the sustained decline in the real price of oil after 2014Q2 may have caused an economic slowdown by leaving assets and oil workers stranded in a sector that is no longer competitive.

Equally surprising is the evolution of the petroleum trade balance since 2014Q2, which does not conform to the conventional wisdom that an unexpected decline in the price of oil should be associated with rising petroleum trade deficits, as domestic oil production declines. Finally, the decline in overall U.S. real exports is a reminder that the decline in the real price of
oil itself was associated at least in part with a global economic slowdown that in turn has to be taken into account in explaining the comparatively slow U.S. economic growth.

In this paper, we investigate the empirical support for each of these conjectures. We examine the channels by which the 2014-16 oil price decline might have affected the U.S. economy and assess their quantitative importance, drawing on a wide range of macroeconomic, financial and survey data, both at the aggregate level and at the sectoral and state level. In section 2, we provide evidence for the view that the demand channel of the transmission of oil price shocks to the U.S. economy is more important than the supply (or cost) channel emphasized in many theoretical models of the transmission of oil price shocks, motivating our emphasis on the demand channel of transmission throughout the remainder of this paper.

Our discussion of the demand channel focuses in particular on understanding the evolution of private consumption, of investment spending, and of the petroleum trade balance. In section 3, we examine to what extent standard economic models of the transmission of oil price shocks that focus on changes in consumers’ discretionary income, as the decline in oil prices is passed through to retail fuel prices, can explain the growth in real private consumption in Table 1 (see Edelstein and Kilian 2009; Hamilton 2009, 2013; Kilian 2014; Yellen 2011). In these models, a drop in the real retail price of gasoline is akin to a tax cut from the point of view of consumers, which is expected to stimulate private consumption and hence real GDP.\(^1\) We quantify this effect based on estimates of a linear regression model of the relationship between changes in real U.S. private consumption and changes in consumers’ purchasing power associated with gasoline price fluctuations, controlling for the evolution of the share of fuel

\(^1\) The textbook analysis of an unexpected increase in the real price of oil recognizes that this oil tax constitutes income for domestic oil producers and for oil producers abroad, but stresses that it may take considerable time for this income to be returned to consumers in the form of company profits, royalties, and dividends or for it to be recycled in the form of increased oil business expenditures and higher U.S. exports, especially if much of the crude oil is imported from abroad. In the latter case, some of the oil tax is lost altogether.
expenditures in total consumer expenditures. Estimates of this baseline model suggest that unexpectedly low oil prices raised average U.S. real GDP growth after 2014Q2 by about 0.4 percentage points at annual rates, as purchasing power increased and private consumption expanded.

In section 4, we examine an alternative view in the literature, according to which the conventional linear model is overstating the stimulus for real GDP growth, because the true relationship between the price of oil and the economy is governed by a time-invariant, but nonlinear process. Proponents of this view point to a number of indirect channels of transmission ignored by the baseline model. For example, it could be argued that the stimulating effects of the oil price decline discussed earlier are offset by delays in the reallocation of resources (see Hamilton 1988; Bresnahan and Ramey 1993; Davis and Haltiwanger 2001; Ramey and Vine 2011; Herrera and Karaki 2015; Herrera, Karaki, and Rangaraju 2016) or by higher oil price uncertainty (see Bernanke 1983; Pindyck 1991; Elder and Serletis 2010; Jo 2014). Either of these economic mechanisms would generate a nonlinearity that could explain why unexpected real oil price increases are recessionary, yet unexpected real oil price declines may not be followed by economic expansions and may even be recessionary. In section 4, we provide aggregate and disaggregate evidence that suggests that neither of these interpretations fits the recent episode.

An alternative argument against the use of linear models involves making the case that the relationship between the economy and changes in the price of oil has evolved in recent years. Proponents of this argument would argue that this latest episode of declining oil prices is fundamentally different from previous episodes of sustained declines in the price of oil such as the 1986 episode, so nothing about the response of the economy can be learned from fitting regressions to historical data. One candidate explanation for such a structural shift in recent years
is the increased importance of the U.S. shale oil sector since late 2008, which created potentially important additional effects of oil price shocks on domestic value added, on aggregate nonresidential investment expenditures, on the petroleum trade balance, and on the stability of the banking sector. Likewise, a structural shift could arise if consumers used the windfall income associated with lower oil prices to reduce their mortgage debt and credit card debt rather than spending the extra income as in years past. In section 5, we examine the empirical evidence for these and other hypotheses. We find no evidence that households’ savings behavior has changed or that households have been deleveraging, but we find evidence of an unprecedented decline in oil investment in the U.S. economy and of a systematic reduction in net petroleum imports. The latter two structural shifts complicate the assessment of the response of the U.S. economy to the recent decline in the price of oil.

A simple national income accounting calculation in section 6 suggests that the stimulating effect of lower oil prices on private real consumption and on net petroleum exports after June 2014 was approximately offset by the reduction in real investment by the U.S. oil sector. The net stimulus is effectively zero. Finally, in section 7, we compare the response of the economy to the decline in the price of oil after June 2014 to its response to the 1986 oil price decline, and make the case that there are more similarities than differences. The most important difference is that the recent decline in the real price of oil was about twice as large as the decline in 1986, causing a sharper contraction in oil investment than in 1986. Moreover, unlike the 1986 oil price decline, it was associated in part with a global economic slowdown, reflected in a sharp decline in the growth of U.S. real exports, without which U.S. real GDP growth is likely to have reached 2.5% on average after 2014Q2.
2. How Important is the Cost Channel of the Transmission of Oil Price Shocks?

The traditional undergraduate textbook analysis of the effects of oil price shocks on oil-importing countries equates lower oil prices with a reduction in the cost of producing domestic goods and services (and hence a shift in the domestic aggregate supply curve along the domestic aggregate demand curve). This view has merit to the extent that firms directly or indirectly rely on oil (or oil-based products) as a major factor of production. Examples of such industries include the transportation sector, some chemical companies, and rubber and plastics producers. For most industries, however, this channel is not likely to be important. In fact, a large share of the oil used by the U.S. economy is consumed by final consumers rather than by firms, which explains why more recent studies have typically interpreted oil price shocks as affecting the disposable income of consumers. This more modern view implies that oil price shocks are shifting the aggregate demand curve along the aggregate supply curve in the traditional textbook model.

Some informal evidence regarding the relative importance of the supply (or cost) channel of the transmission of oil price shocks and the demand channel of transmission may be obtained by examining which sectors benefited and which suffered after the oil price decline. For example, there is general agreement that the sector most sensitive to changes in fuel prices is transportation. The data provide at best partial support for this view. Figure 1 shows that the volume of truck tonnage evolved largely along the same trend before and after June 2014. In contrast, airline passenger traffic accelerated, but only with a delay of half a year that is likely to reflect the fact that airlines had hedged against higher oil prices in futures markets and were able to pass on these added costs to the retail customer, when the price of oil fell. Rail freight car loads fell after June 2014, reflecting the declining volume of oil shipments as well as the
economic slowdown starting in 2015. To a lesser extent this pattern is also found in barge traffic and air freight traffic. A much smaller decline in rail passenger traffic, in contrast, is likely to reflect substitution away from trains and toward automobiles. Overall, these effects appear modest at best and are at odds with the view that lower fuel costs have a large effect on real output in the transportation sector.

This conclusion is corroborated by data on the excess stock returns for selected sectors and individual firms relative to the overall stock market index between July 2014 and March 2016.\(^2\) All results are expressed as average excess returns at annual rates. In general, companies that cater to U.S. consumers tend to appreciate in value more than the average company. In particular, candy and soda (+7%), beer and liquor (+10%), and tobacco (+16%) do well, perhaps because such goods are sold at gas stations, but also food products (+7%), and apparel (+11%). Both tourism (+11%) and restaurants, hotels and motels (+8%) benefited from lower oil prices, as consumer demand rose. So did retail sales (+14%). Amazon (+38%) and Home Depot (+32%) did particularly well. Only recreation, entertainment services, and publishing did not partake in this boom.

The petroleum and natural gas sector (-28%), unsurprisingly, was hit hard. Within that sector, refining companies that use crude oil as a production input fared somewhat better. Other industries that rely on oil as a major input and hence would have been expected to profit from lower oil prices such as rubber and plastics (+4%) and logistics (+2%) did not benefit much, and chemicals (-6%) actually performed worse than the overall market, arguing against an important supply (or cost) channel of transmission. Airlines (+15%) benefited both from lower fuel costs and higher travel demand. Likewise, textiles were helped by lower input costs and higher

\(^{2}\) The analysis is based on individual returns from Bloomberg and value-weighted industry-level stock returns from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. The benchmark portfolio is the value-weighted S&P500 stock return from Bloomberg.
demand (+13%). The surprising fact that auto companies performed below average (-9%) is largely explained by weak foreign sales, reflecting the recent global economic slowdown. Sectors tied to commodity markets such as agriculture (-12%) or mining (-31%) performed poorly for the same reason. Steel (-26%), fabricated metal products (-51%), machinery (-19%), and ship building and railroad equipment (-13%), all suffered from lower demand, in part from the declining oil sector and in part due to the decrease in global real economic activity.

We conclude that the supply (or cost) channel of the transmission of oil price shocks to the U.S. economy, which is emphasized in many theoretical models of the transmission of oil price shocks developed in the 1980s and 1990s, may be safely neglected. Lower fuel costs do not appear to provide much of a stimulus to firms that are oil-intensive in production. The few sectors other than refining that are heavily dependent on oil inputs performed only marginally better than the rest of the economy after June 2014, if at all. In contrast, sectors sensitive to fluctuations in consumer demand did far better than average, lending support to the conventional view among policymakers and oil economists that the demand channel of the transmission of oil price shocks to the U.S. economy is more important than the supply (or cost) channel (see Kilian 2014). Our industry-level analysis of excess stock returns provides strong evidence of a stimulus to consumer demand, but also of lower demand from a global economic slowdown and the declining oil sector, corroborating related results in the more recent literature including the narrative evidence in Lee and Ni (2002) and regression evidence in Kilian and Park (2009).

3. How Much Did the Unexpected Decline in the Price of Oil Stimulate Consumption?

Given the evidence in section 2, we focus on the demand channel of transmission. We first examine private consumer spending, which accounted for 69% of U.S. GDP in 2014. For the oil price decline after 2014Q2 to have stimulated U.S. private consumption, it is necessary for this
decline to have been passed through to retail fuel prices. We therefore first quantify the extent to which U.S. gasoline prices have declined in response to lower crude oil prices, taking account of the cost share of crude oil in producing gasoline. The answer to this question is not obvious because there is a long-standing view that oil price declines are not necessarily passed on to retail gasoline prices as quickly as oil price increases (see Venditti 2013). We provide evidence that the pass-through is symmetric and that the recent oil price decline has been fully passed on to retail gasoline prices.

Lower gasoline prices increase the discretionary income of consumers to the extent that the same amount of gasoline may be purchased with less income. Hence, a drop in the real retail price of gasoline is akin to a tax cut from the point of view of consumers, which is expected to stimulate private consumption and hence real output. Lower gasoline prices, however, also provide an incentive to increase gasoline consumption that reduces the extra income available for other purchases. We show that the responsiveness of gasoline consumption has been in line with recent estimates of the short-run price elasticity of gasoline demand (see Coglianese, Davis, Kilian and Stock 2016).

We then quantify the changes in U.S. consumers’ purchasing power associated with unexpected changes in the price of gasoline and estimate the cumulative effect of these shocks on real private consumption, controlling for changes in the share of gasoline expenditures in total consumer expenditures. The magnitude of the estimated stimulus is shown to be consistent with a back-of-the-envelope calculation that treats the change in the gasoline price as taking place all else equal and takes account of the price elasticity of gasoline demand.

3.1. Has the Decline in the Oil Price after June 2014 Been Passed Through to Gas Prices?

Figure 2 shows the price of gasoline at the pump and the cost of the crude oil used in producing
gasoline. The difference between these time series reflects the evolution of gasoline taxes and the costs of refining the crude oil and of marketing and distributing the gasoline. Figure 3 zooms in on events since June 2014. All data are expressed as index numbers normalized to equal 100 in June 2014. Between June 2014 and December 2015, the price of gasoline fell by 45%, whereas the cost of crude oil fell by 65% (about as much as the spot price of Brent crude oil). Some of that difference is accounted for by a slight increase in gasoline taxes, but even the pre-tax price of gasoline fell only by 53%. At first sight this evidence might seem to imply that refiners and/or gasoline distributors failed to pass on the full cost savings resulting from the 2014/15 oil price decline to consumers. It is important to keep in mind, however, that historically only about half of the price of gasoline has consisted of the cost of crude, so even under perfect pass-through one would expect a percent decline in the price of gasoline only about half as large as the percent decline in the cost of oil.

Table 2 examines the extent to which cumulative changes in the cost of the crude oil used in producing gasoline have been reflected in changes in the price of gasoline based on four key episodes, two of which involve increases in the cost of crude oil and two of which involve declines. For example, between January 2007 and July 2008, the cost of crude oil increased cumulatively by 155% (slightly more than the price of Brent crude oil). Given an average cost share of 63.3% over this period, all else equal, one would have expected the price of gasoline to increase by 98.1% cumulatively. The actual cumulative increase of 81.3% was somewhat lower, but not far from this benchmark. Another large cumulative increase in the cost of oil occurred

3 Although there is a large degree of comovement between the cost of oil and the price of gasoline, this comovement is by no means perfect. For example, in 2005, when Gulf Coast oil refineries were forced to shut down due to Hurricanes Rita and Katrina, causing a refining shortage, there was a sharp spike in the price of gasoline, but not in the price of crude oil, illustrating that occasionally changes in gasoline prices are not just determined by changes in the price of crude oil (see Kilian 2010). A regression of the price of retail gasoline on an intercept and the cost of crude oil, as shown in Figure 2, yields a slope coefficient of 1.1, suggesting a near one-for-one relationship in the long run.
between December 2008 and April 2011. The cost of oil surged by 175.4% (somewhat less than the Brent price of crude oil). Given the average cost share of 64.6%, one would have expected the price of gasoline, all else equal, to increase by 113.3%. The actual increase of 125.3% was somewhat higher, but in the same ballpark.

What about declines in the cost of oil? Between July 2008 and December 2008 the cost of crude fell by 69.2% cumulatively, which, given the average cost share of 65.2%, would have led us to expect the gasoline price to decline by 45.1%, somewhat less than the observed decline of 58.5%. Likewise, the cumulative decline in the cost of oil of 65% between June 2014 and December 2015, given the average cost share of 53.4%, translates to an expected decline of 34.7% in the U.S. gasoline price, compared with a somewhat larger decline of 44.8% in the data.

These four examples are consistent with the view that on average the observed changes in gasoline prices are roughly as large as one would have expected under perfect pass-through, given that gasoline prices may vary for a range of other reasons ranging from refinery outages to changes in retail market structure (see Baumeister, Kilian and Lee 2016). The decline in the price of gasoline that occurred in 2014/15, if anything, exceeded what one would have expected based on the pass-through from the cost of oil to the gasoline price at the pump. There is no evidence of asymmetries in the pass-through between declines and increases in the cost of oil in Table 1, corroborating formal econometric results based on monthly data in Venditti (2013) that did not control for changes in the cost share of oil.

3.2. How Has the Consumption of Gasoline Evolved Since June 2014?

Figure 4 puts the changes in gasoline consumption that took place after June 2014 in historical perspective. It plots an index of seasonally adjusted U.S. consumption of motor gasoline, computed as the sum of the gasoline consumed by the industrial, commercial and transportation
sector. U.S. gasoline consumption had reached an all-time high in September 2007, well before the peak in global oil prices and in U.S. gasoline prices, before dropping sharply in 2008. After stabilizing in 2009 and 2010 at levels last seen in 2004, consumption resumed its decline in early 2011, ultimately in February 2013 reaching levels not seen since 2002. Since then U.S. gasoline consumption has been rebounding at a rapid pace, notwithstanding the slow pace of the U.S. economic recovery.

Figure 4 shows that this rebound started well before the sharp decline in oil and gasoline prices in the second half of 2014, but the latter price decline undoubtedly contributed to the sustained growth in gasoline consumption. Coglianese et al. (2016) estimated the one-month price elasticity of U.S. gasoline demand, accounting for forward-looking behavior in gasoline markets. They found no evidence of important asymmetries in the elasticity with respect to gasoline price increases and decreases. Their state-of-the-art price elasticity estimate was -0.37. Based on this elasticity estimate, Coglianese et al. predicted that U.S. gasoline consumption, all else equal, would increase by 8% cumulatively between the end of June 2014 and the end of December 2014.\footnote{Applying the elasticity estimate to the unpredictable component of the change in gasoline prices for a given month yields the expected increase in U.S. gasoline consumption for that month. The prediction of 8\% is constructed by cumulating these expected increases. In measuring the unpredictable component of the change in gasoline prices for each month between July and December 2014, Coglianese et al. rely on the real-time gasoline price predictions issued by the U.S. Energy Information Administration in its \textit{Short-Term Energy Outlook} (see Baumeister, Kilian and Lee 2016).} Figure 5 shows that the actual cumulative increase over this time period of 6.6\% was quite close to the out-of-sample prediction in Coglianese et al., suggesting that this increase is largely explained by the decline in the U.S. gasoline price. As we will see later, the fact that the actual increase in gasoline consumption was slightly smaller than the predicted increase is consistent with a simultaneous economic slowdown that is not accounted for in the predictive analysis of Coglianese et al. (2016).
The increase in gasoline consumption coincided with a 5% increase in vehicle miles traveled since June 2014 (see Figure 6). At the same time, the fuel economy of new cars and light trucks, as measured by the average sales-weighted miles per gallon reported by the Transportation Research Institute at the University of Michigan, fell by 2% from a peak of 25.8 mpg in August 2014 to 25.2 mpg in March 2016, reflecting changes in the composition of new vehicles.

3.3. Measuring Gasoline Price Shocks

Gasoline price shocks are defined as the difference between what the price of gasoline was expected to be ex ante and what it actually turned out to be. Recent work by Baumeister and Kilian (2016a) suggests that what matters when quantifying gasoline price shocks is the expectation of the decision maker whose behavior we seek to understand. If we want to understand the response of U.S. consumers, for example, the relevant measure of gasoline price expectations is consumers’ own expectations, no matter how inaccurate that measure may be by statistical criteria. The Michigan Survey of Consumers since February 2006 provides data for consumers’ expectations of the change in gasoline prices over the next 12 months. Based on these data, Anderson, Kellogg and Sallee (2013) documented that consumers with rare exceptions expect the nominal price of gasoline to grow at the rate of inflation. An obvious question is whether this approximation remains valid even during a decline in the price of gasoline as sustained as the decline that started in June 2014.

We address this question in Figure 7, which plots the expectation of the price of gasoline implied by the survey data. The gasoline price expectation is constructed by adding the median expected change in gasoline prices over the next 12 months from the Michigan Survey of Consumers to the average U.S. price of gasoline from the Monthly Energy Review. Figure 7
shows that this survey measure closely tracks the no-change forecast of the real price of gasoline adjusted for the median expected change in the price level over the next 12 months, as reported in the *Michigan Survey of Consumers*, even after June 2014. This evidence suggests that one can approximate consumers’ expectations of the real gasoline price based on a simple no-change forecast of the real price of gasoline. We employ this approach to construct a monthly time series of the real gasoline price shocks experienced by U.S. consumers during 1970.1-2016.3.

Let
\[
S_t = \left(R_{t}^{\text{gas}} - E_{t-1}(R_{t}^{\text{gas}}) \right) / E_{t-1}(R_{t}^{\text{gas}}),
\]
where \(R_{t}^{\text{gas}} \) is defined as the average nominal price of gasoline and other motor fuel, \(P_{t}^{\text{gas}} \), as reported by the BEA, deflated by the overall PCE deflator, \(P_{t}^{C} \), and \(E_{t-1}(R_{t}^{\text{gas}}) = R_{t-1}^{\text{gas}} \). This shock measure simply corresponds to the percent change in the real price of gasoline and other motor fuel, as shown in the upper panel of Figure 8. How much this gasoline price shock matters to U.S. consumers depends on the share of expenditures on gasoline and other motor fuels in overall consumer expenditures. For a given unexpected increase in the real price of gasoline, the higher this expenditure share, the higher the potential reduction in consumers’ discretionary income because income spent on gas cannot be spent on other goods and services. As illustrated in the middle panel of Figure 8, this share has fluctuated between about 2% and 5% since 1970. In mid-1973, in early 2006, and again in mid-2014 the share was near its long-run average value of 3%.

A measure of the shock to consumers’ purchasing power may be constructed as

\[
PP_t = -S_t \times \frac{C_{t}^{\text{gas}}}{C_{t}^{P}},
\]

where \(C_{t}^{\text{gas}} \) is real U.S. gasoline consumption and \(C_{t} \) is real total consumption, as reported by the BEA. The series of purchasing power shocks, \(PP_t \), is shown in the bottom panel of Figure 8. It is the latter shock series that consumers respond to rather than the gasoline price shock in the
upper panel. Figure 8 shows clear evidence of an unexpected increase in purchasing power in 1986, following a sharp drop in the global price of crude oil; it shows repeated unexpected reductions in purchasing power between 1999 and 2008 during the surge in global oil prices; a large positive purchasing power shock in late 2008, associated with the financial crisis, that was quickly reversed in early 2009; and, finally, a series of positive and negative purchasing power shocks since June 2014, during the period of interest in this paper.

3.4 The Baseline Linear Model

The question of ultimate interest is by how much these purchasing power shocks stimulated real private consumption. Our analysis is based on a monthly model that embodies the identifying assumption that changes in purchasing power are predetermined with respect to real consumption. Let Δc_t denote the percent change in the monthly real consumption aggregate of interest and PP_t the monthly shock to consumers’ purchasing power, as defined in section 3.3. The shocks are normalized such that a positive shock indicates an increase in purchasing power. Then the response of consumption to purchasing power shocks may be estimated from the OLS regression

$$
\Delta c_t = \alpha + \sum_{i=1}^{6} \beta_i \Delta c_{t-i} + \sum_{i=0}^{6} \gamma_i PP_{t-i} + u_t,
$$

where u_t denotes the regression error. It can be shown that a one-time increase in purchasing power of 0.01% in this model is associated with a sustained increase in the level of real consumption reaching 0.01% after 12 months. Of course, there has been considerable variation in the magnitude and sign of the changes in purchasing power since June 2014 (see Figure 8). In

5 For related approaches see, e.g., Edelstein and Kilian (2009) and Hamilton (2009). The validity of this identifying assumption is supported by evidence in Kilian and Vega (2011).

studying the evolution of U.S. real private consumption over this period, a more useful approach therefore is to compute the cumulative effect of these purchasing power gains and losses on real consumption since June 2014. Table 3 (panel A) shows that, according to the model, purchasing power shocks cumulatively stimulated U.S. real private consumption by 1%.

One possible concern with this estimate is that between 2009Q1 and 2014Q2 the U.S. economy grew on average by 1.9% at annual rates, compared with a much higher average growth rate historically. Although this slowdown could arise merely as the result of a stochastic trend in the data, an alternative view is that it reflects a permanent reduction in the expected growth rate after the financial crisis. Table 3 (panel B) therefore considers an alternative specification of model (1) in which α is allowed to change permanently after 2008.12.7 This modification raises the cumulative effect of the purchasing power shocks to 1.2% and implies that purchasing power shocks account for almost all of the observed 1.3% cumulative increase in total real private consumption relative to trend between 2014Q3 and 2016Q1. Taking account of the drift, the model predicts an average growth rate of 2.8% at annual rates in real private consumption, compared with 2.9% in Table 1. In the subsequent empirical analysis, we will treat this model specification as the baseline for our analysis.

Part of the estimated cumulative increase in consumption is accounted for by the operating cost effect, which refers to an increase in purchases of automobiles in response to unexpectedly lower gasoline prices, which amplifies the overall consumption response over and above the discretionary income effect (see Hamilton 1988). Table 3 (panel B) confirms the existence of a disproportionately larger stimulus of near 3% for durables (which in turn is largely driven by the consumption of new motor vehicles). Weighting the 6.7% stimulus for the consumption of new motor vehicles in Table 3 (panel B) by the share of new motor vehicles in

7 The average consumption growth rate drops from 3.3% at annual rates to 2.1% after the break in December 2008.
private consumption of 2.3% suggests a cumulative operating cost effect of near 0.15%. Given the overall cumulative consumption response of 1.2% in the baseline model, this implies a discretionary income effect of about 1.05%.

A simple back-of-the-envelope calculation suggests that the magnitude of this estimate of the discretionary income effect is reasonable. The real price of gasoline and other motor fuels declined by 44.94% between June 2014 and March 2016. The share of gasoline expenditures in total expenditures in June 2014 was 3.17%. This allows consumers to purchase the same goods for a fraction of their income

\[(1 - 0.0317) \times 1 + 0.0317 \times (1 - 0.4494)(1 + 0.37 \times 0.4494) = 0.9887\],

freeing up 1.13% of their income for additional purchases, after taking account of the increase in gasoline consumption implied by the point estimate of -0.37 of the price elasticity of gasoline demand reported in Coglianese et al. (2016). This exercise suggests a discretionary income effect on consumption close to the estimate of 1.05% implied by the baseline model.

The cumulative increase in real GDP growth implied by the combined effect of higher discretionary income and lower operating costs in the baseline model is 0.7% over the course of seven quarters, given the share of consumption in GDP of 69% and assuming a marginal import propensity of 15%. Our finding of a substantial consumption stimulus is not only robust across other model specifications including the model of Edelstein and Kilian (2009), but it is also consistent with a marked improvement in consumers’ long-term expected business conditions, following the decline in the real price of oil. In the next two sections we examine the evidence for nonlinearities and structural breaks in the transmission of the oil price shocks as well as other complicating factors that are not captured by this baseline model.8

8 One potential concern with relying on the back-of-the-envelope calculation as well as the linear regression model is that the dependence of the U.S. economy on petroleum product imports has evolved, and so has the fraction of the
4. Does the U.S. Economy Respond Asymmetrically to Unexpected Oil Price Increases and Decreases?

There is general agreement among economists on the existence of a discretionary income effect, but some economists have suggested that the effects of unexpectedly low oil prices are likely to be negligible, because the stimulating effects are offset by costly reallocations of resources or by higher uncertainty about gasoline prices. This view implies that the economy responds asymmetrically to unexpected increases and decreases in gasoline prices. The rationale for asymmetric responses of real output to oil price shocks hinges on the existence of additional indirect effects of unexpected changes in the real price of oil. There are two economic models that generate such indirect effects. One is the reallocation model of Hamilton (1988), which is the focus of subsection 4.1; the other is the real options model of Bernanke (1983), which is discussed in subsection 4.2. Next, we examine whether these models provide a plausible explanation for the sluggish growth of the U.S. economy following the decline in the price of oil after June 2014.

4.1. Did Frictions in Reallocating Capital and Labor Offset the Stimulus?

Relative price shocks such as shocks to the real price of gasoline can be viewed as allocative disturbances that cause sectoral shifts throughout the economy. For example, increased expenditures on energy-intensive durables such as automobiles in response to unexpectedly low real gasoline prices tend to cause a reallocation of capital and labor toward the automobile sector. As the dollar value of such purchases may be large relative to the value of the fuel they use, even relatively small changes in the relative price of gasoline can have potentially large effects on

“oil tax” that is ultimately recycled into the U.S. economy. Since 2014, the share of net petroleum imports in products supplied, which traditionally had fluctuated between 40% and 60%, has dropped below 30%. This shift may cause our analysis to overstate the response of real consumption to purchasing power shocks after June 2014, but probably not by much.
demand. This operating cost effect has already been discussed in section 3. A similar reallocation may occur within the automobile sector as consumers switch toward less fuel-efficient vehicles (see Bresnahan and Ramey 1993). If capital and labor are sector specific or product specific and cannot be moved easily to new uses, these intersectoral and intrasectoral reallocations will cause labor and capital to be unemployed, resulting in cutbacks in real output and employment that go beyond the direct effects of a real gasoline price shock. For example, workers may be ill-equipped to take different jobs short of extensive job retraining. The same effect may arise if unemployed workers simply choose to wait for conditions in their sector to improve.

This indirect effect tends to amplify the direct recessionary effect on real output and unemployment of unexpected increases in the real price of gasoline, while dampening the economic expansion caused by unexpected declines in the real price of gasoline. There is a large empirical literature on potential asymmetries in the economy’s response to positive and negative oil price shocks (see, e.g., Herrera, Lagalo and Wada 2011, 2015; Herrera and Karaki 2015; Kilian and Vigfusson 2015). Although the evidence thus far has not been supportive of models implying strongly asymmetric responses at the aggregate level, there are comparatively few episodes of large oil price declines, so this latest episode provides an opportunity to have a fresh look at the evidence.

Given the challenges of measuring movements of capital across sectors, our discussion focuses on movements of labor. Even in the latter case it is difficult to directly assess the evidence for frictions. This would involve tracking workers after they lose their jobs in one sector. Some insights, however, may be gleaned from U.S. unemployment data at the aggregate level. If the hypothesis of frictional unemployment were empirically relevant, one would expect aggregate unemployment to increase relative to the level that would have prevailed in the
absence of the fall in the price of gasoline. Such an effect would presumably manifest itself in an increase in the unemployment rate or, at the very least, a noticeably slower decline in the unemployment rate. Figure 9 shows that both the U.S. unemployment rate and the median duration of unemployment have been dropping steadily since late 2011. If frictions in reallocating labor drove up unemployment after June 2014, this would imply that – in the absence of this friction – unemployment would have dropped even more sharply than it actually did, which does not seem very plausible.

This pattern is by no means unprecedented. For example, Figure 9 shows that the large and sustained decline in the price of gasoline after December 1985 was followed by a decline in the unemployment rate of a magnitude similar to the decline in the unemployment rate after June 2014. Table 4 compares the cumulative decline in the unemployment rate and in the median duration of unemployment that took place during these two episodes. Although the cumulative change in the real price of gasoline in the more recent episode was larger, the cumulative gain in purchasing power over the first seven months of 0.96% was only slightly larger than the 0.85% increase observed in 1986, and so was the cumulative decline in the unemployment statistics. Then as now, there is no evidence of an increase in unemployment relative to trend. This evidence casts some doubt on the view that the comparatively slow U.S. real GDP growth since June 2014 reflected frictions in the reallocation of labor.9

Further insights may be gained from employment data for the oil industry and related

9 In related work, Feyrer, Mansur, and Sacerdote (2015) conclude based on estimates of county-level regressions that the shale boom created 725,000 jobs (two thirds of which are in the mining sector), which they equate with a reduction in the U.S. unemployment rate of 0.5 percentage points during the Great Recession. These estimates, however, combine job gains from shale oil as well as shale gas production, and they do not allow for the possibility that job gains near shale counties may coincide with job losses elsewhere. Leaving aside these caveats, it is clear that even a partial reversal of these job gains presumably would have resulted in an increase in the unemployment rate of several percentage points, if frictional unemployment were empirically important. What Figure 9 shows is that the U.S. unemployment rate continued to fall at a steady rate from 6.1% in mid-2014 to 5% in March 2016 rather than increasing relative to the previous trend.
industries. Between December 2009 and its peak in October 2014, employment in this sector (defined as oil and gas extraction including support activities and the construction of mining and oil field machinery and pipelines) increased by 278,000 workers. Between October 2014 and March 2016, employment fell by 166,000 workers. At the national level, the reduction in employment in the oil sector, although large in percentage terms, is clearly too small to matter much for the unemployment rate. Nor has the 2014 oil price decline had a large effect on net employment changes (see Herrera et al. 2016).

We can get a better sense of how quickly these unemployed workers were absorbed by focusing on selected oil-producing states such as Texas and North Dakota. For example, it has been suggested that the 1986 recession in Texas was caused by frictions to the reallocation of labor from the oil sector to other sectors. If so, one would expect a pronounced increase in unemployment in Texas after June 2014 as well. As of June 2014, the mining and logging sector accounted for only 2.7% of nonfarm employment in Texas. This share dropped to 1% in March 2016. State-level BLS data show that the unemployment rate in Texas has remained low, nevertheless. In fact, the unemployment rate in Texas fell from 5.1% in June 2014 to 4.3% in March 2016, which is below the national average. This means that, although one in five workers in the mining and logging sector lost their job, most of these unemployed workers found employment in other sectors in Texas (or must have relocated to other states, presumably for new jobs there). The fact that the Texan economy apparently was able to absorb most of these 70,000 workers among the pool of close to 12 million employed, while the Texan labor force increased by 2.1% (or 270,850 workers) at the same time (consistent with the view that Texas may have absorbed oil workers returning from other states as well), speaks against the existence of important frictions to the reallocation of labor. Of course, this point is difficult to verify, given
that there are other reasons for labor migration. What matters for our purposes is that the decline in the unemployment rate is not a statistical artifact of a higher labor force, given that the number of unemployed decreased by 12.2%, while the number of employed increased by 2.8%. In short, the evolution of the unemployment rate since June 2014 appears inconsistent with large multiplier effects from the oil sector to other sectors of the Texan economy, at least at the 21-month horizon.\footnote{An interesting question is how these former oil workers have been absorbed by the economy. Herrera et al. (2016) provide evidence for the reallocation of jobs lost in the oil and gas sector to the service sector, manufacturing sector, and construction sector.}

Even in a state such as North Dakota where, as of June 2014, 6.4% of all jobs were in the mining and logging sector and where almost every second worker in this sector lost his or her job, the unemployment rate rose only slightly from 2.7% to 3.1%. A natural conjecture is that this performance was made possible by the migration of unemployed workers to other states. If this interpretation were correct, one would expect a decline in the civilian labor force split between a decline in the number of the employed and in the number of the unemployed such that the unemployment rate, defined as the number of unemployed divided by the labor force, remains approximately stable. As it turns out, the data suggest a different pattern. North Dakota actually experienced an increase in its labor force and in the number of unemployed since June 2014, accompanied by a decline in the number of employed. The latter decline has been surprisingly modest (-0.1%), despite substantial job losses in the nonfarm sector (-4.6%), and in mining and logging in particular (-41.1%). Moreover, the substantial increase in the number of unemployed in North Dakota (+18.6% starting from a low base) has been partially offset by an increase in the civilian labor force (+0.4% starting from a much larger base), which explains the modest increase in the unemployment rate. One interpretation of this evidence is that natural population growth and possibly continued migration into North Dakota after June 2014 explains
the increase in the number of the unemployed and in the civilian labor force as well as the remarkable stability of the unemployment rate.

Table 5 summarizes the evidence for all seven “oil states” in the United States (defined as states with an oil share in value added above 5%, as discussed in more detail in section 5.1.1). This evidence suggests three main conclusions. First, between June 2014 and March 2016 all seven oil states experienced declines in the share of jobs in mining and logging. These declines ranged from 0.4 to 2.4 percentage points. Second, nevertheless, the overall unemployment rate declined in all but two of these oil states, and in the latter two states the increase in the unemployment rate was quite small. Third, only in Alaska and Wyoming is there evidence of the unemployment rate being stabilized by the unemployed as well as formerly employed workers leaving the state. In contrast, four of the seven oil states experienced an increase in the labor force, often associated with a strong increase in employment, as in the case of Montana, Texas, and Oklahoma. New Mexico, in contrast, saw little change in its labor force, but a large reduction in the number of its unemployed. We conclude that unemployment, whether voluntary or not, has remained remarkably low in the oil states, providing evidence against a quantitatively important reallocation effect, at least in the oil sector. There is little evidence that unemployed workers waiting out the slump have been driving up the unemployment rate in these oil states, as one might have expected based on the model of Hamilton (1988).

4.2. Did Uncertainty about Future Gasoline Prices Hold Spending Back?

The evidence in section 4.1 casts doubt on the notion that severe frictions in reallocating labor have been responsible for an economic slowdown that offset the stimulus computed in section 3, but there is an alternative potential explanation for the weak response of the U.S. economy to lower gasoline prices that focuses on a different channel. This alternative explanation postulates
that an increase in uncertainty about future oil and gasoline prices may be responsible for holding back consumption and investment spending and hence real GDP growth.

In this section we focus on the question of whether increased uncertainty about the future price of gasoline may have partially offset the discretionary income and operating cost effect documented in section 3. In particular, increased gasoline price uncertainty could be the reason why consumers chose not to buy more automobiles, helping to explain why the consumption of new motor vehicles in Table 2 fell relative to trend at a time when gasoline prices were lower than they had been for a long time. The argument is that the decision to buy a new vehicle depends in part on consumers’ expectations of future gasoline prices. If future gasoline prices become more uncertain, it makes sense for consumers to hold off buying a new car for the time being, even when expected gasoline prices are low. This point is closely related to Bernanke’s (1983) model of how increased uncertainty about the price of oil may cause a delay in investment projects (see also Pindyck 1991). The same reasoning applies to purchases of consumer durables such as cars and light trucks. The quantitative importance of this effect depends on how important the real price of gasoline is for automobile purchase decisions and on the share of such expenditures in aggregate spending.

To assess the empirical content of the real options model we must construct a measure of consumers’ uncertainty about future gasoline prices at the horizons relevant to purchases of automobiles. One challenge is how to measure uncertainty at the horizons longer than the usual

11 Bernanke’s point is that—to the extent that the cash flow from an irreversible investment project depends on the price of oil—real options theory implies that, all else equal, increased uncertainty about the real price of oil prompts firms to delay investments, causing investment expenditures to drop.

12 A closely related argument was made by Edelstein and Kilian (2009), who observed that increased uncertainty about the prospects of staying employed in the wake of unexpected changes in the real price of oil may cause an increase in precautionary savings (or, equivalently, a reduction in consumer expenditures). In this interpretation, uncertainty about gasoline prices may affect not merely consumer durables such as cars that are fuel-intensive in use, but other consumer expenditures as well. Here we focus on the uncertainty effect on the consumption of motor vehicles.
monthly or quarterly horizon. The other challenge is that we are concerned with the uncertainty perceived by consumers rather than by financial markets (as embodied in options prices). Similarly, commonly used measures of price uncertainty based on the conditional variance in GARCH models need not be good proxies for the uncertainty of U.S. consumers. In addition, GARCH estimates are backward-looking by construction, and extrapolating from monthly or quarterly GARCH models to multi-year horizons is inherently problematic. We therefore consider an alternative proxy for gasoline price uncertainty defined as the standard deviation of the responses of participants in the Michigan Survey of Consumers to the question about the expected change in the price of gasoline at the one-year and the five-year horizon.13

Figure 10 suggests a pronounced increase in consumers’ uncertainty about gasoline prices both at short horizons and at longer horizons in late 2014. Note that not all increases in gasoline price uncertainty are exogenous with respect to U.S. consumption. For example, the tremendous surge in gasoline price uncertainty in 2008 and 2009 was clearly driven by the recession associated with the financial crisis. The spike in gasoline price uncertainty after June 2014, in contrast, was not caused by a U.S. recession and hence, for our purposes, may be viewed as a potential explanation for consumers’ purchases of motor vehicles.

The literature on the uncertainty effect suggests that this spike in uncertainty, all else equal, should have been associated with a reduction in vehicle sales. Indeed, the upper panel of Figure 11 shows that U.S. sales of autos and light trucks remained sluggish between June 2014 and January 2015, before accelerating in the second half of 2015. This evidence would seem to be supportive of a quantitatively important uncertainty effect, except for the fact that current

13 Disagreement among individual survey respondents’ predictions is not in general the same as any one respondent’s uncertainty about future outcomes, but Zarnowitz and Lambros (1987) provide evidence in the context of inflation expectations that the standard deviation of the responses across respondents and the standard deviation of individual predictive distributions tend to be positively correlated, especially at lower frequency. For related evidence in a different context also see Bachmann, Elstner, and Sims (2013).
conditions for buying a vehicle, as measured by the *Michigan Survey of Consumers*, greatly improved in late 2014, directly contradicting this hypothesis (see Figure 11). If consumers chose not to buy a new car despite the strong improvement in current buying conditions, then the reason cannot have been higher gasoline price uncertainty, but must have been some other economic development which offset the stimulating effect of lower gasoline prices, adding credence to the standard linear model of the transmission of purchasing power shocks.

This conclusion is reinforced by the fact that there is clear evidence of substitution across classes of vehicles with different fuel efficiency. If consumers choose to buy a light truck rather than a car, for example, this fact indicates that they are not deterred by gasoline price uncertainty, but quite confident in buying a type of vehicle that is clearly less fuel efficient than the alternatives. The left panel of Figure 12 shows that after June 2014, auto sales actually declined, while sales of light trucks increased faster than overall vehicle sales, providing additional evidence against an important role for gasoline price uncertainty. The share of light trucks in total light vehicle sales increased from 53% in June 2014 to 59% in March 2016. The right panel of Figure 12 shows that there has been a disproportionate decline in the sales of hybrid cars since June 2014 relative to overall auto sales, corroborating our earlier evidence.14

5. Why This Time Might Be Different

Even under the maintained assumption of a linear relationship between purchasing power shocks and real consumption growth, we need to consider the possibility that the transmission of this latest oil price shock may be different because of latent structural changes in the U.S. economy. One potential source of such temporal instability is the increased importance of the shale oil sector for the U.S. economy after 2011.

14 In contrast to the sales of hybrid vehicles, the sales of battery-powered vehicles have not responded to the decline in the price of gasoline, suggesting that buyers of electric cars are primarily motivated by environmental concerns and less by fuel costs.
5.1. How Important Was the Contribution of the Shale Oil Sector to U.S. Real GDP?

By mid-2014, U.S. shale oil production alone accounted for one quarter of all crude oil used by the U.S. economy (see Kilian 2016b). A view that has gained popularity is that low oil prices may be harmful to the U.S. economy because of their disruptive effects on the domestic oil industry, notably the shale oil sector.

5.1.1. The Effects of the Shale Oil Sector on Value Added

One way of assessing the empirical content of this proposition is to quantify the reduction in the value added generated by the oil industry following the decline in the price of oil since June 2014. Although U.S. oil production initially continued to increase, reflecting substantial productivity increases in extracting shale oil, and peaked only in April 2015, the U.S. oil sector experienced a severe contraction in 2015/16. Evidence of this contraction is based on measures of gross output such as the number of barrels of crude oil produced by the industry as well as reports of reductions in employment and capital expenditures.

Assessing the magnitude of the effect of this contraction on real value added is not straightforward because there are no quarterly value added data on U.S. shale oil production (or for that matter total oil production). The closest available aggregate is mining, which includes oil and gas extraction, other mining activities, and support services for all mining activities. Table 6 (panel A) shows that the overall effect of changes in mining on real GDP growth between 2014Q2 and 2015Q4 has been negligible. This result obscures that between 2014Q2 and 2015Q2, growth in mining value added actually raised U.S. real GDP growth by 0.14 percentage points at annual rates, whereas after 2015Q2 it lowered real GDP growth by 0.13 percentage points, as value added in mining fell by 9.5%. Further inspection of the annual real value added data, which provide a more detailed breakdown, suggests that oil and natural gas extraction
combined, far from contracting, actually continued to grow even in 2015 at an astounding rate of 16%, even as other mining activities and overall mining support declined by 7% and 14%, respectively. This evidence suggests that much of the contraction in the shale oil industry occurred not in production so much, but in support services. The reason why these changes do not matter more at the aggregate level is not only that some of the changes are offsetting, but that the share of mining in GDP has remained quite small, having risen gradually from 2.2% in 2007 (before the shale oil boom) to a peak of 2.6% in 2013, before falling to 1.7% in 2015.

Focusing on the direct contribution of the oil sector may be underestimating its overall impact on value added, however. Clearly, oil states such as North Dakota or Texas experienced an economic boom between 2010 and 2015 that extended to the service sector, residential housing, and other infrastructure required to sustain higher levels of oil production (also see Feyrer, Mansur, and Sacerdote 2015). When the price of oil fell, many other sectors of the economy in the oil states contracted as well. It is difficult to measure these impacts directly, but a simple thought experiment allows us to bound these broader impacts at the state level on U.S. real GDP. The BEA provides data on real GDP growth for every U.S. state. We classify these states into states with an oil share in value added in 2014 above 5% (referred to as the “oil states”) and states with a lower share. The oil states include North Dakota (84%), Alaska (40%), Wyoming (21%), New Mexico (14%), Texas (8%), Oklahoma (7%) and Montana (6%). These states also include the most important shale oil plays in the country (see Kilian 2016a). We then ask how different U.S. real GDP growth would have been, if these oil states had not been part of the U.S. economy. This approach allows us to control both for the direct effects and the indirect

15 Following Hamilton and Owyang (2012), the state-level oil share is calculated as 100 times the number of barrels of crude oil produced in a given state in 2014, as reported by the EIA, weighted with the annual domestic first purchase price (dollars/barrel) for that year, and then divided by the 2014 state personal income, as reported by the BEA.
state-level effects of the oil boom on U.S. real GDP growth.

Table 6 (panel B) shows that after excluding the seven oil states from the U.S. economy, the aggregate rate of growth would have been only marginally different, suggesting that the state-level effects of the shale oil boom on value added are quite modest. In fact, between 2014Q2 and 2015Q4, shale oil states overall slightly increased U.S. real GDP growth from 2.33% at annual rates to 2.38% rather than lowering it, as one might have expected. Only starting in 2015Q3, when growth in the oil states had dropped from 3.7% to 0.7% at annual rates, is there any evidence that these states pulled down aggregate real GDP growth. The counterfactual growth rate exceeded the actual growth rate by 0.15 percentage points. This evidence suggests that if the shale oil sector was indeed responsible for the sluggish growth of the U.S. economy, there must have been other channels of transmission at play. There are several such mechanisms to consider.

5.1.2. The Effects of Shale Oil on Real GDP through Firms’ Investment Expenditures

To the extent that variation in the growth rate of real GDP is disproportionately affected by variation in the growth rate of real investment, it is conceivable that the oil sector may have had large effects on economic growth without having a large direct effect on value added. It is widely accepted that the unprecedented expansion of the U.S. shale oil sector has been a major contributor to aggregate investment since 2010, changing the dynamics of the U.S. economy. As a result, when the price of oil fell after June 2014, real investment in the U.S. oil sector dropped sharply, which could help explain why U.S. aggregate real nonresidential investment did not expand nearly as much in response to lower oil prices, as one might have expected.

Tables 6 (panel C) and 7 examine the quantitative importance of this effect. Investment in the oil sector is approximated by the sum of investment in mining and oilfield machinery and
investment in petroleum and natural gas structures. Panel A in Table 7 shows that total real fixed nonresidential investment in the U.S. economy between 2014Q2 and 2016Q1 on average increased by 1.6% at annual rates, compared with 2.2% growth in real GDP. Over the same period, oil investment dropped at an annual rate of 48%. Thus, after excluding investment in the U.S. oil sector, real investment would have increased at a rate of 4.6%, about three times as fast as the actual data. Panel B in Table 7 shows that investment in structures would have grown at 10.2% (rather than declining at a rate of 2.9%), and panel C shows that investment in equipment would have grown at 2.7% (rather than merely 1.6%). This is not to say that the increase in non-oil investment after 2014Q2 was primarily caused by lower oil prices; indeed, additional analysis (not shown here) suggests that the bulk of this increase was not driven by unexpectedly lower oil prices. More important than the source of the increase in non-oil investment is the fact that this increase was largely offset by reduced investment in the oil sector. This mechanism is not new. It has already been documented by Edelstein and Kilian (2007) in the context of the 1986 oil price decline. What is new is the magnitude of the decline in the real price of oil, on the one hand, which was twice as large after 2014Q2 compared to 1985Q4, and the magnitude of the decline in oil-related investment, on the other hand, which fell by 48% between 2014Q2 and 2016Q1 compared with only 21% between 1985Q4 and 1987Q3. Given that the share of oil and gas extraction in GDP was 1.7% in 1985 as well as in 2014, the disproportionate drop in oil investment could simply be explained by the price of oil in 2014-16 having declined more steeply.

A complementary explanation could be that investment by shale oil producers is more price-sensitive than investment by conventional oil producers. Whether this common perception is actually correct is not clear, however. The decision to continue to invest in shale oil production
depends on whether the expected price of oil exceeds the long-run marginal cost of oil production. If so, oil production remains profitable and investment continues. Otherwise, investment ceases. One difference from conventional oil production is that the marginal cost of producing shale oil tends to be higher than that for conventional oil production, which, all else equal, suggests that, as the expected price of oil declines, investment by shale oil producers should cease before conventional oil investment. Another difference, however, is that investment in the shale oil sector has a much shorter horizon. Thus, the decision to cut shale oil investment depends on the expected evolution of the price of oil in the short run only. For conventional investment, in contrast, the price of oil expected at longer horizons also matters. For example, expectations of a longer-term price recovery would tend to make conventional oil investment more robust to oil price declines than shale oil investment. Which type of investment is affected more therefore is ambiguous, in general. In addition, it has to be kept in mind that the uncertainty about the future price of oil may be higher in the short run than in the long run, which would slow investment in shale oil compared with longer-term oil investments. If oil price uncertainty is lower in the short run than in the longer run, in contrast, shale oil investment would be boosted relative to investment in conventional oil. Thus, it is not clear a priori whether shale oil investment is more responsive to oil price fluctuations than other oil investment.

The effect of reduced oil investment on U.S. real GDP growth is less dramatic, reflecting the comparatively low share of total investment in GDP compared to the share of consumption in GDP, but is still economically significant. According to Table 6 (panel C), U.S. real GDP would have increased at an average rate of 2.6% per annum excluding the decline in investment in the oil sector and in railroad equipment. The latter component is included here given the importance of oil transport for the railroad sector, compared with 2.2% in the data. To summarize, lower oil-
related investment accounts for a reduction of 0.4 percentage points in U.S. real GDP growth measured at annual rates.16

5.1.3. The Effects of Shale Oil on Real GDP through the Petroleum Trade Balance

Lower oil prices may affect real GDP by changing consumption and investment expenditures, but also by changing net petroleum exports. As long as the volume of oil imports remains unchanged, a change in the real price of oil leaves real oil imports unchanged. If a lower real price of oil discourages domestic oil production, however, as occurred both in 1986 and after 2014Q2, for given U.S. oil consumption, real oil imports must increase. This effect (which mirrors the changes in value added by the oil sector) must be included in modelling the effects of lower real oil prices on the expenditure side of real GDP.

In quantifying the effect of lower oil prices on the external balance after 2014Q2, it makes sense to focus on the petroleum trade balance of the U.S. economy, where petroleum is defined to include crude oil and refined products, rather than merely the crude oil trade balance. The reason is that the U.S. shale oil revolution not only permitted U.S. refiners to curtail their oil imports, but it also allowed refiners to export refined products such as gasoline or diesel on a much larger scale than heretofore (see Kilian 2016a,b). Although U.S. net petroleum imports over the last seven years have fallen from 240 billion to 102 billion chained 2009 dollars, the United States has remained a net petroleum importer. The inclusion of refined products makes a difference in that the petroleum trade balance actually improved, following the decline in the price of oil, with exports growing faster than imports. Table 6 (panel C) shows that excluding the

16 It has been argued that the reduction in the oil sector’s real investment in addition may have caused real investment in other sectors of the economy to decline as well. If so, one would expect a similarly sharp drop in these components of investment after 2014Q2. Time series plots of investment in industrial equipment and investment in transportation equipment, however, suggest that only investment in railroad equipment (which we already included in the computations underlying Table 6 (panel C)) mirrors the increase and decline in oil investment, suggesting that these spillover effects are not quantitatively important for other sectors of the economy.
change in the petroleum trade balance since 2014Q2 from real GDP would have slightly lowered average real GDP growth by 0.03 percentage points at annual rates. This improvement in the petroleum trade balance of the U.S. economy contributed to real GDP growth, reinforcing the consumption stimulus discussed in section 3.

5.1.4. The Effects of the Shale Oil Sector on Real GDP through Financial Spillovers

Another channel by which the decline in the price of oil may slow down the economy is by exposing banks and other financial institutions to oil price risks. Following the financial crisis, bank lending to shale oil producers was considered a growth market that offered high returns at seemingly low risk. Banks actively sought to finance large and small oil companies without much regard for these companies’ cash flows. In many cases, oil below the ground was considered sufficient collateral. Because the price of oil underpins the value of the assets securing these loans, the decline in the price of oil after June 2014 increased the oil exposure of banks. At the same time, lower oil prices reduced the cash flow generated by oil producers, making it more difficult for borrowers to service their loans and raising the probability of defaults. Moreover, as the price of oil fell, debt-ridden producers had an incentive to increase output to cover interest payments, putting further downward pressure on the price of oil in turn.

By late 2015 there was growing concern that bank reserves would prove inadequate to deal with nonperforming loans to the oil sector, about pre-approved unsecured credit lines to oil and gas companies, and about banks being subject to additional undisclosed oil price risks. By early and mid-2016, many of the major banks in turn attempted to quell concerns about bad oil loans by raising reserves and by disclosing likely losses. These concerns arose despite the fact that bank loans to oil and gas companies account for at most 5% of total loans at the major U.S. banks and in many cases for far less, making these banks’ exposure much lower than their
exposure to mortgage risk prior to the U.S. housing crisis. In contrast, residential mortgages in 2008 accounted for closer to one third of these banks’ assets. Moreover, banks’ reserves have increased substantially since 2008.

Increasing doubts about the stability of the banking sector nevertheless caused a depreciation of bank stocks starting in 2015. Figure 13 plots a stock market index designed to track the performance of 24 U.S. bank stocks. It shows that bank stocks initially appreciated amidst falling oil prices. As the number of bankruptcies in the oil and gas extraction sector increased and the banks’ oil exposure became more widely known, the value of these bank stocks fell sharply, reaching a trough in January 2016. Its partial recovery starting in February closely tracks the partial recovery of the price of crude oil, which helped alleviate concerns about the ability of oil producers to service their debt and about the diminishing value of the bank’s collateral. Overall, there is no evidence that financial fragility has been a cause of the economic slowdown that started in early 2015, however. In fact, at that point in time, bank stocks were still appreciating. Nor is there evidence that the growing number of bankruptcies in the oil and gas extraction sector has been spreading to other sectors.\(^\text{17}\)

5.2. A Shift in Consumers’ Savings Behavior?

As our back-of-the-envelope calculation showed, consumer’s purchasing power undoubtedly increased after June 2014. If consumers did not spend this extra income, as presumed by conventional economic models, where did this income go? One possibility is that consumers

\(^{17}\) BankruptcyData.com collects monthly information on corporate bankruptcies based on daily court filings. These data show that there has been a strong increase in the number of bankruptcies in the oil and gas extraction sector (SIC 13) from 0 in June 2014 to 82 bankruptcies in May 2016, reaching a cumulative total of 560 bankruptcies. This sector includes crude, petroleum and natural gas producers, firms involved in drilling oil and gas wells, oil and gas exploration services, and other oil and gas field services. A detailed analysis (not reported here to conserve space) shows that, among the 74 remaining two-digit SIC industries, there is not one industry that exhibits an increase in the number of bankruptcies that resembles that of the oil and gas extraction industry. Thus, we conclude that this channel has not been quantitatively important so far, although it may yet contribute to an economic slowdown going forward.
took the opportunity to pay off mortgage or credit card debt, to increase their savings, or to acquire financial assets on a scale not seen in historical data. For example, an unprecedented shift in consumers’ savings behavior after June 2014 would invalidate the predictions of the linear model of the transmission of purchasing power shocks for real private consumption.

There is no empirical support for this view, however. BEA data show that the personal savings rate of U.S. households, defined as after-tax disposable income minus personal outlays as a percentage of after-tax disposable income, actually slightly declined from 5.9% on average between January 2009 and June 2014 (after excluding an outlier in November and December 2012 associated with changes in fiscal policy) to 5.8% on average between July 2014 and March 2016. In fact, from June 2014 to March 2015, when the bulk of the oil price decline occurred, the savings rate dropped from 5.8% to as low as 5.3% at one point, before recovering later in 2015. Only between August 2015 and March 2016, the savings rate exceeded its long-run average, reaching 6.2% in March 2016. The increment of 0.3 percentage points in the savings rate relative to June 2014 is much smaller than the increment of approximately 1 percentage point in the savings rate that one would have expected all else equal, if the cumulative gain in discretionary income since June 2014 had been converted entirely into savings. Likewise, flow-of-funds data from the Federal Reserve System (not shown to conserve space), provide no support for the deleveraging hypothesis. Households increased their liabilities, in some cases at an increasing rate, rather than reducing them.

6. What is the Net Stimulus?

The increased importance of shale oil documented in section 5 complicates the assessment of the overall response of the U.S. economy to lower oil prices. Table 8 summarizes the cumulative effects on aggregate spending that we have identified thus far from a national income accounting
point of view, focusing on the three components of the identity $GDP = C + I + G + X - M$ that are directly affected by the oil price decline, where C denotes private consumption, I private investment, G government spending and $X - M$ the external balance.

Our baseline model of private real consumption in section 3 showed that the discretionary income effect cumulatively raised real consumption by 1.05%. Weighting this result with the share of consumption in GDP of about 69% and adjusting it for a marginal propensity to import of 0.15, we obtained a stimulus to cumulative real GDP growth of 0.61 percentage points. The corresponding operating cost effect, computed as 6.7% times the share of new motor vehicles in private consumption of 2.3%, weighted by 69%, adds another 0.09 percentage points, after accounting for higher imports. This stimulus of 0.70 percentage points must be traded off against the reduction in cumulative real GDP growth caused by lower real investment in the oil sector broadly defined. In section 5, we showed that real GDP growth fell by 0.73 percentage points, as oil investment contracted, which reduces to 0.62 after accounting for the implied reduction in imports. Finally, we need to account for the improvement in the petroleum trade balance, as discussed in section 5, which raises cumulative real GDP growth by 0.04 percentage points. This simple exercise implies a net stimulus of +0.12 percentage points of cumulative real GDP growth, which is effectively zero.

Thus, the fact that average U.S. real GDP growth accelerated only slightly from 1.8% at annual rates to 2.2% is not surprising. One reason why real GDP growth did not increase faster after 2014Q2 undoubtedly has been the slower growth of real exports after June 2014 (see Table 1). Our analysis thus far abstracted from the fact that the decline in the price of oil after June 2014 did not occur all else equal, but was associated at least in part with a global economic slowdown (see Baumeister and Kilian 2016b, Kilian 2016b), which in turn slowed U.S. export
growth and hence U.S. real GDP growth. It is difficult to quantify this effect without a fully specified model, but the case can be made that real GDP growth after 2014Q2 would have increased by about 0.3 percentage points to 2.5% on average, had U.S. real exports continued at an average annual rate of 3.2%.

7. Conclusions

Given the results in Table 8, what is the evidence that this time is different from, say, the experience following the sustained oil price decline of 1986? Overall, there are more similarities than differences. Then, as now, real private consumption appears to have responded to lower oil prices largely as predicted by a linear regression model of purchasing power shocks and real private consumption growth (see Edelstein and Kilian 2009). The primary reason why real GDP growth remained sluggish after 2014Q2 has been the much slower growth in nonresidential investment, which can be traced to a sharp decline in oil-related investment expenditures. This pattern as well is not new. A similar decline has been documented by Edelstein and Kilian (2007) after the 1986 oil price decline. For example, in the seven quarters after 1985Q4, lower oil-related investment created a negative stimulus of 0.44 percentage points of cumulative U.S. real GDP growth after accounting for the implied change in imports (compared with 0.62 percentage points in Table 8).

Taking account of the decline in the average real GDP growth rate from about 3% to 1.9% after the financial crisis, in the seven quarters after 1985Q4, average growth at annual rates was 0.3 percentage points above average, and in the seven quarters after 2014Q2 it has been 0.3 percentage points above average (or 0.6 percentage points controlling for export growth). Thus, the performance of the U.S. economy overall was quite similar in these two episodes, despite the much steeper decline in oil-related investment after June 2014. One explanation is that in 1986
growth in nonresidential investment excluding oil dropped following the decline in the real price of oil price, whereas in the current episode it remained stable, consistent with the conjecture in Edelstein and Kilian (2007) that the reduction in non-oil related nonresidential investment growth in 1986 was associated with the Tax Reform Act of 1986 rather than with lower oil price. Thus, real GDP growth after 1985Q4 should have been higher, controlling for events unrelated to the oil market.\footnote{Another quantitatively less important difference is that during 1985Q4-1987Q3 petroleum exports remained stable and petroleum imports surged, increasing the petroleum the trade deficit and hence lowering real GDP growth, whereas during 2014Q2-2016Q1 petroleum exports grew faster than petroleum imports, improving the petroleum trade balance and raising real GDP slightly. This outcome was made possible by increased U.S. shale oil production, which facilitated both import substitution and higher petroleum product exports (see Kilian 2016a).}

The extent of the decline in oil-related investment after June 2014 is not unexpected, given that the share of oil and gas extraction in GDP was about the same in 2014 as in 1986 and the decline in the price of oil was about twice as large.\footnote{Although the decline in the price of oil after 2014Q2 was similar for the first seven months to the price decline after 1985Q4 (-55\% versus -57\%), in 1986/87 the price of oil recovered in the following 14 months (offsetting half of the initial decline), whereas in 2015/16 the price of oil (and oil investment) continued to fall even further, with the cumulative decline in the price of oil reaching -66\%.} In fact, the evolution of oil-related investment growth after 2014Q2 suggests that, if anything, oil investment has been more resilient to the decline in the price of oil than in 1986. The reason that the decline in oil-related investment growth after 2014Q2 was not simply offset by much higher real private consumption growth in response to the steeper decline in the price of oil, is that the effect of this oil price decline on real private consumption was dampened by the lower share of motor fuel consumption in overall consumer spending (see Figure 8). On balance, this fact increased the weight of oil-related investment growth in explaining U.S. real GDP growth compared with the 1986 episode.

To summarize, we showed that the response of the U.S. economy to the decline in the real price of oil can be understood based on conventional economic models of the transmission
of oil price shocks. Although this possibility cannot be ruled out at this point, we found no
evidence that the emergence of the shale oil sector has fundamentally altered the transmission of
oil price shocks to the U.S. economy. This finding does not mean that the U.S. shale oil boom
did not matter. It is readily apparent that without the shale oil boom the response of the U.S.
economy to the recent oil price decline would have been different, if only because of the lower
share of oil and gas extraction in GDP. Going forward, one question of obvious policy interest is
whether higher investment in the oil sector could help offset the contractionary effect on private
consumption of a future recovery of the real price of oil. The central issue is how fast oil
investment would grow in response to an increase in the real price of oil. The argument can be
made that new investment in shale oil does not require persistently high expected oil prices. Even
a temporary oil price surge would make new investments worthwhile because shale oil
production may respond more quickly to oil price increases than conventional oil production.
Moreover, currently unprofitable shale oil producers may reemerge with lower debts after going
through bankruptcy. Of course, this argument assumes that shale oil producers will be able to
persuade financial institutions to finance these investments.

References:
Baumeister, C., and L. Kilian (2016a), “Forty Years of Oil Price Fluctuations: Why the Price of
Oil May Still Surprise Us,” *Journal of Economic Perspectives*, 30, 139-160, Winter.
Predicting the Gasoline Price at the Pump,” forthcoming: *Journal of Applied Econometrics*.

Economics*, 6, 133-154.

2016.

Test of the Hypothesis of Predetermined Energy Prices,” *Review of Economics and
Statistics*, 93, 660-671.

Recessions,” manuscript, University of Michigan.

Level Data,” *Journal of Monetary Economics*, 49, 823-852.

Literature*, 29, 1110-1148

Things Really Changed?” *NBER Macroeconomics Annual*, 25, ed. Acemoglu, D.,

Yellen, J.L. (2011), “Commodity Prices, the Economic Outlook, and Monetary Policy,” speech
at the Economic Club of New York, New York, NY, April 11.

Journal of Political Economy, 95, 591-621.
Table 1: Average Growth at Annual Rates in U.S. Real GDP and some of its Components (Percent)

<table>
<thead>
<tr>
<th>Component</th>
<th>2012Q1-2014Q2</th>
<th>2014Q3-2016Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real GDP</td>
<td>1.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Private Consumption</td>
<td>1.9</td>
<td>2.9</td>
</tr>
<tr>
<td>New Motor Vehicles</td>
<td>6.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>Nonresidential Investment</td>
<td>5.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Oil-related Investment</td>
<td>7.1</td>
<td>-47.7</td>
</tr>
<tr>
<td>Other investment</td>
<td>4.9</td>
<td>5.0</td>
</tr>
<tr>
<td>Exports</td>
<td>3.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Petroleum Exports</td>
<td>7.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Imports</td>
<td>2.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Petroleum Imports</td>
<td>-7.7</td>
<td>3.8</td>
</tr>
</tbody>
</table>

NOTES: Oil-related investment includes petroleum and natural gas structures as well as mining and oil field machinery plus railroad equipment investment which strongly co-moves with oil investment.

Table 2: Evidence of Pass-Through from Oil Price to Gasoline Price by Episode

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in U.S. Retail Gasoline Price</td>
<td>+81.3</td>
<td>-58.5</td>
<td>+125.3</td>
<td>-44.8</td>
</tr>
<tr>
<td>Change in the Cost of Crude Oil Used in Producing a Gallon of U.S. Gasoline</td>
<td>+155.0</td>
<td>-69.2</td>
<td>+175.4</td>
<td>-65.0</td>
</tr>
<tr>
<td>Change in the Brent Price of Crude Oil</td>
<td>+147.2</td>
<td>-69.9</td>
<td>+208.5</td>
<td>-66.0</td>
</tr>
<tr>
<td>Average U.S. Cost Share of Crude Oil in Gasoline Production</td>
<td>63.3</td>
<td>65.2</td>
<td>64.6</td>
<td>53.4</td>
</tr>
<tr>
<td>Expected Change in U.S. Gasoline Price</td>
<td>+98.1</td>
<td>-45.1</td>
<td>+113.3</td>
<td>-34.7</td>
</tr>
</tbody>
</table>

NOTES: Computed based on the Gasoline Pump Components History reported in the EIA’s Gasoline and Diesel Fuel Update. The expected change in the U.S. price of gasoline is constructed by weighting by the average cost share of oil the change in the dollar cost of crude oil used in producing a gallon of gasoline.
Table 3: Predicted Cumulative Percent Change in Real Consumption during 2014.7-2016.3

<table>
<thead>
<tr>
<th></th>
<th>A. Estimates based on model (1)</th>
<th>B. Estimates based on model (1) with break in β_0 after 2008.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Consumption</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Durables</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>New Motor Vehicles</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Nondurables</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Services</td>
<td>0.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

NOTES: Historical decomposition based on fitted values of the regression model. The estimation sample is 1970.2-2016.3.

Table 4: Cumulative Changes in U.S. Unemployment Statistics following the 1986 and 2014 Oil Price Declines

<table>
<thead>
<tr>
<th></th>
<th>1986.1-1987.9</th>
<th>2014.7-2016.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolute change</td>
<td>Relative change (%)</td>
</tr>
<tr>
<td>Real gasoline price</td>
<td>-</td>
<td>-20.8</td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>-1.1 percentage points</td>
<td>-15.7</td>
</tr>
<tr>
<td>Median Duration</td>
<td>-0.8 weeks</td>
<td>-11.8</td>
</tr>
</tbody>
</table>

NOTES: Unemployment statistics computed based on BEA data.

Table 5: Changes in Labor Market Indicators in U.S. Oil States, 2014.6-2016.3

<table>
<thead>
<tr>
<th></th>
<th>Labor force</th>
<th>Number of Employed</th>
<th>Number of Unemployed</th>
<th>Unemployment Rate in Percent</th>
<th>Percent Share of Mining and Logging Jobs in Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>-4,900</td>
<td>-3,200</td>
<td>-1,700</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>Montana</td>
<td>9,500</td>
<td>10,900</td>
<td>-1,500</td>
<td>0.3</td>
<td>-0.5</td>
</tr>
<tr>
<td>New Mexico</td>
<td>-1,000</td>
<td>4,000</td>
<td>-5,100</td>
<td>-0.6</td>
<td>-0.9</td>
</tr>
<tr>
<td>North Dakota</td>
<td>1,700</td>
<td>-400</td>
<td>2,100</td>
<td>0.4</td>
<td>-2.4</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>82,700</td>
<td>80,700</td>
<td>2,100</td>
<td>-0.1</td>
<td>-0.9</td>
</tr>
<tr>
<td>Texas</td>
<td>270,600</td>
<td>351,100</td>
<td>-80,600</td>
<td>-0.8</td>
<td>-0.7</td>
</tr>
<tr>
<td>Wyoming</td>
<td>-6,000</td>
<td>-8,800</td>
<td>2,800</td>
<td>1.0</td>
<td>-2.2</td>
</tr>
</tbody>
</table>

NOTES: Computed based on BLS data.
Table 6: Actual and Counterfactual Average Real Percent Change (at Annual Rates)

<table>
<thead>
<tr>
<th></th>
<th>2014Q3-2016Q1</th>
<th>2014Q3-2015Q2</th>
<th>2015Q3-2016Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Real GDP (Value Added)<sup>1</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding Mining Sector<sup>1</sup></td>
<td>2.37</td>
<td>2.72</td>
<td>1.68</td>
</tr>
<tr>
<td>Mining Sector<sup>1</sup></td>
<td>2.40</td>
<td>8.95</td>
<td>-9.53</td>
</tr>
<tr>
<td>B. Real GDP<sup>1</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding Oil States<sup>1</sup></td>
<td>2.38</td>
<td>2.69</td>
<td>1.76</td>
</tr>
<tr>
<td>Oil States<sup>1</sup></td>
<td>2.33</td>
<td>2.55</td>
<td>1.91</td>
</tr>
<tr>
<td>Oil States<sup>1</sup></td>
<td>2.70</td>
<td>3.71</td>
<td>0.72</td>
</tr>
<tr>
<td>C. Real GDP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding the Change in the Petroleum Trade Balance</td>
<td>2.19</td>
<td>2.72</td>
<td>1.48</td>
</tr>
<tr>
<td>Excluding the Change in Investment in Oil and in Railroad Equipment</td>
<td>2.16</td>
<td>2.69</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>2.60</td>
<td>3.11</td>
<td>1.92</td>
</tr>
</tbody>
</table>

NOTES: The state-level counterfactual is based on real GDP as reported in the regional economic accounts and differs slightly from real GDP in the NIPA.
¹ Sample ends in 2015Q4.

Table 7: Actual and Counterfactual Average Real Percent Change (at Annual Rates)

<table>
<thead>
<tr>
<th></th>
<th>2014Q3-2016Q1</th>
<th>2014Q3-2015Q2</th>
<th>2015Q3-2016Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Private Fixed Nonresidential Investment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding Oil Investment</td>
<td>1.6</td>
<td>3.8</td>
<td>-1.4</td>
</tr>
<tr>
<td>Oil Investment Only</td>
<td>-48.2</td>
<td>-35.2</td>
<td>-61.5</td>
</tr>
<tr>
<td>B. Investment in Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding Petroleum and Natural Gas Structures</td>
<td>-2.9</td>
<td>0.2</td>
<td>-6.7</td>
</tr>
<tr>
<td>Petroleum and Natural Gas Structures Only</td>
<td>10.2</td>
<td>12.0</td>
<td>7.9</td>
</tr>
<tr>
<td>C. Investment in Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding Mining and Oil Field Machinery</td>
<td>1.6</td>
<td>3.3</td>
<td>-0.6</td>
</tr>
<tr>
<td>Mining and Oil Field Machinery Only</td>
<td>2.7</td>
<td>4.7</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>-39.4</td>
<td>-39.7</td>
<td>-39.1</td>
</tr>
</tbody>
</table>

NOTES: Oil investment includes petroleum and natural gas structures as well as mining and oil field machinery.
Source: BEA.
Table 8: The Net Stimulus from Unexpectedly Lower Real Oil Prices

<table>
<thead>
<tr>
<th>Component of Real GDP</th>
<th>Percentage of Cumulative Real GDP Growth 2014Q3-2016Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discretionary Income Effect on Private Consumption</td>
<td>+0.61</td>
</tr>
<tr>
<td>Operating Cost Effect on Private Consumption</td>
<td>+0.09</td>
</tr>
<tr>
<td>Oil-Related Private Nonresidential Investment</td>
<td>-0.62</td>
</tr>
<tr>
<td>Petroleum Trade Balance</td>
<td>+0.04</td>
</tr>
<tr>
<td>Net Stimulus</td>
<td>+0.12</td>
</tr>
</tbody>
</table>

NOTES: The computation is based on selected results reported in Tables 3 and 6. The estimates of the stimulus have been adjusted based on a marginal import propensity of 0.15. We disregard the counterfactuals for value added to avoid double counting adjustments on the value added side and the expenditure side of the NIPA.

Figure 1: The U.S. Transportation Sector

NOTES: Indices of U.S. rail freight carloads, truck tonnage, and air revenue passenger miles computed from data provided by the Bureau of Transportation Statistics. The vertical line marks June 2014.
NOTES: Source: Gasoline Pump Components History reported in the EIA’s Gasoline and Diesel Fuel Update.

Figure 3: Index of U.S. Price of Gasoline and Cost of Crude Oil, 2014.6-2016.3

NOTES: Computed based on the Gasoline Pump Components History reported in the EIA’s Gasoline and Diesel Fuel Update.
NOTES: Obtained by cumulating seasonal log differences of the sum of transport, industrial and commercial gasoline consumption, as reported in the *Monthly Energy Review*.

Figure 4: Index of U.S. Consumption of Motor Gasoline, 1974.1-2016.2

Figure 5: Year-on-Year Growth in U.S. Consumption of Motor Gasoline, 2014.6-2016.2

NOTES: See Figure 4.
Figure 6: Vehicle Miles Traveled

Figure 7: Michigan Consumer Survey 1-Year-Ahead Gasoline Price Expectations, 2006.2-2016.3

NOTES: The gasoline price expectation is obtained by adding the median expected change in gasoline prices over the next 12 months from the Michigan Survey of Consumers to the average U.S. price of gasoline from the Monthly Energy Review. The survey measure closely tracks the no-change forecast of the price of gasoline adjusted for the median expected change in the price level over the next 12 months, as reported in the Michigan Survey of Consumers, as previously noted by Anderson et al. (2013).
Figure 8: Measuring Shocks to Consumers’ Purchasing Power, 1970.2-2016.3

NOTES: All consumer expenditure and deflator data are from the BEA.

Figure 9: U.S. Unemployment Data

NOTES: Source: BLS. The vertical lines mark December 1985 and June 2014.
NOTES: Michigan Survey of Consumers (courtesy of Richard Curtin). Uncertainty is measured by the standard deviation of the responses of survey participants to the question about the expected change in the price of gasoline one year and five years ahead. The vertical bars correspond to June 2014 and January 2015.

NOTES: The vertical bars correspond to June 2014 and January 2015 and mark the period of increased uncertainty about future gasoline prices in Figure 10.

Figure 12: Decomposition of Vehicle Sales