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Abstract 

Policymakers often lack reliable information on the likely impacts of policies intended to promote 

upward mobility. Few studies attempt or are able to estimate the effects of a policy intervention in 

childhood on outcomes decades later. Even randomized controlled trials examining a single intervention 

generally are uninformative as to whether one policy administered to the same target population is 

more or less effective than another, whether the timing of interventions matters, or whether multiple 

interventions—concurrent or sequential—have notably bigger impacts than single ones. The Brookings 

Social Genome Model is a new dynamic microsimulation model developed to answer these questions. 

The paper describes the SGM and how it was developed, explains how policy simulations are conducted 

using the model, and discusses the challenges facing any effort to model mobility processes and 

simulate long-term effects of early interventions. These difficulties include both data issues and 

methodological challenges to estimating valid effects.  
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Introduction 
The promise of upward mobility is a central tenet of the American Dream, one of our core civic 

values.  Generation after generation, Americans have been more likely than not to end up better off 

financially than their parents were.  That has been the experience of four in five of today’s middle-age 

adults.  At the same time, it is no less true today than in generations past that Americans’ opportunities 

remain stubbornly linked to the incomes of their parents.  Roughly four in ten of today’s middle-age 

adults who were raised by the poorest fifth of families remain in the poorest fifth themselves.  The same 

share of today’s adults raised by the richest fifth of families is in the richest fifth themselves.2  A society 

in which poor children can anticipate being less poor in adulthood but must resign themselves early on 

to the likelihood they will still occupy the bottom rungs should satisfy no adherents to the American 

Dream. 

The question of what promotes and impedes economic mobility is dauntingly complex.  

Policymakers seeking to broaden upward mobility face great challenges formulating effective solutions.  

Increasingly, they can draw from a range of high-quality randomized controlled trials that look at this or 

that intervention aimed at specific groups of children.  Yet this evidence is limited by the scarcity of long-

term studies, by inconsistencies between studies examining different policies and programs, and by a 

dearth of tools that can forecast the likely impacts of untested policies. 

The Social Genome Model (SGM) is a microsimulation model of the life cycle that tracks the 

academic, social, and economic experiences of individuals from birth through middle age in order to 

identify the most important paths to upward mobility.  Equally important, it facilitates simulations to 

estimate the likely medium- and long-term effects of policy interventions to promote mobility.  The 

model divides the years from birth to forty into five stages.  At each point where stages meet, we 

consider a range of outcomes chosen for their established links to subsequent outcomes and to reflect 

broadly-shared norms about what success entails at different ages.   

The SGM will fill important gaps in the field of program evaluation.  For one, it will allow for 

credible estimates of long-term effects of programs and policies that intervene in early childhood 

without the necessity of waiting forty years to assess results. Unlike the set of randomized controlled 

trials that currently exists, it will allow for apples-to-apples comparisons of interventions applied in a 

given life stage.  The SGM will also facilitate evaluation of intervening concurrently in multiple ways or 

successively at multiple stages.  It will allow for estimates of the relative effectiveness of intervening 

earlier or later.  Finally, it will facilitate decision-making around interventions that have yet to be tried. 

Model Specification 
The theory behind our model is quite simple and draws on a large literature on human capital 

formation and its effects on later earnings and income.   We focus on the development of both cognitive 

and noncognitive skills in early and later childhood, in the same spirit as James Heckman and others, 

after controlling for a child’s circumstances at birth3.  

                                                           
2
 Pew Economic Mobility Project (2012).  See also Isaacs, Sawhill, and Haskins (2008). 

3
 See, among others, Heckman and Rubinstein (2001), Heckman, Stixrud, and Urzua (2006), Duckworth and 

Seligman (2005) and Shonkoff and Phillips (2000). 
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The human capital formation process is modeled by measuring these cognitive and noncognitive 

skills at successive life stages from early childhood (the preschool period) through middle childhood and 

adolescence.  We look at the results of that process at ages 5, 11, and 19 (or as close to those ages as 

possible).  We then look at how success in adolescence translates into success in early and middle 

adulthood – specifically at ages 29 and 40 (or as close to these ages as possible).  Because there is a 

break in our longitudinal data at the end of adolescence, this last set of transitions poses some special 

challenges which we return to in the section “Projecting Adult Outcomes.”   

Because we are interested in the process of human capital formation and not just the end result, 

we use a set of structural equations, one for each life stage, so that we can see the direct and indirect 

effects of earlier success on later success.  A substantial portion of our work has also been devoted to, 

and will continue to be devoted to, a more detailed look at the determinants of success within each life 

stage.  That work will inform the larger goal of estimating the effects of particular interventions on later 

life success.   

Because the model is a life cycle model, its specification relies heavily on a temporal element.  

Prior outcomes are normally assumed to have a causal effect on later outcomes.  Nonetheless, the SGM 

like all models relies on a number of assumptions, and as described in the section “Challenges,” we still 

have to worry about distinguishing correlation from causation. However, having a model of the life 

course can serve as the starting point for sensitivity analyses, and the model may be improved over time.  

It is our hope that the development of the model will help focus researchers’ efforts to assess what we 

do and do not yet know about the processes behind social mobility.  

The SGM Dataset 
The SGM is formed using two data sets from the Bureau of Labor Statistics' National 

Longitudinal Surveys.  Our primary data set is the "Children of the NLSY79" (CNLSY), representing 

children born mainly in the 1980s and 90s. The CNLSY is the source for our data on birth circumstances, 

early and middle childhood, and adolescence.  No respondent in the CNLSY is yet old enough to track 

through adulthood, and so we impute adult values using a second sample from an earlier generation, 

the "National Longitudinal Survey of Youth 1979" (NLSY79)4. To do the imputation, we use regression 

analysis of the NLSY79 to relate child background characteristics and adolescent outcomes to adult 

outcomes, and then apply these coefficients to the same measures in the CNLSY sample to estimate 

adult outcomes. 

                                                           
4
 In fact, the CNLSY children were the progeny of NLSY79 women.  The NLSY79 began with a nationally-

representative sample of over 12,000 men and women, aged 14 to 22 in 1979 (born between 1957 and 1964). As 
women in the NLSY79 have given birth to children—11,504 as of 2009, by which time the childbearing of the 

NLSY79 women was essentially complete—detailed information has also been collected on them in the CNLSY.  
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 The result is a longitudinal dataset in which these synthetic individuals pass through five life 

stages from birth to adulthood: early childhood (birth through age five), middle childhood (age six 

through age eleven), adolescence (age twelve through age nineteen), transition to adulthood (age 

twenty through age twenty-nine), and adulthood (age thirty through age forty).  Our final dataset 

includes 5,783 children from the CNLSY, born between 1971 and 2009, rather than the 11,504 included 

in the original data.5  See the “Data Challenges” section, below, for additional detail on the creation of 

our dataset. 

The Model 

The Variables and Success Measures 
In its current state, the SGM includes a range of outcomes from six different stages. Table 1 

summarizes them6.  Descriptive statistics for all of the variables are in Table 2 and Table 3. Using a 

                                                           
5
 The NLSY79 included a cross-sectional sample of civilian men and women as well as additional samples of African 

Americans, Hispanics, and poor youth who were neither Hispanic nor black, plus a military sample.  Most of the 
military sample was dropped after 1984, and the entire supplemental sample of poor non-Hispanic non-blacks was 
dropped after 1990.  Using the other supplemental samples makes weighting the data essential, and for reasons 
we discuss below, we were uncomfortable using the weights provided with the CNLSY and NLSY79 data.  Because 
of these issues, we chose to use only the cross-sectional samples of CNLSY children and NLSY79 adults. Note that 
because the CNLSY children were born to mothers who were living in the U.S. in 1978, using the survey means that 
we necessarily exclude children who immigrated here after 1978, as well as children born to mothers who 
immigrated after that year.  Our data and model, then, are best viewed as applying to the entire set of children 
born to women living in the U.S.   
6
Some details worth noting: Our parental marital status indicator groups cohabiting but unmarried couples with 

single parents. All of our early and middle childhood measures are first standardized on children of the same age 
who have non-missing raw scores.  We then aggregate children from adjacent age groups (e.g., five-, six-, seven-, 
and eight-year-olds) and impute standardized scores to those who are not observed at any of the ages. In 
adolescence, our high school graduation variable indicates whether a person received a traditional high school 
diploma; we do not count holding a GED as graduating from high school.  This is consistent with research showing 
that GED holders do worse than traditional graduates and often no better than dropouts in the long run (Tyler 
2003).  Both young men and women report whether or not they became a parent by age 19, but half as many men 
report having become parents. Several of the adolescent variables are used mainly for purposes of linking the 
CNLSY and NLSY79.  We try to define the CNLSY and NLSY79 linking variables as similarly as possible given the 
differences between the two data sets. Grade point averages in the last year of high school are reported by CNLSY 
respondents as a letter grade (A+, A, A-, etc.), and while one might worry that they exaggerated in their responses, 
a quick check against the 1997 panel of the National Longitudinal Survey of Youth, which included children born in 
the early 1980s and which includes transcript-derived GPAs, found comparable results.  In the NLSY79, GPA in the 
last year of school is computed directly from high school transcript information in the data.  The adult GPA 
distribution is smoother as a result.  It also has a lower mean, which we interpret as mainly reflecting grade 
inflation over time (given the corroborating evidence from the 1997 NLSY).  The adolescent test scores in the 
CNLSY are from the Peabody Individual Achievement Test (PIAT) reading recognition and math subscales, 
administered around ages 13-14; those in the NLSY79 are from the Armed Forces Vocational Aptitude Battery 
(ASVAB) word knowledge and arithmetic reasoning subscales, administered between ages 15 and 23.  All four 
score distributions are age-adjusted. All of the family income variables we use, which come from different survey 
years, are measured in constant 2010 dollars, adjusted using the Census Bureau’s CPI-U-RS.  They include income 
from a large number of sources, but they exclude income received by cohabiting partners of the NLSY79 
respondent or the CNLSY child’s mother. We applied a common top code to incomes in all years that was as 
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subset of our outcomes, we have defined success indicators for each life stage based on outcomes that 

have been shown to predict future success and that are widely considered to be important from a 

normative perspective (See Table 4).  In early and middle childhood, we require that a child not be too 

far behind his or her peers academically, behaviorally, and socially.  In adolescence, we require that 

individuals finish high school with a minimum GPA of 2.5 and avoid being convicted or becoming a 

parent.  In early adulthood, we require individuals to be living independently of their parents, and to 

either have a college degree or an equivalent family income (250% of the federal poverty line, or about 

$45,000 for a married couple with one child, which is similar to the annual earnings of the typical full-

time worker with a college degree at this age).7  In adulthood, being “middle class by middle age” means 

having family income at least 300% of the poverty line, or around $68,000 for a married couple with two 

children.8  While the thresholds required for success on each continuous subcomponent at each stage 

are, admittedly, arbitrary, they serve as useful heuristics in the absence of logical breaks within the data 

or established research findings.        

The Model’s Structure 
Using the dataset we created, discussed in detail, below, in the section on “Projecting Adult 

Outcomes,” SGM predicts the 33 outcomes from early childhood through adulthood listed in Table 1.  

Through adolescence, it does so using the Circumstances at Birth (CAB) variables in Table 1 plus all 

outcomes from intervening stages.  So, for example, if we were predicting high school graduation, one 

of the outcomes in adolescence, the regression equation would include all of the CAB variables and all of 

the outcomes in early childhood (EC) and middle childhood (MC).  The equation we estimate for each 

outcome through adolescence (ADOL) is: 

                                             Equation 1 

where  1and  2 are vectors of coefficients, CAB is the set of Circumstances at Birth variables in Table 1, 

Previous Stage Outcomes is the set of outcomes from temporally prior stages, and ε is the error term 

containing unobserved characteristics. 

Beginning with transition to adulthood (TTA) outcomes, however, we must estimate different 

equations because of our reliance on NLSY79-based imputations for measures in TTA and in adulthood.  

We are limited to predictor variables that are common to both datasets, which come from the CAB and 

ADOL stages. For TTA outcomes we estimate: 

                    
           Equation 2 

where the asterisk following CAB indicates the subset of CAB variables that are available in the NLSY79 

and where ADOL is the set of adolescent outcomes.9  For adulthood income, we estimate: 

                     
                 Equation 3 

                                                                                                                                                                                           
restrictive as that applied in the most restrictive year. We compute income-to-needs ratios by comparing family 
incomes and family sizes against the poverty guidelines published by the U.S. Department of Health and Human 
Services. 
7
 2011 poverty threshold for family of 3 with one child is $18,106 (U.S. Census Bureau). 

8
 In 2011, poverty threshold for family of 4 with 2 children was $22,811 (U.S. Census Bureau). 

9
 The subset of CAB variables in the NLSY79 includes race, gender, maternal age, and maternal education.   
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where TTA is the set of transition-to-adulthood outcomes.  Note that EC and MC outcomes cannot 

directly affect TTA outcomes and adulthood income in these specifications, though they may indirectly 

affect them through the ADOL variables.  The SGM may be shown in a graphically as in Figure 1. 

Process for Doing Simulations 
In order to simulate the effect of any policy intervention, we use the following procedure: 

1. Estimate coefficients for our regression equations  

2. Use those coefficients to create a synthetic baseline 

3. Adjust one or more variables to reflect the policy intervention 

4. Propagate the effects of that intervention through the model using the coefficients 

estimated in Step 1  

5. Calculate the effect of the intervention on later outcomes 

6. Calculate the effect on lifetime income 

 

Step 1: Estimating Coefficients 

We estimate coefficients on our entire nationally representative samples of children in the 

CNLSY and adults in the NLSY7910.  As we discuss below, we conduct substantial imputation of missing 

values in both surveys, and we include cases with imputed values in these estimation samples. 

Continuous outcomes (all early and middle childhood outcomes, GPA, and the income measures) are 

estimated using OLS.11 To account for the long right tail of income variables, we estimate them in logged 

forms which are converted back to their original metric when we report the results.    Binary outcomes 

are estimated using a linear probability model.12      

 

Step 2: Creating the Synthetic Baseline 

Once we have estimated the model, we use the estimated coefficients and the actual values for 

the baseline characteristics to predict each of the outcomes for every individual in the target population.  

The target population can be defined either by the limited applicability of an intervention (e.g. children 

who already attend preschool cannot be affected by an intervention that takes the form of enrolling kids 

in preschool) or because the effect size we use for a given policy is taken from a rigorous evaluation of a 

specific population and would require unacceptable assumptions to generalize (e.g. the Nurse Family 

Partnership home visiting program generally has been available only to poor, first-time mothers).   

                                                           
10

 We might prefer to newly estimate the coefficients on simulation-specific target populations each time.  
However, because our TTA and adulthood income equations must be estimated on NLSY79 data, and only limited 
pre-adolescent information is available in that data, it is not generally possible to restrict this data to target 
populations defined with respect to at-birth characteristics or early outcomes.   
11

 Continuous measures include all early and middle childhood outcomes, GPA, all income measures, and a number 
of adolescent variables including math and reading scores, self-esteem, frequency of religious service, and gender 
role attitudes. 
12

 Binary measures include high school graduation, teen birth, conviction, college graduation, marijuana use, other 
drug use, early sex, suspension, fighting, hitting, damaging property, participation in school clubs, and 
independence in ADOL and TTA. We confirmed that our results were similar using logistic regression models and 
chose linear probability models for the greater flexibility they have in the context of structural equation modeling. 
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 For the 15 continuous outcomes in EC, MC, and ADOL, we add the residual terms back to 

individuals’ predicted values, which leaves each person’s baseline value the same as their actual value.13  

We do so because we reassign each person the same residual when we implement the intervention later 

on. Doing so ensures that the only thing that changes between the baseline and policy estimates is the 

value of the outcome or outcomes that the policy intervention affects, and it leaves the simulated 

counterfactual as consistent with the actual baseline as possible. It also incorporates into the policy 

estimates potentially valuable information about individuals’ unobserved characteristics.  

For the 12 binary outcomes in adolescence, the linear probability models are used to produce 

predicted probabilities for each individual.  These estimates are bound such that no individual may have 

a predicted probability less than 0 or greater than 1. In order to assign each person a dichotomous value, 

they are randomly assigned a number between 0 and 1. If their random number is less than their 

predicted probability, then the outcome is predicted to occur. If their random number is greater than or 

equal to their predicted probability, then their outcome is predicted not to occur. We retain the random 

number drawn for each person for the simulated counterfactual, again, in order to keep everything as 

consistent as possible with the baseline.  

For TTA and adulthood outcomes, the creation of baseline values is somewhat different because 

of the necessity of relying on the NLSY79 to estimate coefficients.  To impute TTA outcomes, we use 

actual CAB values from the CNLSY with the corresponding coefficients estimated from the NLSY79, but 

we use the baseline adolescent values rather than the actual values in the CNLSY data.  For continuous 

adolescent outcomes, the baseline values are exactly the same as the actual values because we add 

residuals to the predicted values, but for dichotomous adolescent outcomes, the baseline values are 

those predicted from the procedure described above.14   

To impute adult income, we again use actual CAB values from the CNLSY and baseline 

adolescent values, and we also use the baseline TTA values just estimated.  All of these values are 

combined with the coefficients estimated from the NLSY79.  Since we do not have actual TTA and 

adulthood outcomes, we do not have actual residual terms for each individual after estimating 

continuous baseline outcomes.  We instead give everyone a residual that is randomly drawn from a 

normal distribution with mean zero and with standard deviation taken as the standard error of 

regression from the applicable NLSY79 equation.  As with earlier stages, after predicting dichotomous 

outcomes using a linear probability model, we take a random draw to determine whether or not to 

assign individuals a 0 or a 1. 

 

Step 3: The Intervention  

To implement a policy intervention or “what-if” scenario, we must first make three important 

decisions: which metric or metrics are affected, for whom, and by how much. For “what-if” scenarios, 

this is simply a matter of specifying the change, such as “what if we equalized the middle childhood 

                                                           
13

 GPA is restricted to be between 0 and 4 after prediction.   
14

 Those baseline values need not equal the actual values in the CNLSY because our predictions of dichotomous 
outcomes are imperfect.  It might seem preferable to use the actual values here, but doing so would create 
inconsistencies in the post-intervention run of the model—we might predict, in the post-intervention run, some 
actual high school graduates, for instance, to be dropouts, which would mean that an intervention could be 
estimated to worsen outcomes among some youth.   
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reading scores of poor and non-poor children?” In that case we would just increase every poor child’s 

reading score by the amount of the poor/non-poor reading gap. For a policy intervention, we rely on the 

best-practice evaluations, preferably randomized controlled trials, of others to generate effect sizes. 

When determining an effect size, we err on the conservative side or simulate a range of possible effects 

to avoid a false sense of precision and to account for differences between metrics in our model and the 

evaluation studies.  

We also use the data in the evaluation literature to determine which portion of our model’s 

population should receive the effects of the program, looking at whether the evidence shows 

heterogeneous effects on particular subgroups. The comprehensive school reform program, Success for 

All, for example, was implemented in a variety of schools nationwide and showed a high degree of 

homogeneity of its effects in different schools; on the other hand, a program like Nurse Family 

Partnership, for which only low-income, first-time mothers are eligible, requires that we narrow our 

“treatment group” in the model. 

After deciding on the target population and the appropriate effect size, we apply the 

intervention differently depending on whether it affects a continuous or dichotomous variable. If it is a 

continuous variable, we simply add the effect size to everyone in the target group. For interventions on 

dichotomous variables, we come up with effect sizes as a percent change from baseline. For example, if 

some intervention increases high school graduation by 15 percent, we calculate how many extra 

individuals (N) in our data would need to graduate to increase the rate within the target population by 

15 percent, randomly sort the individuals who were in the target group and had not graduated from 

high school, and then change the top N people from non-graduates to graduates. 

 

Step 4: Propagating the Effects Through the Model 

In order to simulate the effect of the changes we make in Step 3 on subsequent life stages, we 

apply the estimated coefficients from Step 1 to the simulated data, which have now been adjusted 

according to the effect size of the intervention being evaluated.  In doing so, we implicitly assume that 

the only thing an intervention changes is a person’s measured outcomes, and not the relationship 

between the different outcomes or unmeasured outcomes.   

Every outcome prior to the intervention stage is unaffected, as is every outcome in the 

intervention stage that we did not perturb directly as part of the intervention.  We iterate though the 

subsequent stages and predict outcomes for each stage using earlier outcomes, which have been 

adjusted by the intervention. This ensures that the effect of the intervention is carried though the entire 

life course.  For example, if we improved middle childhood reading, our post-intervention data through 

middle childhood would be exactly the same as the pre-intervention baseline (except for middle 

childhood reading) but our adolescent data would be predicted using the increased reading scores and 

would reflect that change. To predict the Transition to Adulthood outcomes, we would use the newly-

predicted adolescent outcomes that include the effect of the intervention, and adulthood income would 

be predicted from these new adolescent outcomes as well the newly-predicted Transition to Adulthood 

outcomes. As noted above, to ensure that our effect size reflects only the impact of the intervention, 

continuous outcomes are assigned their same residual from Step 2, and dichotomous outcomes are 

assigned a 0 or 1 based on the same random number from Step 2. 
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Step 5: Calculating the Impact of the Intervention  

When reporting how outcomes have changed based on an intervention which alters one or 

more earlier outcomes, we compare the pre-intervention simulated outcomes from Step 2 to the post-

intervention simulated outcomes from Step 4.  For most outcomes, the pre- and post- values are used to 

calculate a percent change in each outcome as a result of the intervention. If a middle childhood 

intervention increases the high school graduation rate from 75% to 80%, then the effect size is to 

increase graduation by (80-75)/75 = 6.7%. For our early and middle childhood outcomes, which are all 

measured in terms of standard deviations, we simply subtract the pre- value from the post- one. 

Next, we assess how the intervention affected general measures of “success” at each life stage. 

The success measures are dichotomous variables corresponding to the definitions given in Table 4. We 

estimate success rates using the pre-intervention simulated outcomes for the individual components of 

success, and we do the same using the post-intervention simulated outcomes.15 

 

Step 6: Calculating the Impact on Lifetime Income 

Along with the effects on our outcomes and success measures, we also report the effect of our 

interventions on lifetime income. In order to get a pre-intervention estimate for lifetime family income, 

we use the means of two data points we know for each individual in our dataset: family income at age 

29 and family income at age 40. We calculate the slope between these two ages as: 

  -  -                  
                      

                  Equation 4 

and, assuming linear income growth for simplicity, assign a mean income value for every age between 

29 and 40 using this slope. For example, the estimated mean income value at age 30 is          
               

     -  -         .16   

The process of estimating income at ages before age 29 and after age 40 is slightly more 

complicated. Since earnings growth flattens and starts to decline as workers age, we are not 

comfortable extrapolating the 29-to-40 slope beyond that age range. Using the 2011 Current Population 

Survey, we obtain three slopes between average family incomes at different ages: 22 to 29, 29 to 40, 

and 40 to 62. We then calculate two ratios: the ratio of the 22-to-29 slope to the 29-to-40 slope and the 

ratio of the 40-to-62 slope to the 29-40 slope.17  We apply these ratios to the observed 29-to-40-slope in 

our SGM data to get estimated 22-to-29 and 40-62 slopes for our data. The two estimated slopes are 

used in the same way as the actual 29-to-40 slope to get income values for ages 22 to 28 and 41 to 62. 

For example, the estimated mean income value at age 41 is          
                    -  -         .   

                                                           
15

 Note that we do policy simulations that include income-to-needs at age 29 and age 40 separately from the 
simulations that include income measured continuously in dollars.  We consider income-to-needs solely in order to 
construct the success measures for TTA and adulthood.  The basic simulation equations do not include income-to-
needs, and the simulation equations to predict income-to-needs do not include income. 
16

 We use mean incomes to compute the slope—as opposed to using individual incomes to compute individual-
specific slopes—because some individual slopes are negative, which would complicate the estimation of stylized 
lifetime income effects. At the same time, our “spline” estimation prevents us from having to assume a linear 
growth rate, which would involve substantial under- and over-prediction of income at different points in the age 
profile. 
17

 The ratio of 22-to-29 family income to 29-to-40 family income in the CPS is 1.70; the ratio of 40-to-62 income to 
29-to-40 income is -0.19. 
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Each income (age 22, age 23, … , age 60) is discounted from birth using a real discount rate of 

3%. So discounted age 40 income is  
                      

      
 . Finally, lifetime family income is the sum of every 

discounted income: 

                            
                   

     
  
     Equation 5 

To estimate the change in lifetime income that results from an intervention or “what-if,” this 

process is done with both pre- and post- income values. We subtract discounted lifetime income pre 

from discounted lifetime income post to get the mean change in lifetime income. 

Challenges 
There are a number of data and modeling challenges in building the model described above. Not 

only is there no perfect data set for this work, but modeling the life course is extraordinarily complicated.  

No model can ever fully capture all of the complexities of reality. The following section outlines the 

nature of these challenges and our methods for handling them.  

Data Challenges 

Data Availability and External Validity 

Ideally, the SGM would be based on a single longitudinal dataset that follows individuals from 

birth to age 40 with no attrition or missing data. Unfortunately, no such dataset exists. All longitudinal 

datasets have item non-response and attrition from the survey. No American dataset follows a 

nationally representative group of children from birth through adulthood and includes reliable academic, 

cognitive, and behavioral measures at multiple ages.  Faced with the necessity of linking multiple 

datasets, our primary goal was to use as few as possible in order to minimize the error that linking 

creates.  That put a premium on finding two longitudinal datasets that together covered the entire 

period from birth to forty.  Given these requirements, our choices for data narrowed quickly.18 

The requirement that our data follow children over several decades presented an unavoidable 

dilemma: any real-world dataset following people over lengthy periods can accurately represent today’s 

adults but not necessarily today’s children.  If a dataset includes contemporary adults who have been 

                                                           
18

 While the shortcomings of the CNLSY are unfortunate, it turns out that they are avoidable only at significant 
cost.  While there are attractive alternatives to the CNLSY for early and middle childhood data, there is no 
satisfactory way to link middle childhood to adolescence without it.  Therefore, fixing the problems noted above by 
resorting to another survey would come at the expense of having to add another “link” to the final birth-to-forty 
dataset.  A table of 21 alternative datasets we considered is available on request. Several formal and informal 
advisors suggested we use the Panel Study of Income Dynamics (PSID) as the basis for our dataset.  However, 
cognitive and behavioral outcomes in childhood are available only in the PSID’s Child Development Supplement 
(CDS), which has three shortcomings for our purposes.  First, the CDS has only been administered since 1997, 
which means that the oldest children with early childhood outcomes are only in their mid-20s.  Second, there have 
been only three waves of the CDS spanning ten years.  No child is observed in three consecutive stages.  Finally, 
the sample sizes are too small.  For instance, there are just 3,500 children in the 1997 wave, who are scattered 
across the ages of 0 to 12.  Nor is the PSID likely to be better than the NLSY79 for imputing adult outcomes to 
CNLSY children.  While we would get more recent data for 29-year-olds  and for 40-year-olds using the PSID, there 
are fewer adolescent variables in common between the CNLSY and PSID than between the CNSLY and NLSY79, 
making imputations and simulations more problematic. 



Guide to the Brookings Social Genome Model   

12 
 

followed throughout their lives, then the data for earlier ages will be less informative about today’s 

children.  Today’s children, for example, are much more diverse, much more likely to grow up with a 

single parent, and more likely to have working mothers than today’s adults were as children.    

On the other hand, a dataset of contemporary children has the problem that they will not be 

adults for some time.  Assessing how children born in recent years will turn out at older ages requires 

extrapolating into an uncertain future, and the researcher must impute outcomes for each child for 

those older ages.  The data used for imputations necessarily will come from earlier birth cohorts.  In 

other words, this approach requires the assumption that today’s children, when grown up, will resemble 

today’s adults.  But of course, much will change in the next forty years, potentially including educational 

attainment levels and the pay that people with different amounts of education will receive.19 

Imputation 

In both the NLSY79 and the CNLSY datasets, there is missing data due to non-response and 

attrition, and in the CNLSY data, there is missing data due to the censoring of children born before 1980 

(who were too old at the start of the CNLSY in 1986 to have early childhood data) and born after 1990 

(who were too young in 2010 to have adolescent, middle childhood, or even early childhood data, 

depending on their birth year).20   

We impute values to missing data for all children ever observed in the CNLSY and all adults in 

the NLSY79, including non-responders and attriters as well as children in the CNLSY censored between 

birth and adolescence.  We do so by first filling in values where we can by using a child’s or adult’s own 

non-missing data recorded for the same variable at some age close to the one with a missing response.  

For example, maternal education might be missing in the year of a child’s birth but observed when the 

child was two.21  About 90 percent of our CNLSY sample has at least one missing variable modified 

through this “proximity imputation” process, as does 72 percent of our NLSY79 sample.22  Only 28 

percent of our CNLSY sample has more than five variables with proximity imputations.  On a variable-by-

variable basis, between 0 and 40 percent of values are imputed in this way (see Table 5).   

                                                           
19

 Because the CNLSY children were born over a long period of time (one was born in 1971, and 3 were born in 
2009, the most recent wave of data), they have experienced a diversity of experiences tied to different historical 
periods.  This feature could be viewed as a problem in that any economic or societal changes affecting mobility 
could make the experiences of the children born in earlier years less relevant to the mobility of contemporary 
children.  On the other hand, to the extent that we want to think of our data and model as applying to a sort of 
timeless set of children, in acknowledgment of our inability to fully predict what the future America will look like, 
using such a diverse group will help isolate the more general factors affecting mobility. 
20

 The literature examining attrition in the CNLSY suggests that while it is non-random, the bias it introduces is not 
large.  See Aughinbaugh (2004), London (2005), Cheadle, Amato, and King (2005), and Keng and Huffman (2007). 
21

 In some cases we use an average of observed values at multiple ages or interpolate between ages.  In other 
cases, we draw from values observed at the nearest-possible ages before successively looking for values at 
incrementally more-distant ages. 
22

 Here we count a value as imputed if it was drawn from an age other than 0 for birth, 5 or 6 in early childhood, 10 
or 11 in middle childhood, 29 or 30 in transition to adulthood, or 40 or 41 in adulthood.  Because the CNLSY is 
biennial and children may be interviewed before or after their birthday, depending on the time of year, some 
children end up being (for example) 7 years old rather than 5 or 6 when they are interviewed, which would count 
as an “imputation” for the above purposes. 
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After this initial imputation, we then impute remaining values using linear or nonlinear models 

applied to non-missing data to predict values for missing data.23  In the CNLSY, we start with our birth 

circumstances variables and order them from the one with the least missing data to the one with the 

most missing data. One by one, we predict each variable from more-complete ones. 24  By ordering 

variables according to how many missing values they have, we minimize the extent to which 

imputations are based on other imputed values. Once all of the birth circumstances variables have been 

imputed in this way, we move to the early childhood variables, beginning again with the one that has 

the least missing data and predicting it from the birth circumstances variables.  We continue in this way 

until we have a completely filled-in birth-to-19 dataset.  We then iteratively impute missing values in the 

same way in the NLSY79 to build a 19-to-40 dataset.25   

The extent of our model-based imputation for each variable is given in Table 5.  In the CNLSY, 

just 21 percent or fewer observations have model-based imputations for each at-birth variable, except 

that 51 percent of PPVT (vocabulary) scores are imputed in this way.  The prevalence of model-based 

imputation rises to 15 to 25 percent for early and middle childhood variables, and then 12 to 78 percent 

for adolescent variables.  This steady increase reflects the issue of censored children born to older 

mothers, whose later outcomes have not yet been observed.  Model-based imputation is much less 

common in the NLSY79, with the exceptions of the grade point average variable and many of the 

behavioral variables used to link the two datasets and the adult income variable (our ultimate outcome).  

The conviction variable and many of the adolescent behavioral variables also have high levels of 

missingness because those questions were only asked in a single year.  Table 5 also includes the R2 or 

pseudo- R2 values for the models used to impute missing values for each variable.  The statistic provides 

                                                           
23

 These imputation models include ordinary least squares, logit, ordered logit, and multinomial logit models.  Prior 
to model-based imputation, we drop a very small number of observations in each dataset missing data on race (3 
in the CNLSY, 16 in the NLSY79). 
24

 For example, we start with maternal age at child’s birth (one missing value), which is predicted from race and 
gender as well as from maternal age at first child’s birth and birth order, which have no missing values.  The 
predictions from the model are used to replace all missing maternal-age-at-birth values (in this case only one).  
Next is maternal education (59 missing values), predicted from race, gender, maternal age at first birth, maternal 
age at child’s birth, and birth order.   
25

 We also incorporated variability into our imputed values.  For continuous measures, we did so by randomly 
drawing from the distribution of residuals in our imputation models and assigning one to each case to which we 
imputed values.  When imputing values to categorical variables, we compared predicted probabilities against 
random draws from uniform distributions in order to assign cases to one category or another.  We tested this 
“stage-by-stage” imputation procedure against a second approach that links together the sequence of imputation 
models and then iteratively improves the imputations across the stages by updating them based on what the 
values would “most likely” be given the patterns in the observed data. In this alternate approach, even later-stage 
variables are used to impute values to variables with missing data.  Technically, this check uses a “multiple 
imputation by chained equations” (MICE) algorithm, which is a Bayesian simulation algorithm that uses observed 
data to generate posterior distributions of missing data, the values of which are then used to replace missing data 
(van Buuren and Oudshoorn 1999).  Note that we do not rely more generally on multiple imputation, which can 
improve the variance estimates produced by statistical analyses in the presence of missing data.  The main is 
reason is that to date, incorporating variability into our results has been a secondary concern.  The systematic 
error in our data is likely to swamp the classical error, so conventional methods to assess variability that focus on 
sampling error are less appropriate than they would be for simpler datasets. Comparing results using both 
approaches reassured us that our home-grown strategy produced valid estimates. 
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an indication of how valid our imputations are likely to be, where a value of 1.00 would indicate perfect 

prediction and a value of 0.00 a prediction no better than randomly assigning values.26 

Our decisions around missing values mean that our data include a substantial amount of 

imputation.  In the CNLSY data, for instance, all of the children have at least one outcome imputed using 

modeling.  Sixty-five percent have at least five model-imputed values, 49 percent have at least nine, and 

30 percent have fifteen or more.  In the NLSY79, 90 percent of adults have at least one model-based 

imputation, and half have more than two. 

In the CNLSY, over 40 percent of our sample consists of children with censored data—born 

before 1980 or after 1990 and therefore unobserved either in early life stages or in later ones—and so 

entire life stages are imputed for them.27  (In comparison, about one-fifth of our sample consists of non-

censored children—old enough to be observed from birth through age 19— who attrited.)  In earlier 

stages of our research, we conducted analyses that excluded these censored children and also discarded 

children and adults with more than five model-based imputations.  We were, however, dissatisfied with 

not having a broadly representative sample of children for descriptive analyses or simulations.28  

Figure 2 illustrates the extent to which the sample of non-censored children disproportionately 

consists of children born to relatively young mothers.  Comparisons with the full CNLSY indicated that 

the sample of non-censored children was disproportionately comprised of racial and ethnic minorities 

and was distinctly disadvantaged compared to all CNLSY children on measures like maternal education, 

family structure, and income at birth.  There were also large differences in life-stage-specific success 

rates between the non-censored children and the full set of children when we constructed our success 

indicators. 

Projecting Adult Outcomes 

The filled-in CNLSY allows us to follow children from birth to age nineteen.  The filled-in NLSY79 

lets us track a different group from age nineteen to age forty.  The remaining challenge was to 

determine how to use the NLSY79 data to impute, or project, post-adolescent outcomes for the CNLSY 

children so that we can “follow” them from birth to forty.  We did so using microsimulation to predict 

CNLSY outcomes based on the relationships between variables in the NLSY79. 

 As discussed above, we estimate models predicting transition-to-adulthood outcomes using the 

NLSY79.  As regressors in these models, we use only at-birth and adolescent variables that are available 

                                                           
26

 The family income variables have such high R
2
 values because they are predicted from, among other variables, 

income to needs.  The low values for the dichotomous variables reflect the well-known problem that linear 
probability models under-estimate R

2
 values (see Greene, 1981, 1983). A second measure of the quality of our 

predictions is given in the table—the correlation (across non-imputed observations) of observed values and 
predicted values. 
27

 Children born before 1980 (who are not observed in early childhood) are 11 percent of our final sample, while 
children born after 1990 (who are not observed in adolescence) are 31 percent of the sample. 
28

 The alternative to imputing values explicitly, for purposes of creating a sample that is entirely non-censored and 
nationally representative, is to re-weight the existing non-censored data.  This is simply an implicit form of 
imputation, however, and requires the assumption that within the strata for which weights are recalibrated, 
censored children will have the same outcomes as non-censored children (despite being born to relatively young 
or old mothers). 
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both in the NLSY79 and the CNLSY.29  We then apply the coefficients estimated from the transition-to-

adulthood models to the CNLSY variables that are common between both datasets to simulate 

transition-to-adulthood outcomes for the CNLSY children.  For each child and each outcome, we add 

“unexplained” variation by giving them error terms based on each model’s standard error of regression.  

Finally, we estimate a model predicting income in adulthood, again using only the NLSY79 data. 

We predict it from the transition-to-adulthood outcomes in the NLSY79 and from the prior variables that 

are in both the NLSY79 and CNLSY.  Then we apply the results to the simulated transition-to-adulthood 

outcomes we created in the previous step (also using the common at-birth and adolescent variables) to 

get simulated income at age 40.  The basic assumption in this approach to imputing values is that the 

relationships observed between variables in the NLSY79 are similar to the relationships we would 

observe between the same variables if they were available in the CNLSY. 

Benchmarking 

Given the inherent challenges in linking datasets and relying heavily on imputation, we were 

particularly concerned with verifying that our final dataset plausibly represents a contemporary and 

representative group of children and the experiences they will have as they become adults.  Fortunately, 

the evidence we have assembled using outside data sources has reassured us that on a number of 

dimensions, our data hit appropriate targets quite well. The notable exception is that the associations 

between our early and middle childhood test scores, and between those scores and several 

demographic variables, appear to be lower than they should.   

Demographics and Early Childhood Income 

The children in the CNLSY were born to parents who were in the country in 1979, and of the 

cross-sectional NLSY79 sample, only about 4% of youth in the parent generation were born outside of 

the U.S.  This means we can think of our sample as representing native-born children of native-born 

adults.  The Urban Institute’s Children of Immigrants Data Tool uses American Community Survey (ACS) 

data and allows users to look at the racial composition of native-born children of native-born adults.  

The data from 2005 to 2006—the earliest available—indicate that among children under eighteen (born 

1988 to 2006), 71% were white, 18% black, 10% Hispanic, and 2% “other”.  In our dataset, where most 

children were born in the 1980s and 1990s, the corresponding figures are 71%, 14%, 11%, and 4%.  The 

small discrepancy is likely just a result of the different definitions of the categories; our “other” category 

includes people of more than one race, while the Children of Immigrants Data Tool reports only the 

Asian and Native American population as separate from white, black, and Hispanic.30   

 We also compared the means for several other variables in our data to those in the Department 

of Education’s Early Childhood Longitudinal Study, Kindergarten Cohort (ECLS-K).31  The ECLS-K children 

                                                           
29

 Specifically, we predict transition-to-adulthood outcomes from the adolescent variables shown in Table 2 and 
from race, gender, maternal education, and maternal age. 
30

 The Urban Institute Children of Immigrants Data Tool Technical Appendix states that “Non-Hispanic blacks are all 
those who reported they were black or African American, regardless of additional racial/ethnic groups [aside from 
Hispanic] reported.”  Presumably some individuals who get counted as non-Hispanic black by Urban would fall into 
our “other race” category. 
31

 We are indebted to Katherine Magnuson of the University of Wisconsin-Madison for the ECLS-K tabulations. 
Note that the ECLS-K does confirm that including children of immigrants and immigrant children—and looking at a 
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were born primarily in 1992 and 1993, and they represent kindergarteners in 1998.  Comparing our 

sample means to the ECLS-K means—a sample that includes children of immigrants and immigrant 

children—mothers in our sample were, on average half a year younger when their children were born 

and half a year younger when they had their first child.  While 8 percent of children in our sample were 

born low birth weight, 7 percent in the ECLS-K were.  In early childhood, average income to needs 

among the children in our data was 2.96, while it was 2.86 in the ECLS-K.  In our data, 19% of children 

were poor in early childhood, the same proportion as in the ECLS-K.  And the share of children living 

with two married parents in early childhood was 73% in both datasets.   

Finally, cross-tabulations of race and poverty status match quite well between our data and the 

ECLS-K (see Figure 3).  Whites and blacks in our data are slightly less advantaged and Hispanics more 

advantaged (as we would expect since SGM children are all native born). 

Childhood Academic and Behavioral Skills 32 

 The ECLS-K measures many early and middle childhood outcomes which are similar to the SGM 

childhood outcomes.  It administers math and reading achievement tests and asks parents and teachers 

questions about their children’s behavior and social skills.  We cannot generally compare the means of 

these outcomes between the two datasets because the variables are measured on different scales.  

Therefore, we focus on comparing the strength of relationships between the various childhood 

outcomes, as well as achievement gaps between socioeconomic groups in each dataset. 

Table 6 shows correlations between math and reading achievement within early and middle 

childhood and across the two life stages.  Associations between achievement test scores are uniformly 

and substantively lower in our dataset than in the ECLS-K.  The tests used in the ECLS-K were better 

designed than those in the CNLSY; they have more items and rely on sophisticated item response theory 

(IRT) methods.  The test reliabilities are much higher than in the CNLSY.  Furthermore, the PIAT tests in 

the CNLSY were designed for and normed on children in school in the late 1960s.  Because of the well-

known “Flynn Effect,” named after psychometrician James Flynn, which describes increases in test 

scores over successive cohorts of children given the same test, the CNLSY children do better on the 

PIATs than the tests assume should be the case. 

Test reliability differences are also likely to blame for the fact that test score gaps in the SGM 

dataset are quite a bit smaller than in the ECLS-K (see Figure 4).  Once again, the exclusion of immigrant 

children and children of immigrants surely contributes to the under-estimation of gaps between 

Hispanics and whites, but the other gaps are also underestimated (as are gender gaps, which are much 

smaller in both datasets, and gaps according to family structure and maternal age at birth).  

In contrast to the low correlations between test scores in the SGM dataset, the associations 

between behavioral outcomes are fairly close to those observed in the ECLS-K (Table 7).  This similarity is 

surprising, because the behavioral measures are, if anything, less consistent across the two datasets 

                                                                                                                                                                                           
more recent birth cohort—does affect the race/ethnicity distribution of children.  In the ECLS-K, just 57% of 
children are white, 16% are black, 19% are Hispanic, and 8% are “other”.  But Magnuson found that the means for 
the other variables examined did not change a lot when the sample was restricted so that it excluded children of 
immigrant mothers and the youngest and oldest mothers. 
32

 We gratefully acknowledge Magnuson again, who conducted the ECLS-K analyses in this section.   
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than the achievement tests.  For example, in our data, the measures are reported by parents, while in 

the ECLS-K they are reported by teachers.33  

Educational Attainment  

We measure educational attainment by the percentage of respondents who report having 

obtained a high school diploma by age 19 and by the percentage of respondents who report having 

obtained a bachelor’s degree by age 29.  The majority of our sample was born between 1980 and 1990.  

Those children turned 19 between 1999 and 2009, and turn 29 between 2009 and 2019.  To look at high 

school graduation rates for a roughly comparable cohort, we looked at rates for 2005.  To look at college 

graduation rates for a roughly comparable cohort, we looked at 2011 rates. 

The Census Bureau reports high school graduation rates from the Current Population Survey 

(CPS) by counting GED holders as having graduated.  Therefore, for benchmarking purposes we report 

graduation rates in the SGM data using the same definition.  Figure 5 shows the percentage of the 

population age 20 to 24 with a high school degree, according to the CPS, alongside the estimates from 

the SGM data for 19-year-olds.  Our graduation rates are a bit higher than the CPS rates, even though 

the CPS figures are for men and women who have had one to five years longer to get their degree than 

the people in our data.  The big exception is that we show much higher graduation rates for Hispanics, 

which is almost surely driven by our sample’s omission of immigrant children and children of immigrants. 

We also turned to the CPS to benchmark college completion rates.  In many ways, this is a more 

important check than the ones mentioned to this point.  That is because college graduation rates in the 

SGM dataset are based on simulated values, as discussed above.  Benchmarking here is a bit more 

speculative as well, because the children in our sample are not yet old enough as a group to have passed 

through the college-going years—we must project what their college graduation rates will look like.  The 

SGM measures whether a person has a bachelor’s degree or higher by age 29; we compare our 

estimates against published 2011 CPS figures for percentage of the population age 30 to 34 with at least 

a bachelor’s degree.  Our predicted rates of college graduation tend to be somewhat lower than those 

observed in the CPS.  The extent of our under-prediction is probably understated to the extent that 

future college graduation rates will be higher than today’s.  Again, we over-predict the Hispanic rate.   

Income 

Table 8 compares our family income and income-to-needs estimates to benchmarks from 

several datasets.   We compare income at birth to estimates from CPS microdata for children under one 

year old in 1988 (family income measured in 1987, the median birth year in our SGM sample).34  As 

Table 8 shows we do very well against the CPS benchmarks for both income and income-to-needs. 

Next, we compare our income-at-40 estimates against two benchmarks: the CPS (focusing on 

2002 family income among families with a head who was between 38 and 42 in 2003, by which time 

most of the NLSY79 sample members had turned 40) and the NLSY79.  This check is especially important 

                                                           
33

 It is not straightforward to standardize the behavioral problems measures in a way that allows for gaps between 
groups to be compared meaningfully. 
34

 We manipulate CPS data in several ways to make it comparable to SGM data.  We transform everything to 2010 
dollars; we topcode income at $156,000 and income-to-needs ratio at 13; and we define “family income” to 
encompass single people. 
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because in the SGM dataset, age-40 incomes are simulated.  Once again, our SGM means track 

estimates from these two sources very well.   

Finally, we use the Panel Study of Income Dynamics (PSID) to look at the adult family incomes of 

people who were born into poverty. This last check is important because it allows us to assess how good 

our simulated adulthood data is for a subgroup defined by the (non-simulated) at-birth data.  In the PSID, 

the same people have been followed from birth to forty.  The comparison is not ideal because adults in 

the PSID sample were around 40 years old in 2006 or 2008 (the years examined) and were born in the 

late 1960s and early 1970s, so their experience may differ from the experience of more recent birth 

cohorts.35  Our income-to-needs estimate for adults who were poor at birth is reasonably close to the 

PSID benchmark—3.0 vs. 3.6 in the PSID—but our income estimate is lower by $13,000.  It is difficult to 

interpret how problematic this discrepancy is given the cohort differences and possible discrepancies 

between the PSID and SGM analyses.  Reassuringly, our median income and income-to-needs estimates 

matched the PSID ones more closely.36 

Modeling Challenges 
A model is always a simplification of real-world complexities, but to be useful, it must do a 

reasonably good job of characterizing reality.  In this section we address four threats to the internal 

validity of the SGM: missing mediators, incompletely-modeled interventions, measurement error, and 

omitted variable bias. 

Missing Mediators 

A potential threat to the validity of our model is the possibility that there are mediating 

(intervening) variables missing from the model. To understand why this might be a problem, it is useful 

to distinguish between direct effects and indirect effects.  Through adolescence, any X in the SGM can 

affect any Y either directly—as estimated by the coefficient on the variable in a regression equation—or 

indirectly through mediating variables.  For instance, maternal education can affect middle childhood 

test scores directly because it is included in our equations predicting test scores.  It can also affect them 

indirectly through the four early childhood outcomes.  Maternal education directly affects those early 

childhood outcomes, which then affect middle childhood test scores.  The sum of the direct effect and 

all indirect effects equals the total effect of an X on a Y.  That is the relevant effect in microsimulation—

the total amount Y changes in response to X. 

If we had a single birth-to-forty dataset, we would not have to worry about missing mediators.  

Adding mediating variables simply shifts the way total effects are allocated between direct and indirect 

effects.  For example, adding a fifth early childhood outcome would change the direct effect of maternal 

education on middle childhood math scores, but it would not change the total effect.  By the same logic, 

we do not have to worry that we are missing some early childhood outcome that mediates the effect of 

maternal education.  An intervention that increases maternal education will fully propagate forward to 

raise middle childhood math scores regardless of the specific pathways it takes to get there. 
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 We are indebted to Kathleen Ziol-Guest of Cornell University and Greg Duncan of University of California-Irvine 
for the PSID analyses. 
36

 One reason PSID means are higher may be due to top-coding, as the PSID analyses were conducted 
independently of ours. 
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However, the seam in our data at adolescence—where the CNLSY ends and where we have to 

simulate subsequent outcomes via microsimulation and the NLSY79—disrupts this convenient property 

of the model.  Because our regressions estimating TTA outcomes include only adolescent and at-birth 

variables that are available in both the CNLSY and the NLSY79, interventions in early and middle 

childhood (and interventions on at-birth variables not available in the NLSY79) cannot propagate fully 

forward to TTA.  Consider an intervention on early childhood reading scores.  The effect will fully 

propagate through the four middle childhood outcomes and through the 19 adolescent outcomes.  But 

the direct effect of the improved early childhood reading scores on TTA outcomes cannot be modeled, 

nor can the indirect effects that go through middle childhood outcomes and then bypass adolescent 

outcomes (because there are no direct effects from middle childhood outcomes on TTA outcomes).  The 

problem is even worse for estimating effects on adulthood income because of missing direct effects 

from early childhood and middle childhood to both TTA outcomes and adulthood income.  Any effects 

from early or middle childhood (or from at-birth interventions on variables not in the NLSY79) propagate 

only through adolescent outcomes in our model. 

When we added three adolescent outcomes to the model, it increased the estimated effects of 

early interventions on TTA outcomes and adulthood income by a sizable amount—tripling, for instance, 

the effect of an early childhood intervention on adult income.  On the other hand, adding 12 additional 

variables did not meaningfully change our estimated effects significantly, suggesting that we have 

largely addressed this problem. 

Incompletely Modeled Interventions 

Missing mediators across our seam constitute an “omitted pathways” problem.  A second such 

problem exists when we cannot model all of the pathways whereby an intervention affects later 

outcomes.  There are two situations in which this might be the case.  First, it may be that there is no 

good evidence on how some intervention affects one of the variables in our model.  We might wish to 

model how some program to improve parenting affects the later outcomes of children, but the program 

evaluation from which we draw initial effect sizes may not have assessed how the intervention affected 

antisocial behavior.  In that case, if we assume the effect of the parenting program on antisocial 

behavior is zero, we will have an omitted pathway from the intervention to later outcomes, and the 

long-term effect of the program is likely to be understated.   

The second situation in which we might incompletely model an intervention’s effects is if some 

program evaluation determines an effect on some outcome that we do not have in our model.  Perhaps 

the parenting program boosted child self-esteem, which we might expect would eventually increase the 

likelihood she will attend college.  Our model lacks a measure of child self-esteem, and so this will be 

another omitted pathway whereby the intervention has an effect on long-term outcomes.  Our 

estimated long-term effect will again be understated. 

To assess the extent to which such omitted pathways could be an issue for the SGM, we 

reviewed a number of long-term studies of early interventions that measure total effects.  We also 

commissioned research to compare the estimates our model generated for specific early interventions 

for which long-term effects have been evaluated to the actual results found in the evaluations.  That is, 

we have tried to determine whether the explicit pathways we model generate long-term effect 



Guide to the Brookings Social Genome Model   

20 
 

estimates comparable to studies that have measured total effects without regard to the pathways.  We 

turn to this benchmarking in the section below, “Validating the Model.” 

Measurement Error 

Measurement error is the difference between the true value of some variable for some person 

and the measured value.  The variables in our data suffer from two kinds of measurement error—

random and systematic.  In turn, both random and systematic error might be due to error in the 

variables we observe or to error introduced when we impute values to missing data.   

Random measurement error occurs when the error in the variable is independent of the 

distribution of other variables.  If a test-taker scores slightly higher or lower than he would have had he 

taken the test the day before, with these daily fluctuations distributed around his “true” performance in 

some pattern-less way, that constitutes random measurement error.  If our imputations assign values 

that are sometimes too high, sometimes too low, but not in any systematic way, that too is random 

measurement error.   Random measurement error acts as a downward pull on our estimated effects, 

causing them to be understated. Systematic error occurs when errors are patterned in some way that is 

related to other variables.  Systematic error can bias effects upward or downward.37     

It is difficult to assess the extent to which our imputations might exacerbate any measurement 

error problems we might have in the absence of missing values.  For the most part, as is generally true in 

social scientific analyses, our predictive equations have fairly low explanatory power (see Table 5), and 

the relationships between heavily-imputed variables in our model and subsequent outcomes may be 

attenuated. We believe that the most serious issue is the systematic error that is introduced by 

simulating TTA outcomes and adulthood income.  However, since we cannot know what the “true” 

values of these outcomes will be for the CNLSY youth in the future, it is not possible to assess the extent 

of error beyond the benchmarking described above.38   

Omitted Variable Bias 

Any exogenous variables that are missing from our model could lead to the well-known problem 

of omitted variable bias (OVB). To illustrate OVB, imagine that we have left out some CAB variable that 

affects both early childhood and middle childhood math scores directly.  The effect of early childhood 

scores on middle childhood ones that we estimate will be biased—probably upward (if the omitted CAB 

                                                           
37

 A reading test that is biased against children of a certain background—that assesses their true reading ability less 
well than it does for other children—would produce systematic error.  Imputations that are uniformly too high or 
too low would constitute another form of systematic error, which might be the case if people with missing values 
are systematically different than those with observed values in ways not captured by the imputation regressions.  
Another example where that might be the case would be if the NLSY79-based coefficients we use to simulate TTA 
outcomes and adulthood income for CNLSY youth do not reflect the real-world associations those youth will 
actually see (e.g., the return to a high school or college degree might have increased).  Finally, we might 
underestimate the levels of income in TTA and adulthood through our NLSY79-based simulation because economic 
growth could push average income levels up relative to those seen by the NLSY79 cohorts—the intercept from the 
NLSY79 could be too low. 
38

 We have confirmed that the primary alternative to simulating these outcomes—statistical matching of NLSY79 
adults to CNLSY youth—produces demonstrably implausible results. Imputations aside, we did attempt to 
incorporate errors-in-variables corrections in our regressions of outcomes on several variables for which published 
reliabilities are available.  Unfortunately, when making such corrections for multiple variables with relatively low 
reliabilities, estimation problems arise, preventing us from implementing the correction. 
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variable is related to both scores in the same way).  When we then simulate some intervention that 

raises early childhood math scores, because of the OVB, our estimated effect of the intervention on 

middle childhood scores—operating through early childhood scores—will be too big.  A crucial point in 

understanding whether OVB is a problem for the SGM, however, is to distinguish between an individual 

coefficient or effect being biased and the total effect of the intervention being biased.  Only the latter is 

a problem, and only some kinds of OVB will bias our total effects.   

Understanding omitted variable bias is complicated in the context of a recursive system of 

equations such as that constituting the SGM.  There are two clear instances when OVB potentially biases 

our total effects.  First, OVB is potentially problematic for us when omitted variables are temporally 

prior to the intervention stage and they affect subsequent variables that are targets of the intervention.  

In the math score example, the omitted CAB variable will bias the coefficient on the early childhood 

score in the equation predicting the middle childhood score.  As a consequence, that biased effect will 

propagate forward to estimates for subsequent-stage effects; the too-high middle childhood math 

scores will lead to too-high GPAs in adolescence, for example.  In addition, the direct effect of early 

childhood math scores on adolescent variables will also be biased upwards. 

On the other hand, for purposes of estimating total effects on early childhood, middle childhood, 

or adolescent outcomes, we do not believe that omitting variables that come during or after the 

intervention stage biases our estimates.  Imagine that we simulate an intervention that increases 

parental income at birth but that we omit some variable in early childhood that affects middle childhood 

math scores and GPA in adolescence directly.  Clearly, this is a classic instance of OVB where the 

coefficient on middle childhood math scores in the equation predicting GPA will be biased.  What is less 

obvious is that by conditioning on middle childhood math scores, we create an association (or an 

additional source of association) between the omitted variable and the other early childhood variables 

in the GPA equation, which all affect high school GPA directly in our model.  That will bias the 

coefficients on the included early childhood variables.  But it turns out that the total effect of the at-

birth intervention on high school GPA will be unbiased because the biases in these coefficients are 

offsetting.39  (All of this assumes that we have correctly modeled all of the direct effects of the at-birth 

intervention, as discussed above, and that we have not omitted pre-birth variables that lead to OVB.) 

The key here is that we include direct effects from early childhood variables when predicting 

adolescent variables, which allows biases in individual coefficients caused by omitting an early childhood 

variable to offset one another.  However, when predicting post-adolescent outcomes, the necessity of 

using the NLSY79 prevents us from modeling the direct effects of EC and MC variables (and some CAB 

variables) on TTA and adulthood outcomes.  That means that omitting variables that come after the 

                                                           
39

 In the evolving literature on “directed acyclical graphs” and causal diagrams, this is known as “conditioning on a 
collider.” (Pearl, 2000) To illustrate the idea, imagine that one can only get a good job by being male or by being a 
college graduate, and that gender, education, and one’s job all affect income directly.  Also imagine that there is 
no correlation between being male and being a college graduate.  Despite this absence of association, conditional 
on having a good job there will be a negative association between being male and being a college graduate.  If we 
predict income from gender and whether or not someone has a good job (omitting whether or not someone is a 
college graduate), we clearly bias the coefficient on having a good job.  But we also bias the coefficient on gender, 
because we have controlled for having a good job, thereby inducing an association between gender and income 
through the induced negative association of gender and (the omitted) college graduation variable. 
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intervention stage can bias total effects of pre-adolescent interventions on post-adolescent outcomes—

the second case where OVB is clearly a potential problem for the SGM. 

To address this second case, we have focused on including as many adolescent variables as 

possible in our model, which will soak up some of the OVB from having left out pre-adolescent (but 

post-intervention) variables.  Adding variables to adolescence, of course, also helps soak up OVB when 

we simulate an intervention in adolescence or TTA.  We confirmed that adding fifteen adolescent 

variables to our model made a noticeable difference on our estimates when we simulated an 

intervention in adolescence, cutting our estimated effects on adult income in half.   

To address omitted variables prior to the intervention stage (as well as address missing 

mediators), we added several CAB and pre-EC variables to our model, including parenting measures, a 

measure of maternal cognitive skill, and a vocabulary test score from age 3 or 4.  It appears to have had 

a relatively modest impact on our long-term estimated effects.  

We have also explored the likely importance of OVB by estimating a version of the SGM in which 

we controlled for family fixed effects in early childhood and simulated early childhood interventions.  

That is, in the equations predicting middle childhood outcomes, we included indicator variables for the 

CNLSY family in which a child lived.  The fixed effects control for all shared influences—genetic and 

environmental—between children living in the same family.  Our estimated effects using this approach 

were only a bit smaller than in our standard model.40   

Finally, we have explored the extent to which our estimate of a key relationship in our model 

compares with estimates from the literature that attempt to address omitted variable bias in a rigorous 

way.  The relationship between education and adult economic outcomes is at the core of our model.  

Estimating the effect of schooling on future income, however, is a classic instance where OVB might bias 

the results; people advantaged in terms of some unobservable quality such as ability or motivation may 

tend to obtain more schooling and also tend to earn higher incomes, without their educational 

attainment actually being important.   

A number of studies examining the relationship between earnings and educational attainment 

have used quasi-experimental identification strategies (see Ashenfelter and Rouse, 1999 and Card, 2001 

for reviews).  They find that an additional year of schooling is worth earnings boosts of anywhere 

between 3.7 percent and 13.2 percent.41  Card (2001) finds that one of these identification strategies, 

using “instrumental variables,” tends to yield bigger estimates of the effect than conventional estimates, 

which is the opposite of what one would expect if omitted variable bias were a problem.  Because 

research has determined that random measurement error in schooling reports biases estimated effects 

of schooling downward by 10 to 40 percent, Card (2001) and Ashenfelter and Rouse (1999) have 

speculated that in practice, for this particular relationship, OVB and measurement error may effectively 

cancel out.  Our own checks using the NLSY79, comparing earnings and educational attainment in the 

                                                           
40

 This exercise likely understates the importance of OVB to our results in that it does not control for omitted 
variables that differ within families (such as personality traits) and in that it does not include family fixed effects in 
predicting outcomes in adolescence and later.  Since early childhood interventions can affect things that siblings 
share, including fixed effects in subsequent stages is arguably over-controlling. 
41

 This includes a range of 3.7 to 6.3 percent from sibling fixed effects models, an average of roughly 8 percent for 
studies including identical and fraternal twins, and a range of 6.0 to 13.2 percent for instrumental variables 
studies.   
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same year and controlling for a number of variables available in adolescence and at birth, returned an 

estimated effect of an additional year of schooling on earnings of 7 percent. 

Validating the Model 
Our attempts to validate the long-term effects estimated by the SGM have yielded mixed results.  

On the one hand, recent research by Raj Chetty with various colleagues to estimate effects of early 

educational interventions on long-term outcomes has encouraged us (Chetty et al., 2011; Chetty, 

Friedman, and Rockoff, 2011).  In the first paper, Chetty and his colleagues link tax data from the IRS to 

young adults who participated in the Project STAR class-size experiment as children.  Children in the 

Tennessee experiment were randomized into regular-sized classes the first year they entered 

elementary school (kindergarten or first grade unless they transferred in) or classes that were smaller by 

about one-third.  Teachers within the schools were also randomized to a normal-sized or small 

classroom.  Once randomized, children generally stayed in either a normal or small classroom through 

third grade.  The experiment took place during the second half of the 1980s, and Chetty et al. link 

participants to their tax records during their mid- to late-twenties. 

The researchers find that being initially assigned to a small class through third grade increased 

the probability of attending college by 1.6 percentage points and increased earnings by less than $500 (if 

at all).  There were no significant effects on homeownership or marriage.  They also find that having a 

kindergarten teacher with over ten years of experience raised earnings by $1,100, or 7 percent of the 

mean, however there was no effect for children entering the experiment after kindergarten.  Having a 

teacher with a graduate degree did not affect earnings, and the effects of classmate demographic 

composition were also generally small and not statistically significant. Finally, a one-standard deviation 

in class quality, as measured by classmates’ test scores, raised earnings by $455 to $1,520 (about 3 to 10 

percent of the mean). 

Chetty, Friedman, and Rockoff (2011) consider teacher value-added—the effect of a teacher on 

student test scores—and whether it affects students’ adult outcomes.  They use administrative data 

from a large urban school district and tax data from the IRS.  The authors find, for instance, that raising 

the value-added of a student’s teacher in a single grade by one standard deviation increased earnings at 

age 28 by 1 percent.  The results from these papers are in some sense discouraging from the perspective 

of public policy, in that relatively large interventions are shown to have relatively modest long-term 

effects.  But they accord reasonably well with the magnitude of estimated effects typically produced by 

our model. 

For example, working with the RAND Corporation’s Lynn Karoly, we simulated the long-term 

effects of three widely-admired early childhood programs: the Carolina Abcedarian program, the 

High/Scope Perry Preschool Project, and the Chicago Child-Parent Centers program.  We simulated 

outcomes among poor children born to young mothers and who had low preschool vocabulary scores, 

our best attempt to define a target population comparable to the children served by these programs.  

We increased early childhood math and reading scores in accordance with the short-term effects 

actually produced by the programs.42  The model estimated that each program would raise college 

                                                           
42

 The Abcedarian and Perry Preschool studies were randomized experiments, while the Chicago CPC evaluation 
was based on a quasi-experimental design. 
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graduation rates among this group by two percentage points and increase income at age 40 by $2,000 to 

$3,000 (or about 5 to 7 percent).  

The increase in college graduation was comparable to the actual effects produced by Perry 

Preschool and Chicago CPC, but age forty incomes are unavailable for the three studies.  However, the 

SGM significantly under-predicted effects on middle childhood and adolescent outcomes compared with 

the actual effects the studies produced.  For instance, the model predicted that high school graduation 

would rise by 2 to 3.5 percentage points but the studies showed actual gains of 10 to 18 points.  It 

performed similarly poorly predicting effects on teen births and conviction rates and moderately under-

predicted middle childhood math and reading scores.43  

In defense of our model, it is parameterized mostly on a sample of children born in the 1980s 

and 1990s.  The Perry Preschool Project was implemented during the 1960s and Abcedarian in the 1970s, 

and the Chicago CPC evaluation was conducted in the 1980s.  The children participating in these 

programs were probably more disadvantaged than the target population we specified.  Nevertheless, 

we would prefer to have come closer to the real-world results than we did. 

Conclusion 
The benefits of a model that can successfully explicate the processes underlying social mobility 

are readily apparent.  Such a model would shed light on the basic patterns that typify the life courses of 

American children, providing policymakers with important information and suggesting avenues for 

further research.  Perhaps more importantly, it would give policymakers information about the likely 

success of different approaches to promoting social mobility. 

As should be apparent, developing a valid model of social mobility is no easy task—if it were, the 

need for such a model would have been filled by now.  It is our hope that the Social Genome Model can 

inform policy debates and help to allocate scarce resources toward the widely-embraced goal of greater 

upward mobility.  The alternatives are decision-making without information about long-term effects—or 

waiting a generation to observe long-term effects in actual evaluations of policy interventions.   

 

  

                                                           
43

 We were only able to model effects of the early childhood programs on achievement test scores.  Heckman, 
Pinto, and Savelyev (2012) find that the strong effects of Perry Preschool on long-term outcomes was mediated 
primarily by noncognitive skills such as reduced externalizing behavior problems and greater academic motivation.  
When we specified arbitrary effects of the program on our two measures of externalizing behaviors, however, our 
estimates were unaffected. 
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Tables and Figures 
 

Table 1: Life Stages and Corresponding Outcomes 

Stage Variable   

Circumstances 

at Birth  

 

Gender 

A dichotomous variable indicating the sex of the individual. Males are 

the omitted category. 

Race 

Dichotomous variables indicating whether the child is black, Hispanic, or 

other. The omitted category consists of white children. 

Maternal 

Educational 

Attainment 

Dichotomous variables are included to indicate whether the individual’s 

mother graduated from high school, attended some college, or obtained 

a Bachelor's degree or more advanced degree. The omitted category is 

mothers who did not finish high school. 

Maternal Age at 

the Time of the 

Child's Birth 

A continuous variable measuring the age of the mother (in years) at the 

time of the child's birth. 

Maternal Age at 

First Birth 

A continuous variable measuring the age of the mother (in years) at the 

time of her first child’s birth. 

Marital Status of 

the Child's Parents 

at the Time of 

Birth 

A dichotomous variable indicating whether the child's mother was 

married when he/she was born. The omitted category includes those 

children whose mothers were not married, even if cohabitating, at the 

time of their birth. 

Family Income at 

Birth 

This continuous variable is the log-transformed measure of the family's 

income as a percent of the federal poverty line in the year that the child 

was born. 

Low Birth Weight 

A dichotomous variable indicating whether a child weighed  5.5 pounds 

or less when they were born. The omitted category consists of children 

who weighed more than 5.5 pounds at the time of their birth. 

Mother’s AFQT 

Score 

The age-normed percentile score of the child’s mother on the Armed 

Forces Qualifying Test, a general achievement test taken when the 

mothers were between 16 and 23.   

Parenting: 

Cognitive 

Stimulation 

Standardized score on the HOME Inventory Cognitive Stimulation scale, 

measured when the child is 0-2. 

Parenting: 

Emotional Support 

Standardized score on the HOME Inventory Emotional Support scale, 

measured when the child is 0-2. 

Early Verbal Ability  

The age-standardized score of the child on the Peabody Picture 

Vocabulary Test (PPVT), measured when the child is 3 or 4. 
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Table 1: Life Stages and Corresponding Outcomes (Continued) 

Stage Variable   

Early 

Childhood 

(Age 5)  

Math 

Age-standardized scores from the math section of the Peabody 

Individual Achievement Test (PIAT) 

Reading 

Age-standardized scores from the reading recognition section of the 

Peabody Individual Achievement Test (PIAT) 

Antisocial 

Behavior 

Age-standardized antisocial behavior subscale from the Behavior 

Problems Index (BPI). Scores are reverse coded so that higher is better. 

Hyperactivity 

Age-standardized hyperactivity subscale from the Behavior Problems 

Index (BPI).  Scores are reverse coded so that higher is better. 

Middle 

Childhood  

(Age 11) 

Math 

Age-standardized scores from the math section of the Peabody 

Individual Achievement Test (PIAT) 

Reading 

Age-standardized scores from the reading recognition section of the 

Peabody Individual Achievement Test (PIAT) 

Antisocial 

Behavior 

Age-standardized antisocial behavior subscale from the Behavior 

Problems Index (BPI).  Scores are reverse coded so that higher is better. 

Hyperactivity 

Age-standardized hyperactivity subscale from the Behavior Problems 

Index (BPI).  Scores are reverse coded so that higher is better. 

Adolescence 

(Age 19)  High School 

Graduation Status 

A dichotomous variable indicating whether the individual received a 

high school diploma by age 19. GED earners are not counted as high 

school graduates.  

Grade Point 

Average (GPA) 

A continuous variable of average grade in the last year of high school. 

Ranges from 0 to 4. 

Criminal 

Conviction 

A dichotomous variable indicating whether the individual was convicted 

of any charges other than minor traffic violations by age 19. 

Teen Parent 

A dichotomous variable indicating whether the individual reported 

having a child by age 19. 

Lives 

Independently 

from parents 

A dichotomous variable indicating whether the individual was living 

independently from his or her parents at age 19. 

Math  

Age-standardized score on a test measuring mathematical ability:  math 

section of the Peabody Individual Achievement Test (PIAT)at age 13 or 

14 in the CNLSY and arithmetic reasoning section of the Armed Services 

Vocational Aptitude Battery (ASVAB), taken between ages 15 and 23, in 

the NLSY79. 

Reading  

Age-standardized score on a test measuring verbal ability: reading 

recognition section of the Peabody Individual Achievement Test (PIAT) 

at age 13 or 14 in the CNLSY and word knowledge section in the Armed 

Services Vocational Aptitude Battery (ASVAB), taken between ages 15 

and 23, in the NLSY79.  

Family Income 

This continuous variable is the log-transformed measure of the family's 

income during early adolescence (ideally measured at age 13, 14, 15, or 

16).  
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Table 1: Life Stages and Corresponding Outcomes (Continued) 

Stage Variable   

Adolescence 

(Age 19) 

(Continued) Marijuana Use 

This dichotomous variable indicates whether the individual reports 

having ever used marijuana (CNLSY) or having used marijuana in the 

past year (NLSY79). 

Other Drug Use 

This dichotomous variable indicates whether the individual reports 

having ever used drugs other than marijuana or amphetamines (CNLSY) 

or having used drugs other than marijuana in the past year (NLSY79). 

Early Sex 

This dichotomous variable indicates whether the individual reports 

having had sexual intercourse before age 15. 

Suspension 

This dichotomous variable indicates whether the individual was ever 

suspended from school. 

Fighting 

This dichotomous variable indicates whether the individual reported 

getting in a fight at school or work in the past year. 

Hitting 

This dichotomous variable indicates whether the individual reported 

hitting or seriously threatening to hit someone in the past year. 

Damaging 

Property 

This dichotomous variable indicates whether the individual reported 

intentionally damaging the property of others in the past year. 

Self-Esteem Index Age-standardized IRT score on the Rosenberg Self-Esteem Scale. 

Religious Service 

Attendance 

This variable measures frequency of religious service attendance on a 

scale of 0 (none) to 5 (more than once a week). 

Gender Role 

Attitudes 

This continuous variable is the mean of the individual’s answers to five 

questions about how they view women. 

Participation in 

School Clubs 

Dichotomous variable indicating whether the individual participated in 

clubs in high school such as band, choir, or sports. 

Transition to 

Adulthood  

(Age 29) 

Family income 

This continuous variable is the log-transformed measure of the family's 

income during the year the individual was 29 years old.  

Family income to 

needs 

This continuous variable is the log-transformed measure of the family's 

income as a percent of the federal poverty during the year the individual 

was 29 years old.  

College 

Completion 

Dichotomous variable indicating whether the individual obtained a 4-

year degree or higher. 

Lives 

independently 

from parents 

A dichotomous variable indicating whether the individual was living 

independently from his or her parents at age 29. 

Adulthood 

(Age 40) Family income 

This continuous variable is the log-transformed measure of the family's 

income during the year the individual was 40 years old.  

Family income to 

needs 

This continuous variable is the log-transformed measure of the family's 

income as a percent of the federal poverty during the year the individual 

was 40 years old.  
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Table 2: Descriptive Statistics for Continuous and Dichotomous SGM Outcomes 

Variable Mean Std. Dev. Min Max 

Circumstances at Birth (CNLSY)         

Low Birth Weight 0.08 0.27 0 1 

Married Parents at Birth 0.75 0.43 0 1 

Family Income at Birth (divided by FPL) 2.79 2.39 0 13 

Maternal Age at Birth 26 6 13 47 

Maternal Age at First Birth 23 5 13 45 

Parenting: cognitive stimulation (standardized) 0 1 -4.8 3.1 

Parenting: emotional support (standardized) 0 1 -4.9 2.9 

PPVT Age 3/4 0 1 -3.6 5.2 

Mother's AFQT  46 29 0 100 

Early Childhood (CNLSY)         

PIAT Math Ages 5/6 (standardized) 0 1 -3.1 5.7 

PIAT Reading Age 5/6 (standardized) 0 1 -3.2 8.4 

Hyperactivity Age 5/6 (standardized) 0 1 -3.2 2.6 

Antisocial Age 5/6 (standardized) 0 1 -3.9 2.8 

Middle Childhood (CNLSY)         

PIAT Math Age 10/11 (standardized) 0 1 -4.6 3.7 

PIAT Reading Age 10/11 (standardized) 0 1 -4.0 3.8 

Hyperactivity Age 10/11 (standardized) 0 1 -3.6 2.9 

Antisocial Age 10/11 (standardized) 0 1 -4.6 2.9 

Adolescence (CNLSY)         

GPA of Last Year of HS 2.92 0.78 0 4 

Ever Convicted (Prior to age 19) 0.19 0.39 0 1 

Teen Birth 0.13 0.34 0 1 

Graduated High School (By age 19) 0.84 0.36 0 1 

Lives Independently Age 18/19 0.21 0.41 0 1 

Family Income Age 13/14 68,023 47,641 1 156,000 

PIAT Math Age 14/15 (standardized) 0 1 -6.2 3.1 

PIAT Reading Age 14/15 (standardized) 0 1 -4.7 3.2 

Self Esteem Index (standardized) 0 1 -3.5 2.9 

Member of Any HS Club 0.66 0.47 0 1 

Frequency of religious service attendance 2.94 1.71 0 5 

Gender Role Attitudes 2.04 0.50 0 3 

Had Sex Before Age 15 0.20 0.40 0 1 

Damaged Property of Others 0.13 0.34 0 1 

Got in fight at school or work 0.10 0.30 0 1 

Hit or Threatened to Hit Someone 0.22 0.41 0 1 

Ever Suspended From School 0.15 0.36 0 1 

Ever Used Marijuana 0.34 0.47 0 1 

Ever Used Drugs (not marijuana or amphetamines) 0.06 0.24 0 1 
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Table 2: Descriptive Statistics for Continuous and Dichotomous SGM Outcomes (Continued) 

Variable Mean Std. Dev. Min Max 

Linking Variables in NLSY79         

Maternal Age at Birth* 26 6 13 48 

Maternal Age at First Birth* 22 5 13 44 

GPA of Last Year of HS 2.35 1.02 0 4 

Ever Convicted (Prior to age 19) 0.09 0.29 0 1 

Teen Birth 0.14 0.35 0 1 

Graduated High School (By age 19) 0.80 0.40 0 1 

Lives Independently Age 18/19 0.43 0.49 0 1 

Family Income Age 13/14 (2010$) 60,071 39,219 61 156,000 

ASVAB Math Score (standardized) 0 1 -2.7 2.3 

ASVAB Reading Score (standardized) 0 1 -3.6 2.2 

Self Esteem Index (standardized) 0 1 -3.2 2.9 

Member of Any HS Club 0.65 0.48 0 1 

Frequency of religious service attendance 3.02 1.68 0 5 

Gender Role Attitudes 1.87 0.55 0 3 

Had Sex Before Age 15 0.12 0.32 0 1 

Damaged Property of Others 0.22 0.42 0 1 

Got in fight at school or work 0.29 0.45 0 1 

Hit or Threatened to Hit Someone 0.40 0.49 0 1 

Ever Suspended From School 0.21 0.41 0 1 

Used Marijuana, Past Year 0.48 0.50 0 1 

Used Drugs (not marijuana or amphetamines) 0.21 0.40 0 1 

Transition to Adulthood (NLSY79)         

4-year college degree by Age 28/29 0.20 0.40 0 1 

Live Independently Age 28/29 0.89 0.31 0 1 

Family Income Age 28/29  (2010$) 57,279 37,245 61 156,000 

Family Income-to-Needs 28/29 3.5 2.6 0 13 

Adulthood (NLSY79)         

Family Income Age 40/41  (2010$) 70,274 46,680 7 156,000 

Family Income-to-Needs Age 40/41 4.2 3.2 0 13 

*Four children were born to mothers age 10 or younger, which we have verified reflects reporting error or other 
administrative or coding problems in the data. 
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Table 3: Descriptive Statistics for Categorical SGM Variables 

Race (CNLSY) 
 

Race (NLSY79) 

 
Obs Percent Cum. 

  
Obs Percent Cum. 

White 
4,120 71.2 71.2 

 
White 

4,602 75.5 75.5 

Black 
819 14.2 85.4 

 
Black 

740 12.1 87.6 

Hispanic 
610 10.6 96.0 

 
Hispanic 

484 7.9 95.5 

Other 
234 4.1 100 

 
Other 

272 4.5 100 

         

         Maternal Education At Birth (CNLSY) 
 

Maternal Education At Birth (NLSY79) 

 
Obs Percent Cum. 

  
Obs Percent Cum. 

Less Than 
HS 

1,478 25.6 25.6 
 

Less Than 
HS 

2,065 33.9 33.9 

HS 2,239 38.7 64.3 
 

HS 2,767 45.4 79.2 

Some 
College 

1,036 17.9 82.2 

 

Some 
College 

673 11.0 90.3 

Bachelor's 
Degree + 

1,030 17.8 100 

 

Bachelor's 
Degree + 

593 9.7 100 

      

 

Table 4: Defining Success at Each Life Stage 

Stage Variables 

Success at Early Childhood  

 

Math Score ≥ -1 SD & Reading Score ≥ -1 SD & Antisocial Score ≥ -1 SD & 

Hyperactivity Score ≥ -1 SD 

Success at Middle 

Childhood  

Math Score ≥ -1 SD & Reading Score ≥ -1 SD & Antisocial Score ≥ -1 SD & 

Hyperactivity Score ≥ -1 SD 

Success at Adolescence  

 

Graduated High School (diploma, not GED) & GPA ≥ 2.50 in Last Year of High School 

& Never Convicted By 19 & Never was a Parent By 19 

Success at Transition to 

Adulthood  

Lives Independently from Parents and has either (1) a Family Income To Needs 

Ratio ≥ 250% or (2) Obtained a College (4-year) Degree  

Success at Adulthood Family Income To Needs Ratio ≥ 300% 
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Table 5: Imputation in the SGM Dataset 

Life Stage Variable 
Final 
Obs 

Regression Proximity 

% Imputed 
No. 

Imputed Corr R
2
 

% 
Imputed 

No. 
Imputed 

Core Race 5,783 - - - - - - 

  Gender 5,783 - - - - - - 

Circumstances  Maternal Age at First Birth 5,783 0 0 - - - - 

at Birth Maternal Age 5,783 0.02% 1 0.8 0.80 - - 

  Maternal Education 5,783 1.02% 59 0.37 0.41 18.59% 1075 

  Mother's AFQT 5,783 4.63% 268 0.5 0.51 - - 

  Family Structure 5,783 7.40% 428 0.29 0.22 12.14% 702 

  Low Birth Weight 5,783 10.43% 603 0.03 0.05 - - 

  
Family Income (Percent of 
FPL) 5,783 11.10% 642 0.44 0.34 20.23% 1170 

  
Parenting: cognitive 
stimulation  5,783 20.65% 1194 0.69 0.68 18.50% 1070 

  
Parenting: emotional 
support  5,783 21.37% 1236 0.83 0.83 20.15% 1165 

  PPVT Age 3/4 5,783 50.96% 2947 0.37 0.35 - - 

Early  Hyperactivity 5,783 15.04% 870 0.14 0.14 11.91% 689 

Childhood Antisocial 5,783 15.56% 900 0.29 0.29 12.55% 726 

(Age 5-6) PIAT Math 5,783 21.30% 1232 0.22 0.20 22.34% 1292 

  PIAT Reading 5,783 21.44% 1240 0.36 0.36 23.31% 1348 

Middle  Hyperactivity 5,783 19.85% 1148 0.26 0.29 6.42% 371 

Childhood Antisocial 5,783 20.89% 1208 0.44 0.43 7.23% 418 

(Age 10-11) PIAT Reading 5,783 23.97% 1386 0.39 0.39 4.25% 246 

  PIAT Math 5,783 24.05% 1391 0.47 0.48 4.18% 242 

Adolescence 
Ever Suspended 5,783 12.35% 714 0.32 0.35 - - 

(Age 18-19) Family Income (age 13/14) 5,783 23.41% 1354 0.63 0.99 7.75% 448 

  PIAT Reading (age 14/15) 5,783 30.11% 1741 0.61 0.60 36.43% 2107 

  PIAT Math (age 14/15) 5,783 30.16% 1744 0.56 0.56 36.50% 2111 

  Average HS Grades 5,783 31.00% 1793 0.23 0.22 - - 

  Ever Used Marijuana 5,783 35.17% 2034 0.16 0.12 19.85% 1148 

  High School/GED (by 19) 5,783 38.92% 2251 0.33 0.25 - - 

  Self Esteem Index 5,783 40.27% 2329 0.13 0.10 38.92% 2251 

  
Religious Service 
Attendance 5,783 40.71% 2354 0.18 0.07 10.69% 618 

  Ever Used Hard Drugs 5,783 40.79% 2359 0.15 0.31 10.77% 623 

  Ever Convicted (by 19) 5,783 41.31% 2389 0.2 0.19 - - 

  Gender Role Attitudes 5,783 43.92% 2540 0.16 0.16 30.56% 1767 

  Living Independently 5,783 44.99% 2602 0.14 0.11 - - 

  Had Teen Birth (by 19) 5,783 45.25% 2617 0.27 0.27 - - 
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Table 5: Imputation in the SGM Dataset (Continued) 

Life Stage Variable 
Final 
Obs 

Regression 

Proximity % Imputed 
No. 

Imputed Corr R
2
 

Adolescence Had Sex Before Age 15 5,783 46.65% 2698 0.25 0.19 - - 

(Age 18-19) 
(Continued) 

Got in fight at school or 
work 5,783 48.85% 2825 0.17 0.19 6.38% 369 

  
Hit or Threatened to Hit 
Someone 5,783 48.85% 2825 0.24 0.22 6.35% 367 

  Participated in HS Clubs 5,783 63.06% 3647 0.17 0.15 - - 

  
Damaged Property of 
Others 5,783 77.94% 4507 0.17 0.20 12.52% 724 

Match Race 6,098 - - - - - - 

Variables  Gender 6,098 - - - - - - 

in Had Teen Birth (by 19) 6,098 0.06% 37 0.06 0.07 - - 

Adult High School/GED 6,098 2.08% 127 0.13 0.09 - - 

Dataset Gender Role Attitudes 6,098 3.16% 193 0.12 0.11 - - 

  
Religious Service 
Attendance 6,098 3.20% 195 0.07 0.02 - - 

  Ever Suspended 6,098 3.90% 238 0.13 0.12 - - 

  Maternal Education 6,098 5.44% 332 0.2 0.21 - - 

  ASVAB Math 6,098 5.64% 344 0.81 0.82 - - 

  ASVAB Reading 6,098 5.64% 344 0.79 0.78 - - 

  Participated in HS Clubs 6,098 6.33% 386 0.2 0.16 - - 

  Maternal Age 6,098 13.25% 808 0.04 0.02 - - 

  Maternal Age at First Birth 6,098 13.25% 808 0.49 0.49 - - 

  Independence 6,098 14.53% 886 0.09 0.08 - - 

  Adol. Income (age 13/14) 6,098 17.84% 1,088 0.75 0.91 63.10% 3848 

 Had Sex Before Age 15 6,098 21.63% 1,319 0.15 0.16 - - 

 
Hit or Threatened to Hit 
Someone 6,098 27.66% 1,687 0.08 0.08 - - 

 
Got in fight at school or 
work 6,098 27.68% 1,688 0.29 0.25 - - 

 Ever Used Marijuana 6,098 28.09% 1,713 0.17 0.12 - - 

 
Damaged Property of 
Others 6,098 28.16% 1,717 0.22 0.18 - - 

  Ever Used Hard Drugs 6,098 28.26% 1,723 0.31 0.31 - - 

  GPA Last Year of HS 6,098 33.34% 2,033 0.48 0.48 - - 

  Self Esteem Index 6,098 35.24% 2,149 0.16 0.14 - - 

  Ever Convicted (by 19) 6,098 50.93% 3,106 0.21 0.26 - - 
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Table 5: Imputation in the SGM Dataset (Continued) 

Life Stage Variable 
Final 
Obs 

Regression 

Proximity % Imputed 
No. 

Imputed Corr R
2
 

Transition Educational Attainment 6,098 2.28% 139 0.6 0.50 - - 

to Live Independently 6,098 3.13% 191 0.1 0.10 4.13% 252 
Adulthood Family Income-to-needs  6,098 8.00% 488 0.4 0.39 7.23% 441 

(Age 29-30) 
Family Income  6,098 8.00% 488 0.74 0.98 7.23% 441 

Adulthood Family Income-to-needs   6,098 19.15% 1,168 0.42 0.36 13.73% 837 

(Age 40-41) Family Income 6,098 19.15% 1,168 0.67 0.99 13.73% 837 

Note: The “Corr” column provides the correlation (across non-missing observations) between observed 
values and values predicted by the regression.  The “R2” column provides the R2 or pseudo- R2 values for the 
models used to impute missing values for each variable. The family income variables have such high R2 values 
because they are predicted from, among other variables, income to needs.  The low values for the 
dichotomous variables reflect the well-known problem that linear probability models under-estimate R2 
values (see Greene, 1981, 1983) 

 

Table 6: Correlations between Early Childhood and Middle Childhood Math and Reading, SGM vs. 
ECLS-K 

SGM is above diagonal (in red); ECLS-K is below diagonal (in blue) 

 EC Math EC Reading MC Math MC Reading 

EC Math - .56 .48 .43 

EC Reading .77 - .45 .52 

MC Math .68 .55 - .60 

MC Reading  .65 .60 .74 - 

 

Table 7: Correlations between Early Childhood and Middle Childhood Behavior 

SGM is above diagonal (in red); ECLS-K is below diagonal (in blue) 

 EC Antisocial EC Hyperactive MC Antisocial MC Hyperactive 

EC Antisocial - .52 .51 .36 

EC Hyperactive .51 - .38 .50 

MC Antisocial .42 .31 - .55 

MC Hyperactive  .36 .38 .62 - 
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Table 8: Family Income Benchmarking 

  CPS PSID NLSY79 SGM 

Overall         

Mean Income to Needs @ Birth 2.7 

 
  2.8 

Mean Income @ Birth $53,000  

 
  $55,000  

    

 
    

Mean Income to Needs @ 40 4.0 

 
4.2 4.4 

Mean Income @ 40 $71,000  

 
$70,000  $70,000  

    

 
    

Median Income to Needs @ 40 3.3 

 
3.5 3.4  

Median Income @ 40 $63,000  

 
$63,000  $58,000  

Poor at Birth         

Mean Income to Needs @ 40   3.6   3.0 

Mean Income @ 40   $62,000    $49,000  

    
 

    

Median Income to Needs @ 40   2.5   2.1 

Median Income @ 40   $41,000    $35,000  

CPS at-birth figures are for 1987 for children under one year old in 1988.  CPS at-40 figures are for 2002 for 
households with a 38-to 42-year-old head in 2003.  PSID figures are for adults born between 1966 and 1970, who 
were age 38-40 in 2006 or 2008.  NLSY79 and SGM incomes are topcoded at $156,000; income-to-needs are 
topcoded at 1300% FPL.  All income figures are reported in CPI-U-RS-adjusted 2010 dollars and rounded to the 
nearest thousand. 

 

 

Figure 1: The Social Genome Model

 

Note: Dashed lines indicate that a more limited set of controls is used to predict TTA and AD outcomes. 
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Figure 2: Distribution of Maternal Age at Birth 

 

“Sample Observed Birth through Age 19” indicates those born 1980 to 1990. 

 

Figure 3: Distribution of Poverty Status in Early Childhood by Race/Ethnicity, SGM vs. ECLS-K
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Figure 4: Achievement Gaps by Race/Ethnicity and Poverty Status

 

 

Figure 5: School and College Graduation Rates, SGM Dataset vs. CPS

 

SGM high school rate is defined here only as percent of sample with a high school diploma or GED by age 19. 
 
CPS 

high school rate is defined as percent of population age 20-24 with a high school diploma or GED in 2005. 
 
SGM 

college rate is defined as percent of sample with a bachelor’s degree or higher by age 29. 
 
CPS college rate is 

defined as percent of population age 30-34 that holds bachelor’s degree or higher in 2011. 
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