CHAPTER ONE

Introduction

How should software be protected from undue imitation
and plagiarism? At present, all of the traditional means of protecting
intellectual property (IP)—patents, copyright, and trade secrets—are ap-
plied to software in one manner or another, and the U.S. Congress has
even invented a new type for cases in which these may be insufficient, via
the Digital Millennium Copyright Act.

Software is not just like any other machine, as some courts have ruled,
and it is not just Hamlet with numbers: it is a functional hybrid that can
be duplicated at no cost, is legible by computers in some forms and by
humans in others, and has a unique mathematical structure. All of these
facts have to be taken into consideration in designing any type of IP pro-
tection for software.

Patents

It has become a hobby among computer scientists to find the worst soft-
ware patents granted. There are hundreds that make a competent pro-
grammer groan—and want to file for his or her own patents. For now, a
single example will suffice to illustrate why software authors and users
are so bothered by the state of patents today.

Patent 6,389,458, granted May 14, 2002 (filed October 30, 1998, by
Brian Shuster), is for pop-up browser windows, which are typically used

2 INTRODUCTION

Figure 1-1. This Opens a New Window and Puts It in the Foreground

function onExit () {
popup = window.open (“pop.html”,“*Don’t go!”);
popup. focus () ;}

by advertisers to put ads on top of the content that people actually want
to see, and to make it difficult for users to leave a web site. Figure 1-1
shows the three lines of code required to implement the patent in
JavaScript, a language included in web browsers since December 1995,
although the patent also covers implementations in any other program-
ming language, even ones that have not yet been invented.!

The U.S. Patent and Trademark Office (USPTO) deemed that this
combination of one line of code to open a computer window and a sub-
sequent line to focus on the window is a new, nonobvious invention, and
that no persons may put these three lines of code in sequence in their own
work unless they pay Shuster’s company (Ideaflood, Inc.) a royalty for the
privilege of doing so. In 2018 this combination of three lines will enter the
public domain.?

A Counterpoint

Here is the abstract for patent 4,314,081 (granted February 2, 1982,
to Bryan Molloy and Klaus Schmiegel): “3-Aryloxy-3-phenylpropyl-
amines and acid additions salts thereof, useful as psychotropic agents,
particularly as anti-depressants.” This patent covers the active ingredient
in the formula for the antidepressant Prozac, shown in figure 1-2.

It is unlikely that even the best chemists could look at the chemical for-
mula in figure 1-2 and infer that it could alleviate symptoms of depression
in certain people. If they could, it would be because they had studied the
work of Molloy and Schmiegel. Nor could we ask the best chemists to

1. For those who would like to infringe this patent on their own web pages: include the
JavaScript from figure 1-1 and the tag <BODY onUnload="onExit () ”> in the HTML for
the page.

2. A patent is valid for twenty years following the date when the application was filed.
The patent can be viewed at the USPTO’s website, www.uspto.gov. Given a patent number,
the patent can also be downloaded from pat2pdf.org.

INTRODUCTION 3

Figure 1-2. This Alleviates Depression

F3C o— CHCHQCHQNHCHQ, « HCI

Used with permission of Eli Lilly and Company.

quickly jot down a chemical compound to alleviate depression and expect
them to produce anything like this formula, the product of years of
research by Molloy and Schmiegel costing untold dollars. Conversely,
Shuster’s invention would make a good quiz question for an undergrad-
uate computer science class. Nonetheless, the patent for Prozac and the
patent for pop-ups are entirely equal under the law.

A Persistent Problem

The pop-up patent is not an isolated case that slipped by an over-
worked patent examiner. Systematic differences in how software and
machines or chemicals are constructed cause software patents to be sys-
tematically overbroad or obvious.

To paraphrase Socrates, the unexamined patent is not worth giving.
Yet most software patent advocates claim as a platitudinous truth that
software is just like any other technology. For example, in his 57-page
review of IP protection for software, Kenneth Dam, Brookings scholar
and IBM’s former vice president of law and external relations, devotes
one sentence to software versus physical patents: “In principle, the eco-
nomic issues involved in software-related patents raise no economic issues
other than those presented by patents generally.”* He then discusses more
general problems about the patenting system without a word of evidence
to demonstrate that the economics of software is just like the economics
of all other technologies.

3. Dam (1995).

4 INTRODUCTION

If his claim were true, software patents would certainly make sense. In
reality, the economics of software differs significantly from the econom-
ics of all other fields. Although some of software’s problems have ana-
logues in other industries (see chapter 5), many are almost entirely
unique, notably the problems stemming from its mathematical properties,
the structure of the software market, and the importance of interoper-
ability (see chapters 3, 6, and 7, respectively).

Outside of a foolish consistency, there is no reason for patent law to
ignore these unique features. If there were separate laws for physics- and
chemistry-related inventions, the courts would be tied up for decades
attempting to determine which laws applied where. But software is so
clearly different from physical machines (I draw the line precisely and
unambiguously in chapter 4) that the courts and USPTO could readily
maintain an appropriately drawn line.

In assuming that there is no such difference and thus extending patent
protection to software, courts have overlooked three important distinc-
tions. First, a sufficiently detailed description of a computer program is
the program itself, so it is sometimes difficult to distinguish between the
idea and its implementation. For the pop-up window, the idea is a win-
dow that automatically opens and moves to the front when the user views
a new page; the implementation is listed in figure 1-1. For Prozac, the idea
is a selective serotonin reuptake inhibitor (SSRI); the implementation is
shown in figure 1-2. Traditionally, patents have been granted to imple-
mentations of ideas and not to the ideas themselves—there are a dozen
SSRIs on the market that did not infringe on the Prozac patent. But in
software, the pattern has been reversed: most patents cover ideas like the
pop-up window, regardless of implementation, so they tend to be too
broad.

Second, a program is, in a literal sense, a piece of mathematics. This is
not merely a play on words or a loose metaphor; a basic theorem of com-
puter science demonstrates their equivalence. The courts agree that pure
math is not patentable but that software is—yet the two are equivalent. The
courts dumped the problem of reconciling the contradiction on the USPTO,
which has resolved it by allowing patents on mathematical algorithms.

Third, vastly different categories of people write software. Nobody
makes drugs but drug companies, so a patent on Prozac is a restriction
only on other drug companies. But a patent on a piece of code is a restric-
tion not only on software companies but also on the information tech-

INTRODUCTION 5

nology department of every company in America, not to mention every
person who writes macros to facilitate his or her work, or even students
who (unlike chemistry students) could easily write a patent-infringing
program and distribute it online.* Because software patents are a restric-
tion not only on competitors but on a wide array of computer users, the
cost-benefit analysis underlying patent law needs to be done anew for
software.

The Problem Has Come to the Fore

Although the argument thus far may seem abstract, the economic con-
sequences of bad patents are very real. To date, the USPTO has granted
between 170,000 and 200,000 software patents, and applications con-
tinue to flood in; each one of those issued gives the holder the right to sue
others where no such right existed before.’ Because independent inven-
tion is not a defense against claims of patent infringement, anyone work-
ing in front of a computer could be a target for a profitable infringement
suit. Some entrepreneurs have responded to this bonanza of lucrative tar-
gets by creating businesses, such as Acacia Technologies, whose sole pur-
pose is to buy software patents and sue companies for infringement.®
Because the nature of the software writing process makes independent
invention much more common than in other fields, opportunistic law-
suits have been more numerous as well.

In an interview with venture capitalists and software developers,
Ronald Mann, co-director of the Center for Law, Business, and Econom-
ics at the University of Texas at Austin, repeatedly found a resigned atti-
tude toward patents:

Software patents are multiplying so rapidly that it is likely that many
product startups that are developing ultimately will infringe patents
held by large existing companies. . . . Several of my interview subjects

4. For example, when I graded papers for Caltech’s undergraduate intellectual property
class, students would often post their work online and send me a web link. Some of these
exercises could be found by search engines such as Google and were therefore distributed to
the world. In a computer science class, this method of handing in homework could easily be
the worldwide distribution of a patent-infringing program.

5. The low estimate is by Greg Aharonian (editor of the Internet Patent News Service),
personal communication, July 23, 2004; the high estimate is from Bessen and Hunt (2004a).

6. Cherry (2004).

6 INTRODUCTION

joked that they thought it likely—without any investigation or par-
ticular knowledge—that there would be something in IBM’s [patent]
portfolio that their product infringed. ...

Potential innovators know that the large mass of existing patents
held by IBM and Microsoft are likely to receive some share of rev-
enues from any major new product.?

The burgeoning number of multimillion-dollar software patent dis-
putes shows that this concern is not merely speculative. Some major dis-
putes are between well-known firms such as Adobe and Macromedia,
Yahoo! and Google, or Id Software and Creative Labs. Many others have
pitted small firms in the business of lawsuits against large software com-
panies, as in the suits of Acacia against nine cable companies; American
Video Graphics against twelve video game vendors; British Technology
Group against Amazon.com, Microsoft, Apple, and vendors of virus-
detection software; Eolas against Microsoft; and DE Technologies against
Dell.” The list goes on. Note well that none of these suits allege that the
defendant read the plaintiff’s work and then appropriated it without per-
mission; in every case two groups independently arrived at the same algo-
rithm, and the one with the patent sued the other.

Whether these claims are justified or not, each funnels millions of dol-
lars out of research and design of better software and into the legal sys-
tem. If nothing else, this book proposes clarifications of the rules on soft-
ware patents so that disputes either do not arise or are settled efficiently.

Free Software

Another noteworthy example is Kodak v. Sun. Sun developed the Java
programming language (discussed further in chapter 7) and gives it away

7. Mann (2004, p. 53).

8. Mann (2004, p. 57).

9. On Acacia’s suit, see p. 89; on AVG’s suit, Fred Locklear, “Patent Aggregator
Attempts to Make Tech and Game Giants Bleed,” Ars Technica, November 5, 2004
(arstechnica.com/news.ars/post/20041105-4374.html); on BTG v. Amazon, Douglas
Sorocco, “Amazon, Netflix, and Overstock Sued for Internet Visitor Tracking Patent
Infringement,” PHOSITA, September 17, 2004 (www.okpatents.com/phosita/archives/
2004/09/amazon_netflix.html); on BTG v. Apple and MSFT, John Oates, “BTG Sues Apple
and MS over Software Downloads,” The Register, July 21, 2004 (www.theregister.co.uk/
2004/07/21/btg_sues_apple_microsoft/); on BTG and virus detection, “UK Firm Patents
Software Downloads,” The Register, June 16, 2004 (www.theregister.co.uk/2004/06/16/uk_

INTRODUCTION 7

for free, in the hopes that it will expand the company’s hardware sales.
Kodak proved to a court that Sun was infringing on a handful of patents
that Kodak had bought from Wang Laboratories (now Unisys) and then
settled with Sun for $92 million dollars in damages—from free software.'

Although free and open software has become an increasing part of the
business strategies of many companies and even of governments from
Munich to Delaware to Venezuela, Kodak has proved that any such deci-
sion brings a liability risk.!' One group found that the Linux kernel, the
most high profile piece of open software and one of the most widely used,
potentially infringes 283 patents.'> Under such circumstances, businesses
and governments may be reluctant to take advantage of the public good
that Linux’s developers have created—the city of Munich has already put
a brief delay in its Linux migration plans because of concerns about fifty
patents on inventions such as browsers that allow navigation with the
<tab> key (see figure 2-4)."% In the United States, the Department of
Defense, Census Bureau, and National Aeronautics and Space Adminis-
tration are all involved in open-source projects, saving taxpayers money
over proprietary alternatives—but what happens if a patent-holder sues
the Department of Defense for infringement?'* The potential liability
from free software written in-house or by others could cost taxpayers
even more than the $92 million Sun paid out.

firm_patents_downloads/); on Eolas v. MSFT, p. 86; and on DE Technologies v. Dell, Tony
Smith, “Dell Sued for Alleged Global Sales Patent Abuse,” The Register, November 5, 2004
(www.theregister.co.uk/2004/11/05/dell_e-commerce_patent_clash/).

10. Ashlee Vance, “Sun Settles Java Spat with Kodak for $92 Million,” The Register,
October 7, 2004 (www.theregister.co.uk/2004/10/07/kodak_sun_settle/). See also the pre-
settlement report, John Oates, “Kodak Wins Sun Java Patents Case, Wants $1bn,” The
Register, October 4, 2004 (www.theregister.co.uk/2004/10/04/kodak_wins_java/).

11. Other countries that mandate the use of open-source software in government include
Argentina, Brazil, Bulgaria, Chile, Colombia, France, Italy, and Peru. Countries that have a
stated “preference” for open source include Bahrain, Belgium, China and Hong Kong,
Costa Rica, France, Germany, Iceland, Israel, Italy, Malaysia, Poland, Portugal, Philippines,
and South Africa. Robin Bloor, “The Government Open Source Dynamic,” The Register,
January 7, 2005 (www.theregister.co.uk/2005/01/07/gov_open_source_dynamic/). On Dela-
ware and Munich, see Galli (2003).

12. Stephen Shankland, “Group: Linux Potentially Infringes 283 Patents,” CNET
News.com, August 1, 2004 (news.zdnet.com/2100-3513_22-5291403.html). Notice that
the study is by a firm that sells IP lawsuit insurance, so the number is likely to be biased
upward. Nonetheless, the exact number is not important: the entire project could conceiv-
ably be shut down by one or two key patents.

13. Patentrecherche Linux-Basisclient Miinchen (www.presseportal.de/showbin.htx?
id=31139&type=document [German pdf]).

14. Galli (2003).

8 INTRODUCTION

Copyright

The correct breadth of a patent, in the legal and economic sense, covers
the details of an idea’s implementation, not the broad idea itself. For soft-
ware, that means lines of text. Copyright, which also protects text, has a
few major advantages over patents, notably regarding independent
authorship.

If users cut and paste another person’s code into their own without
permission, that act is a clear-cut copyright violation. But what if two
people independently write the same code? A thousand monkeys with
typewriters would need a thousand years to hammer out an exact copy of
Hamlet, but if two programmers needing a pop-up window both wrote
code exactly matching that in figure 1-1, it would be no surprise at all. In
the patent world, every such coincidence is a lawsuit in the making; in a
copyright regime, multiple inventors will not be able to harass each other,
because independent authorship is indeed a valid defense for copyright
cases.

On the other hand, whereas two bodies of code that look alike may
have been independently invented, a body of code that looks nothing like
another may be a direct plagiarism with a trivial translation. There needs
to be a mechanism in place to facilitate verification of independent inven-
tion, which can be done via inspection of the process by which a given
program has been written. The details of how copyright should be
applied to code are discussed in chapter 8.

Politics

The primary policy recommendation of this book is that the U.S. Con-
gress needs to consider what sort of IP protection is appropriate for soft-
ware. To date, the law governing software has been entirely written by
the courts, which do not have the authority to settle policy questions,
only to interpret the intent of Congress, as made clear in the dissenting
opinion in Diamond v. Diebr (discussed in chapter 4): “The broad ques-
tion whether computer programs should be given patent protection
involves policy considerations that this Court [the Supreme Court] is not
authorized to address.” The Congress therefore needs to decide the opti-
mal policy for software. I hope that this book will provide a good start
for the debate.

INTRODUCTION 9

The European Union recently concluded a heated battle over the
patentability of “computer-implemented inventions” in its legislature. After
years of fierce debates and protests, no law of any sort was passed; the par-
ties are now preparing for the next round. Unfortunately, I cannot include
discussion about the battle, because political events move so quickly that
whatever I write will not be current by the time this book reaches print.
Instead, I have focused on the more universal topics of patent policy from
a mathematical and economic perspective. The case law in chapter 4 is
U.S.-specific, but the European Patent Office accepts the same “general-
purpose computer with software” wording trick that I discuss extensively
and faces the same fundamental questions about the patentability of math-
ematics and software. Thus although I will not explicitly discuss the Euro-
pean debate, this book has immediate relevance to it.

Another battleground is in trade-related intellectual property (TRIP),
and here too I avoid the ensuing international relations issues, which per-
tain largely to the harmonization of laws in different countries. As a prac-
tical matter, this means persuading others that they need to adopt U.S. IP
law as their own, so if the United States adopts a patent policy that is ill
conceived, trade negotiations may spread this policy the world over.
Again, the politics of TRIP negotiation is ever changing, but the econom-
ics of good patent policy as discussed in this book is not.

About the Book

A proper discussion of software IP will gather together perspectives from
law, computer science, mathematics, and economics. This book is
intended to provide a discussion of software intellectual property in all of
its relevant contexts.

The first considered here is the economic perspective. Chapter 2 opens
with an overview of patents and copyrights and then turns to the most
important economic question about their design: how broad should pro-
tection be? That is, should an innovator have protection only from direct
plagiarism, or from more loose imitation?

Focusing on the computer science side, chapter 3 examines the struc-
ture of software—the layers upon layers of complexity that have evolved
to make it easier and easier for programmers to write useful programs.
This chapter also introduces the mathematical context, explaining the
extent to which mathematics and computer science overlap.

10 INTRODUCTION

Chapter 4 explores the legal context through a history of how the
courts have dealt with software. As in the mathematical context, soft-
ware falls somewhere along a continuous spectrum of invention between
physical machines, which should be patentable, and pure math, which
should not be. Exactly where should the legal line between the patentable
and the unpatentable be drawn? Since judges are knowledgeable about
law but light on computer science, it is no surprise that the line drawn by
the courts has proved to be in entirely the wrong place.

Chapter 5 elaborates on this question in the business context. Now
that we have a firm rule about what may be patented, what are its effects
on business and innovation in the real world? Is there evidence that it has
led to more innovation than it has stifled? (Hint: no.)

Among the producers of patented goods, the software industry is
unique in an interesting way: it is rather evenly split between those who
make money by writing software for hire (that is, a labor market) and
those who make money selling software via shrink-wrapped CDs (that is,
a goods market). Patents do not affect both sides of the market equally.
Chapter 6 discusses the bifurcated market and how patents shift the bal-
ance between the two sides.

The music and movie industries offer another important perspective on
software, covered in chapter 7. The debate over what constitutes fair use
of media is not one that I touch upon here, but that debate has spilled
over into important issues of software protection. If a music label invents
a special encoding for its music and distributes a program with which to
play it, do users have the right to write their own software that can
decode the music without the permission of the label? The current
answer, according to the U.S. Congress, is that users do not have such a
right. But since encryption and copy protection are so hard to define and
delimit, this rule has turned into the broadest possible form of IP protec-
tion: once a software author has claimed that his or her work implements
a copy protection scheme, that author can claim exclusive ownership of
the right to produce any of a variety of add-ons, extensions, and acces-
sories. No software is an island, entire of itself, so the ability to block
competitors from producing interoperable software is an immense power
that can be readily abused. Such abuses have already appeared in the
courts, creating still more IP headaches for anyone who writes software,
be it for music, electronic books, or garage-door openers.

Chapter 8 considers software as a literary work—Hamlet with num-
bers. As already mentioned, the process of writing a play and the process

INTRODUCTION 11

of writing a program are obviously very different, and IP rules need to
take that into account. For those who have read this far and still believe
that patents are appropriate, I offer suggestions on how patents can
accommodate inventions-in-words. The natural protection for words on
paper is copyright, but this too is not quite a perfect fit, so I also discuss
how copyright for software could be more effectively implemented.

Chapter 9 collects and summarizes the policy recommendations from
all of these perspectives.

